|  | /**************************************************************************** | 
|  | * Driver for Solarflare Solarstorm network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2006-2011 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include "net_driver.h" | 
|  | #include "bitfield.h" | 
|  | #include "efx.h" | 
|  | #include "nic.h" | 
|  | #include "regs.h" | 
|  | #include "io.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Configurable values | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | /* This is set to 16 for a good reason.  In summary, if larger than | 
|  | * 16, the descriptor cache holds more than a default socket | 
|  | * buffer's worth of packets (for UDP we can only have at most one | 
|  | * socket buffer's worth outstanding).  This combined with the fact | 
|  | * that we only get 1 TX event per descriptor cache means the NIC | 
|  | * goes idle. | 
|  | */ | 
|  | #define TX_DC_ENTRIES 16 | 
|  | #define TX_DC_ENTRIES_ORDER 1 | 
|  |  | 
|  | #define RX_DC_ENTRIES 64 | 
|  | #define RX_DC_ENTRIES_ORDER 3 | 
|  |  | 
|  | /* If EFX_MAX_INT_ERRORS internal errors occur within | 
|  | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and | 
|  | * disable it. | 
|  | */ | 
|  | #define EFX_INT_ERROR_EXPIRE 3600 | 
|  | #define EFX_MAX_INT_ERRORS 5 | 
|  |  | 
|  | /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times | 
|  | */ | 
|  | #define EFX_FLUSH_INTERVAL 10 | 
|  | #define EFX_FLUSH_POLL_COUNT 100 | 
|  |  | 
|  | /* Size and alignment of special buffers (4KB) */ | 
|  | #define EFX_BUF_SIZE 4096 | 
|  |  | 
|  | /* Depth of RX flush request fifo */ | 
|  | #define EFX_RX_FLUSH_COUNT 4 | 
|  |  | 
|  | /* Generated event code for efx_generate_test_event() */ | 
|  | #define EFX_CHANNEL_MAGIC_TEST(_channel)	\ | 
|  | (0x00010100 + (_channel)->channel) | 
|  |  | 
|  | /* Generated event code for efx_generate_fill_event() */ | 
|  | #define EFX_CHANNEL_MAGIC_FILL(_channel)	\ | 
|  | (0x00010200 + (_channel)->channel) | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Solarstorm hardware access | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, | 
|  | unsigned int index) | 
|  | { | 
|  | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, | 
|  | value, index); | 
|  | } | 
|  |  | 
|  | /* Read the current event from the event queue */ | 
|  | static inline efx_qword_t *efx_event(struct efx_channel *channel, | 
|  | unsigned int index) | 
|  | { | 
|  | return ((efx_qword_t *) (channel->eventq.addr)) + | 
|  | (index & channel->eventq_mask); | 
|  | } | 
|  |  | 
|  | /* See if an event is present | 
|  | * | 
|  | * We check both the high and low dword of the event for all ones.  We | 
|  | * wrote all ones when we cleared the event, and no valid event can | 
|  | * have all ones in either its high or low dwords.  This approach is | 
|  | * robust against reordering. | 
|  | * | 
|  | * Note that using a single 64-bit comparison is incorrect; even | 
|  | * though the CPU read will be atomic, the DMA write may not be. | 
|  | */ | 
|  | static inline int efx_event_present(efx_qword_t *event) | 
|  | { | 
|  | return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | | 
|  | EFX_DWORD_IS_ALL_ONES(event->dword[1])); | 
|  | } | 
|  |  | 
|  | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, | 
|  | const efx_oword_t *mask) | 
|  | { | 
|  | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || | 
|  | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); | 
|  | } | 
|  |  | 
|  | int efx_nic_test_registers(struct efx_nic *efx, | 
|  | const struct efx_nic_register_test *regs, | 
|  | size_t n_regs) | 
|  | { | 
|  | unsigned address = 0, i, j; | 
|  | efx_oword_t mask, imask, original, reg, buf; | 
|  |  | 
|  | /* Falcon should be in loopback to isolate the XMAC from the PHY */ | 
|  | WARN_ON(!LOOPBACK_INTERNAL(efx)); | 
|  |  | 
|  | for (i = 0; i < n_regs; ++i) { | 
|  | address = regs[i].address; | 
|  | mask = imask = regs[i].mask; | 
|  | EFX_INVERT_OWORD(imask); | 
|  |  | 
|  | efx_reado(efx, &original, address); | 
|  |  | 
|  | /* bit sweep on and off */ | 
|  | for (j = 0; j < 128; j++) { | 
|  | if (!EFX_EXTRACT_OWORD32(mask, j, j)) | 
|  | continue; | 
|  |  | 
|  | /* Test this testable bit can be set in isolation */ | 
|  | EFX_AND_OWORD(reg, original, mask); | 
|  | EFX_SET_OWORD32(reg, j, j, 1); | 
|  |  | 
|  | efx_writeo(efx, ®, address); | 
|  | efx_reado(efx, &buf, address); | 
|  |  | 
|  | if (efx_masked_compare_oword(®, &buf, &mask)) | 
|  | goto fail; | 
|  |  | 
|  | /* Test this testable bit can be cleared in isolation */ | 
|  | EFX_OR_OWORD(reg, original, mask); | 
|  | EFX_SET_OWORD32(reg, j, j, 0); | 
|  |  | 
|  | efx_writeo(efx, ®, address); | 
|  | efx_reado(efx, &buf, address); | 
|  |  | 
|  | if (efx_masked_compare_oword(®, &buf, &mask)) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | efx_writeo(efx, &original, address); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT | 
|  | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), | 
|  | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Special buffer handling | 
|  | * Special buffers are used for event queues and the TX and RX | 
|  | * descriptor rings. | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Initialise a special buffer | 
|  | * | 
|  | * This will define a buffer (previously allocated via | 
|  | * efx_alloc_special_buffer()) in the buffer table, allowing | 
|  | * it to be used for event queues, descriptor rings etc. | 
|  | */ | 
|  | static void | 
|  | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | 
|  | { | 
|  | efx_qword_t buf_desc; | 
|  | int index; | 
|  | dma_addr_t dma_addr; | 
|  | int i; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(!buffer->addr); | 
|  |  | 
|  | /* Write buffer descriptors to NIC */ | 
|  | for (i = 0; i < buffer->entries; i++) { | 
|  | index = buffer->index + i; | 
|  | dma_addr = buffer->dma_addr + (i * 4096); | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "mapping special buffer %d at %llx\n", | 
|  | index, (unsigned long long)dma_addr); | 
|  | EFX_POPULATE_QWORD_3(buf_desc, | 
|  | FRF_AZ_BUF_ADR_REGION, 0, | 
|  | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, | 
|  | FRF_AZ_BUF_OWNER_ID_FBUF, 0); | 
|  | efx_write_buf_tbl(efx, &buf_desc, index); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unmaps a buffer and clears the buffer table entries */ | 
|  | static void | 
|  | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | 
|  | { | 
|  | efx_oword_t buf_tbl_upd; | 
|  | unsigned int start = buffer->index; | 
|  | unsigned int end = (buffer->index + buffer->entries - 1); | 
|  |  | 
|  | if (!buffer->entries) | 
|  | return; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", | 
|  | buffer->index, buffer->index + buffer->entries - 1); | 
|  |  | 
|  | EFX_POPULATE_OWORD_4(buf_tbl_upd, | 
|  | FRF_AZ_BUF_UPD_CMD, 0, | 
|  | FRF_AZ_BUF_CLR_CMD, 1, | 
|  | FRF_AZ_BUF_CLR_END_ID, end, | 
|  | FRF_AZ_BUF_CLR_START_ID, start); | 
|  | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new special buffer | 
|  | * | 
|  | * This allocates memory for a new buffer, clears it and allocates a | 
|  | * new buffer ID range.  It does not write into the buffer table. | 
|  | * | 
|  | * This call will allocate 4KB buffers, since 8KB buffers can't be | 
|  | * used for event queues and descriptor rings. | 
|  | */ | 
|  | static int efx_alloc_special_buffer(struct efx_nic *efx, | 
|  | struct efx_special_buffer *buffer, | 
|  | unsigned int len) | 
|  | { | 
|  | len = ALIGN(len, EFX_BUF_SIZE); | 
|  |  | 
|  | buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, | 
|  | &buffer->dma_addr, GFP_KERNEL); | 
|  | if (!buffer->addr) | 
|  | return -ENOMEM; | 
|  | buffer->len = len; | 
|  | buffer->entries = len / EFX_BUF_SIZE; | 
|  | BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); | 
|  |  | 
|  | /* All zeros is a potentially valid event so memset to 0xff */ | 
|  | memset(buffer->addr, 0xff, len); | 
|  |  | 
|  | /* Select new buffer ID */ | 
|  | buffer->index = efx->next_buffer_table; | 
