|  | /* | 
|  | ** ----------------------------------------------------------------------------- | 
|  | ** | 
|  | **  Perle Specialix driver for Linux | 
|  | **  Ported from existing RIO Driver for SCO sources. | 
|  | * | 
|  | *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or modify | 
|  | *      it under the terms of the GNU General Public License as published by | 
|  | *      the Free Software Foundation; either version 2 of the License, or | 
|  | *      (at your option) any later version. | 
|  | * | 
|  | *      This program is distributed in the hope that it will be useful, | 
|  | *      but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *      GNU General Public License for more details. | 
|  | * | 
|  | *      You should have received a copy of the GNU General Public License | 
|  | *      along with this program; if not, write to the Free Software | 
|  | *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | ** | 
|  | **	Module		: riointr.c | 
|  | **	SID		: 1.2 | 
|  | **	Last Modified	: 11/6/98 10:33:44 | 
|  | **	Retrieved	: 11/6/98 10:33:49 | 
|  | ** | 
|  | **  ident @(#)riointr.c	1.2 | 
|  | ** | 
|  | ** ----------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/tty_flip.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/string.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <linux/termios.h> | 
|  | #include <linux/serial.h> | 
|  |  | 
|  | #include <linux/generic_serial.h> | 
|  |  | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include "linux_compat.h" | 
|  | #include "rio_linux.h" | 
|  | #include "pkt.h" | 
|  | #include "daemon.h" | 
|  | #include "rio.h" | 
|  | #include "riospace.h" | 
|  | #include "cmdpkt.h" | 
|  | #include "map.h" | 
|  | #include "rup.h" | 
|  | #include "port.h" | 
|  | #include "riodrvr.h" | 
|  | #include "rioinfo.h" | 
|  | #include "func.h" | 
|  | #include "errors.h" | 
|  | #include "pci.h" | 
|  |  | 
|  | #include "parmmap.h" | 
|  | #include "unixrup.h" | 
|  | #include "board.h" | 
|  | #include "host.h" | 
|  | #include "phb.h" | 
|  | #include "link.h" | 
|  | #include "cmdblk.h" | 
|  | #include "route.h" | 
|  | #include "cirrus.h" | 
|  | #include "rioioctl.h" | 
|  |  | 
|  |  | 
|  | static void RIOReceive(struct rio_info *, struct Port *); | 
|  |  | 
|  |  | 
|  | static char *firstchars(char *p, int nch) | 
|  | { | 
|  | static char buf[2][128]; | 
|  | static int t = 0; | 
|  | t = !t; | 
|  | memcpy(buf[t], p, nch); | 
|  | buf[t][nch] = 0; | 
|  | return buf[t]; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define	INCR( P, I )	((P) = (((P)+(I)) & p->RIOBufferMask)) | 
|  | /* Enable and start the transmission of packets */ | 
|  | void RIOTxEnable(char *en) | 
|  | { | 
|  | struct Port *PortP; | 
|  | struct rio_info *p; | 
|  | struct tty_struct *tty; | 
|  | int c; | 
|  | struct PKT __iomem *PacketP; | 
|  | unsigned long flags; | 
|  |  | 
|  | PortP = (struct Port *) en; | 
|  | p = (struct rio_info *) PortP->p; | 
|  | tty = PortP->gs.port.tty; | 
|  |  | 
|  |  | 
|  | rio_dprintk(RIO_DEBUG_INTR, "tx port %d: %d chars queued.\n", PortP->PortNum, PortP->gs.xmit_cnt); | 
|  |  | 
|  | if (!PortP->gs.xmit_cnt) | 
|  | return; | 
|  |  | 
|  |  | 
