| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Copyright (C) 1994, 1995 Waldorf GmbH | 
 |  * Copyright (C) 1994 - 2000 Ralf Baechle | 
 |  * Copyright (C) 1999, 2000 Silicon Graphics, Inc. | 
 |  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved. | 
 |  *	Author:	Maciej W. Rozycki <macro@mips.com> | 
 |  */ | 
 | #ifndef _ASM_IO_H | 
 | #define _ASM_IO_H | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 |  | 
 | #include <asm/addrspace.h> | 
 | #include <asm/bug.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/cpu-features.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable-bits.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #include <mangle-port.h> | 
 |  | 
 | /* | 
 |  * Slowdown I/O port space accesses for antique hardware. | 
 |  */ | 
 | #undef CONF_SLOWDOWN_IO | 
 |  | 
 | /* | 
 |  * Raw operations are never swapped in software.  Otoh values that raw | 
 |  * operations are working on may or may not have been swapped by the bus | 
 |  * hardware.  An example use would be for flash memory that's used for | 
 |  * execute in place. | 
 |  */ | 
 | # define __raw_ioswabb(x)	(x) | 
 | # define __raw_ioswabw(x)	(x) | 
 | # define __raw_ioswabl(x)	(x) | 
 | # define __raw_ioswabq(x)	(x) | 
 |  | 
 | /* | 
 |  * Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware; | 
 |  * less sane hardware forces software to fiddle with this... | 
 |  */ | 
 | #if defined(CONFIG_SWAP_IO_SPACE) | 
 |  | 
 | # define ioswabb(x)		(x) | 
 | # ifdef CONFIG_SGI_IP22 | 
 | /* | 
 |  * IP22 seems braindead enough to swap 16bits values in hardware, but | 
 |  * not 32bits.  Go figure... Can't tell without documentation. | 
 |  */ | 
 | #  define ioswabw(x)		(x) | 
 | # else | 
 | #  define ioswabw(x)		le16_to_cpu(x) | 
 | # endif | 
 | # define ioswabl(x)		le32_to_cpu(x) | 
 | # define ioswabq(x)		le64_to_cpu(x) | 
 |  | 
 | #else | 
 |  | 
 | # define ioswabb(x)		(x) | 
 | # define ioswabw(x)		(x) | 
 | # define ioswabl(x)		(x) | 
 | # define ioswabq(x)		(x) | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Native bus accesses never swapped. | 
 |  */ | 
 | #define bus_ioswabb(x)		(x) | 
 | #define bus_ioswabw(x)		(x) | 
 | #define bus_ioswabl(x)		(x) | 
 | #define bus_ioswabq(x)		(x) | 
 |  | 
 | #define __bus_ioswabq		bus_ioswabq | 
 |  | 
 | #define IO_SPACE_LIMIT 0xffff | 
 |  | 
 | /* | 
 |  * On MIPS I/O ports are memory mapped, so we access them using normal | 
 |  * load/store instructions. mips_io_port_base is the virtual address to | 
 |  * which all ports are being mapped.  For sake of efficiency some code | 
 |  * assumes that this is an address that can be loaded with a single lui | 
 |  * instruction, so the lower 16 bits must be zero.  Should be true on | 
 |  * on any sane architecture; generic code does not use this assumption. | 
 |  */ | 
 | extern const unsigned long mips_io_port_base; | 
 |  | 
 | #define set_io_port_base(base)	\ | 
 | 	do { * (unsigned long *) &mips_io_port_base = (base); } while (0) | 
 |  | 
 | /* | 
 |  * Thanks to James van Artsdalen for a better timing-fix than | 
 |  * the two short jumps: using outb's to a nonexistent port seems | 
 |  * to guarantee better timings even on fast machines. | 
 |  * | 
 |  * On the other hand, I'd like to be sure of a non-existent port: | 
 |  * I feel a bit unsafe about using 0x80 (should be safe, though) | 
 |  * | 
 |  *		Linus | 
 |  * | 
 |  */ | 
 |  | 
 | #define __SLOW_DOWN_IO \ | 
 | 	__asm__ __volatile__( \ | 
 | 		"sb\t$0,0x80(%0)" \ | 
 | 		: : "r" (mips_io_port_base)); | 
 |  | 
 | #ifdef CONF_SLOWDOWN_IO | 
 | #ifdef REALLY_SLOW_IO | 
 | #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } | 
