|  | /* isa-skeleton.c: A network driver outline for linux. | 
|  | * | 
|  | *	Written 1993-94 by Donald Becker. | 
|  | * | 
|  | *	Copyright 1993 United States Government as represented by the | 
|  | *	Director, National Security Agency. | 
|  | * | 
|  | *	This software may be used and distributed according to the terms | 
|  | *	of the GNU General Public License, incorporated herein by reference. | 
|  | * | 
|  | *	The author may be reached as becker@scyld.com, or C/O | 
|  | *	Scyld Computing Corporation | 
|  | *	410 Severn Ave., Suite 210 | 
|  | *	Annapolis MD 21403 | 
|  | * | 
|  | *	This file is an outline for writing a network device driver for the | 
|  | *	the Linux operating system. | 
|  | * | 
|  | *	To write (or understand) a driver, have a look at the "loopback.c" file to | 
|  | *	get a feel of what is going on, and then use the code below as a skeleton | 
|  | *	for the new driver. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static const char *version = | 
|  | "isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n"; | 
|  |  | 
|  | /* | 
|  | *  Sources: | 
|  | *	List your sources of programming information to document that | 
|  | *	the driver is your own creation, and give due credit to others | 
|  | *	that contributed to the work. Remember that GNU project code | 
|  | *	cannot use proprietary or trade secret information. Interface | 
|  | *	definitions are generally considered non-copyrightable to the | 
|  | *	extent that the same names and structures must be used to be | 
|  | *	compatible. | 
|  | * | 
|  | *	Finally, keep in mind that the Linux kernel is has an API, not | 
|  | *	ABI. Proprietary object-code-only distributions are not permitted | 
|  | *	under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/dma.h> | 
|  |  | 
|  | /* | 
|  | * The name of the card. Is used for messages and in the requests for | 
|  | * io regions, irqs and dma channels | 
|  | */ | 
|  | static const char* cardname = "netcard"; | 
|  |  | 
|  | /* First, a few definitions that the brave might change. */ | 
|  |  | 
|  | /* A zero-terminated list of I/O addresses to be probed. */ | 
|  | static unsigned int netcard_portlist[] __initdata = | 
|  | { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0}; | 
|  |  | 
|  | /* use 0 for production, 1 for verification, >2 for debug */ | 
|  | #ifndef NET_DEBUG | 
|  | #define NET_DEBUG 2 | 
|  | #endif | 
|  | static unsigned int net_debug = NET_DEBUG; | 
|  |  | 
|  | /* The number of low I/O ports used by the ethercard. */ | 
|  | #define NETCARD_IO_EXTENT	32 | 
|  |  | 
|  | #define MY_TX_TIMEOUT  ((400*HZ)/1000) | 
|  |  | 
|  | /* Information that need to be kept for each board. */ | 
|  | struct net_local { | 
|  | struct net_device_stats stats; | 
|  | long open_time;			/* Useless example local info. */ | 
|  |  | 
|  | /* Tx control lock.  This protects the transmit buffer ring | 
|  | * state along with the "tx full" state of the driver.  This | 
|  | * means all netif_queue flow control actions are protected | 
|  | * by this lock as well. | 
|  | */ | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | /* The station (ethernet) address prefix, used for IDing the board. */ | 
|  | #define SA_ADDR0 0x00 | 
|  | #define SA_ADDR1 0x42 | 
|  | #define SA_ADDR2 0x65 | 
|  |  | 
|  | /* Index to functions, as function prototypes. */ | 
|  |  | 
|  | static int	netcard_probe1(struct net_device *dev, int ioaddr); | 
|  | static int	net_open(struct net_device *dev); | 
|  | static int	net_send_packet(struct sk_buff *skb, struct net_device *dev); | 
|  | static irqreturn_t net_interrupt(int irq, void *dev_id); | 
|  | static void	net_rx(struct net_device *dev); | 
|  | static int	net_close(struct net_device *dev); | 