|  | efx->next_buffer_table += buffer->entries; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "allocating special buffers %d-%d at %llx+%x " | 
|  | "(virt %p phys %llx)\n", buffer->index, | 
|  | buffer->index + buffer->entries - 1, | 
|  | (u64)buffer->dma_addr, len, | 
|  | buffer->addr, (u64)virt_to_phys(buffer->addr)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | 
|  | { | 
|  | if (!buffer->addr) | 
|  | return; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "deallocating special buffers %d-%d at %llx+%x " | 
|  | "(virt %p phys %llx)\n", buffer->index, | 
|  | buffer->index + buffer->entries - 1, | 
|  | (u64)buffer->dma_addr, buffer->len, | 
|  | buffer->addr, (u64)virt_to_phys(buffer->addr)); | 
|  |  | 
|  | dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, | 
|  | buffer->dma_addr); | 
|  | buffer->addr = NULL; | 
|  | buffer->entries = 0; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Generic buffer handling | 
|  | * These buffers are used for interrupt status and MAC stats | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, | 
|  | unsigned int len) | 
|  | { | 
|  | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, | 
|  | &buffer->dma_addr); | 
|  | if (!buffer->addr) | 
|  | return -ENOMEM; | 
|  | buffer->len = len; | 
|  | memset(buffer->addr, 0, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) | 
|  | { | 
|  | if (buffer->addr) { | 
|  | pci_free_consistent(efx->pci_dev, buffer->len, | 
|  | buffer->addr, buffer->dma_addr); | 
|  | buffer->addr = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * TX path | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Returns a pointer to the specified transmit descriptor in the TX | 
|  | * descriptor queue belonging to the specified channel. | 
|  | */ | 
|  | static inline efx_qword_t * | 
|  | efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) | 
|  | { | 
|  | return ((efx_qword_t *) (tx_queue->txd.addr)) + index; | 
|  | } | 
|  |  | 
|  | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ | 
|  | static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | unsigned write_ptr; | 
|  | efx_dword_t reg; | 
|  |  | 
|  | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); | 
|  | efx_writed_page(tx_queue->efx, ®, | 
|  | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); | 
|  | } | 
|  |  | 
|  | /* Write pointer and first descriptor for TX descriptor ring */ | 
|  | static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, | 
|  | const efx_qword_t *txd) | 
|  | { | 
|  | unsigned write_ptr; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); | 
|  | BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); | 
|  |  | 
|  | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | 
|  | EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, | 
|  | FRF_AZ_TX_DESC_WPTR, write_ptr); | 
|  | reg.qword[0] = *txd; | 
|  | efx_writeo_page(tx_queue->efx, ®, | 
|  | FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) | 
|  | { | 
|  | unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); | 
|  |  | 
|  | if (empty_read_count == 0) | 
|  | return false; | 
|  |  | 
|  | tx_queue->empty_read_count = 0; | 
|  | return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; | 
|  | } | 
|  |  | 
|  | /* For each entry inserted into the software descriptor ring, create a | 
|  | * descriptor in the hardware TX descriptor ring (in host memory), and | 
|  | * write a doorbell. | 
|  | */ | 
|  | void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  |  | 
|  | struct efx_tx_buffer *buffer; | 
|  | efx_qword_t *txd; | 
|  | unsigned write_ptr; | 
|  | unsigned old_write_count = tx_queue->write_count; | 
|  |  | 
|  | BUG_ON(tx_queue->write_count == tx_queue->insert_count); | 
|  |  | 
|  | do { | 
|  | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | 
|  | buffer = &tx_queue->buffer[write_ptr]; | 
|  | txd = efx_tx_desc(tx_queue, write_ptr); | 
|  | ++tx_queue->write_count; | 
|  |  | 
|  | /* Create TX descriptor ring entry */ | 
|  | EFX_POPULATE_QWORD_4(*txd, | 
|  | FSF_AZ_TX_KER_CONT, buffer->continuation, | 
|  | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, | 
|  | FSF_AZ_TX_KER_BUF_REGION, 0, | 
|  | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); | 
|  | } while (tx_queue->write_count != tx_queue->insert_count); | 
|  |  | 
|  | wmb(); /* Ensure descriptors are written before they are fetched */ | 
|  |  | 
|  | if (efx_may_push_tx_desc(tx_queue, old_write_count)) { | 
|  | txd = efx_tx_desc(tx_queue, | 
|  | old_write_count & tx_queue->ptr_mask); | 
|  | efx_push_tx_desc(tx_queue, txd); | 
|  | ++tx_queue->pushes; | 
|  | } else { | 
|  | efx_notify_tx_desc(tx_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate hardware resources for a TX queue */ | 
|  | int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | unsigned entries; | 
|  |  | 
|  | entries = tx_queue->ptr_mask + 1; | 
|  | return efx_alloc_special_buffer(efx, &tx_queue->txd, | 
|  | entries * sizeof(efx_qword_t)); | 
|  | } | 
|  |  | 
|  | void efx_nic_init_tx(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | tx_queue->flushed = FLUSH_NONE; | 
|  |  | 
|  | /* Pin TX descriptor ring */ | 
|  | efx_init_special_buffer(efx, &tx_queue->txd); | 
|  |  | 
|  | /* Push TX descriptor ring to card */ | 
|  | EFX_POPULATE_OWORD_10(reg, | 
|  | FRF_AZ_TX_DESCQ_EN, 1, | 
|  | FRF_AZ_TX_ISCSI_DDIG_EN, 0, | 
|  | FRF_AZ_TX_ISCSI_HDIG_EN, 0, | 
|  | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, | 
|  | FRF_AZ_TX_DESCQ_EVQ_ID, | 
|  | tx_queue->channel->channel, | 
|  | FRF_AZ_TX_DESCQ_OWNER_ID, 0, | 
|  | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, | 
|  | FRF_AZ_TX_DESCQ_SIZE, | 
|  | __ffs(tx_queue->txd.entries), | 
|  | FRF_AZ_TX_DESCQ_TYPE, 0, | 
|  | FRF_BZ_TX_NON_IP_DROP_DIS, 1); | 
|  |  | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | 
|  | int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, | 
|  | !csum); | 
|  | } | 
|  |  | 
|  | efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, | 
|  | tx_queue->queue); | 
|  |  | 
|  | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { | 
|  | /* Only 128 bits in this register */ | 
|  | BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); | 
|  |  | 
|  | efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); | 
|  | if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) | 
|  | clear_bit_le(tx_queue->queue, (void *)®); | 
|  | else | 
|  | set_bit_le(tx_queue->queue, (void *)®); | 
|  | efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); | 
|  | } | 
|  |  | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | 
|  | EFX_POPULATE_OWORD_1(reg, | 
|  | FRF_BZ_TX_PACE, | 
|  | (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? | 
|  | FFE_BZ_TX_PACE_OFF : | 
|  | FFE_BZ_TX_PACE_RESERVED); | 
|  | efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, | 
|  | tx_queue->queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | efx_oword_t tx_flush_descq; | 
|  |  | 
|  | tx_queue->flushed = FLUSH_PENDING; | 
|  |  | 
|  | /* Post a flush command */ | 
|  | EFX_POPULATE_OWORD_2(tx_flush_descq, | 
|  | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, | 
|  | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); | 
|  | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); | 
|  | } | 
|  |  | 
|  | void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | efx_oword_t tx_desc_ptr; | 
|  |  | 
|  | /* The queue should have been flushed */ | 
|  | WARN_ON(tx_queue->flushed != FLUSH_DONE); | 
|  |  | 
|  | /* Remove TX descriptor ring from card */ | 
|  | EFX_ZERO_OWORD(tx_desc_ptr); | 
|  | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, | 
|  | tx_queue->queue); | 
|  |  | 
|  | /* Unpin TX descriptor ring */ | 
|  | efx_fini_special_buffer(efx, &tx_queue->txd); | 
|  | } | 
|  |  | 
|  | /* Free buffers backing TX queue */ | 
|  | void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * RX path | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Returns a pointer to the specified descriptor in the RX descriptor queue */ | 
|  | static inline efx_qword_t * | 
|  | efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) | 
