|  | /**************************************************************************** | 
|  | * Driver for Solarflare Solarstorm network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2005-2011 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/socket.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/checksum.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "nic.h" | 
|  | #include "selftest.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /* Number of RX descriptors pushed at once. */ | 
|  | #define EFX_RX_BATCH  8 | 
|  |  | 
|  | /* Maximum size of a buffer sharing a page */ | 
|  | #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state)) | 
|  |  | 
|  | /* Size of buffer allocated for skb header area. */ | 
|  | #define EFX_SKB_HEADERS  64u | 
|  |  | 
|  | /* | 
|  | * rx_alloc_method - RX buffer allocation method | 
|  | * | 
|  | * This driver supports two methods for allocating and using RX buffers: | 
|  | * each RX buffer may be backed by an skb or by an order-n page. | 
|  | * | 
|  | * When GRO is in use then the second method has a lower overhead, | 
|  | * since we don't have to allocate then free skbs on reassembled frames. | 
|  | * | 
|  | * Values: | 
|  | *   - RX_ALLOC_METHOD_AUTO = 0 | 
|  | *   - RX_ALLOC_METHOD_SKB  = 1 | 
|  | *   - RX_ALLOC_METHOD_PAGE = 2 | 
|  | * | 
|  | * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count | 
|  | * controlled by the parameters below. | 
|  | * | 
|  | *   - Since pushing and popping descriptors are separated by the rx_queue | 
|  | *     size, so the watermarks should be ~rxd_size. | 
|  | *   - The performance win by using page-based allocation for GRO is less | 
|  | *     than the performance hit of using page-based allocation of non-GRO, | 
|  | *     so the watermarks should reflect this. | 
|  | * | 
|  | * Per channel we maintain a single variable, updated by each channel: | 
|  | * | 
|  | *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO : | 
|  | *                      RX_ALLOC_FACTOR_SKB) | 
|  | * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which | 
|  | * limits the hysteresis), and update the allocation strategy: | 
|  | * | 
|  | *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ? | 
|  | *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) | 
|  | */ | 
|  | static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; | 
|  |  | 
|  | #define RX_ALLOC_LEVEL_GRO 0x2000 | 
|  | #define RX_ALLOC_LEVEL_MAX 0x3000 | 
|  | #define RX_ALLOC_FACTOR_GRO 1 | 
|  | #define RX_ALLOC_FACTOR_SKB (-2) | 
|  |  | 
|  | /* This is the percentage fill level below which new RX descriptors | 
|  | * will be added to the RX descriptor ring. | 
|  | */ | 
|  | static unsigned int rx_refill_threshold = 90; | 
|  |  | 
|  | /* This is the percentage fill level to which an RX queue will be refilled | 
|  | * when the "RX refill threshold" is reached. | 
|  | */ | 
|  | static unsigned int rx_refill_limit = 95; | 
|  |  | 
|  | /* | 
|  | * RX maximum head room required. | 
|  | * | 
|  | * This must be at least 1 to prevent overflow and at least 2 to allow | 
|  | * pipelined receives. | 
|  | */ | 
|  | #define EFX_RXD_HEAD_ROOM 2 | 
|  |  | 
|  | /* Offset of ethernet header within page */ | 
|  | static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *buf) | 
|  | { | 
|  | /* Offset is always within one page, so we don't need to consider | 
|  | * the page order. | 
|  | */ | 
|  | return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) + | 
|  | efx->type->rx_buffer_hash_size); | 
|  | } | 
|  | static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) | 
|  | { | 
|  | return PAGE_SIZE << efx->rx_buffer_order; | 
|  | } | 
|  |  | 
|  | static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) | 
|  | { | 
|  | if (buf->is_page) | 
|  | return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); | 
|  | else | 
|  | return ((u8 *)buf->u.skb->data + | 
|  | efx->type->rx_buffer_hash_size); | 
|  | } | 
|  |  | 
|  | static inline u32 efx_rx_buf_hash(const u8 *eh) | 
|  | { | 
|  | /* The ethernet header is always directly after any hash. */ | 