|  | static struct	net_device_stats *net_get_stats(struct net_device *dev); | 
|  | static void	set_multicast_list(struct net_device *dev); | 
|  | static void     net_tx_timeout(struct net_device *dev); | 
|  |  | 
|  |  | 
|  | /* Example routines you must write ;->. */ | 
|  | #define tx_done(dev) 1 | 
|  | static void	hardware_send_packet(short ioaddr, char *buf, int length); | 
|  | static void 	chipset_init(struct net_device *dev, int startp); | 
|  |  | 
|  | /* | 
|  | * Check for a network adaptor of this type, and return '0' iff one exists. | 
|  | * If dev->base_addr == 0, probe all likely locations. | 
|  | * If dev->base_addr == 1, always return failure. | 
|  | * If dev->base_addr == 2, allocate space for the device and return success | 
|  | * (detachable devices only). | 
|  | */ | 
|  | static int __init do_netcard_probe(struct net_device *dev) | 
|  | { | 
|  | int i; | 
|  | int base_addr = dev->base_addr; | 
|  | int irq = dev->irq; | 
|  |  | 
|  | if (base_addr > 0x1ff)    /* Check a single specified location. */ | 
|  | return netcard_probe1(dev, base_addr); | 
|  | else if (base_addr != 0)  /* Don't probe at all. */ | 
|  | return -ENXIO; | 
|  |  | 
|  | for (i = 0; netcard_portlist[i]; i++) { | 
|  | int ioaddr = netcard_portlist[i]; | 
|  | if (netcard_probe1(dev, ioaddr) == 0) | 
|  | return 0; | 
|  | dev->irq = irq; | 
|  | } | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static void cleanup_card(struct net_device *dev) | 
|  | { | 
|  | #ifdef jumpered_dma | 
|  | free_dma(dev->dma); | 
|  | #endif | 
|  | #ifdef jumpered_interrupts | 
|  | free_irq(dev->irq, dev); | 
|  | #endif | 
|  | release_region(dev->base_addr, NETCARD_IO_EXTENT); | 
|  | } | 
|  |  | 
|  | #ifndef MODULE | 
|  | struct net_device * __init netcard_probe(int unit) | 
|  | { | 
|  | struct net_device *dev = alloc_etherdev(sizeof(struct net_local)); | 
|  | int err; | 
|  |  | 
|  | if (!dev) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | sprintf(dev->name, "eth%d", unit); | 
|  | netdev_boot_setup_check(dev); | 
|  |  | 
|  | err = do_netcard_probe(dev); | 
|  | if (err) | 
|  | goto out; | 
|  | return dev; | 
|  | out: | 
|  | free_netdev(dev); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is the real probe routine. Linux has a history of friendly device | 
|  | * probes on the ISA bus. A good device probes avoids doing writes, and | 
|  | * verifies that the correct device exists and functions. | 
|  | */ | 
|  | static int __init netcard_probe1(struct net_device *dev, int ioaddr) | 
|  | { | 
|  | struct net_local *np; | 
|  | static unsigned version_printed; | 
|  | int i; | 
|  | int err = -ENODEV; | 
|  |  | 
|  | /* Grab the region so that no one else tries to probe our ioports. */ | 
|  | if (!request_region(ioaddr, NETCARD_IO_EXTENT, cardname)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * For ethernet adaptors the first three octets of the station address | 
|  | * contains the manufacturer's unique code. That might be a good probe | 
|  | * method. Ideally you would add additional checks. | 
|  | */ | 
|  | if (inb(ioaddr + 0) != SA_ADDR0 | 
|  | ||	 inb(ioaddr + 1) != SA_ADDR1 | 
|  | ||	 inb(ioaddr + 2) != SA_ADDR2) | 
|  | goto out; | 
|  |  | 
|  | if (net_debug  &&  version_printed++ == 0) | 
|  | printk(KERN_DEBUG "%s", version); | 
|  |  | 
|  | printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr); | 
|  |  | 
|  | /* Fill in the 'dev' fields. */ | 
|  | dev->base_addr = ioaddr; | 
|  |  | 
|  | /* Retrieve and print the ethernet address. */ | 
|  | for (i = 0; i < 6; i++) | 
|  | dev->dev_addr[i] = inb(ioaddr + i); | 
|  |  | 
|  | printk("%pM", dev->dev_addr); | 
|  |  | 
|  | err = -EAGAIN; | 
|  | #ifdef jumpered_interrupts | 
|  | /* | 
|  | * If this board has jumpered interrupts, allocate the interrupt | 
