|  | /* | 
|  | * Driver for 802.11b cards using RAM-loadable Symbol firmware, such as | 
|  | * Symbol Wireless Networker LA4137, CompactFlash cards by Socket | 
|  | * Communications and Intel PRO/Wireless 2011B. | 
|  | * | 
|  | * The driver implements Symbol firmware download.  The rest is handled | 
|  | * in hermes.c and orinoco.c. | 
|  | * | 
|  | * Utilities for downloading the Symbol firmware are available at | 
|  | * http://sourceforge.net/projects/orinoco/ | 
|  | * | 
|  | * Copyright (C) 2002-2005 Pavel Roskin <proski@gnu.org> | 
|  | * Portions based on orinoco_cs.c: | 
|  | * 	Copyright (C) David Gibson, Linuxcare Australia | 
|  | * Portions based on Spectrum24tDnld.c from original spectrum24 driver: | 
|  | * 	Copyright (C) Symbol Technologies. | 
|  | * | 
|  | * See copyright notice in file orinoco.c. | 
|  | */ | 
|  |  | 
|  | #define DRIVER_NAME "spectrum_cs" | 
|  | #define PFX DRIVER_NAME ": " | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <pcmcia/cs_types.h> | 
|  | #include <pcmcia/cs.h> | 
|  | #include <pcmcia/cistpl.h> | 
|  | #include <pcmcia/cisreg.h> | 
|  | #include <pcmcia/ds.h> | 
|  |  | 
|  | #include "orinoco.h" | 
|  |  | 
|  | static const char primary_fw_name[] = "symbol_sp24t_prim_fw"; | 
|  | static const char secondary_fw_name[] = "symbol_sp24t_sec_fw"; | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* Module stuff							    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | MODULE_AUTHOR("Pavel Roskin <proski@gnu.org>"); | 
|  | MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader"); | 
|  | MODULE_LICENSE("Dual MPL/GPL"); | 
|  |  | 
|  | /* Module parameters */ | 
|  |  | 
|  | /* Some D-Link cards have buggy CIS. They do work at 5v properly, but | 
|  | * don't have any CIS entry for it. This workaround it... */ | 
|  | static int ignore_cis_vcc; /* = 0 */ | 
|  | module_param(ignore_cis_vcc, int, 0); | 
|  | MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket"); | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* Data structures						    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | /* PCMCIA specific device information (goes in the card field of | 
|  | * struct orinoco_private */ | 
|  | struct orinoco_pccard { | 
|  | struct pcmcia_device	*p_dev; | 
|  | dev_node_t node; | 
|  | }; | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* Function prototypes						    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | static int spectrum_cs_config(struct pcmcia_device *link); | 
|  | static void spectrum_cs_release(struct pcmcia_device *link); | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* Firmware downloader						    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | /* Position of PDA in the adapter memory */ | 
|  | #define EEPROM_ADDR	0x3000 | 
|  | #define EEPROM_LEN	0x200 | 
|  | #define PDA_OFFSET	0x100 | 
|  |  | 
|  | #define PDA_ADDR	(EEPROM_ADDR + PDA_OFFSET) | 
|  | #define PDA_WORDS	((EEPROM_LEN - PDA_OFFSET) / 2) | 
|  |  | 
|  | /* Constants for the CISREG_CCSR register */ | 
|  | #define HCR_RUN		0x07	/* run firmware after reset */ | 
|  | #define HCR_IDLE	0x0E	/* don't run firmware after reset */ | 
|  | #define HCR_MEM16	0x10	/* memory width bit, should be preserved */ | 
|  |  | 
|  | /* | 
|  | * AUX port access.  To unlock the AUX port write the access keys to the | 
|  | * PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL | 
|  | * register.  Then read it and make sure it's HERMES_AUX_ENABLED. | 
|  | */ | 
|  | #define HERMES_AUX_ENABLE	0x8000	/* Enable auxiliary port access */ | 
|  | #define HERMES_AUX_DISABLE	0x4000	/* Disable to auxiliary port access */ | 
|  | #define HERMES_AUX_ENABLED	0xC000	/* Auxiliary port is open */ | 
|  |  | 
|  | #define HERMES_AUX_PW0	0xFE01 | 
|  | #define HERMES_AUX_PW1	0xDC23 | 
|  | #define HERMES_AUX_PW2	0xBA45 | 
|  |  | 
|  | /* End markers */ | 