|  | /* This routine is an order of magnitude simpler than the specialix | 
|  | version. One of the disadvantages is that this version will send | 
|  | an incomplete packet (usually 64 bytes instead of 72) once for | 
|  | every 4k worth of data. Let's just say that this won't influence | 
|  | performance significantly..... */ | 
|  |  | 
|  | rio_spin_lock_irqsave(&PortP->portSem, flags); | 
|  |  | 
|  | while (can_add_transmit(&PacketP, PortP)) { | 
|  | c = PortP->gs.xmit_cnt; | 
|  | if (c > PKT_MAX_DATA_LEN) | 
|  | c = PKT_MAX_DATA_LEN; | 
|  |  | 
|  | /* Don't copy past the end of the source buffer */ | 
|  | if (c > SERIAL_XMIT_SIZE - PortP->gs.xmit_tail) | 
|  | c = SERIAL_XMIT_SIZE - PortP->gs.xmit_tail; | 
|  |  | 
|  | { | 
|  | int t; | 
|  | t = (c > 10) ? 10 : c; | 
|  |  | 
|  | rio_dprintk(RIO_DEBUG_INTR, "rio: tx port %d: copying %d chars: %s - %s\n", PortP->PortNum, c, firstchars(PortP->gs.xmit_buf + PortP->gs.xmit_tail, t), firstchars(PortP->gs.xmit_buf + PortP->gs.xmit_tail + c - t, t)); | 
|  | } | 
|  | /* If for one reason or another, we can't copy more data, | 
|  | we're done! */ | 
|  | if (c == 0) | 
|  | break; | 
|  |  | 
|  | rio_memcpy_toio(PortP->HostP->Caddr, PacketP->data, PortP->gs.xmit_buf + PortP->gs.xmit_tail, c); | 
|  | /*    udelay (1); */ | 
|  |  | 
|  | writeb(c, &(PacketP->len)); | 
|  | if (!(PortP->State & RIO_DELETED)) { | 
|  | add_transmit(PortP); | 
|  | /* | 
|  | ** Count chars tx'd for port statistics reporting | 
|  | */ | 
|  | if (PortP->statsGather) | 
|  | PortP->txchars += c; | 
|  | } | 
|  | PortP->gs.xmit_tail = (PortP->gs.xmit_tail + c) & (SERIAL_XMIT_SIZE - 1); | 
|  | PortP->gs.xmit_cnt -= c; | 
|  | } | 
|  |  | 
|  | rio_spin_unlock_irqrestore(&PortP->portSem, flags); | 
|  |  | 
|  | if (PortP->gs.xmit_cnt <= (PortP->gs.wakeup_chars + 2 * PKT_MAX_DATA_LEN)) | 
|  | tty_wakeup(PortP->gs.port.tty); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** RIO Host Service routine. Does all the work traditionally associated with an | 
|  | ** interrupt. | 
|  | */ | 
|  | static int RupIntr; | 
|  | static int RxIntr; | 
|  | static int TxIntr; | 
|  |  | 
|  | void RIOServiceHost(struct rio_info *p, struct Host *HostP) | 
|  | { | 
|  | rio_spin_lock(&HostP->HostLock); | 
|  | if ((HostP->Flags & RUN_STATE) != RC_RUNNING) { | 
|  | static int t = 0; | 
|  | rio_spin_unlock(&HostP->HostLock); | 
|  | if ((t++ % 200) == 0) | 
|  | rio_dprintk(RIO_DEBUG_INTR, "Interrupt but host not running. flags=%x.\n", (int) HostP->Flags); | 
|  | return; | 
|  | } | 
|  | rio_spin_unlock(&HostP->HostLock); | 
|  |  | 
|  | if (readw(&HostP->ParmMapP->rup_intr)) { | 
|  | writew(0, &HostP->ParmMapP->rup_intr); | 
|  | p->RIORupCount++; | 
|  | RupIntr++; | 
|  | rio_dprintk(RIO_DEBUG_INTR, "rio: RUP interrupt on host %Zd\n", HostP - p->RIOHosts); | 
|  | RIOPollHostCommands(p, HostP); | 
|  | } | 
|  |  | 
|  | if (readw(&HostP->ParmMapP->rx_intr)) { | 
|  | int port; | 
|  |  | 
|  | writew(0, &HostP->ParmMapP->rx_intr); | 
|  | p->RIORxCount++; | 
|  | RxIntr++; | 
|  |  | 
|  | rio_dprintk(RIO_DEBUG_INTR, "rio: RX interrupt on host %Zd\n", HostP - p->RIOHosts); | 
|  | /* | 
|  | ** Loop through every port. If the port is mapped into | 
