|  | /* | 
|  | *  arch/s390/mm/fault.c | 
|  | * | 
|  | *  S390 version | 
|  | *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation | 
|  | *    Author(s): Hartmut Penner (hp@de.ibm.com) | 
|  | *               Ulrich Weigand (uweigand@de.ibm.com) | 
|  | * | 
|  | *  Derived from "arch/i386/mm/fault.c" | 
|  | *    Copyright (C) 1995  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/hardirq.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #ifndef CONFIG_ARCH_S390X | 
|  | #define __FAIL_ADDR_MASK 0x7ffff000 | 
|  | #define __FIXUP_MASK 0x7fffffff | 
|  | #define __SUBCODE_MASK 0x0200 | 
|  | #define __PF_RES_FIELD 0ULL | 
|  | #else /* CONFIG_ARCH_S390X */ | 
|  | #define __FAIL_ADDR_MASK -4096L | 
|  | #define __FIXUP_MASK ~0L | 
|  | #define __SUBCODE_MASK 0x0600 | 
|  | #define __PF_RES_FIELD 0x8000000000000000ULL | 
|  | #endif /* CONFIG_ARCH_S390X */ | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | extern int sysctl_userprocess_debug; | 
|  | #endif | 
|  |  | 
|  | extern void die(const char *,struct pt_regs *,long); | 
|  |  | 
|  | extern spinlock_t timerlist_lock; | 
|  |  | 
|  | /* | 
|  | * Unlock any spinlocks which will prevent us from getting the | 
|  | * message out (timerlist_lock is acquired through the | 
|  | * console unblank code) | 
|  | */ | 
|  | void bust_spinlocks(int yes) | 
|  | { | 
|  | if (yes) { | 
|  | oops_in_progress = 1; | 
|  | } else { | 
|  | int loglevel_save = console_loglevel; | 
|  | console_unblank(); | 
|  | oops_in_progress = 0; | 
|  | /* | 
|  | * OK, the message is on the console.  Now we call printk() | 
|  | * without oops_in_progress set so that printk will give klogd | 
|  | * a poke.  Hold onto your hats... | 
|  | */ | 
|  | console_loglevel = 15; | 
|  | printk(" "); | 
|  | console_loglevel = loglevel_save; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check which address space is addressed by the access | 
|  | * register in S390_lowcore.exc_access_id. | 
|  | * Returns 1 for user space and 0 for kernel space. | 
|  | */ | 
|  | static int __check_access_register(struct pt_regs *regs, int error_code) | 
|  | { | 
|  | int areg = S390_lowcore.exc_access_id; | 
|  |  | 
|  | if (areg == 0) | 
|  | /* Access via access register 0 -> kernel address */ | 
|  | return 0; | 
|  | save_access_regs(current->thread.acrs); | 
|  | if (regs && areg < NUM_ACRS && current->thread.acrs[areg] <= 1) | 
|  | /* | 
|  | * access register contains 0 -> kernel address, | 
|  | * access register contains 1 -> user space address | 
|  | */ | 
|  | return current->thread.acrs[areg]; | 
|  |  | 
|  | /* Something unhealthy was done with the access registers... */ | 
|  | die("page fault via unknown access register", regs, error_code); | 
|  | do_exit(SIGKILL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check which address space the address belongs to. | 
|  | * Returns 1 for user space and 0 for kernel space. | 
|  | */ | 
|  | static inline int check_user_space(struct pt_regs *regs, int error_code) | 
|  | { | 
|  | /* | 
|  | * The lowest two bits of S390_lowcore.trans_exc_code indicate | 
|  | * which paging table was used: | 
|  | *   0: Primary Segment Table Descriptor | 
|  | *   1: STD determined via access register | 
|  | *   2: Secondary Segment Table Descriptor | 
|  | *   3: Home Segment Table Descriptor | 
|  | */ | 
|  | int descriptor = S390_lowcore.trans_exc_code & 3; | 
|  | if (unlikely(descriptor == 1)) | 
|  | return __check_access_register(regs, error_code); | 
|  | if (descriptor == 2) | 
|  | return current->thread.mm_segment.ar4; | 