|  | #define PDI_END		0x00000000	/* End of PDA */ | 
|  | #define BLOCK_END	0xFFFFFFFF	/* Last image block */ | 
|  | #define TEXT_END	0x1A		/* End of text header */ | 
|  |  | 
|  | /* | 
|  | * The following structures have little-endian fields denoted by | 
|  | * the leading underscore.  Don't access them directly - use inline | 
|  | * functions defined below. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The binary image to be downloaded consists of series of data blocks. | 
|  | * Each block has the following structure. | 
|  | */ | 
|  | struct dblock { | 
|  | __le32 addr;		/* adapter address where to write the block */ | 
|  | __le16 len;		/* length of the data only, in bytes */ | 
|  | char data[0];		/* data to be written */ | 
|  | } __attribute__ ((packed)); | 
|  |  | 
|  | /* | 
|  | * Plug Data References are located in in the image after the last data | 
|  | * block.  They refer to areas in the adapter memory where the plug data | 
|  | * items with matching ID should be written. | 
|  | */ | 
|  | struct pdr { | 
|  | __le32 id;		/* record ID */ | 
|  | __le32 addr;		/* adapter address where to write the data */ | 
|  | __le32 len;		/* expected length of the data, in bytes */ | 
|  | char next[0];		/* next PDR starts here */ | 
|  | } __attribute__ ((packed)); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Plug Data Items are located in the EEPROM read from the adapter by | 
|  | * primary firmware.  They refer to the device-specific data that should | 
|  | * be plugged into the secondary firmware. | 
|  | */ | 
|  | struct pdi { | 
|  | __le16 len;		/* length of ID and data, in words */ | 
|  | __le16 id;		/* record ID */ | 
|  | char data[0];		/* plug data */ | 
|  | } __attribute__ ((packed)); | 
|  |  | 
|  |  | 
|  | /* Functions for access to little-endian data */ | 
|  | static inline u32 | 
|  | dblock_addr(const struct dblock *blk) | 
|  | { | 
|  | return le32_to_cpu(blk->addr); | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | dblock_len(const struct dblock *blk) | 
|  | { | 
|  | return le16_to_cpu(blk->len); | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | pdr_id(const struct pdr *pdr) | 
|  | { | 
|  | return le32_to_cpu(pdr->id); | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | pdr_addr(const struct pdr *pdr) | 
|  | { | 
|  | return le32_to_cpu(pdr->addr); | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | pdr_len(const struct pdr *pdr) | 
|  | { | 
|  | return le32_to_cpu(pdr->len); | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | pdi_id(const struct pdi *pdi) | 
|  | { | 
|  | return le16_to_cpu(pdi->id); | 
|  | } | 
|  |  | 
|  | /* Return length of the data only, in bytes */ | 
|  | static inline u32 | 
|  | pdi_len(const struct pdi *pdi) | 
|  | { | 
|  | return 2 * (le16_to_cpu(pdi->len) - 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set address of the auxiliary port */ | 
|  | static inline void | 
|  | spectrum_aux_setaddr(hermes_t *hw, u32 addr) | 
|  | { | 
|  | hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7)); | 
|  | hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Open access to the auxiliary port */ | 
|  | static int | 
|  | spectrum_aux_open(hermes_t *hw) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Already open? */ | 
|  | if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED) | 
|  | return 0; | 
|  |  | 
|  | hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0); | 
|  | hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1); | 
|  | hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2); | 
|  | hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE); | 
|  |  | 
|  | for (i = 0; i < 20; i++) { | 
|  | udelay(10); | 
|  | if (hermes_read_reg(hw, HERMES_CONTROL) == | 
|  | HERMES_AUX_ENABLED) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define CS_CHECK(fn, ret) \ | 
