|  | /* | 
|  | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | * | 
|  | * Copyright © 2001-2007 Red Hat, Inc. | 
|  | * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include "nodelist.h" | 
|  |  | 
|  | /* For testing write failures */ | 
|  | #undef BREAKME | 
|  | #undef BREAKMEHEADER | 
|  |  | 
|  | #ifdef BREAKME | 
|  | static unsigned char *brokenbuf; | 
|  | #endif | 
|  |  | 
|  | #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) | 
|  | #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) | 
|  |  | 
|  | /* max. erase failures before we mark a block bad */ | 
|  | #define MAX_ERASE_FAILURES 	2 | 
|  |  | 
|  | struct jffs2_inodirty { | 
|  | uint32_t ino; | 
|  | struct jffs2_inodirty *next; | 
|  | }; | 
|  |  | 
|  | static struct jffs2_inodirty inodirty_nomem; | 
|  |  | 
|  | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) | 
|  | { | 
|  | struct jffs2_inodirty *this = c->wbuf_inodes; | 
|  |  | 
|  | /* If a malloc failed, consider _everything_ dirty */ | 
|  | if (this == &inodirty_nomem) | 
|  | return 1; | 
|  |  | 
|  | /* If ino == 0, _any_ non-GC writes mean 'yes' */ | 
|  | if (this && !ino) | 
|  | return 1; | 
|  |  | 
|  | /* Look to see if the inode in question is pending in the wbuf */ | 
|  | while (this) { | 
|  | if (this->ino == ino) | 
|  | return 1; | 
|  | this = this->next; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct jffs2_inodirty *this; | 
|  |  | 
|  | this = c->wbuf_inodes; | 
|  |  | 
|  | if (this != &inodirty_nomem) { | 
|  | while (this) { | 
|  | struct jffs2_inodirty *next = this->next; | 
|  | kfree(this); | 
|  | this = next; | 
|  | } | 
|  | } | 
|  | c->wbuf_inodes = NULL; | 
|  | } | 
|  |  | 
|  | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) | 
|  | { | 
|  | struct jffs2_inodirty *new; | 
|  |  | 
|  | /* Mark the superblock dirty so that kupdated will flush... */ | 
|  | jffs2_erase_pending_trigger(c); | 
|  |  | 
|  | if (jffs2_wbuf_pending_for_ino(c, ino)) | 
|  | return; | 
|  |  | 
|  | new = kmalloc(sizeof(*new), GFP_KERNEL); | 
|  | if (!new) { | 
|  | D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); | 
|  | jffs2_clear_wbuf_ino_list(c); | 
|  | c->wbuf_inodes = &inodirty_nomem; | 
|  | return; | 
|  | } | 
|  | new->ino = ino; | 
|  | new->next = c->wbuf_inodes; | 
|  | c->wbuf_inodes = new; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct list_head *this, *next; | 
|  | static int n; | 
|  |  | 
|  | if (list_empty(&c->erasable_pending_wbuf_list)) | 
|  | return; | 
|  |  | 
|  | list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); | 
|  | list_del(this); | 
|  | if ((jiffies + (n++)) & 127) { | 
|  | /* Most of the time, we just erase it immediately. Otherwise we | 
|  | spend ages scanning it on mount, etc. */ | 
|  | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } else { | 
|  | /* Sometimes, however, we leave it elsewhere so it doesn't get | 
|  | immediately reused, and we spread the load a bit. */ | 
|  | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erasable_list); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define REFILE_NOTEMPTY 0 | 
|  | #define REFILE_ANYWAY   1 | 
|  |  | 
|  | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) | 
|  | { | 
|  | D1(printk("About to refile bad block at %08x\n", jeb->offset)); | 
|  |  | 
|  | /* File the existing block on the bad_used_list.... */ | 
|  | if (c->nextblock == jeb) | 
|  | c->nextblock = NULL; | 
|  | else /* Not sure this should ever happen... need more coffee */ | 
|  | list_del(&jeb->list); | 
|  | if (jeb->first_node) { | 
|  | D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); | 
|  | list_add(&jeb->list, &c->bad_used_list); | 
|  | } else { | 
|  | BUG_ON(allow_empty == REFILE_NOTEMPTY); | 
|  | /* It has to have had some nodes or we couldn't be here */ | 
|  | D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); | 
|  | list_add(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } | 
|  |  | 
|  | if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { | 
|  | uint32_t oldfree = jeb->free_size; | 
|  |  | 
|  | jffs2_link_node_ref(c, jeb, | 
|  | (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, | 
|  | oldfree, NULL); | 
|  | /* convert to wasted */ | 
|  | c->wasted_size += oldfree; | 
|  | jeb->wasted_size += oldfree; | 
|  | c->dirty_size -= oldfree; | 
|  | jeb->dirty_size -= oldfree; | 
|  | } | 
|  |  | 
|  | jffs2_dbg_dump_block_lists_nolock(c); | 
|  | jffs2_dbg_acct_sanity_check_nolock(c,jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
|  | } | 
|  |  | 
|  | static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, | 
|  | struct jffs2_inode_info *f, | 
|  | struct jffs2_raw_node_ref *raw, | 
|  | union jffs2_node_union *node) | 
|  | { | 
|  | struct jffs2_node_frag *frag; | 
|  | struct jffs2_full_dirent *fd; | 
|  |  | 
|  | dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", | 