 | #else | 
 | #define SLOW_DOWN_IO __SLOW_DOWN_IO | 
 | #endif | 
 | #else | 
 | #define SLOW_DOWN_IO | 
 | #endif | 
 |  | 
 | /* | 
 |  *     virt_to_phys    -       map virtual addresses to physical | 
 |  *     @address: address to remap | 
 |  * | 
 |  *     The returned physical address is the physical (CPU) mapping for | 
 |  *     the memory address given. It is only valid to use this function on | 
 |  *     addresses directly mapped or allocated via kmalloc. | 
 |  * | 
 |  *     This function does not give bus mappings for DMA transfers. In | 
 |  *     almost all conceivable cases a device driver should not be using | 
 |  *     this function | 
 |  */ | 
 | static inline unsigned long virt_to_phys(volatile void * address) | 
 | { | 
 | 	return (unsigned long)address - PAGE_OFFSET; | 
 | } | 
 |  | 
 | /* | 
 |  *     phys_to_virt    -       map physical address to virtual | 
 |  *     @address: address to remap | 
 |  * | 
 |  *     The returned virtual address is a current CPU mapping for | 
 |  *     the memory address given. It is only valid to use this function on | 
 |  *     addresses that have a kernel mapping | 
 |  * | 
 |  *     This function does not handle bus mappings for DMA transfers. In | 
 |  *     almost all conceivable cases a device driver should not be using | 
 |  *     this function | 
 |  */ | 
 | static inline void * phys_to_virt(unsigned long address) | 
 | { | 
 | 	return (void *)(address + PAGE_OFFSET); | 
 | } | 
 |  | 
 | /* | 
 |  * ISA I/O bus memory addresses are 1:1 with the physical address. | 
 |  */ | 
 | static inline unsigned long isa_virt_to_bus(volatile void * address) | 
 | { | 
 | 	return (unsigned long)address - PAGE_OFFSET; | 
 | } | 
 |  | 
 | static inline void * isa_bus_to_virt(unsigned long address) | 
 | { | 
 | 	return (void *)(address + PAGE_OFFSET); | 
 | } | 
 |  | 
 | #define isa_page_to_bus page_to_phys | 
 |  | 
 | /* | 
 |  * However PCI ones are not necessarily 1:1 and therefore these interfaces | 
 |  * are forbidden in portable PCI drivers. | 
 |  * | 
 |  * Allow them for x86 for legacy drivers, though. | 
 |  */ | 
 | #define virt_to_bus virt_to_phys | 
 | #define bus_to_virt phys_to_virt | 
 |  | 
 | /* | 
 |  * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped | 
 |  * for the processor.  This implies the assumption that there is only | 
 |  * one of these busses. | 
 |  */ | 
 | extern unsigned long isa_slot_offset; | 
 |  | 
 | /* | 
 |  * Change "struct page" to physical address. | 
 |  */ | 
 | #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) | 
 |  | 
 | extern void * __ioremap(phys_t offset, phys_t size, unsigned long flags); | 
 | extern void __iounmap(volatile void __iomem *addr); | 
 |  | 
 | static inline void * __ioremap_mode(phys_t offset, unsigned long size, | 
 | 	unsigned long flags) | 
 | { | 
 | 	if (cpu_has_64bit_addresses) { | 
 | 		u64 base = UNCAC_BASE; | 
 |  | 
 | 		/* | 
 | 		 * R10000 supports a 2 bit uncached attribute therefore | 
 | 		 * UNCAC_BASE may not equal IO_BASE. | 
 | 		 */ | 
 | 		if (flags == _CACHE_UNCACHED) | 
 | 			base = (u64) IO_BASE; | 
 | 		return (void *) (unsigned long) (base + offset); | 
 | 	} | 
 |  | 
 | 	return __ioremap(offset, size, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * ioremap     -   map bus memory into CPU space | 
 |  * @offset:    bus address of the memory | 
 |  * @size:      size of the resource to map | 
 |  * | 
 |  * ioremap performs a platform specific sequence of operations to | 
 |  * make bus memory CPU accessible via the readb/readw/readl/writeb/ | 
 |  * writew/writel functions and the other mmio helpers. The returned | 