|  | * vector now. There is no point in waiting since no other device | 
|  | * can use the interrupt, and this marks the irq as busy. Jumpered | 
|  | * interrupts are typically not reported by the boards, and we must | 
|  | * used autoIRQ to find them. | 
|  | */ | 
|  |  | 
|  | if (dev->irq == -1) | 
|  | ;	/* Do nothing: a user-level program will set it. */ | 
|  | else if (dev->irq < 2) {	/* "Auto-IRQ" */ | 
|  | unsigned long irq_mask = probe_irq_on(); | 
|  | /* Trigger an interrupt here. */ | 
|  |  | 
|  | dev->irq = probe_irq_off(irq_mask); | 
|  | if (net_debug >= 2) | 
|  | printk(" autoirq is %d", dev->irq); | 
|  | } else if (dev->irq == 2) | 
|  | /* | 
|  | * Fixup for users that don't know that IRQ 2 is really | 
|  | * IRQ9, or don't know which one to set. | 
|  | */ | 
|  | dev->irq = 9; | 
|  |  | 
|  | { | 
|  | int irqval = request_irq(dev->irq, &net_interrupt, 0, cardname, dev); | 
|  | if (irqval) { | 
|  | printk("%s: unable to get IRQ %d (irqval=%d).\n", | 
|  | dev->name, dev->irq, irqval); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | #endif	/* jumpered interrupt */ | 
|  | #ifdef jumpered_dma | 
|  | /* | 
|  | * If we use a jumpered DMA channel, that should be probed for and | 
|  | * allocated here as well. See lance.c for an example. | 
|  | */ | 
|  | if (dev->dma == 0) { | 
|  | if (request_dma(dev->dma, cardname)) { | 
|  | printk("DMA %d allocation failed.\n", dev->dma); | 
|  | goto out1; | 
|  | } else | 
|  | printk(", assigned DMA %d.\n", dev->dma); | 
|  | } else { | 
|  | short dma_status, new_dma_status; | 
|  |  | 
|  | /* Read the DMA channel status registers. */ | 
|  | dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | | 
|  | (inb(DMA2_STAT_REG) & 0xf0); | 
|  | /* Trigger a DMA request, perhaps pause a bit. */ | 
|  | outw(0x1234, ioaddr + 8); | 
|  | /* Re-read the DMA status registers. */ | 
|  | new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | | 
|  | (inb(DMA2_STAT_REG) & 0xf0); | 
|  | /* | 
|  | * Eliminate the old and floating requests, | 
|  | * and DMA4 the cascade. | 
|  | */ | 
|  | new_dma_status ^= dma_status; | 
|  | new_dma_status &= ~0x10; | 
|  | for (i = 7; i > 0; i--) | 
|  | if (test_bit(i, &new_dma_status)) { | 
|  | dev->dma = i; | 
|  | break; | 
|  | } | 
|  | if (i <= 0) { | 
|  | printk("DMA probe failed.\n"); | 
|  | goto out1; | 
|  | } | 
|  | if (request_dma(dev->dma, cardname)) { | 
|  | printk("probed DMA %d allocation failed.\n", dev->dma); | 
|  | goto out1; | 
|  | } | 
|  | } | 
|  | #endif	/* jumpered DMA */ | 
|  |  | 
|  | np = netdev_priv(dev); | 
|  | spin_lock_init(&np->lock); | 
|  |  | 
|  | dev->open		= net_open; | 
|  | dev->stop		= net_close; | 
|  | dev->hard_start_xmit	= net_send_packet; | 
|  | dev->get_stats		= net_get_stats; | 
|  | dev->set_multicast_list = &set_multicast_list; | 
|  |  | 
|  | dev->tx_timeout		= &net_tx_timeout; | 
|  | dev->watchdog_timeo	= MY_TX_TIMEOUT; | 
|  |  | 
|  | err = register_netdev(dev); | 
|  | if (err) | 
|  | goto out2; | 
|  | return 0; | 
|  | out2: | 
|  | #ifdef jumpered_dma | 
|  | free_dma(dev->dma); | 
|  | #endif | 
|  | out1: | 
|  | #ifdef jumpered_interrupts | 
|  | free_irq(dev->irq, dev); | 
|  | #endif | 
|  | out: | 
|  | release_region(base_addr, NETCARD_IO_EXTENT); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void net_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | struct net_local *np = netdev_priv(dev); | 
|  |  | 
|  | printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, | 
|  | tx_done(dev) ? "IRQ conflict" : "network cable problem"); | 
|  |  | 
|  | /* Try to restart the adaptor. */ | 
|  | chipset_init(dev, 1); | 
|  |  | 
|  | np->stats.tx_errors++; | 
|  |  | 