|  | return descriptor != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send SIGSEGV to task.  This is an external routine | 
|  | * to keep the stack usage of do_page_fault small. | 
|  | */ | 
|  | static void do_sigsegv(struct pt_regs *regs, unsigned long error_code, | 
|  | int si_code, unsigned long address) | 
|  | { | 
|  | struct siginfo si; | 
|  |  | 
|  | #if defined(CONFIG_SYSCTL) || defined(CONFIG_PROCESS_DEBUG) | 
|  | #if defined(CONFIG_SYSCTL) | 
|  | if (sysctl_userprocess_debug) | 
|  | #endif | 
|  | { | 
|  | printk("User process fault: interruption code 0x%lX\n", | 
|  | error_code); | 
|  | printk("failing address: %lX\n", address); | 
|  | show_regs(regs); | 
|  | } | 
|  | #endif | 
|  | si.si_signo = SIGSEGV; | 
|  | si.si_code = si_code; | 
|  | si.si_addr = (void *) address; | 
|  | force_sig_info(SIGSEGV, &si, current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine handles page faults.  It determines the address, | 
|  | * and the problem, and then passes it off to one of the appropriate | 
|  | * routines. | 
|  | * | 
|  | * error_code: | 
|  | *   04       Protection           ->  Write-Protection  (suprression) | 
|  | *   10       Segment translation  ->  Not present       (nullification) | 
|  | *   11       Page translation     ->  Not present       (nullification) | 
|  | *   3b       Region third trans.  ->  Not present       (nullification) | 
|  | */ | 
|  | extern inline void | 
|  | do_exception(struct pt_regs *regs, unsigned long error_code, int is_protection) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct * vma; | 
|  | unsigned long address; | 
|  | int user_address; | 
|  | const struct exception_table_entry *fixup; | 
|  | int si_code = SEGV_MAPERR; | 
|  |  | 
|  | tsk = current; | 
|  | mm = tsk->mm; | 
|  |  | 
|  | /* | 
|  | * Check for low-address protection.  This needs to be treated | 
|  | * as a special case because the translation exception code | 
|  | * field is not guaranteed to contain valid data in this case. | 
|  | */ | 
|  | if (is_protection && !(S390_lowcore.trans_exc_code & 4)) { | 
|  |  | 
|  | /* Low-address protection hit in kernel mode means | 
|  | NULL pointer write access in kernel mode.  */ | 
|  | if (!(regs->psw.mask & PSW_MASK_PSTATE)) { | 
|  | address = 0; | 
|  | user_address = 0; | 
|  | goto no_context; | 
|  | } | 
|  |  | 
|  | /* Low-address protection hit in user mode 'cannot happen'.  */ | 
|  | die ("Low-address protection", regs, error_code); | 
|  | do_exit(SIGKILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get the failing address | 
|  | * more specific the segment and page table portion of | 
|  | * the address | 
|  | */ | 
|  | address = S390_lowcore.trans_exc_code & __FAIL_ADDR_MASK; | 
|  | user_address = check_user_space(regs, error_code); | 
|  |  | 
|  | /* | 
|  | * Verify that the fault happened in user space, that | 
|  | * we are not in an interrupt and that there is a | 
|  | * user context. | 
|  | */ | 
|  | if (user_address == 0 || in_atomic() || !mm) | 
|  | goto no_context; | 
|  |  | 
|  | /* | 
|  | * When we get here, the fault happened in the current | 
|  | * task's user address space, so we can switch on the | 
|  | * interrupts again and then search the VMAs | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | goto bad_area; | 
|  | if (vma->vm_start <= address) | 
|  | goto good_area; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | goto bad_area; | 
|  | if (expand_stack(vma, address)) | 
|  | goto bad_area; | 
|  | /* | 
|  | * Ok, we have a good vm_area for this memory access, so | 
