|  | /* | 
|  | *  arch/arm/include/asm/cacheflush.h | 
|  | * | 
|  | *  Copyright (C) 1999-2002 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #ifndef _ASMARM_CACHEFLUSH_H | 
|  | #define _ASMARM_CACHEFLUSH_H | 
|  |  | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #include <asm/glue-cache.h> | 
|  | #include <asm/shmparam.h> | 
|  | #include <asm/cachetype.h> | 
|  | #include <asm/outercache.h> | 
|  |  | 
|  | #define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) | 
|  |  | 
|  | /* | 
|  | * This flag is used to indicate that the page pointed to by a pte is clean | 
|  | * and does not require cleaning before returning it to the user. | 
|  | */ | 
|  | #define PG_dcache_clean PG_arch_1 | 
|  |  | 
|  | /* | 
|  | *	MM Cache Management | 
|  | *	=================== | 
|  | * | 
|  | *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files | 
|  | *	implement these methods. | 
|  | * | 
|  | *	Start addresses are inclusive and end addresses are exclusive; | 
|  | *	start addresses should be rounded down, end addresses up. | 
|  | * | 
|  | *	See Documentation/cachetlb.txt for more information. | 
|  | *	Please note that the implementation of these, and the required | 
|  | *	effects are cache-type (VIVT/VIPT/PIPT) specific. | 
|  | * | 
|  | *	flush_icache_all() | 
|  | * | 
|  | *		Unconditionally clean and invalidate the entire icache. | 
|  | *		Currently only needed for cache-v6.S and cache-v7.S, see | 
|  | *		__flush_icache_all for the generic implementation. | 
|  | * | 
|  | *	flush_kern_all() | 
|  | * | 
|  | *		Unconditionally clean and invalidate the entire cache. | 
|  | * | 
|  | *	flush_user_all() | 
|  | * | 
|  | *		Clean and invalidate all user space cache entries | 
|  | *		before a change of page tables. | 
|  | * | 
|  | *	flush_user_range(start, end, flags) | 
|  | * | 
|  | *		Clean and invalidate a range of cache entries in the | 
|  | *		specified address space before a change of page tables. | 
|  | *		- start - user start address (inclusive, page aligned) | 
|  | *		- end   - user end address   (exclusive, page aligned) | 
|  | *		- flags - vma->vm_flags field | 
|  | * | 
|  | *	coherent_kern_range(start, end) | 
|  | * | 
|  | *		Ensure coherency between the Icache and the Dcache in the | 
|  | *		region described by start, end.  If you have non-snooping | 
|  | *		Harvard caches, you need to implement this function. | 
|  | *		- start  - virtual start address | 
|  | *		- end    - virtual end address | 
|  | * | 
|  | *	coherent_user_range(start, end) | 
|  | * | 
|  | *		Ensure coherency between the Icache and the Dcache in the | 
|  | *		region described by start, end.  If you have non-snooping | 
|  | *		Harvard caches, you need to implement this function. | 
|  | *		- start  - virtual start address | 
|  | *		- end    - virtual end address | 
|  | * | 
|  | *	flush_kern_dcache_area(kaddr, size) | 
|  | * | 
|  | *		Ensure that the data held in page is written back. | 
|  | *		- kaddr  - page address | 
|  | *		- size   - region size | 
|  | * | 
|  | *	DMA Cache Coherency | 
|  | *	=================== | 
|  | * | 
|  | *	dma_flush_range(start, end) | 
|  | * | 
|  | *		Clean and invalidate the specified virtual address range. | 
|  | *		- start  - virtual start address | 
|  | *		- end    - virtual end address | 
|  | */ | 
|  |  | 
|  | struct cpu_cache_fns { | 
|  | void (*flush_icache_all)(void); | 
|  | void (*flush_kern_all)(void); | 
|  | void (*flush_user_all)(void); | 
|  | void (*flush_user_range)(unsigned long, unsigned long, unsigned int); | 
|  |  | 
|  | void (*coherent_kern_range)(unsigned long, unsigned long); | 
|  | void (*coherent_user_range)(unsigned long, unsigned long); | 
|  | void (*flush_kern_dcache_area)(void *, size_t); | 
|  |  | 
|  | void (*dma_map_area)(const void *, size_t, int); | 
|  | void (*dma_unmap_area)(const void *, size_t, int); | 
|  |  | 
|  | void (*dma_flush_range)(const void *, const void *); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Select the calling method | 
|  | */ | 
|  | #ifdef MULTI_CACHE | 
|  |  | 
|  | extern struct cpu_cache_fns cpu_cache; | 
|  |  | 
|  | #define __cpuc_flush_icache_all		cpu_cache.flush_icache_all | 
|  | #define __cpuc_flush_kern_all		cpu_cache.flush_kern_all | 
|  | #define __cpuc_flush_user_all		cpu_cache.flush_user_all | 