|  | ** the system ( i.e. has /dev/ttyXXXX associated ) then it is | 
|  | ** worth checking. If the port isn't open, grab any packets | 
|  | ** hanging on its receive queue and stuff them on the free | 
|  | ** list; check for commands on the way. | 
|  | */ | 
|  | for (port = p->RIOFirstPortsBooted; port < p->RIOLastPortsBooted + PORTS_PER_RTA; port++) { | 
|  | struct Port *PortP = p->RIOPortp[port]; | 
|  | struct tty_struct *ttyP; | 
|  | struct PKT __iomem *PacketP; | 
|  |  | 
|  | /* | 
|  | ** not mapped in - most of the RIOPortp[] information | 
|  | ** has not been set up! | 
|  | ** Optimise: ports come in bundles of eight. | 
|  | */ | 
|  | if (!PortP->Mapped) { | 
|  | port += 7; | 
|  | continue;	/* with the next port */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If the host board isn't THIS host board, check the next one. | 
|  | ** optimise: ports come in bundles of eight. | 
|  | */ | 
|  | if (PortP->HostP != HostP) { | 
|  | port += 7; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Let us see - is the port open? If not, then don't service it. | 
|  | */ | 
|  | if (!(PortP->PortState & PORT_ISOPEN)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** find corresponding tty structure. The process of mapping | 
|  | ** the ports puts these here. | 
|  | */ | 
|  | ttyP = PortP->gs.port.tty; | 
|  |  | 
|  | /* | 
|  | ** Lock the port before we begin working on it. | 
|  | */ | 
|  | rio_spin_lock(&PortP->portSem); | 
|  |  | 
|  | /* | 
|  | ** Process received data if there is any. | 
|  | */ | 
|  | if (can_remove_receive(&PacketP, PortP)) | 
|  | RIOReceive(p, PortP); | 
|  |  | 
|  | /* | 
|  | ** If there is no data left to be read from the port, and | 
|  | ** it's handshake bit is set, then we must clear the handshake, | 
|  | ** so that that downstream RTA is re-enabled. | 
|  | */ | 
|  | if (!can_remove_receive(&PacketP, PortP) && (readw(&PortP->PhbP->handshake) == PHB_HANDSHAKE_SET)) { | 
|  | /* | 
|  | ** MAGIC! ( Basically, handshake the RX buffer, so that | 
|  | ** the RTAs upstream can be re-enabled. ) | 
|  | */ | 
|  | rio_dprintk(RIO_DEBUG_INTR, "Set RX handshake bit\n"); | 
|  | writew(PHB_HANDSHAKE_SET | PHB_HANDSHAKE_RESET, &PortP->PhbP->handshake); | 
|  | } | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (readw(&HostP->ParmMapP->tx_intr)) { | 
|  | int port; | 
|  |  | 
|  | writew(0, &HostP->ParmMapP->tx_intr); | 
|  |  | 
|  | p->RIOTxCount++; | 
|  | TxIntr++; | 
|  | rio_dprintk(RIO_DEBUG_INTR, "rio: TX interrupt on host %Zd\n", HostP - p->RIOHosts); | 
|  |  | 
|  | /* | 
|  | ** Loop through every port. | 
|  | ** If the port is mapped into the system ( i.e. has /dev/ttyXXXX | 
|  | ** associated ) then it is worth checking. | 
|  | */ | 
|  | for (port = p->RIOFirstPortsBooted; port < p->RIOLastPortsBooted + PORTS_PER_RTA; port++) { | 
|  | struct Port *PortP = p->RIOPortp[port]; | 
|  | struct tty_struct *ttyP; | 
|  | struct PKT __iomem *PacketP; | 
|  |  | 
|  | /* | 
|  | ** not mapped in - most of the RIOPortp[] information | 
|  | ** has not been set up! | 
|  | */ | 
|  | if (!PortP->Mapped) { | 
|  | port += 7; | 