|  | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 | 
|  | return __le32_to_cpup((const __le32 *)(eh - 4)); | 
|  | #else | 
|  | const u8 *data = eh - 4; | 
|  | return ((u32)data[0]       | | 
|  | (u32)data[1] << 8  | | 
|  | (u32)data[2] << 16 | | 
|  | (u32)data[3] << 24); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers | 
|  | * | 
|  | * @rx_queue:		Efx RX queue | 
|  | * | 
|  | * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a | 
|  | * struct efx_rx_buffer for each one. Return a negative error code or 0 | 
|  | * on success. May fail having only inserted fewer than EFX_RX_BATCH | 
|  | * buffers. | 
|  | */ | 
|  | static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct net_device *net_dev = efx->net_dev; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | struct sk_buff *skb; | 
|  | int skb_len = efx->rx_buffer_len; | 
|  | unsigned index, count; | 
|  |  | 
|  | for (count = 0; count < EFX_RX_BATCH; ++count) { | 
|  | index = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  |  | 
|  | rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len); | 
|  | if (unlikely(!skb)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Adjust the SKB for padding and checksum */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | rx_buf->len = skb_len - NET_IP_ALIGN; | 
|  | rx_buf->is_page = false; | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | rx_buf->dma_addr = pci_map_single(efx->pci_dev, | 
|  | skb->data, rx_buf->len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (unlikely(pci_dma_mapping_error(efx->pci_dev, | 
|  | rx_buf->dma_addr))) { | 
|  | dev_kfree_skb_any(skb); | 
|  | rx_buf->u.skb = NULL; | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ++rx_queue->added_count; | 
|  | ++rx_queue->alloc_skb_count; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers | 
|  | * | 
|  | * @rx_queue:		Efx RX queue | 
|  | * | 
|  | * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, | 
|  | * and populates struct efx_rx_buffers for each one. Return a negative error | 
|  | * code or 0 on success. If a single page can be split between two buffers, | 
|  | * then the page will either be inserted fully, or not at at all. | 
|  | */ | 
|  | static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | struct page *page; | 
|  | void *page_addr; | 
|  | struct efx_rx_page_state *state; | 
|  | dma_addr_t dma_addr; | 
|  | unsigned index, count; | 
|  |  | 
|  | /* We can split a page between two buffers */ | 
|  | BUILD_BUG_ON(EFX_RX_BATCH & 1); | 
|  |  | 
|  | for (count = 0; count < EFX_RX_BATCH; ++count) { | 
|  | page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, | 
|  | efx->rx_buffer_order); | 
|  | if (unlikely(page == NULL)) | 
|  | return -ENOMEM; | 
|  | dma_addr = pci_map_page(efx->pci_dev, page, 0, | 
|  | efx_rx_buf_size(efx), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { | 
|  | __free_pages(page, efx->rx_buffer_order); | 
|  | return -EIO; | 
|  | } | 
|  | page_addr = page_address(page); | 
|  | state = page_addr; | 
|  | state->refcnt = 0; | 
|  | state->dma_addr = dma_addr; | 
|  |  | 
|  | page_addr += sizeof(struct efx_rx_page_state); | 
|  | dma_addr += sizeof(struct efx_rx_page_state); | 
|  |  | 
|  | split: | 
|  | index = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; | 
|  | rx_buf->u.page = page; | 
|  | rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; | 
|  | rx_buf->is_page = true; | 
|  | ++rx_queue->added_count; | 
|  | ++rx_queue->alloc_page_count; | 
|  | ++state->refcnt; | 
|  |  | 
|  | if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) { | 
|  | /* Use the second half of the page */ | 
|  | get_page(page); | 
|  | dma_addr += (PAGE_SIZE >> 1); | 
|  | page_addr += (PAGE_SIZE >> 1); | 
|  | ++count; | 
|  | goto split; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void efx_unmap_rx_buffer(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | if (rx_buf->is_page && rx_buf->u.page) { | 
|  | struct efx_rx_page_state *state; | 
|  |  | 
|  | state = page_address(rx_buf->u.page); | 
|  | if (--state->refcnt == 0) { | 