|  | node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); | 
|  |  | 
|  | BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && | 
|  | je16_to_cpu(node->u.magic) != 0); | 
|  |  | 
|  | switch (je16_to_cpu(node->u.nodetype)) { | 
|  | case JFFS2_NODETYPE_INODE: | 
|  | if (f->metadata && f->metadata->raw == raw) { | 
|  | dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); | 
|  | return &f->metadata->raw; | 
|  | } | 
|  | frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); | 
|  | BUG_ON(!frag); | 
|  | /* Find a frag which refers to the full_dnode we want to modify */ | 
|  | while (!frag->node || frag->node->raw != raw) { | 
|  | frag = frag_next(frag); | 
|  | BUG_ON(!frag); | 
|  | } | 
|  | dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); | 
|  | return &frag->node->raw; | 
|  |  | 
|  | case JFFS2_NODETYPE_DIRENT: | 
|  | for (fd = f->dents; fd; fd = fd->next) { | 
|  | if (fd->raw == raw) { | 
|  | dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); | 
|  | return &fd->raw; | 
|  | } | 
|  | } | 
|  | BUG(); | 
|  |  | 
|  | default: | 
|  | dbg_noderef("Don't care about replacing raw for nodetype %x\n", | 
|  | je16_to_cpu(node->u.nodetype)); | 
|  | break; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY | 
|  | static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf, | 
|  | uint32_t ofs) | 
|  | { | 
|  | int ret; | 
|  | size_t retlen; | 
|  | char *eccstr; | 
|  |  | 
|  | ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify); | 
|  | if (ret && ret != -EUCLEAN && ret != -EBADMSG) { | 
|  | printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret); | 
|  | return ret; | 
|  | } else if (retlen != c->wbuf_pagesize) { | 
|  | printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize); | 
|  | return -EIO; | 
|  | } | 
|  | if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize)) | 
|  | return 0; | 
|  |  | 
|  | if (ret == -EUCLEAN) | 
|  | eccstr = "corrected"; | 
|  | else if (ret == -EBADMSG) | 
|  | eccstr = "correction failed"; | 
|  | else | 
|  | eccstr = "OK or unused"; | 
|  |  | 
|  | printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n", | 
|  | eccstr, c->wbuf_ofs); | 
|  | print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, | 
|  | c->wbuf, c->wbuf_pagesize, 0); | 
|  |  | 
|  | printk(KERN_WARNING "Read back:\n"); | 
|  | print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, | 
|  | c->wbuf_verify, c->wbuf_pagesize, 0); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  | #else | 
|  | #define jffs2_verify_write(c,b,o) (0) | 
|  | #endif | 
|  |  | 
|  | /* Recover from failure to write wbuf. Recover the nodes up to the | 
|  | * wbuf, not the one which we were starting to try to write. */ | 
|  |  | 
|  | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb, *new_jeb; | 
|  | struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; | 
|  | size_t retlen; | 
|  | int ret; | 
|  | int nr_refile = 0; | 
|  | unsigned char *buf; | 
|  | uint32_t start, end, ofs, len; | 
|  |  | 
|  | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | if (c->wbuf_ofs % c->mtd->erasesize) | 
|  | jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); | 
|  | else | 
|  | jffs2_block_refile(c, jeb, REFILE_ANYWAY); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | BUG_ON(!ref_obsolete(jeb->last_node)); | 
|  |  | 
|  | /* Find the first node to be recovered, by skipping over every | 
|  | node which ends before the wbuf starts, or which is obsolete. */ | 
|  | for (next = raw = jeb->first_node; next; raw = next) { | 
|  | next = ref_next(raw); | 
|  |  | 
|  | if (ref_obsolete(raw) || | 
|  | (next && ref_offset(next) <= c->wbuf_ofs)) { | 
|  | dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", | 
|  | ref_offset(raw), ref_flags(raw), | 
|  | (ref_offset(raw) + ref_totlen(c, jeb, raw)), | 
|  | c->wbuf_ofs); | 
|  | continue; | 
|  | } | 
|  | dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", | 
|  | ref_offset(raw), ref_flags(raw), | 
|  | (ref_offset(raw) + ref_totlen(c, jeb, raw))); | 
|  |  | 
|  | first_raw = raw; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!first_raw) { | 
|  | /* All nodes were obsolete. Nothing to recover. */ | 
|  | D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); | 
|  | c->wbuf_len = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | start = ref_offset(first_raw); | 
|  | end = ref_offset(jeb->last_node); | 
|  | nr_refile = 1; | 
|  |  | 
|  | /* Count the number of refs which need to be copied */ | 
|  | while ((raw = ref_next(raw)) != jeb->last_node) | 
|  | nr_refile++; | 
|  |  | 
|  | dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", | 
|  | start, end, end - start, nr_refile); | 
|  |  | 
|  | buf = NULL; | 
|  | if (start < c->wbuf_ofs) { | 
|  | /* First affected node was already partially written. | 