|  | /* If we have space available to accept new transmit | 
|  | * requests, wake up the queueing layer.  This would | 
|  | * be the case if the chipset_init() call above just | 
|  | * flushes out the tx queue and empties it. | 
|  | * | 
|  | * If instead, the tx queue is retained then the | 
|  | * netif_wake_queue() call should be placed in the | 
|  | * TX completion interrupt handler of the driver instead | 
|  | * of here. | 
|  | */ | 
|  | if (!tx_full(dev)) | 
|  | netif_wake_queue(dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open/initialize the board. This is called (in the current kernel) | 
|  | * sometime after booting when the 'ifconfig' program is run. | 
|  | * | 
|  | * This routine should set everything up anew at each open, even | 
|  | * registers that "should" only need to be set once at boot, so that | 
|  | * there is non-reboot way to recover if something goes wrong. | 
|  | */ | 
|  | static int | 
|  | net_open(struct net_device *dev) | 
|  | { | 
|  | struct net_local *np = netdev_priv(dev); | 
|  | int ioaddr = dev->base_addr; | 
|  | /* | 
|  | * This is used if the interrupt line can turned off (shared). | 
|  | * See 3c503.c for an example of selecting the IRQ at config-time. | 
|  | */ | 
|  | if (request_irq(dev->irq, &net_interrupt, 0, cardname, dev)) { | 
|  | return -EAGAIN; | 
|  | } | 
|  | /* | 
|  | * Always allocate the DMA channel after the IRQ, | 
|  | * and clean up on failure. | 
|  | */ | 
|  | if (request_dma(dev->dma, cardname)) { | 
|  | free_irq(dev->irq, dev); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Reset the hardware here. Don't forget to set the station address. */ | 
|  | chipset_init(dev, 1); | 
|  | outb(0x00, ioaddr); | 
|  | np->open_time = jiffies; | 
|  |  | 
|  | /* We are now ready to accept transmit requeusts from | 
|  | * the queueing layer of the networking. | 
|  | */ | 
|  | netif_start_queue(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This will only be invoked if your driver is _not_ in XOFF state. | 
|  | * What this means is that you need not check it, and that this | 
|  | * invariant will hold if you make sure that the netif_*_queue() | 
|  | * calls are done at the proper times. | 
|  | */ | 
|  | static int net_send_packet(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct net_local *np = netdev_priv(dev); | 
|  | int ioaddr = dev->base_addr; | 
|  | short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; | 
|  | unsigned char *buf = skb->data; | 
|  |  | 
|  | /* If some error occurs while trying to transmit this | 
|  | * packet, you should return '1' from this function. | 
|  | * In such a case you _may not_ do anything to the | 
|  | * SKB, it is still owned by the network queueing | 
|  | * layer when an error is returned.  This means you | 
|  | * may not modify any SKB fields, you may not free | 
|  | * the SKB, etc. | 
|  | */ | 
|  |  | 
|  | #if TX_RING | 
|  | /* This is the most common case for modern hardware. | 
|  | * The spinlock protects this code from the TX complete | 
|  | * hardware interrupt handler.  Queue flow control is | 
|  | * thus managed under this lock as well. | 
|  | */ | 
|  | spin_lock_irq(&np->lock); | 
|  |  | 
|  | add_to_tx_ring(np, skb, length); | 
|  | dev->trans_start = jiffies; | 
|  |  | 
|  | /* If we just used up the very last entry in the | 
|  | * TX ring on this device, tell the queueing | 
|  | * layer to send no more. | 
|  | */ | 
|  | if (tx_full(dev)) | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | /* When the TX completion hw interrupt arrives, this | 
|  | * is when the transmit statistics are updated. | 
|  | */ | 
|  |  | 
|  | spin_unlock_irq(&np->lock); | 
|  | #else | 
|  | /* This is the case for older hardware which takes | 