|  | continue;	/* with the next port */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If the host board isn't running, then its data structures | 
|  | ** are no use to us - continue quietly. | 
|  | */ | 
|  | if (PortP->HostP != HostP) { | 
|  | port += 7; | 
|  | continue;	/* with the next port */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Let us see - is the port open? If not, then don't service it. | 
|  | */ | 
|  | if (!(PortP->PortState & PORT_ISOPEN)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rio_dprintk(RIO_DEBUG_INTR, "rio: Looking into port %d.\n", port); | 
|  | /* | 
|  | ** Lock the port before we begin working on it. | 
|  | */ | 
|  | rio_spin_lock(&PortP->portSem); | 
|  |  | 
|  | /* | 
|  | ** If we can't add anything to the transmit queue, then | 
|  | ** we need do none of this processing. | 
|  | */ | 
|  | if (!can_add_transmit(&PacketP, PortP)) { | 
|  | rio_dprintk(RIO_DEBUG_INTR, "Can't add to port, so skipping.\n"); | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** find corresponding tty structure. The process of mapping | 
|  | ** the ports puts these here. | 
|  | */ | 
|  | ttyP = PortP->gs.port.tty; | 
|  | /* If ttyP is NULL, the port is getting closed. Forget about it. */ | 
|  | if (!ttyP) { | 
|  | rio_dprintk(RIO_DEBUG_INTR, "no tty, so skipping.\n"); | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | ** If there is more room available we start up the transmit | 
|  | ** data process again. This can be direct I/O, if the cookmode | 
|  | ** is set to COOK_RAW or COOK_MEDIUM, or will be a call to the | 
|  | ** riotproc( T_OUTPUT ) if we are in COOK_WELL mode, to fetch | 
|  | ** characters via the line discipline. We must always call | 
|  | ** the line discipline, | 
|  | ** so that user input characters can be echoed correctly. | 
|  | ** | 
|  | ** ++++ Update +++++ | 
|  | ** With the advent of double buffering, we now see if | 
|  | ** TxBufferOut-In is non-zero. If so, then we copy a packet | 
|  | ** to the output place, and set it going. If this empties | 
|  | ** the buffer, then we must issue a wakeup( ) on OUT. | 
|  | ** If it frees space in the buffer then we must issue | 
|  | ** a wakeup( ) on IN. | 
|  | ** | 
|  | ** ++++ Extra! Extra! If PortP->WflushFlag is set, then we | 
|  | ** have to send a WFLUSH command down the PHB, to mark the | 
|  | ** end point of a WFLUSH. We also need to clear out any | 
|  | ** data from the double buffer! ( note that WflushFlag is a | 
|  | ** *count* of the number of WFLUSH commands outstanding! ) | 
|  | ** | 
|  | ** ++++ And there's more! | 
|  | ** If an RTA is powered off, then on again, and rebooted, | 
|  | ** whilst it has ports open, then we need to re-open the ports. | 
|  | ** ( reasonable enough ). We can't do this when we spot the | 
|  | ** re-boot, in interrupt time, because the queue is probably | 
|  | ** full. So, when we come in here, we need to test if any | 
|  | ** ports are in this condition, and re-open the port before | 
|  | ** we try to send any more data to it. Now, the re-booted | 
|  | ** RTA will be discarding packets from the PHB until it | 
|  | ** receives this open packet, but don't worry tooo much | 
|  | ** about that. The one thing that is interesting is the | 