|  | * we can handle it.. | 
|  | */ | 
|  | good_area: | 
|  | si_code = SEGV_ACCERR; | 
|  | if (!is_protection) { | 
|  | /* page not present, check vm flags */ | 
|  | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | 
|  | goto bad_area; | 
|  | } else { | 
|  | if (!(vma->vm_flags & VM_WRITE)) | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | survive: | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  | switch (handle_mm_fault(mm, vma, address, is_protection)) { | 
|  | case VM_FAULT_MINOR: | 
|  | tsk->min_flt++; | 
|  | break; | 
|  | case VM_FAULT_MAJOR: | 
|  | tsk->maj_flt++; | 
|  | break; | 
|  | case VM_FAULT_SIGBUS: | 
|  | goto do_sigbus; | 
|  | case VM_FAULT_OOM: | 
|  | goto out_of_memory; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | /* | 
|  | * The instruction that caused the program check will | 
|  | * be repeated. Don't signal single step via SIGTRAP. | 
|  | */ | 
|  | clear_tsk_thread_flag(current, TIF_SINGLE_STEP); | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * Fix it, but check if it's kernel or user first.. | 
|  | */ | 
|  | bad_area: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* User mode accesses just cause a SIGSEGV */ | 
|  | if (regs->psw.mask & PSW_MASK_PSTATE) { | 
|  | tsk->thread.prot_addr = address; | 
|  | tsk->thread.trap_no = error_code; | 
|  | do_sigsegv(regs, error_code, si_code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | no_context: | 
|  | /* Are we prepared to handle this kernel fault?  */ | 
|  | fixup = search_exception_tables(regs->psw.addr & __FIXUP_MASK); | 
|  | if (fixup) { | 
|  | regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Oops. The kernel tried to access some bad page. We'll have to | 
|  | * terminate things with extreme prejudice. | 
|  | */ | 
|  | if (user_address == 0) | 
|  | printk(KERN_ALERT "Unable to handle kernel pointer dereference" | 
|  | " at virtual kernel address %p\n", (void *)address); | 
|  | else | 
|  | printk(KERN_ALERT "Unable to handle kernel paging request" | 
|  | " at virtual user address %p\n", (void *)address); | 
|  |  | 
|  | die("Oops", regs, error_code); | 
|  | do_exit(SIGKILL); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  | out_of_memory: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (tsk->pid == 1) { | 
|  | yield(); | 
|  | goto survive; | 
|  | } | 
|  | printk("VM: killing process %s\n", tsk->comm); | 
|  | if (regs->psw.mask & PSW_MASK_PSTATE) | 
|  | do_exit(SIGKILL); | 
|  | goto no_context; | 
|  |  | 
|  | do_sigbus: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * Send a sigbus, regardless of whether we were in kernel | 
|  | * or user mode. | 
|  | */ | 
|  | tsk->thread.prot_addr = address; | 
|  | tsk->thread.trap_no = error_code; | 
|  | force_sig(SIGBUS, tsk); | 
|  |  | 
|  | /* Kernel mode? Handle exceptions or die */ | 
|  | if (!(regs->psw.mask & PSW_MASK_PSTATE)) | 
|  | goto no_context; | 
|  | } | 
|  |  | 
|  | void do_protection_exception(struct pt_regs *regs, unsigned long error_code) | 
|  | { | 
|  | regs->psw.addr -= (error_code >> 16); | 
|  | do_exception(regs, 4, 1); | 
|  | } | 
|  |  | 
|  | void do_dat_exception(struct pt_regs *regs, unsigned long error_code) | 
|  | { | 
|  | do_exception(regs, error_code & 0xff, 0); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARCH_S390X | 
|  |  | 
|  | typedef struct _pseudo_wait_t { | 
|  | struct _pseudo_wait_t *next; | 
|  | wait_queue_head_t queue; | 
|  | unsigned long address; | 
|  | int resolved; | 
|  | } pseudo_wait_t; | 
|  |  | 
