|  | #ifndef __ASM_ARM_DIV64 | 
|  | #define __ASM_ARM_DIV64 | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | /* | 
|  | * The semantics of do_div() are: | 
|  | * | 
|  | * uint32_t do_div(uint64_t *n, uint32_t base) | 
|  | * { | 
|  | * 	uint32_t remainder = *n % base; | 
|  | * 	*n = *n / base; | 
|  | * 	return remainder; | 
|  | * } | 
|  | * | 
|  | * In other words, a 64-bit dividend with a 32-bit divisor producing | 
|  | * a 64-bit result and a 32-bit remainder.  To accomplish this optimally | 
|  | * we call a special __do_div64 helper with completely non standard | 
|  | * calling convention for arguments and results (beware). | 
|  | */ | 
|  |  | 
|  | #ifdef __ARMEB__ | 
|  | #define __xh "r0" | 
|  | #define __xl "r1" | 
|  | #else | 
|  | #define __xl "r0" | 
|  | #define __xh "r1" | 
|  | #endif | 
|  |  | 
|  | #define __do_div_asm(n, base)					\ | 
|  | ({								\ | 
|  | register unsigned int __base      asm("r4") = base;	\ | 
|  | register unsigned long long __n   asm("r0") = n;	\ | 
|  | register unsigned long long __res asm("r2");		\ | 
|  | register unsigned int __rem       asm(__xh);		\ | 
|  | asm(	__asmeq("%0", __xh)				\ | 
|  | __asmeq("%1", "r2")				\ | 
|  | __asmeq("%2", "r0")				\ | 
|  | __asmeq("%3", "r4")				\ | 
|  | "bl	__do_div64"				\ | 
|  | : "=r" (__rem), "=r" (__res)			\ | 
|  | : "r" (__n), "r" (__base)			\ | 
|  | : "ip", "lr", "cc");				\ | 
|  | n = __res;						\ | 
|  | __rem;							\ | 
|  | }) | 
|  |  | 
|  | #if __GNUC__ < 4 | 
|  |  | 
|  | /* | 
|  | * gcc versions earlier than 4.0 are simply too problematic for the | 
|  | * optimized implementation below. First there is gcc PR 15089 that | 
|  | * tend to trig on more complex constructs, spurious .global __udivsi3 | 
|  | * are inserted even if none of those symbols are referenced in the | 
|  | * generated code, and those gcc versions are not able to do constant | 
|  | * propagation on long long values anyway. | 
|  | */ | 
|  | #define do_div(n, base) __do_div_asm(n, base) | 
|  |  | 
|  | #elif __GNUC__ >= 4 | 
|  |  | 
|  | #include <asm/bug.h> | 
|  |  | 
|  | /* | 
|  | * If the divisor happens to be constant, we determine the appropriate | 
|  | * inverse at compile time to turn the division into a few inline | 
|  | * multiplications instead which is much faster. And yet only if compiling | 
|  | * for ARMv4 or higher (we need umull/umlal) and if the gcc version is | 
|  | * sufficiently recent to perform proper long long constant propagation. | 
|  | * (It is unfortunate that gcc doesn't perform all this internally.) | 
|  | */ | 
|  | #define do_div(n, base)							\ | 
|  | ({									\ | 
|  | unsigned int __r, __b = (base);					\ | 
|  | if (!__builtin_constant_p(__b) || __b == 0 ||			\ | 
|  | (__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) {	\ | 
|  | /* non-constant divisor (or zero): slow path */		\ | 
|  | __r = __do_div_asm(n, __b);				\ | 
|  | } else if ((__b & (__b - 1)) == 0) {				\ | 
|  | /* Trivial: __b is constant and a power of 2 */		\ | 