|  | ** combination of this effect and the WFLUSH effect! | 
|  | */ | 
|  | /* For now don't handle RTA reboots. -- REW. | 
|  | Reenabled. Otherwise RTA reboots didn't work. Duh. -- REW */ | 
|  | if (PortP->MagicFlags) { | 
|  | if (PortP->MagicFlags & MAGIC_REBOOT) { | 
|  | /* | 
|  | ** well, the RTA has been rebooted, and there is room | 
|  | ** on its queue to add the open packet that is required. | 
|  | ** | 
|  | ** The messy part of this line is trying to decide if | 
|  | ** we need to call the Param function as a tty or as | 
|  | ** a modem. | 
|  | ** DONT USE CLOCAL AS A TEST FOR THIS! | 
|  | ** | 
|  | ** If we can't param the port, then move on to the | 
|  | ** next port. | 
|  | */ | 
|  | PortP->InUse = NOT_INUSE; | 
|  |  | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | if (RIOParam(PortP, RIOC_OPEN, ((PortP->Cor2Copy & (RIOC_COR2_RTSFLOW | RIOC_COR2_CTSFLOW)) == (RIOC_COR2_RTSFLOW | RIOC_COR2_CTSFLOW)) ? 1 : 0, DONT_SLEEP) == RIO_FAIL) | 
|  | continue;	/* with next port */ | 
|  | rio_spin_lock(&PortP->portSem); | 
|  | PortP->MagicFlags &= ~MAGIC_REBOOT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** As mentioned above, this is a tacky hack to cope | 
|  | ** with WFLUSH | 
|  | */ | 
|  | if (PortP->WflushFlag) { | 
|  | rio_dprintk(RIO_DEBUG_INTR, "Want to WFLUSH mark this port\n"); | 
|  |  | 
|  | if (PortP->InUse) | 
|  | rio_dprintk(RIO_DEBUG_INTR, "FAILS - PORT IS IN USE\n"); | 
|  | } | 
|  |  | 
|  | while (PortP->WflushFlag && can_add_transmit(&PacketP, PortP) && (PortP->InUse == NOT_INUSE)) { | 
|  | int p; | 
|  | struct PktCmd __iomem *PktCmdP; | 
|  |  | 
|  | rio_dprintk(RIO_DEBUG_INTR, "Add WFLUSH marker to data queue\n"); | 
|  | /* | 
|  | ** make it look just like a WFLUSH command | 
|  | */ | 
|  | PktCmdP = (struct PktCmd __iomem *) &PacketP->data[0]; | 
|  |  | 
|  | writeb(RIOC_WFLUSH, &PktCmdP->Command); | 
|  |  | 
|  | p = PortP->HostPort % (u16) PORTS_PER_RTA; | 
|  |  | 
|  | /* | 
|  | ** If second block of ports for 16 port RTA, add 8 | 
|  | ** to index 8-15. | 
|  | */ | 
|  | if (PortP->SecondBlock) | 
|  | p += PORTS_PER_RTA; | 
|  |  | 
|  | writeb(p, &PktCmdP->PhbNum); | 
|  |  | 
|  | /* | 
|  | ** to make debuggery easier | 
|  | */ | 
|  | writeb('W', &PacketP->data[2]); | 
|  | writeb('F', &PacketP->data[3]); | 
|  | writeb('L', &PacketP->data[4]); | 
|  | writeb('U', &PacketP->data[5]); | 
|  | writeb('S', &PacketP->data[6]); | 
|  | writeb('H', &PacketP->data[7]); | 
|  | writeb(' ', &PacketP->data[8]); | 
|  | writeb('0' + PortP->WflushFlag, &PacketP->data[9]); | 
|  | writeb(' ', &PacketP->data[10]); | 
|  | writeb(' ', &PacketP->data[11]); | 
|  | writeb('\0', &PacketP->data[12]); | 
|  |  | 
|  | /* | 
|  | ** its two bytes long! | 
|  | */ | 
|  | writeb(PKT_CMD_BIT | 2, &PacketP->len); | 
|  |  | 
|  | /* | 
|  | ** queue it! | 
|  | */ | 
|  | if (!(PortP->State & RIO_DELETED)) { | 
|  | add_transmit(PortP); | 
|  | /* | 
|  | ** Count chars tx'd for port statistics reporting | 
|  | */ | 
|  | if (PortP->statsGather) | 
|  | PortP->txchars += 2; | 
|  | } | 
|  |  | 
|  | if (--(PortP->WflushFlag) == 0) { | 
|  | PortP->MagicFlags &= ~MAGIC_FLUSH; | 
|  | } | 
|  |  | 