|  | do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0) | 
|  |  | 
|  | /* | 
|  | * Reset the card using configuration registers COR and CCSR. | 
|  | * If IDLE is 1, stop the firmware, so that it can be safely rewritten. | 
|  | */ | 
|  | static int | 
|  | spectrum_reset(struct pcmcia_device *link, int idle) | 
|  | { | 
|  | int last_ret, last_fn; | 
|  | conf_reg_t reg; | 
|  | u_int save_cor; | 
|  |  | 
|  | /* Doing it if hardware is gone is guaranteed crash */ | 
|  | if (!pcmcia_dev_present(link)) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Save original COR value */ | 
|  | reg.Function = 0; | 
|  | reg.Action = CS_READ; | 
|  | reg.Offset = CISREG_COR; | 
|  | CS_CHECK(AccessConfigurationRegister, | 
|  | pcmcia_access_configuration_register(link, ®)); | 
|  | save_cor = reg.Value; | 
|  |  | 
|  | /* Soft-Reset card */ | 
|  | reg.Action = CS_WRITE; | 
|  | reg.Offset = CISREG_COR; | 
|  | reg.Value = (save_cor | COR_SOFT_RESET); | 
|  | CS_CHECK(AccessConfigurationRegister, | 
|  | pcmcia_access_configuration_register(link, ®)); | 
|  | udelay(1000); | 
|  |  | 
|  | /* Read CCSR */ | 
|  | reg.Action = CS_READ; | 
|  | reg.Offset = CISREG_CCSR; | 
|  | CS_CHECK(AccessConfigurationRegister, | 
|  | pcmcia_access_configuration_register(link, ®)); | 
|  |  | 
|  | /* | 
|  | * Start or stop the firmware.  Memory width bit should be | 
|  | * preserved from the value we've just read. | 
|  | */ | 
|  | reg.Action = CS_WRITE; | 
|  | reg.Offset = CISREG_CCSR; | 
|  | reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16); | 
|  | CS_CHECK(AccessConfigurationRegister, | 
|  | pcmcia_access_configuration_register(link, ®)); | 
|  | udelay(1000); | 
|  |  | 
|  | /* Restore original COR configuration index */ | 
|  | reg.Action = CS_WRITE; | 
|  | reg.Offset = CISREG_COR; | 
|  | reg.Value = (save_cor & ~COR_SOFT_RESET); | 
|  | CS_CHECK(AccessConfigurationRegister, | 
|  | pcmcia_access_configuration_register(link, ®)); | 
|  | udelay(1000); | 
|  | return 0; | 
|  |  | 
|  | cs_failed: | 
|  | cs_error(link, last_fn, last_ret); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Scan PDR for the record with the specified RECORD_ID. | 
|  | * If it's not found, return NULL. | 
|  | */ | 
|  | static struct pdr * | 
|  | spectrum_find_pdr(struct pdr *first_pdr, u32 record_id) | 
|  | { | 
|  | struct pdr *pdr = first_pdr; | 
|  |  | 
|  | while (pdr_id(pdr) != PDI_END) { | 
|  | /* | 
|  | * PDR area is currently not terminated by PDI_END. | 
|  | * It's followed by CRC records, which have the type | 
|  | * field where PDR has length.  The type can be 0 or 1. | 
|  | */ | 
|  | if (pdr_len(pdr) < 2) | 
|  | return NULL; | 
|  |  | 
|  | /* If the record ID matches, we are done */ | 
|  | if (pdr_id(pdr) == record_id) | 
|  | return pdr; | 
|  |  | 
|  | pdr = (struct pdr *) pdr->next; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Process one Plug Data Item - find corresponding PDR and plug it */ | 
|  | static int | 
|  | spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi) | 
|  | { | 
|  | struct pdr *pdr; | 
|  |  | 
|  | /* Find the PDI corresponding to this PDR */ | 
|  | pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi)); | 
|  |  | 
|  | /* No match is found, safe to ignore */ | 
|  | if (!pdr) | 
|  | return 0; | 
|  |  | 
|  | /* Lengths of the data in PDI and PDR must match */ | 
|  | if (pdi_len(pdi) != pdr_len(pdr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* do the actual plugging */ | 
|  | spectrum_aux_setaddr(hw, pdr_addr(pdr)); | 
|  | hermes_write_bytes(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Read PDA from the adapter */ | 
|  | static int | 
|  | spectrum_read_pda(hermes_t *hw, __le16 *pda, int pda_len) | 
|  | { | 
|  | int ret; | 
|  | int pda_size; | 
|  |  | 
|  | /* Issue command to read EEPROM */ | 