 |  * address is not guaranteed to be usable directly as a virtual | 
 |  * address. | 
 |  */ | 
 | #define ioremap(offset, size)						\ | 
 | 	__ioremap_mode((offset), (size), _CACHE_UNCACHED) | 
 |  | 
 | /* | 
 |  * ioremap_nocache     -   map bus memory into CPU space | 
 |  * @offset:    bus address of the memory | 
 |  * @size:      size of the resource to map | 
 |  * | 
 |  * ioremap_nocache performs a platform specific sequence of operations to | 
 |  * make bus memory CPU accessible via the readb/readw/readl/writeb/ | 
 |  * writew/writel functions and the other mmio helpers. The returned | 
 |  * address is not guaranteed to be usable directly as a virtual | 
 |  * address. | 
 |  * | 
 |  * This version of ioremap ensures that the memory is marked uncachable | 
 |  * on the CPU as well as honouring existing caching rules from things like | 
 |  * the PCI bus. Note that there are other caches and buffers on many | 
 |  * busses. In paticular driver authors should read up on PCI writes | 
 |  * | 
 |  * It's useful if some control registers are in such an area and | 
 |  * write combining or read caching is not desirable: | 
 |  */ | 
 | #define ioremap_nocache(offset, size)					\ | 
 | 	__ioremap_mode((offset), (size), _CACHE_UNCACHED) | 
 |  | 
 | /* | 
 |  * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow | 
 |  * requests a cachable mapping, ioremap_uncached_accelerated requests a | 
 |  * mapping using the uncached accelerated mode which isn't supported on | 
 |  * all processors. | 
 |  */ | 
 | #define ioremap_cacheable_cow(offset, size)				\ | 
 | 	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) | 
 | #define ioremap_uncached_accelerated(offset, size)			\ | 
 | 	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) | 
 |  | 
 | static inline void iounmap(volatile void __iomem *addr) | 
 | { | 
 | 	if (cpu_has_64bit_addresses) | 
 | 		return; | 
 |  | 
 | 	__iounmap(addr); | 
 | } | 
 |  | 
 |  | 
 | #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\ | 
 | 									\ | 
 | static inline void pfx##write##bwlq(type val,				\ | 
 | 				    volatile void __iomem *mem)		\ | 
 | {									\ | 
 | 	volatile type *__mem;						\ | 
 | 	type __val;							\ | 
 | 									\ | 
 | 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\ | 
 | 									\ | 
 | 	__val = pfx##ioswab##bwlq(val);					\ | 
 | 									\ | 
 | 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\ | 
 | 		*__mem = __val;						\ | 
 | 	else if (cpu_has_64bits) {					\ | 
 | 		unsigned long __flags;					\ | 
 | 		type __tmp;						\ | 
 | 									\ | 
 | 		if (irq)						\ | 
 | 			local_irq_save(__flags);			\ | 
 | 		__asm__ __volatile__(					\ | 
 | 			".set	mips3"		"\t\t# __writeq""\n\t"	\ | 
 | 			"dsll32	%L0, %L0, 0"			"\n\t"	\ | 
 | 			"dsrl32	%L0, %L0, 0"			"\n\t"	\ | 
 | 			"dsll32	%M0, %M0, 0"			"\n\t"	\ | 
 | 			"or	%L0, %L0, %M0"			"\n\t"	\ | 
 | 			"sd	%L0, %2"			"\n\t"	\ | 
 | 			".set	mips0"				"\n"	\ | 
 | 			: "=r" (__tmp)					\ | 
 | 			: "0" (__val), "m" (*__mem));			\ | 
 | 		if (irq)						\ | 
 | 			local_irq_restore(__flags);			\ | 
 | 	} else								\ | 
 | 		BUG();							\ | 
 | }									\ | 
 | 									\ | 
 | static inline type pfx##read##bwlq(volatile void __iomem *mem)		\ | 
 | {									\ | 
 | 	volatile type *__mem;						\ | 
 | 	type __val;							\ | 
 | 									\ | 
 | 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\ | 
 | 									\ | 
 | 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\ | 
 | 		__val = *__mem;						\ | 
 | 	else if (cpu_has_64bits) {					\ | 
 | 		unsigned long __flags;					\ | 
 | 									\ | 