|  | static pseudo_wait_t *pseudo_lock_queue = NULL; | 
|  | static spinlock_t pseudo_wait_spinlock; /* spinlock to protect lock queue */ | 
|  |  | 
|  | /* | 
|  | * This routine handles 'pagex' pseudo page faults. | 
|  | */ | 
|  | asmlinkage void | 
|  | do_pseudo_page_fault(struct pt_regs *regs, unsigned long error_code) | 
|  | { | 
|  | pseudo_wait_t wait_struct; | 
|  | pseudo_wait_t *ptr, *last, *next; | 
|  | unsigned long address; | 
|  |  | 
|  | /* | 
|  | * get the failing address | 
|  | * more specific the segment and page table portion of | 
|  | * the address | 
|  | */ | 
|  | address = S390_lowcore.trans_exc_code & 0xfffff000; | 
|  |  | 
|  | if (address & 0x80000000) { | 
|  | /* high bit set -> a page has been swapped in by VM */ | 
|  | address &= 0x7fffffff; | 
|  | spin_lock(&pseudo_wait_spinlock); | 
|  | last = NULL; | 
|  | ptr = pseudo_lock_queue; | 
|  | while (ptr != NULL) { | 
|  | next = ptr->next; | 
|  | if (address == ptr->address) { | 
|  | /* | 
|  | * This is one of the processes waiting | 
|  | * for the page. Unchain from the queue. | 
|  | * There can be more than one process | 
|  | * waiting for the same page. VM presents | 
|  | * an initial and a completion interrupt for | 
|  | * every process that tries to access a | 
|  | * page swapped out by VM. | 
|  | */ | 
|  | if (last == NULL) | 
|  | pseudo_lock_queue = next; | 
|  | else | 
|  | last->next = next; | 
|  | /* now wake up the process */ | 
|  | ptr->resolved = 1; | 
|  | wake_up(&ptr->queue); | 
|  | } else | 
|  | last = ptr; | 
|  | ptr = next; | 
|  | } | 
|  | spin_unlock(&pseudo_wait_spinlock); | 
|  | } else { | 
|  | /* Pseudo page faults in kernel mode is a bad idea */ | 
|  | if (!(regs->psw.mask & PSW_MASK_PSTATE)) { | 
|  | /* | 
|  | * VM presents pseudo page faults if the interrupted | 
|  | * state was not disabled for interrupts. So we can | 
|  | * get pseudo page fault interrupts while running | 
|  | * in kernel mode. We simply access the page here | 
|  | * while we are running disabled. VM will then swap | 
|  | * in the page synchronously. | 
|  | */ | 
|  | if (check_user_space(regs, error_code) == 0) | 
|  | /* dereference a virtual kernel address */ | 
|  | __asm__ __volatile__ ( | 
|  | "  ic 0,0(%0)" | 
|  | : : "a" (address) : "0"); | 
|  | else | 
|  | /* dereference a virtual user address */ | 
|  | __asm__ __volatile__ ( | 
|  | "  la   2,0(%0)\n" | 
|  | "  sacf 512\n" | 
|  | "  ic   2,0(2)\n" | 
|  | "0:sacf 0\n" | 
|  | ".section __ex_table,\"a\"\n" | 
|  | "  .align 4\n" | 
|  | "  .long  0b,0b\n" | 
|  | ".previous" | 
|  | : : "a" (address) : "2" ); | 
|  |  | 
|  | return; | 
|  | } | 
|  | /* initialize and add element to pseudo_lock_queue */ | 
|  | init_waitqueue_head (&wait_struct.queue); | 
|  | wait_struct.address = address; | 
|  | wait_struct.resolved = 0; | 
|  | spin_lock(&pseudo_wait_spinlock); | 
|  | wait_struct.next = pseudo_lock_queue; | 
|  | pseudo_lock_queue = &wait_struct; | 
|  | spin_unlock(&pseudo_wait_spinlock); | 
|  | /* | 
|  | * The instruction that caused the program check will | 
|  | * be repeated. Don't signal single step via SIGTRAP. | 
|  | */ | 
|  | clear_tsk_thread_flag(current, TIF_SINGLE_STEP); | 
|  | /* go to sleep */ | 
|  | wait_event(wait_struct.queue, wait_struct.resolved); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_ARCH_S390X */ | 
|  |  | 
|  | #ifdef CONFIG_PFAULT | 
|  | /* | 
|  | * 'pfault' pseudo page faults routines. | 
|  | */ | 
|  | static int pfault_disable = 0; | 
|  |  | 
|  | static int __init nopfault(char *str) | 