|  | pci_unmap_page(efx->pci_dev, | 
|  | state->dma_addr, | 
|  | efx_rx_buf_size(efx), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | } | 
|  | } else if (!rx_buf->is_page && rx_buf->u.skb) { | 
|  | pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, | 
|  | rx_buf->len, PCI_DMA_FROMDEVICE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_free_rx_buffer(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | if (rx_buf->is_page && rx_buf->u.page) { | 
|  | __free_pages(rx_buf->u.page, efx->rx_buffer_order); | 
|  | rx_buf->u.page = NULL; | 
|  | } else if (!rx_buf->is_page && rx_buf->u.skb) { | 
|  | dev_kfree_skb_any(rx_buf->u.skb); | 
|  | rx_buf->u.skb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | efx_unmap_rx_buffer(rx_queue->efx, rx_buf); | 
|  | efx_free_rx_buffer(rx_queue->efx, rx_buf); | 
|  | } | 
|  |  | 
|  | /* Attempt to resurrect the other receive buffer that used to share this page, | 
|  | * which had previously been passed up to the kernel and freed. */ | 
|  | static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | struct efx_rx_page_state *state = page_address(rx_buf->u.page); | 
|  | struct efx_rx_buffer *new_buf; | 
|  | unsigned fill_level, index; | 
|  |  | 
|  | /* +1 because efx_rx_packet() incremented removed_count. +1 because | 
|  | * we'd like to insert an additional descriptor whilst leaving | 
|  | * EFX_RXD_HEAD_ROOM for the non-recycle path */ | 
|  | fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); | 
|  | if (unlikely(fill_level > rx_queue->max_fill)) { | 
|  | /* We could place "state" on a list, and drain the list in | 
|  | * efx_fast_push_rx_descriptors(). For now, this will do. */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | ++state->refcnt; | 
|  | get_page(rx_buf->u.page); | 
|  |  | 
|  | index = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | new_buf = efx_rx_buffer(rx_queue, index); | 
|  | new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); | 
|  | new_buf->u.page = rx_buf->u.page; | 
|  | new_buf->len = rx_buf->len; | 
|  | new_buf->is_page = true; | 
|  | ++rx_queue->added_count; | 
|  | } | 
|  |  | 
|  | /* Recycle the given rx buffer directly back into the rx_queue. There is | 
|  | * always room to add this buffer, because we've just popped a buffer. */ | 
|  | static void efx_recycle_rx_buffer(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
|  | struct efx_rx_buffer *new_buf; | 
|  | unsigned index; | 
|  |  | 
|  | if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE && | 
|  | page_count(rx_buf->u.page) == 1) | 
|  | efx_resurrect_rx_buffer(rx_queue, rx_buf); | 
|  |  | 
|  | index = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | new_buf = efx_rx_buffer(rx_queue, index); | 
|  |  | 
|  | memcpy(new_buf, rx_buf, sizeof(*new_buf)); | 
|  | rx_buf->u.page = NULL; | 
|  | ++rx_queue->added_count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
|  | * @rx_queue:		RX descriptor queue | 
|  | * This will aim to fill the RX descriptor queue up to | 
|  | * @rx_queue->@fast_fill_limit. If there is insufficient atomic | 
|  | * memory to do so, a slow fill will be scheduled. | 
|  | * | 
|  | * The caller must provide serialisation (none is used here). In practise, | 
|  | * this means this function must run from the NAPI handler, or be called | 
|  | * when NAPI is disabled. | 
|  | */ | 
|  | void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  | unsigned fill_level; | 
|  | int space, rc = 0; | 
|  |  | 
|  | /* Calculate current fill level, and exit if we don't need to fill */ | 
|  | fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
|  | EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); | 
|  | if (fill_level >= rx_queue->fast_fill_trigger) | 
|  | goto out; | 
|  |  | 
|  | /* Record minimum fill level */ | 
|  | if (unlikely(fill_level < rx_queue->min_fill)) { | 
|  | if (fill_level) | 
|  | rx_queue->min_fill = fill_level; | 
|  | } | 
|  |  | 
|  | space = rx_queue->fast_fill_limit - fill_level; | 
|  | if (space < EFX_RX_BATCH) | 
|  | goto out; | 
|  |  | 
|  | netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | 