 | 		local_irq_save(__flags);				\ | 
 | 		__asm__ __volatile__(					\ | 
 | 			".set	mips3"		"\t\t# __readq"	"\n\t"	\ | 
 | 			"ld	%L0, %1"			"\n\t"	\ | 
 | 			"dsra32	%M0, %L0, 0"			"\n\t"	\ | 
 | 			"sll	%L0, %L0, 0"			"\n\t"	\ | 
 | 			".set	mips0"				"\n"	\ | 
 | 			: "=r" (__val)					\ | 
 | 			: "m" (*__mem));				\ | 
 | 		local_irq_restore(__flags);				\ | 
 | 	} else {							\ | 
 | 		__val = 0;						\ | 
 | 		BUG();							\ | 
 | 	}								\ | 
 | 									\ | 
 | 	return pfx##ioswab##bwlq(__val);				\ | 
 | } | 
 |  | 
 | #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\ | 
 | 									\ | 
 | static inline void pfx##out##bwlq##p(type val, unsigned long port)	\ | 
 | {									\ | 
 | 	volatile type *__addr;						\ | 
 | 	type __val;							\ | 
 | 									\ | 
 | 	port = __swizzle_addr_##bwlq(port);				\ | 
 | 	__addr = (void *)(mips_io_port_base + port);			\ | 
 | 									\ | 
 | 	__val = pfx##ioswab##bwlq(val);					\ | 
 | 									\ | 
 | 	if (sizeof(type) != sizeof(u64)) {				\ | 
 | 		*__addr = __val;					\ | 
 | 		slow;							\ | 
 | 	} else								\ | 
 | 		BUILD_BUG();						\ | 
 | }									\ | 
 | 									\ | 
 | static inline type pfx##in##bwlq##p(unsigned long port)			\ | 
 | {									\ | 
 | 	volatile type *__addr;						\ | 
 | 	type __val;							\ | 
 | 									\ | 
 | 	port = __swizzle_addr_##bwlq(port);				\ | 
 | 	__addr = (void *)(mips_io_port_base + port);			\ | 
 | 									\ | 
 | 	if (sizeof(type) != sizeof(u64)) {				\ | 
 | 		__val = *__addr;					\ | 
 | 		slow;							\ | 
 | 	} else {							\ | 
 | 		__val = 0;						\ | 
 | 		BUILD_BUG();						\ | 
 | 	}								\ | 
 | 									\ | 
 | 	return pfx##ioswab##bwlq(__val);				\ | 
 | } | 
 |  | 
 | #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\ | 
 | 									\ | 
 | __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) | 
 |  | 
 | #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\ | 
 | 									\ | 
 | __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)				\ | 
 | __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) | 
 |  | 
 | #define BUILDIO(bwlq, type)						\ | 
 | 									\ | 
 | __BUILD_MEMORY_PFX(, bwlq, type)					\ | 
 | __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\ | 
 | __BUILD_MEMORY_PFX(bus_, bwlq, type)					\ | 
 | __BUILD_IOPORT_PFX(, bwlq, type)					\ | 
 | __BUILD_IOPORT_PFX(__raw_, bwlq, type) | 
 |  | 
 | #define __BUILDIO(bwlq, type)						\ | 
 | 									\ | 
 | __BUILD_MEMORY_SINGLE(__bus_, bwlq, type, 0) | 
 |  | 
 | BUILDIO(b, u8) | 
 | BUILDIO(w, u16) | 
 | BUILDIO(l, u32) | 
 | BUILDIO(q, u64) | 
 |  | 
 | __BUILDIO(q, u64) | 
 |  | 
 | #define readb_relaxed			readb | 
 | #define readw_relaxed			readw | 
 | #define readl_relaxed			readl | 
 | #define readq_relaxed			readq | 
 |  | 
 | /* | 
 |  * Some code tests for these symbols | 
 |  */ | 
 | #define readq				readq | 
 | #define writeq				writeq | 
 |  | 
 | #define __BUILD_MEMORY_STRING(bwlq, type)				\ | 
 | 									\ | 
 | static inline void writes##bwlq(volatile void __iomem *mem, void *addr,	\ | 
 | 				unsigned int count)			\ | 
 | {									\ | 
 | 	volatile type *__addr = addr;					\ | 
 | 									\ | 
 | 	while (count--) {						\ | 
 | 		__raw_write##bwlq(*__addr, mem);			\ | 
 | 		__addr++;						\ | 
 | 	}								\ | 
 | }									\ | 
 | 									\ | 
 | static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\ | 
 | 			       unsigned int count)			\ | 
 | {									\ | 
 | 	volatile type *__addr = addr;					\ | 
 | 									\ | 
 | 	while (count--) {						\ | 
 | 		*__addr = __raw_read##bwlq(mem);			\ | 
 | 		__addr++;						\ | 
 | 	}								\ | 
 | } | 
 |  | 