|  | * Attempt to reread the old data into our buffer. */ | 
|  |  | 
|  | buf = kmalloc(end - start, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); | 
|  |  | 
|  | goto read_failed; | 
|  | } | 
|  |  | 
|  | /* Do the read... */ | 
|  | ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); | 
|  |  | 
|  | /* ECC recovered ? */ | 
|  | if ((ret == -EUCLEAN || ret == -EBADMSG) && | 
|  | (retlen == c->wbuf_ofs - start)) | 
|  | ret = 0; | 
|  |  | 
|  | if (ret || retlen != c->wbuf_ofs - start) { | 
|  | printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); | 
|  |  | 
|  | kfree(buf); | 
|  | buf = NULL; | 
|  | read_failed: | 
|  | first_raw = ref_next(first_raw); | 
|  | nr_refile--; | 
|  | while (first_raw && ref_obsolete(first_raw)) { | 
|  | first_raw = ref_next(first_raw); | 
|  | nr_refile--; | 
|  | } | 
|  |  | 
|  | /* If this was the only node to be recovered, give up */ | 
|  | if (!first_raw) { | 
|  | c->wbuf_len = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* It wasn't. Go on and try to recover nodes complete in the wbuf */ | 
|  | start = ref_offset(first_raw); | 
|  | dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", | 
|  | start, end, end - start, nr_refile); | 
|  |  | 
|  | } else { | 
|  | /* Read succeeded. Copy the remaining data from the wbuf */ | 
|  | memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); | 
|  | } | 
|  | } | 
|  | /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. | 
|  | Either 'buf' contains the data, or we find it in the wbuf */ | 
|  |  | 
|  | /* ... and get an allocation of space from a shiny new block instead */ | 
|  | ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The summary is not recovered, so it must be disabled for this erase block */ | 
|  | jffs2_sum_disable_collecting(c->summary); | 
|  |  | 
|  | ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ofs = write_ofs(c); | 
|  |  | 
|  | if (end-start >= c->wbuf_pagesize) { | 
|  | /* Need to do another write immediately, but it's possible | 
|  | that this is just because the wbuf itself is completely | 
|  | full, and there's nothing earlier read back from the | 
|  | flash. Hence 'buf' isn't necessarily what we're writing | 
|  | from. */ | 
|  | unsigned char *rewrite_buf = buf?:c->wbuf; | 
|  | uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", | 
|  | towrite, ofs)); | 
|  |  | 
|  | #ifdef BREAKMEHEADER | 
|  | static int breakme; | 
|  | if (breakme++ == 20) { | 
|  | printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); | 
|  | breakme = 0; | 
|  | c->mtd->write(c->mtd, ofs, towrite, &retlen, | 
|  | brokenbuf); | 
|  | ret = -EIO; | 
|  | } else | 
|  | #endif | 
|  | ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, | 
|  | rewrite_buf); | 
|  |  | 
|  | if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) { | 
|  | /* Argh. We tried. Really we did. */ | 
|  | printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); | 
|  | kfree(buf); | 
|  |  | 
|  | if (retlen) | 
|  | jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); | 
|  |  | 
|  | return; | 
|  | } | 
|  | printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); | 
|  |  | 
|  | c->wbuf_len = (end - start) - towrite; | 
|  | c->wbuf_ofs = ofs + towrite; | 
|  | memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); | 
|  | /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ | 
|  | } else { | 
|  | /* OK, now we're left with the dregs in whichever buffer we're using */ | 
|  | if (buf) { | 
|  | memcpy(c->wbuf, buf, end-start); | 
|  | } else { | 
|  | memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); | 
|  | } | 
|  | c->wbuf_ofs = ofs; | 
|  | c->wbuf_len = end - start; | 
|  | } | 
|  |  | 
|  | /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ | 
|  | new_jeb = &c->blocks[ofs / c->sector_size]; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { | 
|  | uint32_t rawlen = ref_totlen(c, jeb, raw); | 
|  | struct jffs2_inode_cache *ic; | 
|  | struct jffs2_raw_node_ref *new_ref; | 
|  | struct jffs2_raw_node_ref **adjust_ref = NULL; | 
|  | struct jffs2_inode_info *f = NULL; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", | 
|  | rawlen, ref_offset(raw), ref_flags(raw), ofs)); | 
|  |  | 
|  | ic = jffs2_raw_ref_to_ic(raw); | 
|  |  | 
|  | /* Ick. This XATTR mess should be fixed shortly... */ | 
|  | if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { | 
|  | struct jffs2_xattr_datum *xd = (void *)ic; | 
|  | BUG_ON(xd->node != raw); | 
|  | adjust_ref = &xd->node; | 
|  | raw->next_in_ino = NULL; | 
|  | ic = NULL; | 
|  | } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { | 
|  | struct jffs2_xattr_datum *xr = (void *)ic; | 
|  | BUG_ON(xr->node != raw); | 
|  | adjust_ref = &xr->node; | 
|  | raw->next_in_ino = NULL; | 
|  | ic = NULL; | 
|  | } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { | 