|  | rio_dprintk(RIO_DEBUG_INTR, "Wflush count now stands at %d\n", PortP->WflushFlag); | 
|  | } | 
|  | if (PortP->MagicFlags & MORE_OUTPUT_EYGOR) { | 
|  | if (PortP->MagicFlags & MAGIC_FLUSH) { | 
|  | PortP->MagicFlags |= MORE_OUTPUT_EYGOR; | 
|  | } else { | 
|  | if (!can_add_transmit(&PacketP, PortP)) { | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | continue; | 
|  | } | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | RIOTxEnable((char *) PortP); | 
|  | rio_spin_lock(&PortP->portSem); | 
|  | PortP->MagicFlags &= ~MORE_OUTPUT_EYGOR; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** If we can't add anything to the transmit queue, then | 
|  | ** we need do none of the remaining processing. | 
|  | */ | 
|  | if (!can_add_transmit(&PacketP, PortP)) { | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rio_spin_unlock(&PortP->portSem); | 
|  | RIOTxEnable((char *) PortP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Routine for handling received data for tty drivers | 
|  | */ | 
|  | static void RIOReceive(struct rio_info *p, struct Port *PortP) | 
|  | { | 
|  | struct tty_struct *TtyP; | 
|  | unsigned short transCount; | 
|  | struct PKT __iomem *PacketP; | 
|  | register unsigned int DataCnt; | 
|  | unsigned char __iomem *ptr; | 
|  | unsigned char *buf; | 
|  | int copied = 0; | 
|  |  | 
|  | static int intCount, RxIntCnt; | 
|  |  | 
|  | /* | 
|  | ** The receive data process is to remove packets from the | 
|  | ** PHB until there aren't any more or the current cblock | 
|  | ** is full. When this occurs, there will be some left over | 
|  | ** data in the packet, that we must do something with. | 
|  | ** As we haven't unhooked the packet from the read list | 
|  | ** yet, we can just leave the packet there, having first | 
|  | ** made a note of how far we got. This means that we need | 
|  | ** a pointer per port saying where we start taking the | 
|  | ** data from - this will normally be zero, but when we | 
|  | ** run out of space it will be set to the offset of the | 
|  | ** next byte to copy from the packet data area. The packet | 
|  | ** length field is decremented by the number of bytes that | 
|  | ** we successfully removed from the packet. When this reaches | 
|  | ** zero, we reset the offset pointer to be zero, and free | 
|  | ** the packet from the front of the queue. | 
|  | */ | 
|  |  | 
|  | intCount++; | 
|  |  | 
|  | TtyP = PortP->gs.port.tty; | 
|  | if (!TtyP) { | 
|  | rio_dprintk(RIO_DEBUG_INTR, "RIOReceive: tty is null. \n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PortP->State & RIO_THROTTLE_RX) { | 
|  | rio_dprintk(RIO_DEBUG_INTR, "RIOReceive: Throttled. Can't handle more input.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PortP->State & RIO_DELETED) { | 
|  | while (can_remove_receive(&PacketP, PortP)) { | 
|  | remove_receive(PortP); | 
|  | put_free_end(PortP->HostP, PacketP); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | ** loop, just so long as: | 
|  | **   i ) there's some data ( i.e. can_remove_receive ) | 
|  | **  ii ) we haven't been blocked | 
|  | ** iii ) there's somewhere to put the data | 
|  | **  iv ) we haven't outstayed our welcome | 
|  | */ | 
|  | transCount = 1; | 