|  | { | 
|  | return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; | 
|  | } | 
|  |  | 
|  | /* This creates an entry in the RX descriptor queue */ | 
|  | static inline void | 
|  | efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) | 
|  | { | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | efx_qword_t *rxd; | 
|  |  | 
|  | rxd = efx_rx_desc(rx_queue, index); | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | EFX_POPULATE_QWORD_3(*rxd, | 
|  | FSF_AZ_RX_KER_BUF_SIZE, | 
|  | rx_buf->len - | 
|  | rx_queue->efx->type->rx_buffer_padding, | 
|  | FSF_AZ_RX_KER_BUF_REGION, 0, | 
|  | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); | 
|  | } | 
|  |  | 
|  | /* This writes to the RX_DESC_WPTR register for the specified receive | 
|  | * descriptor ring. | 
|  | */ | 
|  | void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | efx_dword_t reg; | 
|  | unsigned write_ptr; | 
|  |  | 
|  | while (rx_queue->notified_count != rx_queue->added_count) { | 
|  | efx_build_rx_desc( | 
|  | rx_queue, | 
|  | rx_queue->notified_count & rx_queue->ptr_mask); | 
|  | ++rx_queue->notified_count; | 
|  | } | 
|  |  | 
|  | wmb(); | 
|  | write_ptr = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); | 
|  | efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | } | 
|  |  | 
|  | int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned entries; | 
|  |  | 
|  | entries = rx_queue->ptr_mask + 1; | 
|  | return efx_alloc_special_buffer(efx, &rx_queue->rxd, | 
|  | entries * sizeof(efx_qword_t)); | 
|  | } | 
|  |  | 
|  | void efx_nic_init_rx(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_oword_t rx_desc_ptr; | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; | 
|  | bool iscsi_digest_en = is_b0; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "RX queue %d ring in special buffers %d-%d\n", | 
|  | efx_rx_queue_index(rx_queue), rx_queue->rxd.index, | 
|  | rx_queue->rxd.index + rx_queue->rxd.entries - 1); | 
|  |  | 
|  | rx_queue->flushed = FLUSH_NONE; | 
|  |  | 
|  | /* Pin RX descriptor ring */ | 
|  | efx_init_special_buffer(efx, &rx_queue->rxd); | 
|  |  | 
|  | /* Push RX descriptor ring to card */ | 
|  | EFX_POPULATE_OWORD_10(rx_desc_ptr, | 
|  | FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, | 
|  | FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, | 
|  | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, | 
|  | FRF_AZ_RX_DESCQ_EVQ_ID, | 
|  | efx_rx_queue_channel(rx_queue)->channel, | 
|  | FRF_AZ_RX_DESCQ_OWNER_ID, 0, | 
|  | FRF_AZ_RX_DESCQ_LABEL, | 
|  | efx_rx_queue_index(rx_queue), | 
|  | FRF_AZ_RX_DESCQ_SIZE, | 
|  | __ffs(rx_queue->rxd.entries), | 
|  | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , | 
|  | /* For >=B0 this is scatter so disable */ | 
|  | FRF_AZ_RX_DESCQ_JUMBO, !is_b0, | 
|  | FRF_AZ_RX_DESCQ_EN, 1); | 
|  | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | } | 
|  |  | 
|  | static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | efx_oword_t rx_flush_descq; | 
|  |  | 
|  | rx_queue->flushed = FLUSH_PENDING; | 
|  |  | 
|  | /* Post a flush command */ | 
|  | EFX_POPULATE_OWORD_2(rx_flush_descq, | 
|  | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, | 
|  | FRF_AZ_RX_FLUSH_DESCQ, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); | 
|  | } | 
|  |  | 
|  | void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_oword_t rx_desc_ptr; | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  |  | 
|  | /* The queue should already have been flushed */ | 
|  | WARN_ON(rx_queue->flushed != FLUSH_DONE); | 
|  |  | 
|  | /* Remove RX descriptor ring from card */ | 
|  | EFX_ZERO_OWORD(rx_desc_ptr); | 
|  | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | /* Unpin RX descriptor ring */ | 
|  | efx_fini_special_buffer(efx, &rx_queue->rxd); | 
|  | } | 
|  |  | 
|  | /* Free buffers backing RX queue */ | 
|  | void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Event queue processing | 
|  | * Event queues are processed by per-channel tasklets. | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Update a channel's event queue's read pointer (RPTR) register | 
|  | * | 
|  | * This writes the EVQ_RPTR_REG register for the specified channel's | 
|  | * event queue. | 
|  | */ | 
|  | void efx_nic_eventq_read_ack(struct efx_channel *channel) | 
|  | { | 
|  | efx_dword_t reg; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, | 
|  | channel->eventq_read_ptr & channel->eventq_mask); | 
|  | efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, | 
|  | channel->channel); | 
|  | } | 
|  |  | 
|  | /* Use HW to insert a SW defined event */ | 
|  | static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event) | 
|  | { | 
|  | efx_oword_t drv_ev_reg; | 
|  |  | 
|  | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || | 
|  | FRF_AZ_DRV_EV_DATA_WIDTH != 64); | 
|  | drv_ev_reg.u32[0] = event->u32[0]; | 
|  | drv_ev_reg.u32[1] = event->u32[1]; | 
|  | drv_ev_reg.u32[2] = 0; | 
|  | drv_ev_reg.u32[3] = 0; | 
|  | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); | 
|  | efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); | 
|  | } | 
|  |  | 
|  | /* Handle a transmit completion event | 
|  | * | 
|  | * The NIC batches TX completion events; the message we receive is of | 
|  | * the form "complete all TX events up to this index". | 
|  | */ | 
|  | static int | 
|  | efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) | 
|  | { | 
|  | unsigned int tx_ev_desc_ptr; | 
|  | unsigned int tx_ev_q_label; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_nic *efx = channel->efx; | 
|  | int tx_packets = 0; | 
|  |  | 
|  | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { | 
|  | /* Transmit completion */ | 
|  | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); | 
|  | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | 
|  | tx_queue = efx_channel_get_tx_queue( | 
|  | channel, tx_ev_q_label % EFX_TXQ_TYPES); | 
|  | tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & | 
|  | tx_queue->ptr_mask); | 
|  | channel->irq_mod_score += tx_packets; | 
|  | efx_xmit_done(tx_queue, tx_ev_desc_ptr); | 
|  | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { | 
|  | /* Rewrite the FIFO write pointer */ | 
|  | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | 
|  | tx_queue = efx_channel_get_tx_queue( | 
|  | channel, tx_ev_q_label % EFX_TXQ_TYPES); | 
|  |  | 
|  | if (efx_dev_registered(efx)) | 
|  | netif_tx_lock(efx->net_dev); | 
|  | efx_notify_tx_desc(tx_queue); | 
|  | if (efx_dev_registered(efx)) | 
|  | netif_tx_unlock(efx->net_dev); | 
|  | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && | 
|  | EFX_WORKAROUND_10727(efx)) { | 
|  | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | 
|  | } else { | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "channel %d unexpected TX event " | 
|  | EFX_QWORD_FMT"\n", channel->channel, | 
|  | EFX_QWORD_VAL(*event)); | 
|  | } | 
|  |  | 
|  | return tx_packets; | 
|  | } | 
|  |  | 
|  | /* Detect errors included in the rx_evt_pkt_ok bit. */ | 
|  | static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, | 
|  | const efx_qword_t *event, | 
|  | bool *rx_ev_pkt_ok, | 
|  | bool *discard) | 
|  | { | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; | 
|  | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; | 
|  | bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; | 
|  | bool rx_ev_other_err, rx_ev_pause_frm; | 
|  | bool rx_ev_hdr_type, rx_ev_mcast_pkt; | 
|  | unsigned rx_ev_pkt_type; | 
|  |  | 
|  | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | 
|  | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | 
|  | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); | 
|  | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); | 
|  | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); | 
|  | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); | 
|  | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); | 
|  | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); | 
|  | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); | 