|  | ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Open auxiliary port */ | 
|  | ret = spectrum_aux_open(hw); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* read PDA from EEPROM */ | 
|  | spectrum_aux_setaddr(hw, PDA_ADDR); | 
|  | hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2); | 
|  |  | 
|  | /* Check PDA length */ | 
|  | pda_size = le16_to_cpu(pda[0]); | 
|  | if (pda_size > pda_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Parse PDA and write the records into the adapter */ | 
|  | static int | 
|  | spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block, | 
|  | __le16 *pda) | 
|  | { | 
|  | int ret; | 
|  | struct pdi *pdi; | 
|  | struct pdr *first_pdr; | 
|  | const struct dblock *blk = first_block; | 
|  |  | 
|  | /* Skip all blocks to locate Plug Data References */ | 
|  | while (dblock_addr(blk) != BLOCK_END) | 
|  | blk = (struct dblock *) &blk->data[dblock_len(blk)]; | 
|  |  | 
|  | first_pdr = (struct pdr *) blk; | 
|  |  | 
|  | /* Go through every PDI and plug them into the adapter */ | 
|  | pdi = (struct pdi *) (pda + 2); | 
|  | while (pdi_id(pdi) != PDI_END) { | 
|  | ret = spectrum_plug_pdi(hw, first_pdr, pdi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Increment to the next PDI */ | 
|  | pdi = (struct pdi *) &pdi->data[pdi_len(pdi)]; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Load firmware blocks into the adapter */ | 
|  | static int | 
|  | spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block) | 
|  | { | 
|  | const struct dblock *blk; | 
|  | u32 blkaddr; | 
|  | u32 blklen; | 
|  |  | 
|  | blk = first_block; | 
|  | blkaddr = dblock_addr(blk); | 
|  | blklen = dblock_len(blk); | 
|  |  | 
|  | while (dblock_addr(blk) != BLOCK_END) { | 
|  | spectrum_aux_setaddr(hw, blkaddr); | 
|  | hermes_write_bytes(hw, HERMES_AUXDATA, blk->data, | 
|  | blklen); | 
|  |  | 
|  | blk = (struct dblock *) &blk->data[blklen]; | 
|  | blkaddr = dblock_addr(blk); | 
|  | blklen = dblock_len(blk); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Process a firmware image - stop the card, load the firmware, reset | 
|  | * the card and make sure it responds.  For the secondary firmware take | 
|  | * care of the PDA - read it and then write it on top of the firmware. | 
|  | */ | 
|  | static int | 
|  | spectrum_dl_image(hermes_t *hw, struct pcmcia_device *link, | 
|  | const unsigned char *image, int secondary) | 
|  | { | 
|  | int ret; | 
|  | const unsigned char *ptr; | 
|  | const struct dblock *first_block; | 
|  |  | 
|  | /* Plug Data Area (PDA) */ | 
|  | __le16 pda[PDA_WORDS]; | 
|  |  | 
|  | /* Binary block begins after the 0x1A marker */ | 
|  | ptr = image; | 
|  | while (*ptr++ != TEXT_END); | 
|  | first_block = (const struct dblock *) ptr; | 
|  |  | 
|  | /* Read the PDA */ | 
|  | if (secondary) { | 
|  | ret = spectrum_read_pda(hw, pda, sizeof(pda)); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Stop the firmware, so that it can be safely rewritten */ | 
|  | ret = spectrum_reset(link, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Program the adapter with new firmware */ | 
|  | ret = spectrum_load_blocks(hw, first_block); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Write the PDA to the adapter */ | 
|  | if (secondary) { | 
|  | ret = spectrum_apply_pda(hw, first_block, pda); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Run the firmware */ | 
|  | ret = spectrum_reset(link, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Reset hermes chip and make sure it responds */ | 
|  | ret = hermes_init(hw); | 
|  |  | 
|  | /* hermes_reset() should return 0 with the secondary firmware */ | 
|  | if (secondary && ret != 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* And this should work with any firmware */ | 
|  | if (!hermes_present(hw)) | 
|  | return -ENODEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Download the firmware into the card, this also does a PCMCIA soft | 