|  | while (can_remove_receive(&PacketP, PortP) | 
|  | && transCount) { | 
|  | RxIntCnt++; | 
|  |  | 
|  | /* | 
|  | ** check that it is not a command! | 
|  | */ | 
|  | if (readb(&PacketP->len) & PKT_CMD_BIT) { | 
|  | rio_dprintk(RIO_DEBUG_INTR, "RIO: unexpected command packet received on PHB\n"); | 
|  | /*      rio_dprint(RIO_DEBUG_INTR, (" sysport   = %d\n", p->RIOPortp->PortNum)); */ | 
|  | rio_dprintk(RIO_DEBUG_INTR, " dest_unit = %d\n", readb(&PacketP->dest_unit)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, " dest_port = %d\n", readb(&PacketP->dest_port)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, " src_unit  = %d\n", readb(&PacketP->src_unit)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, " src_port  = %d\n", readb(&PacketP->src_port)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, " len	   = %d\n", readb(&PacketP->len)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, " control   = %d\n", readb(&PacketP->control)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, " csum	   = %d\n", readw(&PacketP->csum)); | 
|  | rio_dprintk(RIO_DEBUG_INTR, "	 data bytes: "); | 
|  | for (DataCnt = 0; DataCnt < PKT_MAX_DATA_LEN; DataCnt++) | 
|  | rio_dprintk(RIO_DEBUG_INTR, "%d\n", readb(&PacketP->data[DataCnt])); | 
|  | remove_receive(PortP); | 
|  | put_free_end(PortP->HostP, PacketP); | 
|  | continue;	/* with next packet */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** How many characters can we move 'upstream' ? | 
|  | ** | 
|  | ** Determine the minimum of the amount of data | 
|  | ** available and the amount of space in which to | 
|  | ** put it. | 
|  | ** | 
|  | ** 1.        Get the packet length by masking 'len' | 
|  | **   for only the length bits. | 
|  | ** 2.        Available space is [buffer size] - [space used] | 
|  | ** | 
|  | ** Transfer count is the minimum of packet length | 
|  | ** and available space. | 
|  | */ | 
|  |  | 
|  | transCount = tty_buffer_request_room(TtyP, readb(&PacketP->len) & PKT_LEN_MASK); | 
|  | rio_dprintk(RIO_DEBUG_REC, "port %d: Copy %d bytes\n", PortP->PortNum, transCount); | 
|  | /* | 
|  | ** To use the following 'kkprintfs' for debugging - change the '#undef' | 
|  | ** to '#define', (this is the only place ___DEBUG_IT___ occurs in the | 
|  | ** driver). | 
|  | */ | 
|  | ptr = (unsigned char __iomem *) PacketP->data + PortP->RxDataStart; | 
|  |  | 
|  | tty_prepare_flip_string(TtyP, &buf, transCount); | 
|  | rio_memcpy_fromio(buf, ptr, transCount); | 
|  | PortP->RxDataStart += transCount; | 
|  | writeb(readb(&PacketP->len)-transCount, &PacketP->len); | 
|  | copied += transCount; | 
|  |  | 
|  |  | 
|  |  | 
|  | if (readb(&PacketP->len) == 0) { | 
|  | /* | 
|  | ** If we have emptied the packet, then we can | 
|  | ** free it, and reset the start pointer for | 
|  | ** the next packet. | 
|  | */ | 
|  | remove_receive(PortP); | 
|  | put_free_end(PortP->HostP, PacketP); | 
|  | PortP->RxDataStart = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (copied) { | 
|  | rio_dprintk(RIO_DEBUG_REC, "port %d: pushing tty flip buffer: %d total bytes copied.\n", PortP->PortNum, copied); | 
|  | tty_flip_buffer_push(TtyP); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  |