|  | rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? | 
|  | 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); | 
|  | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); | 
|  |  | 
|  | /* Every error apart from tobe_disc and pause_frm */ | 
|  | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | | 
|  | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | | 
|  | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); | 
|  |  | 
|  | /* Count errors that are not in MAC stats.  Ignore expected | 
|  | * checksum errors during self-test. */ | 
|  | if (rx_ev_frm_trunc) | 
|  | ++channel->n_rx_frm_trunc; | 
|  | else if (rx_ev_tobe_disc) | 
|  | ++channel->n_rx_tobe_disc; | 
|  | else if (!efx->loopback_selftest) { | 
|  | if (rx_ev_ip_hdr_chksum_err) | 
|  | ++channel->n_rx_ip_hdr_chksum_err; | 
|  | else if (rx_ev_tcp_udp_chksum_err) | 
|  | ++channel->n_rx_tcp_udp_chksum_err; | 
|  | } | 
|  |  | 
|  | /* The frame must be discarded if any of these are true. */ | 
|  | *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | | 
|  | rx_ev_tobe_disc | rx_ev_pause_frm); | 
|  |  | 
|  | /* TOBE_DISC is expected on unicast mismatches; don't print out an | 
|  | * error message.  FRM_TRUNC indicates RXDP dropped the packet due | 
|  | * to a FIFO overflow. | 
|  | */ | 
|  | #ifdef EFX_ENABLE_DEBUG | 
|  | if (rx_ev_other_err && net_ratelimit()) { | 
|  | netif_dbg(efx, rx_err, efx->net_dev, | 
|  | " RX queue %d unexpected RX event " | 
|  | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", | 
|  | efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), | 
|  | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", | 
|  | rx_ev_ip_hdr_chksum_err ? | 
|  | " [IP_HDR_CHKSUM_ERR]" : "", | 
|  | rx_ev_tcp_udp_chksum_err ? | 
|  | " [TCP_UDP_CHKSUM_ERR]" : "", | 
|  | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", | 
|  | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", | 
|  | rx_ev_drib_nib ? " [DRIB_NIB]" : "", | 
|  | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", | 
|  | rx_ev_pause_frm ? " [PAUSE]" : ""); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Handle receive events that are not in-order. */ | 
|  | static void | 
|  | efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned expected, dropped; | 
|  |  | 
|  | expected = rx_queue->removed_count & rx_queue->ptr_mask; | 
|  | dropped = (index - expected) & rx_queue->ptr_mask; | 
|  | netif_info(efx, rx_err, efx->net_dev, | 
|  | "dropped %d events (index=%d expected=%d)\n", | 
|  | dropped, index, expected); | 
|  |  | 
|  | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? | 
|  | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); | 
|  | } | 
|  |  | 
|  | /* Handle a packet received event | 
|  | * | 
|  | * The NIC gives a "discard" flag if it's a unicast packet with the | 
|  | * wrong destination address | 
|  | * Also "is multicast" and "matches multicast filter" flags can be used to | 
|  | * discard non-matching multicast packets. | 
|  | */ | 
|  | static void | 
|  | efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) | 
|  | { | 
|  | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; | 
|  | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; | 
|  | unsigned expected_ptr; | 
|  | bool rx_ev_pkt_ok, discard = false, checksummed; | 
|  | struct efx_rx_queue *rx_queue; | 
|  |  | 
|  | /* Basic packet information */ | 
|  | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); | 
|  | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); | 
|  | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | 
|  | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); | 
|  | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); | 
|  | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != | 
|  | channel->channel); | 
|  |  | 
|  | rx_queue = efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); | 
|  | expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask; | 
|  | if (unlikely(rx_ev_desc_ptr != expected_ptr)) | 
|  | efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); | 
|  |  | 
|  | if (likely(rx_ev_pkt_ok)) { | 
|  | /* If packet is marked as OK and packet type is TCP/IP or | 
|  | * UDP/IP, then we can rely on the hardware checksum. | 
|  | */ | 
|  | checksummed = | 
|  | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || | 
|  | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP; | 
|  | } else { | 
|  | efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); | 
|  | checksummed = false; | 
|  | } | 
|  |  | 
|  | /* Detect multicast packets that didn't match the filter */ | 
|  | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | 
|  | if (rx_ev_mcast_pkt) { | 
|  | unsigned int rx_ev_mcast_hash_match = | 
|  | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); | 
|  |  | 
|  | if (unlikely(!rx_ev_mcast_hash_match)) { | 
|  | ++channel->n_rx_mcast_mismatch; | 
|  | discard = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | channel->irq_mod_score += 2; | 
|  |  | 
|  | /* Handle received packet */ | 
|  | efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, | 
|  | checksummed, discard); | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned code; | 
|  |  | 
|  | code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); | 
|  | if (code == EFX_CHANNEL_MAGIC_TEST(channel)) | 
|  | ; /* ignore */ | 
|  | else if (code == EFX_CHANNEL_MAGIC_FILL(channel)) | 
|  | /* The queue must be empty, so we won't receive any rx | 
|  | * events, so efx_process_channel() won't refill the | 
|  | * queue. Refill it here */ | 
|  | efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); | 
|  | else | 
|  | netif_dbg(efx, hw, efx->net_dev, "channel %d received " | 
|  | "generated event "EFX_QWORD_FMT"\n", | 
|  | channel->channel, EFX_QWORD_VAL(*event)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned int ev_sub_code; | 
|  | unsigned int ev_sub_data; | 
|  |  | 
|  | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); | 
|  | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); | 
|  |  | 
|  | switch (ev_sub_code) { | 
|  | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AZ_EVQ_INIT_DONE_EV: | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "channel %d EVQ %d initialised\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AZ_SRM_UPD_DONE_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d SRAM update done\n", channel->channel); | 
|  | break; | 
|  | case FSE_AZ_WAKE_UP_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d RXQ %d wakeup event\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AZ_TIMER_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d RX queue %d timer expired\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AA_RX_RECOVER_EV: | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | "channel %d seen DRIVER RX_RESET event. " | 
|  | "Resetting.\n", channel->channel); | 
|  | atomic_inc(&efx->rx_reset); | 
|  | efx_schedule_reset(efx, | 
|  | EFX_WORKAROUND_6555(efx) ? | 
|  | RESET_TYPE_RX_RECOVERY : | 
|  | RESET_TYPE_DISABLE); | 
|  | break; | 
|  | case FSE_BZ_RX_DSC_ERROR_EV: | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | "RX DMA Q %d reports descriptor fetch error." | 
|  | " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | 
|  | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); | 
|  | break; | 
|  | case FSE_BZ_TX_DSC_ERROR_EV: | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "TX DMA Q %d reports descriptor fetch error." | 
|  | " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | 
|  | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | 
|  | break; | 
|  | default: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d unknown driver event code %d " | 
|  | "data %04x\n", channel->channel, ev_sub_code, | 
|  | ev_sub_data); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int efx_nic_process_eventq(struct efx_channel *channel, int budget) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned int read_ptr; | 
|  | efx_qword_t event, *p_event; | 
|  | int ev_code; | 
|  | int tx_packets = 0; | 
|  | int spent = 0; | 
|  |  | 