|  | struct jffs2_raw_node_ref **p = &ic->nodes; | 
|  |  | 
|  | /* Remove the old node from the per-inode list */ | 
|  | while (*p && *p != (void *)ic) { | 
|  | if (*p == raw) { | 
|  | (*p) = (raw->next_in_ino); | 
|  | raw->next_in_ino = NULL; | 
|  | break; | 
|  | } | 
|  | p = &((*p)->next_in_ino); | 
|  | } | 
|  |  | 
|  | if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { | 
|  | /* If it's an in-core inode, then we have to adjust any | 
|  | full_dirent or full_dnode structure to point to the | 
|  | new version instead of the old */ | 
|  | f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink); | 
|  | if (IS_ERR(f)) { | 
|  | /* Should never happen; it _must_ be present */ | 
|  | JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", | 
|  | ic->ino, PTR_ERR(f)); | 
|  | BUG(); | 
|  | } | 
|  | /* We don't lock f->sem. There's a number of ways we could | 
|  | end up in here with it already being locked, and nobody's | 
|  | going to modify it on us anyway because we hold the | 
|  | alloc_sem. We're only changing one ->raw pointer too, | 
|  | which we can get away with without upsetting readers. */ | 
|  | adjust_ref = jffs2_incore_replace_raw(c, f, raw, | 
|  | (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); | 
|  | } else if (unlikely(ic->state != INO_STATE_PRESENT && | 
|  | ic->state != INO_STATE_CHECKEDABSENT && | 
|  | ic->state != INO_STATE_GC)) { | 
|  | JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); | 
|  |  | 
|  | if (adjust_ref) { | 
|  | BUG_ON(*adjust_ref != raw); | 
|  | *adjust_ref = new_ref; | 
|  | } | 
|  | if (f) | 
|  | jffs2_gc_release_inode(c, f); | 
|  |  | 
|  | if (!ref_obsolete(raw)) { | 
|  | jeb->dirty_size += rawlen; | 
|  | jeb->used_size  -= rawlen; | 
|  | c->dirty_size += rawlen; | 
|  | c->used_size -= rawlen; | 
|  | raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; | 
|  | BUG_ON(raw->next_in_ino); | 
|  | } | 
|  | ofs += rawlen; | 
|  | } | 
|  |  | 
|  | kfree(buf); | 
|  |  | 
|  | /* Fix up the original jeb now it's on the bad_list */ | 
|  | if (first_raw == jeb->first_node) { | 
|  | D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); | 
|  | list_move(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check_nolock(c, jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len)); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Meaning of pad argument: | 
|  | 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. | 
|  | 1: Pad, do not adjust nextblock free_size | 
|  | 2: Pad, adjust nextblock free_size | 
|  | */ | 
|  | #define NOPAD		0 | 
|  | #define PAD_NOACCOUNT	1 | 
|  | #define PAD_ACCOUNTING	2 | 
|  |  | 
|  | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | 
|  | { | 
|  | struct jffs2_eraseblock *wbuf_jeb; | 
|  | int ret; | 
|  | size_t retlen; | 
|  |  | 
|  | /* Nothing to do if not write-buffering the flash. In particular, we shouldn't | 
|  | del_timer() the timer we never initialised. */ | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return 0; | 
|  |  | 
|  | if (mutex_trylock(&c->alloc_sem)) { | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!c->wbuf_len)	/* already checked c->wbuf above */ | 
|  | return 0; | 
|  |  | 
|  | wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
|  | if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* claim remaining space on the page | 
|  | this happens, if we have a change to a new block, | 
|  | or if fsync forces us to flush the writebuffer. | 
|  | if we have a switch to next page, we will not have | 
|  | enough remaining space for this. | 
|  | */ | 
|  | if (pad ) { | 
|  | c->wbuf_len = PAD(c->wbuf_len); | 
|  |  | 
|  | /* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR | 
|  | with 8 byte page size */ | 
|  | memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); | 
|  |  | 
|  | if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { | 
|  | struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); | 
|  | padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); | 
|  | padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); | 
|  | padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); | 
|  | } | 
|  | } | 
|  | /* else jffs2_flash_writev has actually filled in the rest of the | 
|  | buffer for us, and will deal with the node refs etc. later. */ | 
|  |  | 
|  | #ifdef BREAKME | 
|  | static int breakme; | 
|  | if (breakme++ == 20) { | 
|  | printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); | 
|  | breakme = 0; | 
|  | c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, | 
|  | brokenbuf); | 
|  | ret = -EIO; | 
|  | } else | 
|  | #endif | 
|  |  | 
|  | ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); | 
|  |  | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret); | 
|  | goto wfail; | 
|  | } else if (retlen != c->wbuf_pagesize) { | 
|  | printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", | 