|  | "RX queue %d fast-filling descriptor ring from" | 
|  | " level %d to level %d using %s allocation\n", | 
|  | efx_rx_queue_index(rx_queue), fill_level, | 
|  | rx_queue->fast_fill_limit, | 
|  | channel->rx_alloc_push_pages ? "page" : "skb"); | 
|  |  | 
|  | do { | 
|  | if (channel->rx_alloc_push_pages) | 
|  | rc = efx_init_rx_buffers_page(rx_queue); | 
|  | else | 
|  | rc = efx_init_rx_buffers_skb(rx_queue); | 
|  | if (unlikely(rc)) { | 
|  | /* Ensure that we don't leave the rx queue empty */ | 
|  | if (rx_queue->added_count == rx_queue->removed_count) | 
|  | efx_schedule_slow_fill(rx_queue); | 
|  | goto out; | 
|  | } | 
|  | } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); | 
|  |  | 
|  | netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | 
|  | "RX queue %d fast-filled descriptor ring " | 
|  | "to level %d\n", efx_rx_queue_index(rx_queue), | 
|  | rx_queue->added_count - rx_queue->removed_count); | 
|  |  | 
|  | out: | 
|  | if (rx_queue->notified_count != rx_queue->added_count) | 
|  | efx_nic_notify_rx_desc(rx_queue); | 
|  | } | 
|  |  | 
|  | void efx_rx_slow_fill(unsigned long context) | 
|  | { | 
|  | struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  |  | 
|  | /* Post an event to cause NAPI to run and refill the queue */ | 
|  | efx_nic_generate_fill_event(channel); | 
|  | ++rx_queue->slow_fill_count; | 
|  | } | 
|  |  | 
|  | static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | int len, bool *discard, | 
|  | bool *leak_packet) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; | 
|  |  | 
|  | if (likely(len <= max_len)) | 
|  | return; | 
|  |  | 
|  | /* The packet must be discarded, but this is only a fatal error | 
|  | * if the caller indicated it was | 
|  | */ | 
|  | *discard = true; | 
|  |  | 
|  | if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { | 
|  | if (net_ratelimit()) | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | " RX queue %d seriously overlength " | 
|  | "RX event (0x%x > 0x%x+0x%x). Leaking\n", | 
|  | efx_rx_queue_index(rx_queue), len, max_len, | 
|  | efx->type->rx_buffer_padding); | 
|  | /* If this buffer was skb-allocated, then the meta | 
|  | * data at the end of the skb will be trashed. So | 
|  | * we have no choice but to leak the fragment. | 
|  | */ | 
|  | *leak_packet = !rx_buf->is_page; | 
|  | efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); | 
|  | } else { | 
|  | if (net_ratelimit()) | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | " RX queue %d overlength RX event " | 
|  | "(0x%x > 0x%x)\n", | 
|  | efx_rx_queue_index(rx_queue), len, max_len); | 
|  | } | 
|  |  | 
|  | efx_rx_queue_channel(rx_queue)->n_rx_overlength++; | 
|  | } | 
|  |  | 
|  | /* Pass a received packet up through the generic GRO stack | 
|  | * | 
|  | * Handles driverlink veto, and passes the fragment up via | 
|  | * the appropriate GRO method | 
|  | */ | 
|  | static void efx_rx_packet_gro(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | const u8 *eh, bool checksummed) | 
|  | { | 
|  | struct napi_struct *napi = &channel->napi_str; | 
|  | gro_result_t gro_result; | 
|  |  | 
|  | /* Pass the skb/page into the GRO engine */ | 
|  | if (rx_buf->is_page) { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct page *page = rx_buf->u.page; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | rx_buf->u.page = NULL; | 
|  |  | 
|  | skb = napi_get_frags(napi); | 
|  | if (!skb) { | 
|  | put_page(page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (efx->net_dev->features & NETIF_F_RXHASH) | 
|  | skb->rxhash = efx_rx_buf_hash(eh); | 
|  |  | 
|  | skb_frag_set_page(skb, 0, page); | 
|  | skb_shinfo(skb)->frags[0].page_offset = | 
|  | efx_rx_buf_offset(efx, rx_buf); | 
|  | skb_frag_size_set(&skb_shinfo(skb)->frags[0], rx_buf->len); | 
|  | skb_shinfo(skb)->nr_frags = 1; | 
|  |  | 
|  | skb->len = rx_buf->len; | 
|  | skb->data_len = rx_buf->len; | 
|  | skb->truesize += rx_buf->len; | 
|  | skb->ip_summed = | 
|  | checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; | 
|  |  | 
|  | skb_record_rx_queue(skb, channel->channel); | 