|  | read_ptr = channel->eventq_read_ptr; | 
|  |  | 
|  | for (;;) { | 
|  | p_event = efx_event(channel, read_ptr); | 
|  | event = *p_event; | 
|  |  | 
|  | if (!efx_event_present(&event)) | 
|  | /* End of events */ | 
|  | break; | 
|  |  | 
|  | netif_vdbg(channel->efx, intr, channel->efx->net_dev, | 
|  | "channel %d event is "EFX_QWORD_FMT"\n", | 
|  | channel->channel, EFX_QWORD_VAL(event)); | 
|  |  | 
|  | /* Clear this event by marking it all ones */ | 
|  | EFX_SET_QWORD(*p_event); | 
|  |  | 
|  | ++read_ptr; | 
|  |  | 
|  | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); | 
|  |  | 
|  | switch (ev_code) { | 
|  | case FSE_AZ_EV_CODE_RX_EV: | 
|  | efx_handle_rx_event(channel, &event); | 
|  | if (++spent == budget) | 
|  | goto out; | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_TX_EV: | 
|  | tx_packets += efx_handle_tx_event(channel, &event); | 
|  | if (tx_packets > efx->txq_entries) { | 
|  | spent = budget; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_DRV_GEN_EV: | 
|  | efx_handle_generated_event(channel, &event); | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_DRIVER_EV: | 
|  | efx_handle_driver_event(channel, &event); | 
|  | break; | 
|  | case FSE_CZ_EV_CODE_MCDI_EV: | 
|  | efx_mcdi_process_event(channel, &event); | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_GLOBAL_EV: | 
|  | if (efx->type->handle_global_event && | 
|  | efx->type->handle_global_event(channel, &event)) | 
|  | break; | 
|  | /* else fall through */ | 
|  | default: | 
|  | netif_err(channel->efx, hw, channel->efx->net_dev, | 
|  | "channel %d unknown event type %d (data " | 
|  | EFX_QWORD_FMT ")\n", channel->channel, | 
|  | ev_code, EFX_QWORD_VAL(event)); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | channel->eventq_read_ptr = read_ptr; | 
|  | return spent; | 
|  | } | 
|  |  | 
|  | /* Check whether an event is present in the eventq at the current | 
|  | * read pointer.  Only useful for self-test. | 
|  | */ | 
|  | bool efx_nic_event_present(struct efx_channel *channel) | 
|  | { | 
|  | return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); | 
|  | } | 
|  |  | 
|  | /* Allocate buffer table entries for event queue */ | 
|  | int efx_nic_probe_eventq(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned entries; | 
|  |  | 
|  | entries = channel->eventq_mask + 1; | 
|  | return efx_alloc_special_buffer(efx, &channel->eventq, | 
|  | entries * sizeof(efx_qword_t)); | 
|  | } | 
|  |  | 
|  | void efx_nic_init_eventq(struct efx_channel *channel) | 
|  | { | 
|  | efx_oword_t reg; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "channel %d event queue in special buffers %d-%d\n", | 
|  | channel->channel, channel->eventq.index, | 
|  | channel->eventq.index + channel->eventq.entries - 1); | 
|  |  | 
|  | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { | 
|  | EFX_POPULATE_OWORD_3(reg, | 
|  | FRF_CZ_TIMER_Q_EN, 1, | 
|  | FRF_CZ_HOST_NOTIFY_MODE, 0, | 
|  | FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); | 
|  | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | 
|  | } | 
|  |  | 
|  | /* Pin event queue buffer */ | 
|  | efx_init_special_buffer(efx, &channel->eventq); | 
|  |  | 
|  | /* Fill event queue with all ones (i.e. empty events) */ | 
|  | memset(channel->eventq.addr, 0xff, channel->eventq.len); | 
|  |  | 
|  | /* Push event queue to card */ | 
|  | EFX_POPULATE_OWORD_3(reg, | 
|  | FRF_AZ_EVQ_EN, 1, | 
|  | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), | 
|  | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); | 
|  | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | 
|  | channel->channel); | 
|  |  | 
|  | efx->type->push_irq_moderation(channel); | 
|  | } | 
|  |  | 
|  | void efx_nic_fini_eventq(struct efx_channel *channel) | 
|  | { | 
|  | efx_oword_t reg; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | /* Remove event queue from card */ | 
|  | EFX_ZERO_OWORD(reg); | 
|  | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | 
|  | channel->channel); | 
|  | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) | 
|  | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | 
|  |  | 
|  | /* Unpin event queue */ | 
|  | efx_fini_special_buffer(efx, &channel->eventq); | 
|  | } | 
|  |  | 
|  | /* Free buffers backing event queue */ | 
|  | void efx_nic_remove_eventq(struct efx_channel *channel) | 
|  | { | 
|  | efx_free_special_buffer(channel->efx, &channel->eventq); | 
|  | } | 
|  |  | 
|  |  | 
|  | void efx_nic_generate_test_event(struct efx_channel *channel) | 
|  | { | 
|  | unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel); | 
|  | efx_qword_t test_event; | 
|  |  | 
|  | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, | 
|  | FSE_AZ_EV_CODE_DRV_GEN_EV, | 
|  | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | 
|  | efx_generate_event(channel, &test_event); | 
|  | } | 
|  |  | 
|  | void efx_nic_generate_fill_event(struct efx_channel *channel) | 
|  | { | 
|  | unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel); | 
|  | efx_qword_t test_event; | 
|  |  | 
|  | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, | 
|  | FSE_AZ_EV_CODE_DRV_GEN_EV, | 
|  | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | 
|  | efx_generate_event(channel, &test_event); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Flush handling | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  |  | 
|  | static void efx_poll_flush_events(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel = efx_get_channel(efx, 0); | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | unsigned int read_ptr = channel->eventq_read_ptr; | 
|  | unsigned int end_ptr = read_ptr + channel->eventq_mask - 1; | 
|  |  | 
|  | do { | 
|  | efx_qword_t *event = efx_event(channel, read_ptr); | 
|  | int ev_code, ev_sub_code, ev_queue; | 
|  | bool ev_failed; | 
|  |  | 
|  | if (!efx_event_present(event)) | 
|  | break; | 
|  |  | 
|  | ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); | 
|  | ev_sub_code = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_DRIVER_EV_SUBCODE); | 
|  | if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && | 
|  | ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { | 
|  | ev_queue = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_DRIVER_EV_SUBDATA); | 
|  | if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) { | 
|  | tx_queue = efx_get_tx_queue( | 
|  | efx, ev_queue / EFX_TXQ_TYPES, | 
|  | ev_queue % EFX_TXQ_TYPES); | 
|  | tx_queue->flushed = FLUSH_DONE; | 
|  | } | 
|  | } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && | 
|  | ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { | 
|  | ev_queue = EFX_QWORD_FIELD( | 
|  | *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); | 
|  | ev_failed = EFX_QWORD_FIELD( | 
|  | *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); | 
|  | if (ev_queue < efx->n_rx_channels) { | 
|  | rx_queue = efx_get_rx_queue(efx, ev_queue); | 
|  | rx_queue->flushed = | 
|  | ev_failed ? FLUSH_FAILED : FLUSH_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We're about to destroy the queue anyway, so | 
|  | * it's ok to throw away every non-flush event */ | 
|  | EFX_SET_QWORD(*event); | 
|  |  | 
|  | ++read_ptr; | 
|  | } while (read_ptr != end_ptr); | 
|  |  | 
|  | channel->eventq_read_ptr = read_ptr; | 
|  | } | 
|  |  | 
|  | /* Handle tx and rx flushes at the same time, since they run in | 
|  | * parallel in the hardware and there's no reason for us to | 
|  | * serialise them */ | 
|  | int efx_nic_flush_queues(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | int i, tx_pending, rx_pending; | 
|  |  | 
|  | /* If necessary prepare the hardware for flushing */ | 
|  | efx->type->prepare_flush(efx); | 
|  |  | 
|  | /* Flush all tx queues in parallel */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | 
|  | if (tx_queue->initialised) | 
|  | efx_flush_tx_queue(tx_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The hardware supports four concurrent rx flushes, each of which may | 
|  | * need to be retried if there is an outstanding descriptor fetch */ | 