|  | * reset on the card, to make sure it's in a sane state. | 
|  | */ | 
|  | static int | 
|  | spectrum_dl_firmware(hermes_t *hw, struct pcmcia_device *link) | 
|  | { | 
|  | int ret; | 
|  | const struct firmware *fw_entry; | 
|  |  | 
|  | if (request_firmware(&fw_entry, primary_fw_name, | 
|  | &handle_to_dev(link)) != 0) { | 
|  | printk(KERN_ERR PFX "Cannot find firmware: %s\n", | 
|  | primary_fw_name); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* Load primary firmware */ | 
|  | ret = spectrum_dl_image(hw, link, fw_entry->data, 0); | 
|  | release_firmware(fw_entry); | 
|  | if (ret) { | 
|  | printk(KERN_ERR PFX "Primary firmware download failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (request_firmware(&fw_entry, secondary_fw_name, | 
|  | &handle_to_dev(link)) != 0) { | 
|  | printk(KERN_ERR PFX "Cannot find firmware: %s\n", | 
|  | secondary_fw_name); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* Load secondary firmware */ | 
|  | ret = spectrum_dl_image(hw, link, fw_entry->data, 1); | 
|  | release_firmware(fw_entry); | 
|  | if (ret) { | 
|  | printk(KERN_ERR PFX "Secondary firmware download failed\n"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* Device methods     						    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | static int | 
|  | spectrum_cs_hard_reset(struct orinoco_private *priv) | 
|  | { | 
|  | struct orinoco_pccard *card = priv->card; | 
|  | struct pcmcia_device *link = card->p_dev; | 
|  | int err; | 
|  |  | 
|  | if (!hermes_present(&priv->hw)) { | 
|  | /* The firmware needs to be reloaded */ | 
|  | if (spectrum_dl_firmware(&priv->hw, link) != 0) { | 
|  | printk(KERN_ERR PFX "Firmware download failed\n"); | 
|  | err = -ENODEV; | 
|  | } | 
|  | } else { | 
|  | /* Soft reset using COR and HCR */ | 
|  | spectrum_reset(link, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* PCMCIA stuff     						    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | /* | 
|  | * This creates an "instance" of the driver, allocating local data | 
|  | * structures for one device.  The device is registered with Card | 
|  | * Services. | 
|  | * | 
|  | * The dev_link structure is initialized, but we don't actually | 
|  | * configure the card at this point -- we wait until we receive a card | 
|  | * insertion event.  */ | 
|  | static int | 
|  | spectrum_cs_probe(struct pcmcia_device *link) | 
|  | { | 
|  | struct net_device *dev; | 
|  | struct orinoco_private *priv; | 
|  | struct orinoco_pccard *card; | 
|  |  | 
|  | dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset); | 
|  | if (! dev) | 
|  | return -ENOMEM; | 
|  | priv = netdev_priv(dev); | 
|  | card = priv->card; | 
|  |  | 
|  | /* Link both structures together */ | 
|  | card->p_dev = link; | 
|  | link->priv = dev; | 
|  |  | 
|  | /* Interrupt setup */ | 
|  | link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT; | 
|  | link->irq.IRQInfo1 = IRQ_LEVEL_ID; | 
|  | link->irq.Handler = orinoco_interrupt; | 
|  | link->irq.Instance = dev; | 
|  |  | 
|  | /* General socket configuration defaults can go here.  In this | 
|  | * client, we assume very little, and rely on the CIS for | 
|  | * almost everything.  In most clients, many details (i.e., | 
|  | * number, sizes, and attributes of IO windows) are fixed by | 
|  | * the nature of the device, and can be hard-wired here. */ | 
|  | link->conf.Attributes = 0; | 
|  | link->conf.IntType = INT_MEMORY_AND_IO; | 
|  |  | 
|  | return spectrum_cs_config(link); | 
|  | }				/* spectrum_cs_attach */ | 
|  |  | 
|  | /* | 
|  | * This deletes a driver "instance".  The device is de-registered with | 
|  | * Card Services.  If it has been released, all local data structures | 
|  | * are freed.  Otherwise, the structures will be freed when the device | 
|  | * is released. | 