|  | retlen, c->wbuf_pagesize); | 
|  | ret = -EIO; | 
|  | goto wfail; | 
|  | } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) { | 
|  | wfail: | 
|  | jffs2_wbuf_recover(c); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Adjust free size of the block if we padded. */ | 
|  | if (pad) { | 
|  | uint32_t waste = c->wbuf_pagesize - c->wbuf_len; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", | 
|  | (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset)); | 
|  |  | 
|  | /* wbuf_pagesize - wbuf_len is the amount of space that's to be | 
|  | padded. If there is less free space in the block than that, | 
|  | something screwed up */ | 
|  | if (wbuf_jeb->free_size < waste) { | 
|  | printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", | 
|  | c->wbuf_ofs, c->wbuf_len, waste); | 
|  | printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", | 
|  | wbuf_jeb->offset, wbuf_jeb->free_size); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); | 
|  | /* FIXME: that made it count as dirty. Convert to wasted */ | 
|  | wbuf_jeb->dirty_size -= waste; | 
|  | c->dirty_size -= waste; | 
|  | wbuf_jeb->wasted_size += waste; | 
|  | c->wasted_size += waste; | 
|  | } else | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | /* Stick any now-obsoleted blocks on the erase_pending_list */ | 
|  | jffs2_refile_wbuf_blocks(c); | 
|  | jffs2_clear_wbuf_ino_list(c); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | /* adjust write buffer offset, else we get a non contiguous write bug */ | 
|  | c->wbuf_ofs += c->wbuf_pagesize; | 
|  | c->wbuf_len = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Trigger garbage collection to flush the write-buffer. | 
|  | If ino arg is zero, do it if _any_ real (i.e. not GC) writes are | 
|  | outstanding. If ino arg non-zero, do it only if a write for the | 
|  | given inode is outstanding. */ | 
|  | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) | 
|  | { | 
|  | uint32_t old_wbuf_ofs; | 
|  | uint32_t old_wbuf_len; | 
|  | int ret = 0; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); | 
|  |  | 
|  | if (!c->wbuf) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&c->alloc_sem); | 
|  | if (!jffs2_wbuf_pending_for_ino(c, ino)) { | 
|  | D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | old_wbuf_ofs = c->wbuf_ofs; | 
|  | old_wbuf_len = c->wbuf_len; | 
|  |  | 
|  | if (c->unchecked_size) { | 
|  | /* GC won't make any progress for a while */ | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); | 
|  | down_write(&c->wbuf_sem); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | /* retry flushing wbuf in case jffs2_wbuf_recover | 
|  | left some data in the wbuf */ | 
|  | if (ret) | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | up_write(&c->wbuf_sem); | 
|  | } else while (old_wbuf_len && | 
|  | old_wbuf_ofs == c->wbuf_ofs) { | 
|  |  | 
|  | mutex_unlock(&c->alloc_sem); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); | 
|  |  | 
|  | ret = jffs2_garbage_collect_pass(c); | 
|  | if (ret) { | 
|  | /* GC failed. Flush it with padding instead */ | 
|  | mutex_lock(&c->alloc_sem); | 
|  | down_write(&c->wbuf_sem); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | /* retry flushing wbuf in case jffs2_wbuf_recover | 
|  | left some data in the wbuf */ | 
|  | if (ret) | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | up_write(&c->wbuf_sem); | 
|  | break; | 
|  | } | 
|  | mutex_lock(&c->alloc_sem); | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); | 
|  |  | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Pad write-buffer to end and write it, wasting space. */ | 
|  | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!c->wbuf) | 
|  | return 0; | 
|  |  | 
|  | down_write(&c->wbuf_sem); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | /* retry - maybe wbuf recover left some data in wbuf. */ | 
|  | if (ret) | 
|  | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | up_write(&c->wbuf_sem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, | 
|  | size_t len) | 
|  | { | 
|  | if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) | 
|  | return 0; | 
|  |  | 
|  | if (len > (c->wbuf_pagesize - c->wbuf_len)) | 
|  | len = c->wbuf_pagesize - c->wbuf_len; | 
|  | memcpy(c->wbuf + c->wbuf_len, buf, len); | 
|  | c->wbuf_len += (uint32_t) len; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, | 
|  | unsigned long count, loff_t to, size_t *retlen, | 
|  | uint32_t ino) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb; | 
|  | size_t wbuf_retlen, donelen = 0; | 
|  | uint32_t outvec_to = to; | 
|  | int ret, invec; | 
|  |  | 
|  | /* If not writebuffered flash, don't bother */ | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); | 
|  |  | 
|  | down_write(&c->wbuf_sem); | 
|  |  | 
|  | /* If wbuf_ofs is not initialized, set it to target address */ | 