 | #define __BUILD_IOPORT_STRING(bwlq, type)				\ | 
 | 									\ | 
 | static inline void outs##bwlq(unsigned long port, void *addr,		\ | 
 | 			      unsigned int count)			\ | 
 | {									\ | 
 | 	volatile type *__addr = addr;					\ | 
 | 									\ | 
 | 	while (count--) {						\ | 
 | 		__raw_out##bwlq(*__addr, port);				\ | 
 | 		__addr++;						\ | 
 | 	}								\ | 
 | }									\ | 
 | 									\ | 
 | static inline void ins##bwlq(unsigned long port, void *addr,		\ | 
 | 			     unsigned int count)			\ | 
 | {									\ | 
 | 	volatile type *__addr = addr;					\ | 
 | 									\ | 
 | 	while (count--) {						\ | 
 | 		*__addr = __raw_in##bwlq(port);				\ | 
 | 		__addr++;						\ | 
 | 	}								\ | 
 | } | 
 |  | 
 | #define BUILDSTRING(bwlq, type)						\ | 
 | 									\ | 
 | __BUILD_MEMORY_STRING(bwlq, type)					\ | 
 | __BUILD_IOPORT_STRING(bwlq, type) | 
 |  | 
 | BUILDSTRING(b, u8) | 
 | BUILDSTRING(w, u16) | 
 | BUILDSTRING(l, u32) | 
 | BUILDSTRING(q, u64) | 
 |  | 
 |  | 
 | /* Depends on MIPS II instruction set */ | 
 | #define mmiowb() asm volatile ("sync" ::: "memory") | 
 |  | 
 | #define memset_io(a,b,c)	memset((void *)(a),(b),(c)) | 
 | #define memcpy_fromio(a,b,c)	memcpy((a),(void *)(b),(c)) | 
 | #define memcpy_toio(a,b,c)	memcpy((void *)(a),(b),(c)) | 
 |  | 
 | /* | 
 |  * Memory Mapped I/O | 
 |  */ | 
 | #define ioread8(addr)		readb(addr) | 
 | #define ioread16(addr)		readw(addr) | 
 | #define ioread32(addr)		readl(addr) | 
 |  | 
 | #define iowrite8(b,addr)	writeb(b,addr) | 
 | #define iowrite16(w,addr)	writew(w,addr) | 
 | #define iowrite32(l,addr)	writel(l,addr) | 
 |  | 
 | #define ioread8_rep(a,b,c)	readsb(a,b,c) | 
 | #define ioread16_rep(a,b,c)	readsw(a,b,c) | 
 | #define ioread32_rep(a,b,c)	readsl(a,b,c) | 
 |  | 
 | #define iowrite8_rep(a,b,c)	writesb(a,b,c) | 
 | #define iowrite16_rep(a,b,c)	writesw(a,b,c) | 
 | #define iowrite32_rep(a,b,c)	writesl(a,b,c) | 
 |  | 
 | /* Create a virtual mapping cookie for an IO port range */ | 
 | extern void __iomem *ioport_map(unsigned long port, unsigned int nr); | 
 | extern void ioport_unmap(void __iomem *); | 
 |  | 
 | /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ | 
 | struct pci_dev; | 
 | extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); | 
 | extern void pci_iounmap(struct pci_dev *dev, void __iomem *); | 
 |  | 
 | /* | 
 |  * ISA space is 'always mapped' on currently supported MIPS systems, no need | 
 |  * to explicitly ioremap() it. The fact that the ISA IO space is mapped | 
 |  * to PAGE_OFFSET is pure coincidence - it does not mean ISA values | 
 |  * are physical addresses. The following constant pointer can be | 
 |  * used as the IO-area pointer (it can be iounmapped as well, so the | 
 |  * analogy with PCI is quite large): | 
 |  */ | 
 | #define __ISA_IO_base ((char *)(isa_slot_offset)) | 
 |  | 
 | #define isa_readb(a)		readb(__ISA_IO_base + (a)) | 
 | #define isa_readw(a)		readw(__ISA_IO_base + (a)) | 
 | #define isa_readl(a)		readl(__ISA_IO_base + (a)) | 
 | #define isa_readq(a)		readq(__ISA_IO_base + (a)) | 
 | #define isa_writeb(b,a)		writeb(b,__ISA_IO_base + (a)) | 
 | #define isa_writew(w,a)		writew(w,__ISA_IO_base + (a)) | 
 | #define isa_writel(l,a)		writel(l,__ISA_IO_base + (a)) | 
 | #define isa_writeq(q,a)		writeq(q,__ISA_IO_base + (a)) | 
 | #define isa_memset_io(a,b,c)	memset_io(__ISA_IO_base + (a),(b),(c)) | 
 | #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c)) | 
 | #define isa_memcpy_toio(a,b,c)	memcpy_toio(__ISA_IO_base + (a),(b),(c)) | 
 |  | 
 | /* | 
 |  * We don't have csum_partial_copy_fromio() yet, so we cheat here and | 