|  | */ | 
|  | static void spectrum_cs_detach(struct pcmcia_device *link) | 
|  | { | 
|  | struct net_device *dev = link->priv; | 
|  |  | 
|  | if (link->dev_node) | 
|  | unregister_netdev(dev); | 
|  |  | 
|  | spectrum_cs_release(link); | 
|  |  | 
|  | free_orinocodev(dev); | 
|  | }				/* spectrum_cs_detach */ | 
|  |  | 
|  | /* | 
|  | * spectrum_cs_config() is scheduled to run after a CARD_INSERTION | 
|  | * event is received, to configure the PCMCIA socket, and to make the | 
|  | * device available to the system. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | spectrum_cs_config(struct pcmcia_device *link) | 
|  | { | 
|  | struct net_device *dev = link->priv; | 
|  | struct orinoco_private *priv = netdev_priv(dev); | 
|  | struct orinoco_pccard *card = priv->card; | 
|  | hermes_t *hw = &priv->hw; | 
|  | int last_fn, last_ret; | 
|  | u_char buf[64]; | 
|  | config_info_t conf; | 
|  | tuple_t tuple; | 
|  | cisparse_t parse; | 
|  | void __iomem *mem; | 
|  |  | 
|  | /* | 
|  | * This reads the card's CONFIG tuple to find its | 
|  | * configuration registers. | 
|  | */ | 
|  | tuple.DesiredTuple = CISTPL_CONFIG; | 
|  | tuple.Attributes = 0; | 
|  | tuple.TupleData = buf; | 
|  | tuple.TupleDataMax = sizeof(buf); | 
|  | tuple.TupleOffset = 0; | 
|  | CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple)); | 
|  | CS_CHECK(GetTupleData, pcmcia_get_tuple_data(link, &tuple)); | 
|  | CS_CHECK(ParseTuple, pcmcia_parse_tuple(link, &tuple, &parse)); | 
|  | link->conf.ConfigBase = parse.config.base; | 
|  | link->conf.Present = parse.config.rmask[0]; | 
|  |  | 
|  | /* Look up the current Vcc */ | 
|  | CS_CHECK(GetConfigurationInfo, | 
|  | pcmcia_get_configuration_info(link, &conf)); | 
|  |  | 
|  | /* | 
|  | * In this loop, we scan the CIS for configuration table | 
|  | * entries, each of which describes a valid card | 
|  | * configuration, including voltage, IO window, memory window, | 
|  | * and interrupt settings. | 
|  | * | 
|  | * We make no assumptions about the card to be configured: we | 
|  | * use just the information available in the CIS.  In an ideal | 
|  | * world, this would work for any PCMCIA card, but it requires | 
|  | * a complete and accurate CIS.  In practice, a driver usually | 
|  | * "knows" most of these things without consulting the CIS, | 
|  | * and most client drivers will only use the CIS to fill in | 
|  | * implementation-defined details. | 
|  | */ | 
|  | tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; | 
|  | CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple)); | 
|  | while (1) { | 
|  | cistpl_cftable_entry_t *cfg = &(parse.cftable_entry); | 
|  | cistpl_cftable_entry_t dflt = { .index = 0 }; | 
|  |  | 
|  | if ( (pcmcia_get_tuple_data(link, &tuple) != 0) | 
|  | || (pcmcia_parse_tuple(link, &tuple, &parse) != 0)) | 
|  | goto next_entry; | 
|  |  | 
|  | if (cfg->flags & CISTPL_CFTABLE_DEFAULT) | 
|  | dflt = *cfg; | 
|  | if (cfg->index == 0) | 
|  | goto next_entry; | 
|  | link->conf.ConfigIndex = cfg->index; | 
|  |  | 
|  | /* Use power settings for Vcc and Vpp if present */ | 
|  | /* Note that the CIS values need to be rescaled */ | 
|  | if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { | 
|  | if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) { | 
|  | DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n",  conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000); | 
|  | if (!ignore_cis_vcc) | 
|  | goto next_entry; | 
|  | } | 
|  | } else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) { | 
|  | if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) { | 
|  | DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n",  conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000); | 
|  | if(!ignore_cis_vcc) | 
|  | goto next_entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) | 