|  |  | 
|  | gro_result = napi_gro_frags(napi); | 
|  | } else { | 
|  | struct sk_buff *skb = rx_buf->u.skb; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(!checksummed); | 
|  | rx_buf->u.skb = NULL; | 
|  |  | 
|  | gro_result = napi_gro_receive(napi, skb); | 
|  | } | 
|  |  | 
|  | if (gro_result == GRO_NORMAL) { | 
|  | channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
|  | } else if (gro_result != GRO_DROP) { | 
|  | channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO; | 
|  | channel->irq_mod_score += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, | 
|  | unsigned int len, bool checksummed, bool discard) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | bool leak_packet = false; | 
|  |  | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  |  | 
|  | /* This allows the refill path to post another buffer. | 
|  | * EFX_RXD_HEAD_ROOM ensures that the slot we are using | 
|  | * isn't overwritten yet. | 
|  | */ | 
|  | rx_queue->removed_count++; | 
|  |  | 
|  | /* Validate the length encoded in the event vs the descriptor pushed */ | 
|  | efx_rx_packet__check_len(rx_queue, rx_buf, len, | 
|  | &discard, &leak_packet); | 
|  |  | 
|  | netif_vdbg(efx, rx_status, efx->net_dev, | 
|  | "RX queue %d received id %x at %llx+%x %s%s\n", | 
|  | efx_rx_queue_index(rx_queue), index, | 
|  | (unsigned long long)rx_buf->dma_addr, len, | 
|  | (checksummed ? " [SUMMED]" : ""), | 
|  | (discard ? " [DISCARD]" : "")); | 
|  |  | 
|  | /* Discard packet, if instructed to do so */ | 
|  | if (unlikely(discard)) { | 
|  | if (unlikely(leak_packet)) | 
|  | channel->n_skbuff_leaks++; | 
|  | else | 
|  | efx_recycle_rx_buffer(channel, rx_buf); | 
|  |  | 
|  | /* Don't hold off the previous receive */ | 
|  | rx_buf = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Release card resources - assumes all RX buffers consumed in-order | 
|  | * per RX queue | 
|  | */ | 
|  | efx_unmap_rx_buffer(efx, rx_buf); | 
|  |  | 
|  | /* Prefetch nice and early so data will (hopefully) be in cache by | 
|  | * the time we look at it. | 
|  | */ | 
|  | prefetch(efx_rx_buf_eh(efx, rx_buf)); | 
|  |  | 
|  | /* Pipeline receives so that we give time for packet headers to be | 
|  | * prefetched into cache. | 
|  | */ | 
|  | rx_buf->len = len - efx->type->rx_buffer_hash_size; | 
|  | out: | 
|  | if (channel->rx_pkt) | 
|  | __efx_rx_packet(channel, | 
|  | channel->rx_pkt, channel->rx_pkt_csummed); | 
|  | channel->rx_pkt = rx_buf; | 
|  | channel->rx_pkt_csummed = checksummed; | 
|  | } | 
|  |  | 
|  | /* Handle a received packet.  Second half: Touches packet payload. */ | 
|  | void __efx_rx_packet(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, bool checksummed) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct sk_buff *skb; | 
|  | u8 *eh = efx_rx_buf_eh(efx, rx_buf); | 
|  |  | 
|  | /* If we're in loopback test, then pass the packet directly to the | 
|  | * loopback layer, and free the rx_buf here | 
|  | */ | 
|  | if (unlikely(efx->loopback_selftest)) { | 
|  | efx_loopback_rx_packet(efx, eh, rx_buf->len); | 
|  | efx_free_rx_buffer(efx, rx_buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!rx_buf->is_page) { | 
|  | skb = rx_buf->u.skb; | 
|  |  | 
|  | prefetch(skb_shinfo(skb)); | 
|  |  | 
|  | skb_reserve(skb, efx->type->rx_buffer_hash_size); | 
|  | skb_put(skb, rx_buf->len); | 
|  |  | 
|  | if (efx->net_dev->features & NETIF_F_RXHASH) | 
|  | skb->rxhash = efx_rx_buf_hash(eh); | 
|  |  | 
|  | /* Move past the ethernet header. rx_buf->data still points | 
|  | * at the ethernet header */ | 
|  | skb->protocol = eth_type_trans(skb, efx->net_dev); | 
|  |  | 
|  | skb_record_rx_queue(skb, channel->channel); | 
|  | } | 
|  |  | 
|  | if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) | 
|  | checksummed = false; | 
|  |  | 
|  | if (likely(checksummed || rx_buf->is_page)) { | 
|  | efx_rx_packet_gro(channel, rx_buf, eh, checksummed); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We now own the SKB */ | 
|  | skb = rx_buf->u.skb; | 
|  | rx_buf->u.skb = NULL; | 
|  |  | 