 |  * just copy it. The net code will then do the checksum later. | 
 |  */ | 
 | #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) | 
 | #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d)) | 
 |  | 
 | /* | 
 |  *     check_signature         -       find BIOS signatures | 
 |  *     @io_addr: mmio address to check | 
 |  *     @signature:  signature block | 
 |  *     @length: length of signature | 
 |  * | 
 |  *     Perform a signature comparison with the mmio address io_addr. This | 
 |  *     address should have been obtained by ioremap. | 
 |  *     Returns 1 on a match. | 
 |  */ | 
 | static inline int check_signature(char __iomem *io_addr, | 
 | 	const unsigned char *signature, int length) | 
 | { | 
 | 	int retval = 0; | 
 | 	do { | 
 | 		if (readb(io_addr) != *signature) | 
 | 			goto out; | 
 | 		io_addr++; | 
 | 		signature++; | 
 | 		length--; | 
 | 	} while (length); | 
 | 	retval = 1; | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * The caches on some architectures aren't dma-coherent and have need to | 
 |  * handle this in software.  There are three types of operations that | 
 |  * can be applied to dma buffers. | 
 |  * | 
 |  *  - dma_cache_wback_inv(start, size) makes caches and coherent by | 
 |  *    writing the content of the caches back to memory, if necessary. | 
 |  *    The function also invalidates the affected part of the caches as | 
 |  *    necessary before DMA transfers from outside to memory. | 
 |  *  - dma_cache_wback(start, size) makes caches and coherent by | 
 |  *    writing the content of the caches back to memory, if necessary. | 
 |  *    The function also invalidates the affected part of the caches as | 
 |  *    necessary before DMA transfers from outside to memory. | 
 |  *  - dma_cache_inv(start, size) invalidates the affected parts of the | 
 |  *    caches.  Dirty lines of the caches may be written back or simply | 
 |  *    be discarded.  This operation is necessary before dma operations | 
 |  *    to the memory. | 
 |  */ | 
 | #ifdef CONFIG_DMA_NONCOHERENT | 
 |  | 
 | extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); | 
 | extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); | 
 | extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); | 
 |  | 
 | #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start,size) | 
 | #define dma_cache_wback(start, size)		_dma_cache_wback(start,size) | 
 | #define dma_cache_inv(start, size)		_dma_cache_inv(start,size) | 
 |  | 
 | #else /* Sane hardware */ | 
 |  | 
 | #define dma_cache_wback_inv(start,size)	\ | 
 | 	do { (void) (start); (void) (size); } while (0) | 
 | #define dma_cache_wback(start,size)	\ | 
 | 	do { (void) (start); (void) (size); } while (0) | 
 | #define dma_cache_inv(start,size)	\ | 
 | 	do { (void) (start); (void) (size); } while (0) | 
 |  | 
 | #endif /* CONFIG_DMA_NONCOHERENT */ | 
 |  | 
 | /* | 
 |  * Read a 32-bit register that requires a 64-bit read cycle on the bus. | 
 |  * Avoid interrupt mucking, just adjust the address for 4-byte access. | 
 |  * Assume the addresses are 8-byte aligned. | 
 |  */ | 
 | #ifdef __MIPSEB__ | 
 | #define __CSR_32_ADJUST 4 | 
 | #else | 
 | #define __CSR_32_ADJUST 0 | 
 | #endif | 
 |  | 
 | #define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) | 
 | #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) | 
 |  | 
 | /* | 
 |  * Convert a physical pointer to a virtual kernel pointer for /dev/mem | 
 |  * access | 
 |  */ | 
 | #define xlate_dev_mem_ptr(p)	__va(p) | 
 |  | 
 | /* | 
 |  * Convert a virtual cached pointer to an uncached pointer | 
 |  */ | 
 | #define xlate_dev_kmem_ptr(p)	p | 
 |  | 
 | #endif /* _ASM_IO_H */ |