|  | link->conf.Vpp = | 
|  | cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; | 
|  | else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM)) | 
|  | link->conf.Vpp = | 
|  | dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000; | 
|  |  | 
|  | /* Do we need to allocate an interrupt? */ | 
|  | link->conf.Attributes |= CONF_ENABLE_IRQ; | 
|  |  | 
|  | /* IO window settings */ | 
|  | link->io.NumPorts1 = link->io.NumPorts2 = 0; | 
|  | if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { | 
|  | cistpl_io_t *io = | 
|  | (cfg->io.nwin) ? &cfg->io : &dflt.io; | 
|  | link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO; | 
|  | if (!(io->flags & CISTPL_IO_8BIT)) | 
|  | link->io.Attributes1 = | 
|  | IO_DATA_PATH_WIDTH_16; | 
|  | if (!(io->flags & CISTPL_IO_16BIT)) | 
|  | link->io.Attributes1 = | 
|  | IO_DATA_PATH_WIDTH_8; | 
|  | link->io.IOAddrLines = | 
|  | io->flags & CISTPL_IO_LINES_MASK; | 
|  | link->io.BasePort1 = io->win[0].base; | 
|  | link->io.NumPorts1 = io->win[0].len; | 
|  | if (io->nwin > 1) { | 
|  | link->io.Attributes2 = | 
|  | link->io.Attributes1; | 
|  | link->io.BasePort2 = io->win[1].base; | 
|  | link->io.NumPorts2 = io->win[1].len; | 
|  | } | 
|  |  | 
|  | /* This reserves IO space but doesn't actually enable it */ | 
|  | if (pcmcia_request_io(link, &link->io) != 0) | 
|  | goto next_entry; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* If we got this far, we're cool! */ | 
|  |  | 
|  | break; | 
|  |  | 
|  | next_entry: | 
|  | pcmcia_disable_device(link); | 
|  | last_ret = pcmcia_get_next_tuple(link, &tuple); | 
|  | if (last_ret  == CS_NO_MORE_ITEMS) { | 
|  | printk(KERN_ERR PFX "GetNextTuple(): No matching " | 
|  | "CIS configuration.  Maybe you need the " | 
|  | "ignore_cis_vcc=1 parameter.\n"); | 
|  | goto cs_failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an interrupt line.  Note that this does not assign | 
|  | * a handler to the interrupt, unless the 'Handler' member of | 
|  | * the irq structure is initialized. | 
|  | */ | 
|  | CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq)); | 
|  |  | 
|  | /* We initialize the hermes structure before completing PCMCIA | 
|  | * configuration just in case the interrupt handler gets | 
|  | * called. */ | 
|  | mem = ioport_map(link->io.BasePort1, link->io.NumPorts1); | 
|  | if (!mem) | 
|  | goto cs_failed; | 
|  |  | 
|  | hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING); | 
|  |  | 
|  | /* | 
|  | * This actually configures the PCMCIA socket -- setting up | 
|  | * the I/O windows and the interrupt mapping, and putting the | 
|  | * card and host interface into "Memory and IO" mode. | 
|  | */ | 
|  | CS_CHECK(RequestConfiguration, | 
|  | pcmcia_request_configuration(link, &link->conf)); | 
|  |  | 
|  | /* Ok, we have the configuration, prepare to register the netdev */ | 
|  | dev->base_addr = link->io.BasePort1; | 
|  | dev->irq = link->irq.AssignedIRQ; | 
|  | SET_MODULE_OWNER(dev); | 
|  | card->node.major = card->node.minor = 0; | 
|  |  | 
|  | /* Reset card and download firmware */ | 
|  | if (spectrum_cs_hard_reset(priv) != 0) { | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | SET_NETDEV_DEV(dev, &handle_to_dev(link)); | 
|  | /* Tell the stack we exist */ | 
|  | if (register_netdev(dev) != 0) { | 
|  | printk(KERN_ERR PFX "register_netdev() failed\n"); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | /* At this point, the dev_node_t structure(s) needs to be | 
|  | * initialized and arranged in a linked list at link->dev_node. */ | 
|  | strcpy(card->node.dev_name, dev->name); | 
|  | link->dev_node = &card->node; /* link->dev_node being non-NULL is also | 
|  | used to indicate that the | 
|  | net_device has been registered */ | 
|  |  | 
|  | /* Finally, report what we've done */ | 
|  | printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s, irq %d, io " | 
