| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Copyright (C) 2003, 2004 Ralf Baechle | 
 |  */ | 
 | #ifndef _ASM_HAZARDS_H | 
 | #define _ASM_HAZARDS_H | 
 |  | 
 | #include <linux/config.h> | 
 |  | 
 | #ifdef __ASSEMBLY__ | 
 |  | 
 | 	.macro	_ssnop | 
 | 	sll	$0, $0, 1 | 
 | 	.endm | 
 |  | 
 | 	.macro	_ehb | 
 | 	sll	$0, $0, 3 | 
 | 	.endm | 
 |  | 
 | /* | 
 |  * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent | 
 |  * use of the JTLB for instructions should not occur for 4 cpu cycles and use | 
 |  * for data translations should not occur for 3 cpu cycles. | 
 |  */ | 
 | #ifdef CONFIG_CPU_RM9000 | 
 |  | 
 | 	.macro	mtc0_tlbw_hazard | 
 | 	.set	push | 
 | 	.set	mips32 | 
 | 	_ssnop; _ssnop; _ssnop; _ssnop | 
 | 	.set	pop | 
 | 	.endm | 
 |  | 
 | 	.macro	tlbw_eret_hazard | 
 | 	.set	push | 
 | 	.set	mips32 | 
 | 	_ssnop; _ssnop; _ssnop; _ssnop | 
 | 	.set	pop | 
 | 	.endm | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * The taken branch will result in a two cycle penalty for the two killed | 
 |  * instructions on R4000 / R4400.  Other processors only have a single cycle | 
 |  * hazard so this is nice trick to have an optimal code for a range of | 
 |  * processors. | 
 |  */ | 
 | 	.macro	mtc0_tlbw_hazard | 
 | 	b	. + 8 | 
 | 	.endm | 
 |  | 
 | 	.macro	tlbw_eret_hazard | 
 | 	.endm | 
 | #endif | 
 |  | 
 | /* | 
 |  * mtc0->mfc0 hazard | 
 |  * The 24K has a 2 cycle mtc0/mfc0 execution hazard. | 
 |  * It is a MIPS32R2 processor so ehb will clear the hazard. | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_CPU_MIPSR2 | 
 | /* | 
 |  * Use a macro for ehb unless explicit support for MIPSR2 is enabled | 
 |  */ | 
 |  | 
 | #define irq_enable_hazard | 
 | 	_ehb | 
 |  | 
 | #define irq_disable_hazard | 
 | 	_ehb | 
 |  | 
 | #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) | 
 |  | 
 | /* | 
 |  * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer. | 
 |  */ | 
 |  | 
 | #define irq_enable_hazard | 
 |  | 
 | #define irq_disable_hazard | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * Classic MIPS needs 1 - 3 nops or ssnops | 
 |  */ | 
 | #define irq_enable_hazard | 
 | #define irq_disable_hazard						\ | 
 | 	_ssnop; _ssnop; _ssnop | 
 |  | 
 | #endif | 
 |  | 
 | #else /* __ASSEMBLY__ */ | 
 |  | 
 | __asm__( | 
 | 	"	.macro	_ssnop					\n\t" | 
 | 	"	sll	$0, $2, 1				\n\t" | 
 | 	"	.endm						\n\t" | 
 | 	"							\n\t" | 
 | 	"	.macro	_ehb					\n\t" | 
 | 	"	sll	$0, $0, 3				\n\t" | 
 | 	"	.endm						\n\t"); | 
 |  | 
 | #ifdef CONFIG_CPU_RM9000 | 
 | /* | 
 |  * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent | 
 |  * use of the JTLB for instructions should not occur for 4 cpu cycles and use | 
 |  * for data translations should not occur for 3 cpu cycles. | 
 |  */ | 
 |  | 
 | #define mtc0_tlbw_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 		".set\tmips32\n\t"					\ | 
 | 		"_ssnop; _ssnop; _ssnop; _ssnop\n\t"			\ | 
 | 		".set\tmips0") | 
 |  | 
 | #define tlbw_use_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 		".set\tmips32\n\t"					\ | 
 | 		"_ssnop; _ssnop; _ssnop; _ssnop\n\t"			\ | 
 | 		".set\tmips0") | 
 | #else | 
 |  | 
 | /* | 
 |  * Overkill warning ... | 
 |  */ | 
 | #define mtc0_tlbw_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 		".set noreorder\n\t"					\ | 
 | 		"nop; nop; nop; nop; nop; nop;\n\t"			\ | 
 | 		".set reorder\n\t") | 
 |  | 
 | #define tlbw_use_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 		".set noreorder\n\t"					\ | 
 | 		"nop; nop; nop; nop; nop; nop;\n\t"			\ | 
 | 		".set reorder\n\t") | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * mtc0->mfc0 hazard | 
 |  * The 24K has a 2 cycle mtc0/mfc0 execution hazard. | 
 |  * It is a MIPS32R2 processor so ehb will clear the hazard. | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_CPU_MIPSR2 | 
 | /* | 
 |  * Use a macro for ehb unless explicit support for MIPSR2 is enabled | 
 |  */ | 
 | __asm__( | 
 | 	"	.macro\tirq_enable_hazard			\n\t" | 
 | 	"	_ehb						\n\t" | 
 | 	"	.endm						\n\t" | 
 | 	"							\n\t" | 
 | 	"	.macro\tirq_disable_hazard			\n\t" | 
 | 	"	_ehb						\n\t" | 
 | 	"	.endm"); | 
 |  | 
 | #define irq_enable_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 	"_ehb\t\t\t\t# irq_enable_hazard") | 
 |  | 
 | #define irq_disable_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 	"_ehb\t\t\t\t# irq_disable_hazard") | 
 |  | 
 | #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) | 
 |  | 
 | /* | 
 |  * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer. | 
 |  */ | 
 |  | 
 | __asm__( | 
 | 	"	.macro\tirq_enable_hazard			\n\t" | 
 | 	"	.endm						\n\t" | 
 | 	"							\n\t" | 
 | 	"	.macro\tirq_disable_hazard			\n\t" | 
 | 	"	.endm"); | 
 |  | 
 | #define irq_enable_hazard()	do { } while (0) | 
 | #define irq_disable_hazard()	do { } while (0) | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * Default for classic MIPS processors.  Assume worst case hazards but don't | 
 |  * care about the irq_enable_hazard - sooner or later the hardware will | 
 |  * enable it and we don't care when exactly. | 
 |  */ | 
 |  | 
 | __asm__( | 
 | 	"	#						\n\t" | 
 | 	"	# There is a hazard but we do not care		\n\t" | 
 | 	"	#						\n\t" | 
 | 	"	.macro\tirq_enable_hazard			\n\t" | 
 | 	"	.endm						\n\t" | 
 | 	"							\n\t" | 
 | 	"	.macro\tirq_disable_hazard			\n\t" | 
 | 	"	_ssnop; _ssnop; _ssnop				\n\t" | 
 | 	"	.endm"); | 
 |  | 
 | #define irq_enable_hazard()	do { } while (0) | 
 | #define irq_disable_hazard()						\ | 
 | 	__asm__ __volatile__(						\ | 
 | 	"_ssnop; _ssnop; _ssnop;\t\t# irq_disable_hazard") | 
 |  | 
 | #endif | 
 |  | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | #endif /* _ASM_HAZARDS_H */ |