|  | if (c->wbuf_ofs == 0xFFFFFFFF) { | 
|  | c->wbuf_ofs = PAGE_DIV(to); | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity checks on target address.  It's permitted to write | 
|  | * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to | 
|  | * write at the beginning of a new erase block. Anything else, | 
|  | * and you die.  New block starts at xxx000c (0-b = block | 
|  | * header) | 
|  | */ | 
|  | if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { | 
|  | /* It's a write to a new block */ | 
|  | if (c->wbuf_len) { | 
|  | D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " | 
|  | "causes flush of wbuf at 0x%08x\n", | 
|  | (unsigned long)to, c->wbuf_ofs)); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | if (ret) | 
|  | goto outerr; | 
|  | } | 
|  | /* set pointer to new block */ | 
|  | c->wbuf_ofs = PAGE_DIV(to); | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | } | 
|  |  | 
|  | if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { | 
|  | /* We're not writing immediately after the writebuffer. Bad. */ | 
|  | printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " | 
|  | "to %08lx\n", (unsigned long)to); | 
|  | if (c->wbuf_len) | 
|  | printk(KERN_CRIT "wbuf was previously %08x-%08x\n", | 
|  | c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* adjust alignment offset */ | 
|  | if (c->wbuf_len != PAGE_MOD(to)) { | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | /* take care of alignment to next page */ | 
|  | if (!c->wbuf_len) { | 
|  | c->wbuf_len = c->wbuf_pagesize; | 
|  | ret = __jffs2_flush_wbuf(c, NOPAD); | 
|  | if (ret) | 
|  | goto outerr; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (invec = 0; invec < count; invec++) { | 
|  | int vlen = invecs[invec].iov_len; | 
|  | uint8_t *v = invecs[invec].iov_base; | 
|  |  | 
|  | wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); | 
|  |  | 
|  | if (c->wbuf_len == c->wbuf_pagesize) { | 
|  | ret = __jffs2_flush_wbuf(c, NOPAD); | 
|  | if (ret) | 
|  | goto outerr; | 
|  | } | 
|  | vlen -= wbuf_retlen; | 
|  | outvec_to += wbuf_retlen; | 
|  | donelen += wbuf_retlen; | 
|  | v += wbuf_retlen; | 
|  |  | 
|  | if (vlen >= c->wbuf_pagesize) { | 
|  | ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen), | 
|  | &wbuf_retlen, v); | 
|  | if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) | 
|  | goto outfile; | 
|  |  | 
|  | vlen -= wbuf_retlen; | 
|  | outvec_to += wbuf_retlen; | 
|  | c->wbuf_ofs = outvec_to; | 
|  | donelen += wbuf_retlen; | 
|  | v += wbuf_retlen; | 
|  | } | 
|  |  | 
|  | wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); | 
|  | if (c->wbuf_len == c->wbuf_pagesize) { | 
|  | ret = __jffs2_flush_wbuf(c, NOPAD); | 
|  | if (ret) | 
|  | goto outerr; | 
|  | } | 
|  |  | 
|  | outvec_to += wbuf_retlen; | 
|  | donelen += wbuf_retlen; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there's a remainder in the wbuf and it's a non-GC write, | 
|  | * remember that the wbuf affects this ino | 
|  | */ | 
|  | *retlen = donelen; | 
|  |  | 
|  | if (jffs2_sum_active()) { | 
|  | int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); | 
|  | if (res) | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if (c->wbuf_len && ino) | 
|  | jffs2_wbuf_dirties_inode(c, ino); | 
|  |  | 
|  | ret = 0; | 
|  | up_write(&c->wbuf_sem); | 
|  | return ret; | 
|  |  | 
|  | outfile: | 
|  | /* | 
|  | * At this point we have no problem, c->wbuf is empty. However | 
|  | * refile nextblock to avoid writing again to same address. | 
|  | */ | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | jeb = &c->blocks[outvec_to / c->sector_size]; | 
|  | jffs2_block_refile(c, jeb, REFILE_ANYWAY); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | outerr: | 
|  | *retlen = 0; | 
|  | up_write(&c->wbuf_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This is the entry for flash write. | 
|  | *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev | 
|  | */ | 
|  | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct kvec vecs[1]; | 
|  |  | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return jffs2_flash_direct_write(c, ofs, len, retlen, buf); | 
|  |  | 
|  | vecs[0].iov_base = (unsigned char *) buf; | 
|  | vecs[0].iov_len = len; | 
|  | return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Handle readback from writebuffer and ECC failure return | 
|  | */ | 
|  | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | loff_t	orbf = 0, owbf = 0, lwbf = 0; | 
|  | int	ret; | 
|  |  | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
|  |  | 
|  | /* Read flash */ | 
|  | down_read(&c->wbuf_sem); | 
|  | ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
|  |  | 
|  | if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { | 
|  | if (ret == -EBADMSG) | 
|  | printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)" | 