|  | "0x%04x-0x%04x\n", dev->name, dev->class_dev.dev->bus_id, | 
|  | link->irq.AssignedIRQ, link->io.BasePort1, | 
|  | link->io.BasePort1 + link->io.NumPorts1 - 1); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cs_failed: | 
|  | cs_error(link, last_fn, last_ret); | 
|  |  | 
|  | failed: | 
|  | spectrum_cs_release(link); | 
|  | return -ENODEV; | 
|  | }				/* spectrum_cs_config */ | 
|  |  | 
|  | /* | 
|  | * After a card is removed, spectrum_cs_release() will unregister the | 
|  | * device, and release the PCMCIA configuration.  If the device is | 
|  | * still open, this will be postponed until it is closed. | 
|  | */ | 
|  | static void | 
|  | spectrum_cs_release(struct pcmcia_device *link) | 
|  | { | 
|  | struct net_device *dev = link->priv; | 
|  | struct orinoco_private *priv = netdev_priv(dev); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* We're committed to taking the device away now, so mark the | 
|  | * hardware as unavailable */ | 
|  | spin_lock_irqsave(&priv->lock, flags); | 
|  | priv->hw_unavailable++; | 
|  | spin_unlock_irqrestore(&priv->lock, flags); | 
|  |  | 
|  | pcmcia_disable_device(link); | 
|  | if (priv->hw.iobase) | 
|  | ioport_unmap(priv->hw.iobase); | 
|  | }				/* spectrum_cs_release */ | 
|  |  | 
|  |  | 
|  | static int | 
|  | spectrum_cs_suspend(struct pcmcia_device *link) | 
|  | { | 
|  | struct net_device *dev = link->priv; | 
|  | struct orinoco_private *priv = netdev_priv(dev); | 
|  | int err = 0; | 
|  |  | 
|  | /* Mark the device as stopped, to block IO until later */ | 
|  | spin_lock(&priv->lock); | 
|  |  | 
|  | err = __orinoco_down(dev); | 
|  | if (err) | 
|  | printk(KERN_WARNING "%s: Error %d downing interface\n", | 
|  | dev->name, err); | 
|  |  | 
|  | netif_device_detach(dev); | 
|  | priv->hw_unavailable++; | 
|  |  | 
|  | spin_unlock(&priv->lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | spectrum_cs_resume(struct pcmcia_device *link) | 
|  | { | 
|  | struct net_device *dev = link->priv; | 
|  | struct orinoco_private *priv = netdev_priv(dev); | 
|  |  | 
|  | netif_device_attach(dev); | 
|  | priv->hw_unavailable--; | 
|  | schedule_work(&priv->reset_work); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /********************************************************************/ | 
|  | /* Module initialization					    */ | 
|  | /********************************************************************/ | 
|  |  | 
|  | /* Can't be declared "const" or the whole __initdata section will | 
|  | * become const */ | 
|  | static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION | 
|  | " (Pavel Roskin <proski@gnu.org>," | 
|  | " David Gibson <hermes@gibson.dropbear.id.au>, et al)"; | 
|  |  | 
|  | static struct pcmcia_device_id spectrum_cs_ids[] = { | 
|  | PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4137 */ | 
|  | PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */ | 
|  | PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */ | 
|  | PCMCIA_DEVICE_NULL, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids); | 
|  |  | 
|  | static struct pcmcia_driver orinoco_driver = { | 
|  | .owner		= THIS_MODULE, | 
|  | .drv		= { | 
|  | .name	= DRIVER_NAME, | 
|  | }, | 
|  | .probe		= spectrum_cs_probe, | 
|  | .remove		= spectrum_cs_detach, | 
|  | .suspend	= spectrum_cs_suspend, | 
|  | .resume		= spectrum_cs_resume, | 
|  | .id_table       = spectrum_cs_ids, | 
|  | }; | 
|  |  | 
|  | static int __init | 
|  | init_spectrum_cs(void) | 
|  | { | 
|  | printk(KERN_DEBUG "%s\n", version); | 
|  |  | 
|  | return pcmcia_register_driver(&orinoco_driver); | 
|  | } | 
|  |  | 
|  | static void __exit | 
|  | exit_spectrum_cs(void) | 
|  | { | 
|  | pcmcia_unregister_driver(&orinoco_driver); | 
|  | } | 
|  |  | 
|  | module_init(init_spectrum_cs); | 
|  | module_exit(exit_spectrum_cs); |