|  | for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) { | 
|  | rx_pending = tx_pending = 0; | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | if (rx_queue->flushed == FLUSH_PENDING) | 
|  | ++rx_pending; | 
|  | } | 
|  | } | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | if (rx_pending == EFX_RX_FLUSH_COUNT) | 
|  | break; | 
|  | if (rx_queue->flushed == FLUSH_FAILED || | 
|  | rx_queue->flushed == FLUSH_NONE) { | 
|  | efx_flush_rx_queue(rx_queue); | 
|  | ++rx_pending; | 
|  | } | 
|  | } | 
|  | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | 
|  | if (tx_queue->initialised && | 
|  | tx_queue->flushed != FLUSH_DONE) | 
|  | ++tx_pending; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rx_pending == 0 && tx_pending == 0) | 
|  | return 0; | 
|  |  | 
|  | msleep(EFX_FLUSH_INTERVAL); | 
|  | efx_poll_flush_events(efx); | 
|  | } | 
|  |  | 
|  | /* Mark the queues as all flushed. We're going to return failure | 
|  | * leading to a reset, or fake up success anyway */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | 
|  | if (tx_queue->initialised && | 
|  | tx_queue->flushed != FLUSH_DONE) | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "tx queue %d flush command timed out\n", | 
|  | tx_queue->queue); | 
|  | tx_queue->flushed = FLUSH_DONE; | 
|  | } | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | if (rx_queue->flushed != FLUSH_DONE) | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "rx queue %d flush command timed out\n", | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | rx_queue->flushed = FLUSH_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Hardware interrupts | 
|  | * The hardware interrupt handler does very little work; all the event | 
|  | * queue processing is carried out by per-channel tasklets. | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Enable/disable/generate interrupts */ | 
|  | static inline void efx_nic_interrupts(struct efx_nic *efx, | 
|  | bool enabled, bool force) | 
|  | { | 
|  | efx_oword_t int_en_reg_ker; | 
|  |  | 
|  | EFX_POPULATE_OWORD_3(int_en_reg_ker, | 
|  | FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level, | 
|  | FRF_AZ_KER_INT_KER, force, | 
|  | FRF_AZ_DRV_INT_EN_KER, enabled); | 
|  | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); | 
|  | } | 
|  |  | 
|  | void efx_nic_enable_interrupts(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); | 
|  | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ | 
|  |  | 
|  | /* Enable interrupts */ | 
|  | efx_nic_interrupts(efx, true, false); | 
|  |  | 
|  | /* Force processing of all the channels to get the EVQ RPTRs up to | 
|  | date */ | 
|  | efx_for_each_channel(channel, efx) | 
|  | efx_schedule_channel(channel); | 
|  | } | 
|  |  | 
|  | void efx_nic_disable_interrupts(struct efx_nic *efx) | 
|  | { | 
|  | /* Disable interrupts */ | 
|  | efx_nic_interrupts(efx, false, false); | 
|  | } | 
|  |  | 
|  | /* Generate a test interrupt | 
|  | * Interrupt must already have been enabled, otherwise nasty things | 
|  | * may happen. | 
|  | */ | 
|  | void efx_nic_generate_interrupt(struct efx_nic *efx) | 
|  | { | 
|  | efx_nic_interrupts(efx, true, true); | 
|  | } | 
|  |  | 
|  | /* Process a fatal interrupt | 
|  | * Disable bus mastering ASAP and schedule a reset | 
|  | */ | 
|  | irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | efx_oword_t fatal_intr; | 
|  | int error, mem_perr; | 
|  |  | 
|  | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); | 
|  | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); | 
|  |  | 
|  | netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " | 
|  | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), | 
|  | EFX_OWORD_VAL(fatal_intr), | 
|  | error ? "disabling bus mastering" : "no recognised error"); | 
|  |  | 
|  | /* If this is a memory parity error dump which blocks are offending */ | 
|  | mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || | 
|  | EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); | 
|  | if (mem_perr) { | 
|  | efx_oword_t reg; | 
|  | efx_reado(efx, ®, FR_AZ_MEM_STAT); | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", | 
|  | EFX_OWORD_VAL(reg)); | 
|  | } | 
|  |  | 
|  | /* Disable both devices */ | 
|  | pci_clear_master(efx->pci_dev); | 
|  | if (efx_nic_is_dual_func(efx)) | 
|  | pci_clear_master(nic_data->pci_dev2); | 
|  | efx_nic_disable_interrupts(efx); | 
|  |  | 
|  | /* Count errors and reset or disable the NIC accordingly */ | 
|  | if (efx->int_error_count == 0 || | 
|  | time_after(jiffies, efx->int_error_expire)) { | 
|  | efx->int_error_count = 0; | 
|  | efx->int_error_expire = | 
|  | jiffies + EFX_INT_ERROR_EXPIRE * HZ; | 
|  | } | 
|  | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "SYSTEM ERROR - reset scheduled\n"); | 
|  | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); | 
|  | } else { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "SYSTEM ERROR - max number of errors seen." | 
|  | "NIC will be disabled\n"); | 
|  | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Handle a legacy interrupt | 
|  | * Acknowledges the interrupt and schedule event queue processing. | 
|  | */ | 
|  | static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct efx_nic *efx = dev_id; | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | irqreturn_t result = IRQ_NONE; | 
|  | struct efx_channel *channel; | 
|  | efx_dword_t reg; | 
|  | u32 queues; | 
|  | int syserr; | 
|  |  | 
|  | /* Could this be ours?  If interrupts are disabled then the | 
|  | * channel state may not be valid. | 
|  | */ | 
|  | if (!efx->legacy_irq_enabled) | 
|  | return result; | 
|  |  | 
|  | /* Read the ISR which also ACKs the interrupts */ | 
|  | efx_readd(efx, ®, FR_BZ_INT_ISR0); | 
|  | queues = EFX_EXTRACT_DWORD(reg, 0, 31); | 
|  |  | 
|  | /* Check to see if we have a serious error condition */ | 
|  | if (queues & (1U << efx->fatal_irq_level)) { | 
|  | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | 
|  | if (unlikely(syserr)) | 
|  | return efx_nic_fatal_interrupt(efx); | 
|  | } | 
|  |  | 
|  | if (queues != 0) { | 
|  | if (EFX_WORKAROUND_15783(efx)) | 
|  | efx->irq_zero_count = 0; | 
|  |  | 
|  | /* Schedule processing of any interrupting queues */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (queues & 1) | 
|  | efx_schedule_channel(channel); | 
|  | queues >>= 1; | 
|  | } | 
|  | result = IRQ_HANDLED; | 
|  |  | 
|  | } else if (EFX_WORKAROUND_15783(efx)) { | 
|  | efx_qword_t *event; | 
|  |  | 
|  | /* We can't return IRQ_HANDLED more than once on seeing ISR=0 | 
|  | * because this might be a shared interrupt. */ | 
|  | if (efx->irq_zero_count++ == 0) | 
|  | result = IRQ_HANDLED; | 
|  |  | 
|  | /* Ensure we schedule or rearm all event queues */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | event = efx_event(channel, channel->eventq_read_ptr); | 
|  | if (efx_event_present(event)) | 
|  | efx_schedule_channel(channel); | 
|  | else | 
|  | efx_nic_eventq_read_ack(channel); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (result == IRQ_HANDLED) { | 
|  | efx->last_irq_cpu = raw_smp_processor_id(); | 
|  | netif_vdbg(efx, intr, efx->net_dev, | 
|  | "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", | 
|  | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Handle an MSI interrupt | 
|  | * | 
|  | * Handle an MSI hardware interrupt.  This routine schedules event | 
|  | * queue processing.  No interrupt acknowledgement cycle is necessary. | 
|  | * Also, we never need to check that the interrupt is for us, since | 
|  | * MSI interrupts cannot be shared. | 
|  | */ | 
|  | static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct efx_channel *channel = *(struct efx_channel **)dev_id; | 
|  | struct efx_nic *efx = channel->efx; | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | int syserr; | 
|  |  | 
|  | efx->last_irq_cpu = raw_smp_processor_id(); | 
|  | netif_vdbg(efx, intr, efx->net_dev, | 
|  | "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | 
|  | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | 
|  |  | 