|  | #define __cpuc_flush_user_range		cpu_cache.flush_user_range | 
|  | #define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range | 
|  | #define __cpuc_coherent_user_range	cpu_cache.coherent_user_range | 
|  | #define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area | 
|  |  | 
|  | /* | 
|  | * These are private to the dma-mapping API.  Do not use directly. | 
|  | * Their sole purpose is to ensure that data held in the cache | 
|  | * is visible to DMA, or data written by DMA to system memory is | 
|  | * visible to the CPU. | 
|  | */ | 
|  | #define dmac_map_area			cpu_cache.dma_map_area | 
|  | #define dmac_unmap_area			cpu_cache.dma_unmap_area | 
|  | #define dmac_flush_range		cpu_cache.dma_flush_range | 
|  |  | 
|  | #else | 
|  |  | 
|  | extern void __cpuc_flush_icache_all(void); | 
|  | extern void __cpuc_flush_kern_all(void); | 
|  | extern void __cpuc_flush_user_all(void); | 
|  | extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); | 
|  | extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); | 
|  | extern void __cpuc_coherent_user_range(unsigned long, unsigned long); | 
|  | extern void __cpuc_flush_dcache_area(void *, size_t); | 
|  |  | 
|  | /* | 
|  | * These are private to the dma-mapping API.  Do not use directly. | 
|  | * Their sole purpose is to ensure that data held in the cache | 
|  | * is visible to DMA, or data written by DMA to system memory is | 
|  | * visible to the CPU. | 
|  | */ | 
|  | extern void dmac_map_area(const void *, size_t, int); | 
|  | extern void dmac_unmap_area(const void *, size_t, int); | 
|  | extern void dmac_flush_range(const void *, const void *); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Copy user data from/to a page which is mapped into a different | 
|  | * processes address space.  Really, we want to allow our "user | 
|  | * space" model to handle this. | 
|  | */ | 
|  | extern void copy_to_user_page(struct vm_area_struct *, struct page *, | 
|  | unsigned long, void *, const void *, unsigned long); | 
|  | #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ | 
|  | do {							\ | 
|  | memcpy(dst, src, len);				\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Convert calls to our calling convention. | 
|  | */ | 
|  |  | 
|  | /* Invalidate I-cache */ | 
|  | #define __flush_icache_all_generic()					\ | 
|  | asm("mcr	p15, 0, %0, c7, c5, 0"				\ | 
|  | : : "r" (0)); | 
|  |  | 
|  | /* Invalidate I-cache inner shareable */ | 
|  | #define __flush_icache_all_v7_smp()					\ | 
|  | asm("mcr	p15, 0, %0, c7, c1, 0"				\ | 
|  | : : "r" (0)); | 
|  |  | 
|  | /* | 
|  | * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 | 
|  | * will fall through to use __flush_icache_all_generic. | 
|  | */ | 
|  | #if (defined(CONFIG_CPU_V7) && \ | 
|  | (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \ | 
|  | defined(CONFIG_SMP_ON_UP) | 
|  | #define __flush_icache_preferred	__cpuc_flush_icache_all | 
|  | #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP) | 
|  | #define __flush_icache_preferred	__flush_icache_all_v7_smp | 
|  | #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920) | 
|  | #define __flush_icache_preferred	__cpuc_flush_icache_all | 
|  | #else | 
|  | #define __flush_icache_preferred	__flush_icache_all_generic | 
|  | #endif | 
|  |  | 
|  | static inline void __flush_icache_all(void) | 
|  | { | 
|  | __flush_icache_preferred(); | 
|  | } | 
|  |  | 
|  | #define flush_cache_all()		__cpuc_flush_kern_all() | 
|  |  | 
|  | static inline void vivt_flush_cache_mm(struct mm_struct *mm) | 
|  | { | 
|  | if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) | 
|  | __cpuc_flush_user_all(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | 
|  | { | 
|  | if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) | 
|  | __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), | 
|  | vma->vm_flags); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) | 
|  | { | 
|  | if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) { | 
|  | unsigned long addr = user_addr & PAGE_MASK; | 
|  | __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_CPU_CACHE_VIPT | 
|  | #define flush_cache_mm(mm) \ | 
|  | vivt_flush_cache_mm(mm) | 
|  | #define flush_cache_range(vma,start,end) \ | 
|  | vivt_flush_cache_range(vma,start,end) | 
|  | #define flush_cache_page(vma,addr,pfn) \ | 