|  | " returned ECC error\n", len, ofs); | 
|  | /* | 
|  | * We have the raw data without ECC correction in the buffer, | 
|  | * maybe we are lucky and all data or parts are correct. We | 
|  | * check the node.  If data are corrupted node check will sort | 
|  | * it out.  We keep this block, it will fail on write or erase | 
|  | * and the we mark it bad. Or should we do that now? But we | 
|  | * should give him a chance.  Maybe we had a system crash or | 
|  | * power loss before the ecc write or a erase was completed. | 
|  | * So we return success. :) | 
|  | */ | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* if no writebuffer available or write buffer empty, return */ | 
|  | if (!c->wbuf_pagesize || !c->wbuf_len) | 
|  | goto exit; | 
|  |  | 
|  | /* if we read in a different block, return */ | 
|  | if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) | 
|  | goto exit; | 
|  |  | 
|  | if (ofs >= c->wbuf_ofs) { | 
|  | owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */ | 
|  | if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */ | 
|  | goto exit; | 
|  | lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */ | 
|  | if (lwbf > len) | 
|  | lwbf = len; | 
|  | } else { | 
|  | orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */ | 
|  | if (orbf > len)			/* is write beyond write buffer ? */ | 
|  | goto exit; | 
|  | lwbf = len - orbf;		/* number of bytes to copy */ | 
|  | if (lwbf > c->wbuf_len) | 
|  | lwbf = c->wbuf_len; | 
|  | } | 
|  | if (lwbf > 0) | 
|  | memcpy(buf+orbf,c->wbuf+owbf,lwbf); | 
|  |  | 
|  | exit: | 
|  | up_read(&c->wbuf_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define NR_OOB_SCAN_PAGES 4 | 
|  |  | 
|  | /* For historical reasons we use only 8 bytes for OOB clean marker */ | 
|  | #define OOB_CM_SIZE 8 | 
|  |  | 
|  | static const struct jffs2_unknown_node oob_cleanmarker = | 
|  | { | 
|  | .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK), | 
|  | .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER), | 
|  | .totlen = constant_cpu_to_je32(8) | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Check, if the out of band area is empty. This function knows about the clean | 
|  | * marker and if it is present in OOB, treats the OOB as empty anyway. | 
|  | */ | 
|  | int jffs2_check_oob_empty(struct jffs2_sb_info *c, | 
|  | struct jffs2_eraseblock *jeb, int mode) | 
|  | { | 
|  | int i, ret; | 
|  | int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); | 
|  | struct mtd_oob_ops ops; | 
|  |  | 
|  | ops.mode = MTD_OOB_AUTO; | 
|  | ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail; | 
|  | ops.oobbuf = c->oobbuf; | 
|  | ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; | 
|  | ops.datbuf = NULL; | 
|  |  | 
|  | ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); | 
|  | if (ret || ops.oobretlen != ops.ooblen) { | 
|  | printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd" | 
|  | " bytes, read %zd bytes, error %d\n", | 
|  | jeb->offset, ops.ooblen, ops.oobretlen, ret); | 
|  | if (!ret) | 
|  | ret = -EIO; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for(i = 0; i < ops.ooblen; i++) { | 
|  | if (mode && i < cmlen) | 
|  | /* Yeah, we know about the cleanmarker */ | 
|  | continue; | 
|  |  | 
|  | if (ops.oobbuf[i] != 0xFF) { | 
|  | D2(printk(KERN_DEBUG "Found %02x at %x in OOB for " | 
|  | "%08x\n", ops.oobbuf[i], i, jeb->offset)); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a valid cleanmarker. | 
|  | * Returns: 0 if a valid cleanmarker was found | 
|  | *	    1 if no cleanmarker was found | 
|  | *	    negative error code if an error occurred | 
|  | */ | 
|  | int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, | 
|  | struct jffs2_eraseblock *jeb) | 
|  | { | 
|  | struct mtd_oob_ops ops; | 
|  | int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); | 
|  |  | 
|  | ops.mode = MTD_OOB_AUTO; | 
|  | ops.ooblen = cmlen; | 
|  | ops.oobbuf = c->oobbuf; | 
|  | ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; | 
|  | ops.datbuf = NULL; | 
|  |  | 
|  | ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); | 
|  | if (ret || ops.oobretlen != ops.ooblen) { | 
|  | printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd" | 
|  | " bytes, read %zd bytes, error %d\n", | 
|  | jeb->offset, ops.ooblen, ops.oobretlen, ret); | 
|  | if (!ret) | 
|  | ret = -EIO; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen); | 
|  | } | 
|  |  | 
|  | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, | 
|  | struct jffs2_eraseblock *jeb) | 
|  | { | 
|  | int ret; | 
|  | struct mtd_oob_ops ops; | 
|  | int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); | 
|  |  | 
|  | ops.mode = MTD_OOB_AUTO; | 
|  | ops.ooblen = cmlen; | 
|  | ops.oobbuf = (uint8_t *)&oob_cleanmarker; | 
|  | ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; | 
|  | ops.datbuf = NULL; | 