|  | * a single transmit buffer at a time, and it is | 
|  | * just written to the device via PIO. | 
|  | * | 
|  | * No spin locking is needed since there is no TX complete | 
|  | * event.  If by chance your card does have a TX complete | 
|  | * hardware IRQ then you may need to utilize np->lock here. | 
|  | */ | 
|  | hardware_send_packet(ioaddr, buf, length); | 
|  | np->stats.tx_bytes += skb->len; | 
|  |  | 
|  | dev->trans_start = jiffies; | 
|  |  | 
|  | /* You might need to clean up and record Tx statistics here. */ | 
|  | if (inw(ioaddr) == /*RU*/81) | 
|  | np->stats.tx_aborted_errors++; | 
|  | dev_kfree_skb (skb); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if TX_RING | 
|  | /* This handles TX complete events posted by the device | 
|  | * via interrupts. | 
|  | */ | 
|  | void net_tx(struct net_device *dev) | 
|  | { | 
|  | struct net_local *np = netdev_priv(dev); | 
|  | int entry; | 
|  |  | 
|  | /* This protects us from concurrent execution of | 
|  | * our dev->hard_start_xmit function above. | 
|  | */ | 
|  | spin_lock(&np->lock); | 
|  |  | 
|  | entry = np->tx_old; | 
|  | while (tx_entry_is_sent(np, entry)) { | 
|  | struct sk_buff *skb = np->skbs[entry]; | 
|  |  | 
|  | np->stats.tx_bytes += skb->len; | 
|  | dev_kfree_skb_irq (skb); | 
|  |  | 
|  | entry = next_tx_entry(np, entry); | 
|  | } | 
|  | np->tx_old = entry; | 
|  |  | 
|  | /* If we had stopped the queue due to a "tx full" | 
|  | * condition, and space has now been made available, | 
|  | * wake up the queue. | 
|  | */ | 
|  | if (netif_queue_stopped(dev) && ! tx_full(dev)) | 
|  | netif_wake_queue(dev); | 
|  |  | 
|  | spin_unlock(&np->lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The typical workload of the driver: | 
|  | * Handle the network interface interrupts. | 
|  | */ | 
|  | static irqreturn_t net_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *dev = dev_id; | 
|  | struct net_local *np; | 
|  | int ioaddr, status; | 
|  | int handled = 0; | 
|  |  | 
|  | ioaddr = dev->base_addr; | 
|  |  | 
|  | np = netdev_priv(dev); | 
|  | status = inw(ioaddr + 0); | 
|  |  | 
|  | if (status == 0) | 
|  | goto out; | 
|  | handled = 1; | 
|  |  | 
|  | if (status & RX_INTR) { | 
|  | /* Got a packet(s). */ | 
|  | net_rx(dev); | 
|  | } | 
|  | #if TX_RING | 
|  | if (status & TX_INTR) { | 
|  | /* Transmit complete. */ | 
|  | net_tx(dev); | 
|  | np->stats.tx_packets++; | 
|  | netif_wake_queue(dev); | 
|  | } | 
|  | #endif | 
|  | if (status & COUNTERS_INTR) { | 
|  | /* Increment the appropriate 'localstats' field. */ | 
|  | np->stats.tx_window_errors++; | 
|  | } | 
|  | out: | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | /* We have a good packet(s), get it/them out of the buffers. */ | 
|  | static void | 
|  | net_rx(struct net_device *dev) | 
|  | { | 
|  | struct net_local *lp = netdev_priv(dev); | 
|  | int ioaddr = dev->base_addr; | 
|  | int boguscount = 10; | 
|  |  | 
|  | do { | 
|  | int status = inw(ioaddr); | 
|  | int pkt_len = inw(ioaddr); | 
|  |  | 
|  | if (pkt_len == 0)		/* Read all the frames? */ | 
|  | break;			/* Done for now */ | 
|  |  | 
|  | if (status & 0x40) {	/* There was an error. */ | 
|  | lp->stats.rx_errors++; | 
|  | if (status & 0x20) lp->stats.rx_frame_errors++; | 
|  | if (status & 0x10) lp->stats.rx_over_errors++; | 
|  | if (status & 0x08) lp->stats.rx_crc_errors++; | 
|  | if (status & 0x04) lp->stats.rx_fifo_errors++; | 
|  | } else { | 
|  | /* Malloc up new buffer. */ | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | lp->stats.rx_bytes+=pkt_len; | 
|  |  | 
|  | skb = dev_alloc_skb(pkt_len); | 
|  | if (skb == NULL) { | 
|  | printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", | 
|  | dev->name); | 
|  | lp->stats.rx_dropped++; | 
|  | break; | 