|  | /* gcc does the right thing with this code.  */		\ | 
|  | __r = n;						\ | 
|  | __r &= (__b - 1);					\ | 
|  | n /= __b;						\ | 
|  | } else {							\ | 
|  | /* Multiply by inverse of __b: n/b = n*(p/b)/p       */	\ | 
|  | /* We rely on the fact that most of this code gets   */	\ | 
|  | /* optimized away at compile time due to constant    */	\ | 
|  | /* propagation and only a couple inline assembly     */	\ | 
|  | /* instructions should remain. Better avoid any      */	\ | 
|  | /* code construct that might prevent that.           */	\ | 
|  | unsigned long long __res, __x, __t, __m, __n = n;	\ | 
|  | unsigned int __c, __p, __z = 0;				\ | 
|  | /* preserve low part of n for reminder computation */	\ | 
|  | __r = __n;						\ | 
|  | /* determine number of bits to represent __b */		\ | 
|  | __p = 1 << __div64_fls(__b);				\ | 
|  | /* compute __m = ((__p << 64) + __b - 1) / __b */	\ | 
|  | __m = (~0ULL / __b) * __p;				\ | 
|  | __m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b;	\ | 
|  | /* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */	\ | 
|  | __x = ~0ULL / __b * __b - 1;				\ | 
|  | __res = (__m & 0xffffffff) * (__x & 0xffffffff);	\ | 
|  | __res >>= 32;						\ | 
|  | __res += (__m & 0xffffffff) * (__x >> 32);		\ | 
|  | __t = __res;						\ | 
|  | __res += (__x & 0xffffffff) * (__m >> 32);		\ | 
|  | __t = (__res < __t) ? (1ULL << 32) : 0;			\ | 
|  | __res = (__res >> 32) + __t;				\ | 
|  | __res += (__m >> 32) * (__x >> 32);			\ | 
|  | __res /= __p;						\ | 
|  | /* Now sanitize and optimize what we've got. */		\ | 
|  | if (~0ULL % (__b / (__b & -__b)) == 0) {		\ | 
|  | /* those cases can be simplified with: */	\ | 
|  | __n /= (__b & -__b);				\ | 
|  | __m = ~0ULL / (__b / (__b & -__b));		\ | 
|  | __p = 1;					\ | 
|  | __c = 1;					\ | 
|  | } else if (__res != __x / __b) {			\ | 
|  | /* We can't get away without a correction    */	\ | 
|  | /* to compensate for bit truncation errors.  */	\ | 
|  | /* To avoid it we'd need an additional bit   */	\ | 
|  | /* to represent __m which would overflow it. */	\ | 
|  | /* Instead we do m=p/b and n/b=(n*m+m)/p.    */	\ | 
|  | __c = 1;					\ | 
|  | /* Compute __m = (__p << 64) / __b */		\ | 
|  | __m = (~0ULL / __b) * __p;			\ | 
|  | __m += ((~0ULL % __b + 1) * __p) / __b;		\ | 
|  | } else {						\ | 
|  | /* Reduce __m/__p, and try to clear bit 31   */	\ | 
|  | /* of __m when possible otherwise that'll    */	\ | 
|  | /* need extra overflow handling later.       */	\ | 
|  | unsigned int __bits = -(__m & -__m);		\ | 
|  | __bits |= __m >> 32;				\ | 
|  | __bits = (~__bits) << 1;			\ | 
|  | /* If __bits == 0 then setting bit 31 is     */	\ | 
|  | /* unavoidable.  Simply apply the maximum    */	\ | 
|  | /* possible reduction in that case.          */	\ | 
|  | /* Otherwise the MSB of __bits indicates the */	\ | 
|  | /* best reduction we should apply.           */	\ | 
|  | if (!__bits) {					\ | 
|  | __p /= (__m & -__m);			\ | 
|  | __m /= (__m & -__m);			\ | 
|  | } else {					\ | 