|  | vivt_flush_cache_page(vma,addr,pfn) | 
|  | #else | 
|  | extern void flush_cache_mm(struct mm_struct *mm); | 
|  | extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); | 
|  | extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); | 
|  | #endif | 
|  |  | 
|  | #define flush_cache_dup_mm(mm) flush_cache_mm(mm) | 
|  |  | 
|  | /* | 
|  | * flush_cache_user_range is used when we want to ensure that the | 
|  | * Harvard caches are synchronised for the user space address range. | 
|  | * This is used for the ARM private sys_cacheflush system call. | 
|  | */ | 
|  | #define flush_cache_user_range(vma,start,end) \ | 
|  | __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) | 
|  |  | 
|  | /* | 
|  | * Perform necessary cache operations to ensure that data previously | 
|  | * stored within this range of addresses can be executed by the CPU. | 
|  | */ | 
|  | #define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e) | 
|  |  | 
|  | /* | 
|  | * Perform necessary cache operations to ensure that the TLB will | 
|  | * see data written in the specified area. | 
|  | */ | 
|  | #define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size) | 
|  |  | 
|  | /* | 
|  | * flush_dcache_page is used when the kernel has written to the page | 
|  | * cache page at virtual address page->virtual. | 
|  | * | 
|  | * If this page isn't mapped (ie, page_mapping == NULL), or it might | 
|  | * have userspace mappings, then we _must_ always clean + invalidate | 
|  | * the dcache entries associated with the kernel mapping. | 
|  | * | 
|  | * Otherwise we can defer the operation, and clean the cache when we are | 
|  | * about to change to user space.  This is the same method as used on SPARC64. | 
|  | * See update_mmu_cache for the user space part. | 
|  | */ | 
|  | #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 | 
|  | extern void flush_dcache_page(struct page *); | 
|  |  | 
|  | static inline void flush_kernel_vmap_range(void *addr, int size) | 
|  | { | 
|  | if ((cache_is_vivt() || cache_is_vipt_aliasing())) | 
|  | __cpuc_flush_dcache_area(addr, (size_t)size); | 
|  | } | 
|  | static inline void invalidate_kernel_vmap_range(void *addr, int size) | 
|  | { | 
|  | if ((cache_is_vivt() || cache_is_vipt_aliasing())) | 
|  | __cpuc_flush_dcache_area(addr, (size_t)size); | 
|  | } | 
|  |  | 
|  | #define ARCH_HAS_FLUSH_ANON_PAGE | 
|  | static inline void flush_anon_page(struct vm_area_struct *vma, | 
|  | struct page *page, unsigned long vmaddr) | 
|  | { | 
|  | extern void __flush_anon_page(struct vm_area_struct *vma, | 
|  | struct page *, unsigned long); | 
|  | if (PageAnon(page)) | 
|  | __flush_anon_page(vma, page, vmaddr); | 
|  | } | 
|  |  | 
|  | #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE | 
|  | static inline void flush_kernel_dcache_page(struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | #define flush_dcache_mmap_lock(mapping) \ | 
|  | spin_lock_irq(&(mapping)->tree_lock) | 
|  | #define flush_dcache_mmap_unlock(mapping) \ | 
|  | spin_unlock_irq(&(mapping)->tree_lock) | 
|  |  | 
|  | #define flush_icache_user_range(vma,page,addr,len) \ | 
|  | flush_dcache_page(page) | 
|  |  | 
|  | /* | 
|  | * We don't appear to need to do anything here.  In fact, if we did, we'd | 
|  | * duplicate cache flushing elsewhere performed by flush_dcache_page(). | 
|  | */ | 
|  | #define flush_icache_page(vma,page)	do { } while (0) | 
|  |  | 
|  | /* | 
|  | * flush_cache_vmap() is used when creating mappings (eg, via vmap, | 
|  | * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT | 
|  | * caches, since the direct-mappings of these pages may contain cached | 
|  | * data, we need to do a full cache flush to ensure that writebacks | 
|  | * don't corrupt data placed into these pages via the new mappings. | 
|  | */ | 
|  | static inline void flush_cache_vmap(unsigned long start, unsigned long end) | 
|  | { | 
|  | if (!cache_is_vipt_nonaliasing()) | 
|  | flush_cache_all(); | 
|  | else | 
|  | /* | 
|  | * set_pte_at() called from vmap_pte_range() does not | 
|  | * have a DSB after cleaning the cache line. | 
|  | */ | 
|  | dsb(); | 
|  | } | 
|  |  | 
|  | static inline void flush_cache_vunmap(unsigned long start, unsigned long end) | 
|  | { | 
|  | if (!cache_is_vipt_nonaliasing()) | 
|  | flush_cache_all(); | 
|  | } | 
|  |  | 
|  | #endif |