|  | } | 
|  | skb->dev = dev; | 
|  |  | 
|  | /* 'skb->data' points to the start of sk_buff data area. */ | 
|  | memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start, | 
|  | pkt_len); | 
|  | /* or */ | 
|  | insw(ioaddr, skb->data, (pkt_len + 1) >> 1); | 
|  |  | 
|  | netif_rx(skb); | 
|  | lp->stats.rx_packets++; | 
|  | lp->stats.rx_bytes += pkt_len; | 
|  | } | 
|  | } while (--boguscount); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The inverse routine to net_open(). */ | 
|  | static int | 
|  | net_close(struct net_device *dev) | 
|  | { | 
|  | struct net_local *lp = netdev_priv(dev); | 
|  | int ioaddr = dev->base_addr; | 
|  |  | 
|  | lp->open_time = 0; | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | /* Flush the Tx and disable Rx here. */ | 
|  |  | 
|  | disable_dma(dev->dma); | 
|  |  | 
|  | /* If not IRQ or DMA jumpered, free up the line. */ | 
|  | outw(0x00, ioaddr+0);	/* Release the physical interrupt line. */ | 
|  |  | 
|  | free_irq(dev->irq, dev); | 
|  | free_dma(dev->dma); | 
|  |  | 
|  | /* Update the statistics here. */ | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the current statistics. | 
|  | * This may be called with the card open or closed. | 
|  | */ | 
|  | static struct net_device_stats *net_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct net_local *lp = netdev_priv(dev); | 
|  | short ioaddr = dev->base_addr; | 
|  |  | 
|  | /* Update the statistics from the device registers. */ | 
|  | lp->stats.rx_missed_errors = inw(ioaddr+1); | 
|  | return &lp->stats; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set or clear the multicast filter for this adaptor. | 
|  | * num_addrs == -1	Promiscuous mode, receive all packets | 
|  | * num_addrs == 0	Normal mode, clear multicast list | 
|  | * num_addrs > 0	Multicast mode, receive normal and MC packets, | 
|  | *			and do best-effort filtering. | 
|  | */ | 
|  | static void | 
|  | set_multicast_list(struct net_device *dev) | 
|  | { | 
|  | short ioaddr = dev->base_addr; | 
|  | if (dev->flags&IFF_PROMISC) | 
|  | { | 
|  | /* Enable promiscuous mode */ | 
|  | outw(MULTICAST|PROMISC, ioaddr); | 
|  | } | 
|  | else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > HW_MAX_ADDRS) | 
|  | { | 
|  | /* Disable promiscuous mode, use normal mode. */ | 
|  | hardware_set_filter(NULL); | 
|  |  | 
|  | outw(MULTICAST, ioaddr); | 
|  | } | 
|  | else if(dev->mc_count) | 
|  | { | 
|  | /* Walk the address list, and load the filter */ | 
|  | hardware_set_filter(dev->mc_list); | 
|  |  | 
|  | outw(MULTICAST, ioaddr); | 
|  | } | 
|  | else | 
|  | outw(0, ioaddr); | 
|  | } | 
|  |  | 
|  | #ifdef MODULE | 
|  |  | 
|  | static struct net_device *this_device; | 
|  | static int io = 0x300; | 
|  | static int irq; | 
|  | static int dma; | 
|  | static int mem; | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | int init_module(void) | 
|  | { | 
|  | struct net_device *dev; | 
|  | int result; | 
|  |  | 
|  | if (io == 0) | 
|  | printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n", | 
|  | cardname); | 
|  | dev = alloc_etherdev(sizeof(struct net_local)); | 
|  | if (!dev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Copy the parameters from insmod into the device structure. */ | 
|  | dev->base_addr = io; | 
|  | dev->irq       = irq; | 
|  | dev->dma       = dma; | 
|  | dev->mem_start = mem; | 
|  | if (do_netcard_probe(dev) == 0) { | 
|  | this_device = dev; | 
|  | return 0; | 
|  | } | 
|  | free_netdev(dev); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | void | 
|  | cleanup_module(void) | 
|  | { | 
|  | unregister_netdev(this_device); | 
|  | cleanup_card(this_device); | 
|  | free_netdev(this_device); | 
|  | } | 
|  |  | 
|  | #endif /* MODULE */ |