|  | /* Check to see if we have a serious error condition */ | 
|  | if (channel->channel == efx->fatal_irq_level) { | 
|  | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | 
|  | if (unlikely(syserr)) | 
|  | return efx_nic_fatal_interrupt(efx); | 
|  | } | 
|  |  | 
|  | /* Schedule processing of the channel */ | 
|  | efx_schedule_channel(channel); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Setup RSS indirection table. | 
|  | * This maps from the hash value of the packet to RXQ | 
|  | */ | 
|  | void efx_nic_push_rx_indir_table(struct efx_nic *efx) | 
|  | { | 
|  | size_t i = 0; | 
|  | efx_dword_t dword; | 
|  |  | 
|  | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) | 
|  | return; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != | 
|  | FR_BZ_RX_INDIRECTION_TBL_ROWS); | 
|  |  | 
|  | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { | 
|  | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, | 
|  | efx->rx_indir_table[i]); | 
|  | efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Hook interrupt handler(s) | 
|  | * Try MSI and then legacy interrupts. | 
|  | */ | 
|  | int efx_nic_init_interrupt(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | int rc; | 
|  |  | 
|  | if (!EFX_INT_MODE_USE_MSI(efx)) { | 
|  | irq_handler_t handler; | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | 
|  | handler = efx_legacy_interrupt; | 
|  | else | 
|  | handler = falcon_legacy_interrupt_a1; | 
|  |  | 
|  | rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, | 
|  | efx->name, efx); | 
|  | if (rc) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "failed to hook legacy IRQ %d\n", | 
|  | efx->pci_dev->irq); | 
|  | goto fail1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Hook MSI or MSI-X interrupt */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | rc = request_irq(channel->irq, efx_msi_interrupt, | 
|  | IRQF_PROBE_SHARED, /* Not shared */ | 
|  | efx->channel_name[channel->channel], | 
|  | &efx->channel[channel->channel]); | 
|  | if (rc) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "failed to hook IRQ %d\n", channel->irq); | 
|  | goto fail2; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail2: | 
|  | efx_for_each_channel(channel, efx) | 
|  | free_irq(channel->irq, &efx->channel[channel->channel]); | 
|  | fail1: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void efx_nic_fini_interrupt(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | /* Disable MSI/MSI-X interrupts */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (channel->irq) | 
|  | free_irq(channel->irq, &efx->channel[channel->channel]); | 
|  | } | 
|  |  | 
|  | /* ACK legacy interrupt */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | 
|  | efx_reado(efx, ®, FR_BZ_INT_ISR0); | 
|  | else | 
|  | falcon_irq_ack_a1(efx); | 
|  |  | 
|  | /* Disable legacy interrupt */ | 
|  | if (efx->legacy_irq) | 
|  | free_irq(efx->legacy_irq, efx); | 
|  | } | 
|  |  | 
|  | u32 efx_nic_fpga_ver(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t altera_build; | 
|  | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); | 
|  | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); | 
|  | } | 
|  |  | 
|  | void efx_nic_init_common(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t temp; | 
|  |  | 
|  | /* Set positions of descriptor caches in SRAM. */ | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, | 
|  | efx->type->tx_dc_base / 8); | 
|  | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, | 
|  | efx->type->rx_dc_base / 8); | 
|  | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); | 
|  |  | 
|  | /* Set TX descriptor cache size. */ | 
|  | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); | 
|  | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); | 
|  |  | 
|  | /* Set RX descriptor cache size.  Set low watermark to size-8, as | 
|  | * this allows most efficient prefetching. | 
|  | */ | 
|  | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); | 
|  | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); | 
|  | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); | 
|  |  | 
|  | /* Program INT_KER address */ | 
|  | EFX_POPULATE_OWORD_2(temp, | 
|  | FRF_AZ_NORM_INT_VEC_DIS_KER, | 
|  | EFX_INT_MODE_USE_MSI(efx), | 
|  | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); | 
|  | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); | 
|  |  | 
|  | if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) | 
|  | /* Use an interrupt level unused by event queues */ | 
|  | efx->fatal_irq_level = 0x1f; | 
|  | else | 
|  | /* Use a valid MSI-X vector */ | 
|  | efx->fatal_irq_level = 0; | 
|  |  | 
|  | /* Enable all the genuinely fatal interrupts.  (They are still | 
|  | * masked by the overall interrupt mask, controlled by | 
|  | * falcon_interrupts()). | 
|  | * | 
|  | * Note: All other fatal interrupts are enabled | 
|  | */ | 
|  | EFX_POPULATE_OWORD_3(temp, | 
|  | FRF_AZ_ILL_ADR_INT_KER_EN, 1, | 
|  | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, | 
|  | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); | 
|  | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); | 
|  | EFX_INVERT_OWORD(temp); | 
|  | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); | 
|  |  | 
|  | efx_nic_push_rx_indir_table(efx); | 
|  |  | 
|  | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be | 
|  | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. | 
|  | */ | 
|  | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); | 
|  | /* Enable SW_EV to inherit in char driver - assume harmless here */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); | 
|  | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); | 
|  | /* Disable hardware watchdog which can misfire */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); | 
|  | /* Squash TX of packets of 16 bytes or less */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); | 
|  | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); | 
|  |  | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | 
|  | EFX_POPULATE_OWORD_4(temp, | 
|  | /* Default values */ | 
|  | FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, | 
|  | FRF_BZ_TX_PACE_SB_AF, 0xb, | 
|  | FRF_BZ_TX_PACE_FB_BASE, 0, | 
|  | /* Allow large pace values in the | 
|  | * fast bin. */ | 
|  | FRF_BZ_TX_PACE_BIN_TH, | 
|  | FFE_BZ_TX_PACE_RESERVED); | 
|  | efx_writeo(efx, &temp, FR_BZ_TX_PACE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Register dump */ | 
|  |  | 
|  | #define REGISTER_REVISION_A	1 | 
|  | #define REGISTER_REVISION_B	2 | 
|  | #define REGISTER_REVISION_C	3 | 
|  | #define REGISTER_REVISION_Z	3	/* latest revision */ | 
|  |  | 
|  | struct efx_nic_reg { | 
|  | u32 offset:24; | 
|  | u32 min_revision:2, max_revision:2; | 
|  | }; | 
|  |  | 
|  | #define REGISTER(name, min_rev, max_rev) {				\ | 
|  | FR_ ## min_rev ## max_rev ## _ ## name,				\ | 
|  | REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\ | 
|  | } | 
|  | #define REGISTER_AA(name) REGISTER(name, A, A) | 
|  | #define REGISTER_AB(name) REGISTER(name, A, B) | 
|  | #define REGISTER_AZ(name) REGISTER(name, A, Z) | 
|  | #define REGISTER_BB(name) REGISTER(name, B, B) | 
|  | #define REGISTER_BZ(name) REGISTER(name, B, Z) | 
|  | #define REGISTER_CZ(name) REGISTER(name, C, Z) | 
|  |  | 
|  | static const struct efx_nic_reg efx_nic_regs[] = { | 
|  | REGISTER_AZ(ADR_REGION), | 
|  | REGISTER_AZ(INT_EN_KER), | 
|  | REGISTER_BZ(INT_EN_CHAR), | 
|  | REGISTER_AZ(INT_ADR_KER), | 
|  | REGISTER_BZ(INT_ADR_CHAR), | 
|  | /* INT_ACK_KER is WO */ | 
|  | /* INT_ISR0 is RC */ | 
|  | REGISTER_AZ(HW_INIT), | 
|  | REGISTER_CZ(USR_EV_CFG), | 
|  | REGISTER_AB(EE_SPI_HCMD), | 
|  | REGISTER_AB(EE_SPI_HADR), | 
|  | REGISTER_AB(EE_SPI_HDATA), | 
|  | REGISTER_AB(EE_BASE_PAGE), | 
|  | REGISTER_AB(EE_VPD_CFG0), | 
|  | /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ | 
|  | /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ | 
|  | /* PCIE_CORE_INDIRECT is indirect */ | 
|  | REGISTER_AB(NIC_STAT), | 
|  | REGISTER_AB(GPIO_CTL), | 
|  | REGISTER_AB(GLB_CTL), | 