|  |  | 
|  | ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops); | 
|  | if (ret || ops.oobretlen != ops.ooblen) { | 
|  | printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd" | 
|  | " bytes, read %zd bytes, error %d\n", | 
|  | jeb->offset, ops.ooblen, ops.oobretlen, ret); | 
|  | if (!ret) | 
|  | ret = -EIO; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On NAND we try to mark this block bad. If the block was erased more | 
|  | * than MAX_ERASE_FAILURES we mark it finaly bad. | 
|  | * Don't care about failures. This block remains on the erase-pending | 
|  | * or badblock list as long as nobody manipulates the flash with | 
|  | * a bootloader or something like that. | 
|  | */ | 
|  |  | 
|  | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) | 
|  | { | 
|  | int 	ret; | 
|  |  | 
|  | /* if the count is < max, we try to write the counter to the 2nd page oob area */ | 
|  | if( ++jeb->bad_count < MAX_ERASE_FAILURES) | 
|  | return 0; | 
|  |  | 
|  | if (!c->mtd->block_markbad) | 
|  | return 1; // What else can we do? | 
|  |  | 
|  | printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset); | 
|  | ret = c->mtd->block_markbad(c->mtd, bad_offset); | 
|  |  | 
|  | if (ret) { | 
|  | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
|  | return ret; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct nand_ecclayout *oinfo = c->mtd->ecclayout; | 
|  |  | 
|  | if (!c->mtd->oobsize) | 
|  | return 0; | 
|  |  | 
|  | /* Cleanmarker is out-of-band, so inline size zero */ | 
|  | c->cleanmarker_size = 0; | 
|  |  | 
|  | if (!oinfo || oinfo->oobavail == 0) { | 
|  | printk(KERN_ERR "inconsistent device description\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n")); | 
|  |  | 
|  | c->oobavail = oinfo->oobavail; | 
|  |  | 
|  | /* Initialise write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  | c->wbuf_pagesize = c->mtd->writesize; | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  |  | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL); | 
|  | if (!c->oobbuf) { | 
|  | kfree(c->wbuf); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY | 
|  | c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf_verify) { | 
|  | kfree(c->oobbuf); | 
|  | kfree(c->wbuf); | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) | 
|  | { | 
|  | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY | 
|  | kfree(c->wbuf_verify); | 
|  | #endif | 
|  | kfree(c->wbuf); | 
|  | kfree(c->oobbuf); | 
|  | } | 
|  |  | 
|  | int jffs2_dataflash_setup(struct jffs2_sb_info *c) { | 
|  | c->cleanmarker_size = 0;		/* No cleanmarkers needed */ | 
|  |  | 
|  | /* Initialize write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  |  | 
|  |  | 
|  | c->wbuf_pagesize =  c->mtd->erasesize; | 
|  |  | 
|  | /* Find a suitable c->sector_size | 
|  | * - Not too much sectors | 
|  | * - Sectors have to be at least 4 K + some bytes | 
|  | * - All known dataflashes have erase sizes of 528 or 1056 | 
|  | * - we take at least 8 eraseblocks and want to have at least 8K size | 
|  | * - The concatenation should be a power of 2 | 
|  | */ | 
|  |  | 
|  | c->sector_size = 8 * c->mtd->erasesize; | 
|  |  | 
|  | while (c->sector_size < 8192) { | 
|  | c->sector_size *= 2; | 
|  | } | 
|  |  | 
|  | /* It may be necessary to adjust the flash size */ | 
|  | c->flash_size = c->mtd->size; | 
|  |  | 
|  | if ((c->flash_size % c->sector_size) != 0) { | 
|  | c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; | 
|  | printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); | 
|  | }; | 
|  |  | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY | 
|  | c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf_verify) { | 
|  | kfree(c->oobbuf); | 
|  | kfree(c->wbuf); | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { | 
|  | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY | 
|  | kfree(c->wbuf_verify); | 
|  | #endif | 
|  | kfree(c->wbuf); | 
|  | } | 
|  |  | 
|  | int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { | 
|  | /* Cleanmarker currently occupies whole programming regions, | 
|  | * either one or 2 for 8Byte STMicro flashes. */ | 
|  | c->cleanmarker_size = max(16u, c->mtd->writesize); | 
|  |  | 
|  | /* Initialize write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  | c->wbuf_pagesize = c->mtd->writesize; | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  |  | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { | 
|  | kfree(c->wbuf); | 
|  | } | 
|  |  | 
|  | int jffs2_ubivol_setup(struct jffs2_sb_info *c) { | 
|  | c->cleanmarker_size = 0; | 
|  |  | 
|  | if (c->mtd->writesize == 1) | 
|  | /* We do not need write-buffer */ | 
|  | return 0; | 
|  |  | 
|  | init_rwsem(&c->wbuf_sem); | 
|  |  | 
|  | c->wbuf_pagesize =  c->mtd->writesize; | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) { | 
|  | kfree(c->wbuf); | 
|  | } |