|  | { | 
|  | pfault_disable = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nopfault", nopfault); | 
|  |  | 
|  | typedef struct { | 
|  | __u16 refdiagc; | 
|  | __u16 reffcode; | 
|  | __u16 refdwlen; | 
|  | __u16 refversn; | 
|  | __u64 refgaddr; | 
|  | __u64 refselmk; | 
|  | __u64 refcmpmk; | 
|  | __u64 reserved; | 
|  | } __attribute__ ((packed)) pfault_refbk_t; | 
|  |  | 
|  | int pfault_init(void) | 
|  | { | 
|  | pfault_refbk_t refbk = | 
|  | { 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48, | 
|  | __PF_RES_FIELD }; | 
|  | int rc; | 
|  |  | 
|  | if (pfault_disable) | 
|  | return -1; | 
|  | __asm__ __volatile__( | 
|  | "    diag  %1,%0,0x258\n" | 
|  | "0:  j     2f\n" | 
|  | "1:  la    %0,8\n" | 
|  | "2:\n" | 
|  | ".section __ex_table,\"a\"\n" | 
|  | "   .align 4\n" | 
|  | #ifndef CONFIG_ARCH_S390X | 
|  | "   .long  0b,1b\n" | 
|  | #else /* CONFIG_ARCH_S390X */ | 
|  | "   .quad  0b,1b\n" | 
|  | #endif /* CONFIG_ARCH_S390X */ | 
|  | ".previous" | 
|  | : "=d" (rc) : "a" (&refbk) : "cc" ); | 
|  | __ctl_set_bit(0, 9); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void pfault_fini(void) | 
|  | { | 
|  | pfault_refbk_t refbk = | 
|  | { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL }; | 
|  |  | 
|  | if (pfault_disable) | 
|  | return; | 
|  | __ctl_clear_bit(0,9); | 
|  | __asm__ __volatile__( | 
|  | "    diag  %0,0,0x258\n" | 
|  | "0:\n" | 
|  | ".section __ex_table,\"a\"\n" | 
|  | "   .align 4\n" | 
|  | #ifndef CONFIG_ARCH_S390X | 
|  | "   .long  0b,0b\n" | 
|  | #else /* CONFIG_ARCH_S390X */ | 
|  | "   .quad  0b,0b\n" | 
|  | #endif /* CONFIG_ARCH_S390X */ | 
|  | ".previous" | 
|  | : : "a" (&refbk) : "cc" ); | 
|  | } | 
|  |  | 
|  | asmlinkage void | 
|  | pfault_interrupt(struct pt_regs *regs, __u16 error_code) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | __u16 subcode; | 
|  |  | 
|  | /* | 
|  | * Get the external interruption subcode & pfault | 
|  | * initial/completion signal bit. VM stores this | 
|  | * in the 'cpu address' field associated with the | 
|  | * external interrupt. | 
|  | */ | 
|  | subcode = S390_lowcore.cpu_addr; | 
|  | if ((subcode & 0xff00) != __SUBCODE_MASK) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Get the token (= address of the task structure of the affected task). | 
|  | */ | 
|  | tsk = *(struct task_struct **) __LC_PFAULT_INTPARM; | 
|  |  | 
|  | if (subcode & 0x0080) { | 
|  | /* signal bit is set -> a page has been swapped in by VM */ | 
|  | if (xchg(&tsk->thread.pfault_wait, -1) != 0) { | 
|  | /* Initial interrupt was faster than the completion | 
|  | * interrupt. pfault_wait is valid. Set pfault_wait | 
|  | * back to zero and wake up the process. This can | 
|  | * safely be done because the task is still sleeping | 
|  | * and can't procude new pfaults. */ | 
|  | tsk->thread.pfault_wait = 0; | 
|  | wake_up_process(tsk); | 
|  | } | 
|  | } else { | 
|  | /* signal bit not set -> a real page is missing. */ | 
|  | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
|  | if (xchg(&tsk->thread.pfault_wait, 1) != 0) { | 
|  | /* Completion interrupt was faster than the initial | 
|  | * interrupt (swapped in a -1 for pfault_wait). Set | 
|  | * pfault_wait back to zero and exit. This can be | 
|  | * done safely because tsk is running in kernel | 
|  | * mode and can't produce new pfaults. */ | 
|  | tsk->thread.pfault_wait = 0; | 
|  | set_task_state(tsk, TASK_RUNNING); | 
|  | } else | 
|  | set_tsk_need_resched(tsk); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  |