|  | __p >>= __div64_fls(__bits);		\ | 
|  | __m >>= __div64_fls(__bits);		\ | 
|  | }						\ | 
|  | /* No correction needed. */			\ | 
|  | __c = 0;					\ | 
|  | }							\ | 
|  | /* Now we have a combination of 2 conditions:        */	\ | 
|  | /* 1) whether or not we need a correction (__c), and */	\ | 
|  | /* 2) whether or not there might be an overflow in   */	\ | 
|  | /*    the cross product (__m & ((1<<63) | (1<<31)))  */	\ | 
|  | /* Select the best insn combination to perform the   */	\ | 
|  | /* actual __m * __n / (__p << 64) operation.         */	\ | 
|  | if (!__c) {						\ | 
|  | asm (	"umull	%Q0, %R0, %1, %Q2\n\t"		\ | 
|  | "mov	%Q0, #0"			\ | 
|  | : "=&r" (__res)				\ | 
|  | : "r" (__m), "r" (__n)			\ | 
|  | : "cc" );				\ | 
|  | } else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {	\ | 
|  | __res = __m;					\ | 
|  | asm (	"umlal	%Q0, %R0, %Q1, %Q2\n\t"		\ | 
|  | "mov	%Q0, #0"			\ | 
|  | : "+&r" (__res)				\ | 
|  | : "r" (__m), "r" (__n)			\ | 
|  | : "cc" );				\ | 
|  | } else {						\ | 
|  | asm (	"umull	%Q0, %R0, %Q1, %Q2\n\t"		\ | 
|  | "cmn	%Q0, %Q1\n\t"			\ | 
|  | "adcs	%R0, %R0, %R1\n\t"		\ | 
|  | "adc	%Q0, %3, #0"			\ | 
|  | : "=&r" (__res)				\ | 
|  | : "r" (__m), "r" (__n), "r" (__z)	\ | 
|  | : "cc" );				\ | 
|  | }							\ | 
|  | if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {		\ | 
|  | asm (	"umlal	%R0, %Q0, %R1, %Q2\n\t"		\ | 
|  | "umlal	%R0, %Q0, %Q1, %R2\n\t"		\ | 
|  | "mov	%R0, #0\n\t"			\ | 
|  | "umlal	%Q0, %R0, %R1, %R2"		\ | 
|  | : "+&r" (__res)				\ | 
|  | : "r" (__m), "r" (__n)			\ | 
|  | : "cc" );				\ | 
|  | } else {						\ | 
|  | asm (	"umlal	%R0, %Q0, %R2, %Q3\n\t"		\ | 
|  | "umlal	%R0, %1, %Q2, %R3\n\t"		\ | 
|  | "mov	%R0, #0\n\t"			\ | 
|  | "adds	%Q0, %1, %Q0\n\t"		\ | 
|  | "adc	%R0, %R0, #0\n\t"		\ | 
|  | "umlal	%Q0, %R0, %R2, %R3"		\ | 
|  | : "+&r" (__res), "+&r" (__z)		\ | 
|  | : "r" (__m), "r" (__n)			\ | 
|  | : "cc" );				\ | 
|  | }							\ | 
|  | __res /= __p;						\ | 
|  | /* The reminder can be computed with 32-bit regs     */	\ | 
|  | /* only, and gcc is good at that.                    */	\ | 
|  | {							\ | 
|  | unsigned int __res0 = __res;			\ | 
|  | unsigned int __b0 = __b;			\ | 
|  | __r -= __res0 * __b0;				\ | 
|  | }							\ | 
|  | /* BUG_ON(__r >= __b || __res * __b + __r != n); */	\ | 
|  | n = __res;						\ | 
|  | }								\ | 
|  | __r;								\ | 
|  | }) | 
|  |  | 
|  | /* our own fls implementation to make sure constant propagation is fine */ | 
|  | #define __div64_fls(bits)						\ | 
|  | ({									\ | 
|  | unsigned int __left = (bits), __nr = 0;				\ | 
|  | if (__left & 0xffff0000) __nr += 16, __left >>= 16;		\ | 
|  | if (__left & 0x0000ff00) __nr +=  8, __left >>=  8;		\ | 
|  | if (__left & 0x000000f0) __nr +=  4, __left >>=  4;		\ | 
|  | if (__left & 0x0000000c) __nr +=  2, __left >>=  2;		\ | 
|  | if (__left & 0x00000002) __nr +=  1;				\ | 
|  | __nr;								\ | 
|  | }) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #endif |