|  | /* Set the SKB flags */ | 
|  | skb_checksum_none_assert(skb); | 
|  |  | 
|  | /* Pass the packet up */ | 
|  | netif_receive_skb(skb); | 
|  |  | 
|  | /* Update allocation strategy method */ | 
|  | channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
|  | } | 
|  |  | 
|  | void efx_rx_strategy(struct efx_channel *channel) | 
|  | { | 
|  | enum efx_rx_alloc_method method = rx_alloc_method; | 
|  |  | 
|  | /* Only makes sense to use page based allocation if GRO is enabled */ | 
|  | if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { | 
|  | method = RX_ALLOC_METHOD_SKB; | 
|  | } else if (method == RX_ALLOC_METHOD_AUTO) { | 
|  | /* Constrain the rx_alloc_level */ | 
|  | if (channel->rx_alloc_level < 0) | 
|  | channel->rx_alloc_level = 0; | 
|  | else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) | 
|  | channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; | 
|  |  | 
|  | /* Decide on the allocation method */ | 
|  | method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ? | 
|  | RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); | 
|  | } | 
|  |  | 
|  | /* Push the option */ | 
|  | channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); | 
|  | } | 
|  |  | 
|  | int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned int entries; | 
|  | int rc; | 
|  |  | 
|  | /* Create the smallest power-of-two aligned ring */ | 
|  | entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); | 
|  | EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); | 
|  | rx_queue->ptr_mask = entries - 1; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "creating RX queue %d size %#x mask %#x\n", | 
|  | efx_rx_queue_index(rx_queue), efx->rxq_entries, | 
|  | rx_queue->ptr_mask); | 
|  |  | 
|  | /* Allocate RX buffers */ | 
|  | rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer), | 
|  | GFP_KERNEL); | 
|  | if (!rx_queue->buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = efx_nic_probe_rx(rx_queue); | 
|  | if (rc) { | 
|  | kfree(rx_queue->buffer); | 
|  | rx_queue->buffer = NULL; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void efx_init_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned int max_fill, trigger, limit; | 
|  |  | 
|  | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
|  | "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | /* Initialise ptr fields */ | 
|  | rx_queue->added_count = 0; | 
|  | rx_queue->notified_count = 0; | 
|  | rx_queue->removed_count = 0; | 
|  | rx_queue->min_fill = -1U; | 
|  |  | 
|  | /* Initialise limit fields */ | 
|  | max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; | 
|  | trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; | 
|  | limit = max_fill * min(rx_refill_limit, 100U) / 100U; | 
|  |  | 
|  | rx_queue->max_fill = max_fill; | 
|  | rx_queue->fast_fill_trigger = trigger; | 
|  | rx_queue->fast_fill_limit = limit; | 
|  |  | 
|  | /* Set up RX descriptor ring */ | 
|  | efx_nic_init_rx(rx_queue); | 
|  | } | 
|  |  | 
|  | void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | int i; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  |  | 
|  | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
|  | "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | del_timer_sync(&rx_queue->slow_fill); | 
|  | efx_nic_fini_rx(rx_queue); | 
|  |  | 
|  | /* Release RX buffers NB start at index 0 not current HW ptr */ | 
|  | if (rx_queue->buffer) { | 
|  | for (i = 0; i <= rx_queue->ptr_mask; i++) { | 
|  | rx_buf = efx_rx_buffer(rx_queue, i); | 
|  | efx_fini_rx_buffer(rx_queue, rx_buf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
|  | "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | efx_nic_remove_rx(rx_queue); | 
|  |  | 
|  | kfree(rx_queue->buffer); | 
|  | rx_queue->buffer = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | module_param(rx_alloc_method, int, 0644); | 
|  | MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); | 
|  |  | 
|  | module_param(rx_refill_threshold, uint, 0444); | 
|  | MODULE_PARM_DESC(rx_refill_threshold, | 
|  | "RX descriptor ring fast/slow fill threshold (%)"); | 
|  |  |