|  | /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ | 
|  | REGISTER_BZ(DP_CTRL), | 
|  | REGISTER_AZ(MEM_STAT), | 
|  | REGISTER_AZ(CS_DEBUG), | 
|  | REGISTER_AZ(ALTERA_BUILD), | 
|  | REGISTER_AZ(CSR_SPARE), | 
|  | REGISTER_AB(PCIE_SD_CTL0123), | 
|  | REGISTER_AB(PCIE_SD_CTL45), | 
|  | REGISTER_AB(PCIE_PCS_CTL_STAT), | 
|  | /* DEBUG_DATA_OUT is not used */ | 
|  | /* DRV_EV is WO */ | 
|  | REGISTER_AZ(EVQ_CTL), | 
|  | REGISTER_AZ(EVQ_CNT1), | 
|  | REGISTER_AZ(EVQ_CNT2), | 
|  | REGISTER_AZ(BUF_TBL_CFG), | 
|  | REGISTER_AZ(SRM_RX_DC_CFG), | 
|  | REGISTER_AZ(SRM_TX_DC_CFG), | 
|  | REGISTER_AZ(SRM_CFG), | 
|  | /* BUF_TBL_UPD is WO */ | 
|  | REGISTER_AZ(SRM_UPD_EVQ), | 
|  | REGISTER_AZ(SRAM_PARITY), | 
|  | REGISTER_AZ(RX_CFG), | 
|  | REGISTER_BZ(RX_FILTER_CTL), | 
|  | /* RX_FLUSH_DESCQ is WO */ | 
|  | REGISTER_AZ(RX_DC_CFG), | 
|  | REGISTER_AZ(RX_DC_PF_WM), | 
|  | REGISTER_BZ(RX_RSS_TKEY), | 
|  | /* RX_NODESC_DROP is RC */ | 
|  | REGISTER_AA(RX_SELF_RST), | 
|  | /* RX_DEBUG, RX_PUSH_DROP are not used */ | 
|  | REGISTER_CZ(RX_RSS_IPV6_REG1), | 
|  | REGISTER_CZ(RX_RSS_IPV6_REG2), | 
|  | REGISTER_CZ(RX_RSS_IPV6_REG3), | 
|  | /* TX_FLUSH_DESCQ is WO */ | 
|  | REGISTER_AZ(TX_DC_CFG), | 
|  | REGISTER_AA(TX_CHKSM_CFG), | 
|  | REGISTER_AZ(TX_CFG), | 
|  | /* TX_PUSH_DROP is not used */ | 
|  | REGISTER_AZ(TX_RESERVED), | 
|  | REGISTER_BZ(TX_PACE), | 
|  | /* TX_PACE_DROP_QID is RC */ | 
|  | REGISTER_BB(TX_VLAN), | 
|  | REGISTER_BZ(TX_IPFIL_PORTEN), | 
|  | REGISTER_AB(MD_TXD), | 
|  | REGISTER_AB(MD_RXD), | 
|  | REGISTER_AB(MD_CS), | 
|  | REGISTER_AB(MD_PHY_ADR), | 
|  | REGISTER_AB(MD_ID), | 
|  | /* MD_STAT is RC */ | 
|  | REGISTER_AB(MAC_STAT_DMA), | 
|  | REGISTER_AB(MAC_CTRL), | 
|  | REGISTER_BB(GEN_MODE), | 
|  | REGISTER_AB(MAC_MC_HASH_REG0), | 
|  | REGISTER_AB(MAC_MC_HASH_REG1), | 
|  | REGISTER_AB(GM_CFG1), | 
|  | REGISTER_AB(GM_CFG2), | 
|  | /* GM_IPG and GM_HD are not used */ | 
|  | REGISTER_AB(GM_MAX_FLEN), | 
|  | /* GM_TEST is not used */ | 
|  | REGISTER_AB(GM_ADR1), | 
|  | REGISTER_AB(GM_ADR2), | 
|  | REGISTER_AB(GMF_CFG0), | 
|  | REGISTER_AB(GMF_CFG1), | 
|  | REGISTER_AB(GMF_CFG2), | 
|  | REGISTER_AB(GMF_CFG3), | 
|  | REGISTER_AB(GMF_CFG4), | 
|  | REGISTER_AB(GMF_CFG5), | 
|  | REGISTER_BB(TX_SRC_MAC_CTL), | 
|  | REGISTER_AB(XM_ADR_LO), | 
|  | REGISTER_AB(XM_ADR_HI), | 
|  | REGISTER_AB(XM_GLB_CFG), | 
|  | REGISTER_AB(XM_TX_CFG), | 
|  | REGISTER_AB(XM_RX_CFG), | 
|  | REGISTER_AB(XM_MGT_INT_MASK), | 
|  | REGISTER_AB(XM_FC), | 
|  | REGISTER_AB(XM_PAUSE_TIME), | 
|  | REGISTER_AB(XM_TX_PARAM), | 
|  | REGISTER_AB(XM_RX_PARAM), | 
|  | /* XM_MGT_INT_MSK (note no 'A') is RC */ | 
|  | REGISTER_AB(XX_PWR_RST), | 
|  | REGISTER_AB(XX_SD_CTL), | 
|  | REGISTER_AB(XX_TXDRV_CTL), | 
|  | /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ | 
|  | /* XX_CORE_STAT is partly RC */ | 
|  | }; | 
|  |  | 
|  | struct efx_nic_reg_table { | 
|  | u32 offset:24; | 
|  | u32 min_revision:2, max_revision:2; | 
|  | u32 step:6, rows:21; | 
|  | }; | 
|  |  | 
|  | #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ | 
|  | offset,								\ | 
|  | REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\ | 
|  | step, rows							\ | 
|  | } | 
|  | #define REGISTER_TABLE(name, min_rev, max_rev) 				\ | 
|  | REGISTER_TABLE_DIMENSIONS(					\ | 
|  | name, FR_ ## min_rev ## max_rev ## _ ## name,		\ | 
|  | min_rev, max_rev,					\ | 
|  | FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\ | 
|  | FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) | 
|  | #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) | 
|  | #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) | 
|  | #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) | 
|  | #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) | 
|  | #define REGISTER_TABLE_BB_CZ(name)					\ | 
|  | REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\ | 
|  | FR_BZ_ ## name ## _STEP,		\ | 
|  | FR_BB_ ## name ## _ROWS),		\ | 
|  | REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\ | 
|  | FR_BZ_ ## name ## _STEP,		\ | 
|  | FR_CZ_ ## name ## _ROWS) | 
|  | #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) | 
|  |  | 
|  | static const struct efx_nic_reg_table efx_nic_reg_tables[] = { | 
|  | /* DRIVER is not used */ | 
|  | /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ | 
|  | REGISTER_TABLE_BB(TX_IPFIL_TBL), | 
|  | REGISTER_TABLE_BB(TX_SRC_MAC_TBL), | 
|  | REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), | 
|  | REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), | 
|  | REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), | 
|  | REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), | 
|  | REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), | 
|  | REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), | 
|  | /* We can't reasonably read all of the buffer table (up to 8MB!). | 
|  | * However this driver will only use a few entries.  Reading | 
|  | * 1K entries allows for some expansion of queue count and | 
|  | * size before we need to change the version. */ | 
|  | REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, | 
|  | A, A, 8, 1024), | 
|  | REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, | 
|  | B, Z, 8, 1024), | 
|  | REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), | 
|  | REGISTER_TABLE_BB_CZ(TIMER_TBL), | 
|  | REGISTER_TABLE_BB_CZ(TX_PACE_TBL), | 
|  | REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), | 
|  | /* TX_FILTER_TBL0 is huge and not used by this driver */ | 
|  | REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), | 
|  | REGISTER_TABLE_CZ(MC_TREG_SMEM), | 
|  | /* MSIX_PBA_TABLE is not mapped */ | 
|  | /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ | 
|  | REGISTER_TABLE_BZ(RX_FILTER_TBL0), | 
|  | }; | 
|  |  | 
|  | size_t efx_nic_get_regs_len(struct efx_nic *efx) | 
|  | { | 
|  | const struct efx_nic_reg *reg; | 
|  | const struct efx_nic_reg_table *table; | 
|  | size_t len = 0; | 
|  |  | 
|  | for (reg = efx_nic_regs; | 
|  | reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); | 
|  | reg++) | 
|  | if (efx->type->revision >= reg->min_revision && | 
|  | efx->type->revision <= reg->max_revision) | 
|  | len += sizeof(efx_oword_t); | 
|  |  | 
|  | for (table = efx_nic_reg_tables; | 
|  | table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); | 
|  | table++) | 
|  | if (efx->type->revision >= table->min_revision && | 
|  | efx->type->revision <= table->max_revision) | 
|  | len += table->rows * min_t(size_t, table->step, 16); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | void efx_nic_get_regs(struct efx_nic *efx, void *buf) | 
|  | { | 
|  | const struct efx_nic_reg *reg; | 
|  | const struct efx_nic_reg_table *table; | 
|  |  | 
|  | for (reg = efx_nic_regs; | 
|  | reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); | 
|  | reg++) { | 
|  | if (efx->type->revision >= reg->min_revision && | 
|  | efx->type->revision <= reg->max_revision) { | 
|  | efx_reado(efx, (efx_oword_t *)buf, reg->offset); | 
|  | buf += sizeof(efx_oword_t); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (table = efx_nic_reg_tables; | 
|  | table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); | 
|  | table++) { | 
|  | size_t size, i; | 
|  |  | 
|  | if (!(efx->type->revision >= table->min_revision && | 
|  | efx->type->revision <= table->max_revision)) | 
|  | continue; | 
|  |  | 
|  | size = min_t(size_t, table->step, 16); | 
|  |  | 
|  | for (i = 0; i < table->rows; i++) { | 
|  | switch (table->step) { | 
|  | case 4: /* 32-bit register or SRAM */ | 
|  | efx_readd_table(efx, buf, table->offset, i); | 
|  | break; | 
|  | case 8: /* 64-bit SRAM */ | 
|  | efx_sram_readq(efx, | 
|  | efx->membase + table->offset, | 
|  | buf, i); | 
|  | break; | 
|  | case 16: /* 128-bit register */ | 
|  | efx_reado_table(efx, buf, table->offset, i); | 
|  | break; | 
|  | case 32: /* 128-bit register, interleaved */ | 
|  | efx_reado_table(efx, buf, table->offset, 2 * i); | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  | buf += size; | 
|  | } | 
|  | } | 
|  | } |