| /* | 
 |  *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org> | 
 |  *  Copyright (C) 2003		Red Hat | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/major.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/genhd.h> | 
 | #include <linux/blkpg.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/ide.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/nmi.h> | 
 |  | 
 | #include <asm/byteorder.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 |  | 
 | /* | 
 |  *	Conventional PIO operations for ATA devices | 
 |  */ | 
 |  | 
 | static u8 ide_inb (unsigned long port) | 
 | { | 
 | 	return (u8) inb(port); | 
 | } | 
 |  | 
 | static void ide_outb (u8 val, unsigned long port) | 
 | { | 
 | 	outb(val, port); | 
 | } | 
 |  | 
 | /* | 
 |  *	MMIO operations, typically used for SATA controllers | 
 |  */ | 
 |  | 
 | static u8 ide_mm_inb (unsigned long port) | 
 | { | 
 | 	return (u8) readb((void __iomem *) port); | 
 | } | 
 |  | 
 | static void ide_mm_outb (u8 value, unsigned long port) | 
 | { | 
 | 	writeb(value, (void __iomem *) port); | 
 | } | 
 |  | 
 | void SELECT_DRIVE (ide_drive_t *drive) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	const struct ide_port_ops *port_ops = hwif->port_ops; | 
 | 	ide_task_t task; | 
 |  | 
 | 	if (port_ops && port_ops->selectproc) | 
 | 		port_ops->selectproc(drive); | 
 |  | 
 | 	memset(&task, 0, sizeof(task)); | 
 | 	task.tf_flags = IDE_TFLAG_OUT_DEVICE; | 
 |  | 
 | 	drive->hwif->tp_ops->tf_load(drive, &task); | 
 | } | 
 |  | 
 | void SELECT_MASK(ide_drive_t *drive, int mask) | 
 | { | 
 | 	const struct ide_port_ops *port_ops = drive->hwif->port_ops; | 
 |  | 
 | 	if (port_ops && port_ops->maskproc) | 
 | 		port_ops->maskproc(drive, mask); | 
 | } | 
 |  | 
 | void ide_exec_command(ide_hwif_t *hwif, u8 cmd) | 
 | { | 
 | 	if (hwif->host_flags & IDE_HFLAG_MMIO) | 
 | 		writeb(cmd, (void __iomem *)hwif->io_ports.command_addr); | 
 | 	else | 
 | 		outb(cmd, hwif->io_ports.command_addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_exec_command); | 
 |  | 
 | u8 ide_read_status(ide_hwif_t *hwif) | 
 | { | 
 | 	if (hwif->host_flags & IDE_HFLAG_MMIO) | 
 | 		return readb((void __iomem *)hwif->io_ports.status_addr); | 
 | 	else | 
 | 		return inb(hwif->io_ports.status_addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_read_status); | 
 |  | 
 | u8 ide_read_altstatus(ide_hwif_t *hwif) | 
 | { | 
 | 	if (hwif->host_flags & IDE_HFLAG_MMIO) | 
 | 		return readb((void __iomem *)hwif->io_ports.ctl_addr); | 
 | 	else | 
 | 		return inb(hwif->io_ports.ctl_addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_read_altstatus); | 
 |  | 
 | u8 ide_read_sff_dma_status(ide_hwif_t *hwif) | 
 | { | 
 | 	if (hwif->host_flags & IDE_HFLAG_MMIO) | 
 | 		return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS)); | 
 | 	else | 
 | 		return inb(hwif->dma_base + ATA_DMA_STATUS); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_read_sff_dma_status); | 
 |  | 
 | void ide_set_irq(ide_hwif_t *hwif, int on) | 
 | { | 
 | 	u8 ctl = ATA_DEVCTL_OBS; | 
 |  | 
 | 	if (on == 4) { /* hack for SRST */ | 
 | 		ctl |= 4; | 
 | 		on &= ~4; | 
 | 	} | 
 |  | 
 | 	ctl |= on ? 0 : 2; | 
 |  | 
 | 	if (hwif->host_flags & IDE_HFLAG_MMIO) | 
 | 		writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr); | 
 | 	else | 
 | 		outb(ctl, hwif->io_ports.ctl_addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_set_irq); | 
 |  | 
 | void ide_tf_load(ide_drive_t *drive, ide_task_t *task) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	struct ide_io_ports *io_ports = &hwif->io_ports; | 
 | 	struct ide_taskfile *tf = &task->tf; | 
 | 	void (*tf_outb)(u8 addr, unsigned long port); | 
 | 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; | 
 | 	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF; | 
 |  | 
 | 	if (mmio) | 
 | 		tf_outb = ide_mm_outb; | 
 | 	else | 
 | 		tf_outb = ide_outb; | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_FLAGGED) | 
 | 		HIHI = 0xFF; | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_DATA) { | 
 | 		u16 data = (tf->hob_data << 8) | tf->data; | 
 |  | 
 | 		if (mmio) | 
 | 			writew(data, (void __iomem *)io_ports->data_addr); | 
 | 		else | 
 | 			outw(data, io_ports->data_addr); | 
 | 	} | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE) | 
 | 		tf_outb(tf->hob_feature, io_ports->feature_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT) | 
 | 		tf_outb(tf->hob_nsect, io_ports->nsect_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL) | 
 | 		tf_outb(tf->hob_lbal, io_ports->lbal_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM) | 
 | 		tf_outb(tf->hob_lbam, io_ports->lbam_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH) | 
 | 		tf_outb(tf->hob_lbah, io_ports->lbah_addr); | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE) | 
 | 		tf_outb(tf->feature, io_ports->feature_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_NSECT) | 
 | 		tf_outb(tf->nsect, io_ports->nsect_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_LBAL) | 
 | 		tf_outb(tf->lbal, io_ports->lbal_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_LBAM) | 
 | 		tf_outb(tf->lbam, io_ports->lbam_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_LBAH) | 
 | 		tf_outb(tf->lbah, io_ports->lbah_addr); | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE) | 
 | 		tf_outb((tf->device & HIHI) | drive->select, | 
 | 			 io_ports->device_addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_tf_load); | 
 |  | 
 | void ide_tf_read(ide_drive_t *drive, ide_task_t *task) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	struct ide_io_ports *io_ports = &hwif->io_ports; | 
 | 	struct ide_taskfile *tf = &task->tf; | 
 | 	void (*tf_outb)(u8 addr, unsigned long port); | 
 | 	u8 (*tf_inb)(unsigned long port); | 
 | 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; | 
 |  | 
 | 	if (mmio) { | 
 | 		tf_outb = ide_mm_outb; | 
 | 		tf_inb  = ide_mm_inb; | 
 | 	} else { | 
 | 		tf_outb = ide_outb; | 
 | 		tf_inb  = ide_inb; | 
 | 	} | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_DATA) { | 
 | 		u16 data; | 
 |  | 
 | 		if (mmio) | 
 | 			data = readw((void __iomem *)io_ports->data_addr); | 
 | 		else | 
 | 			data = inw(io_ports->data_addr); | 
 |  | 
 | 		tf->data = data & 0xff; | 
 | 		tf->hob_data = (data >> 8) & 0xff; | 
 | 	} | 
 |  | 
 | 	/* be sure we're looking at the low order bits */ | 
 | 	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr); | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_FEATURE) | 
 | 		tf->feature = tf_inb(io_ports->feature_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_NSECT) | 
 | 		tf->nsect  = tf_inb(io_ports->nsect_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_LBAL) | 
 | 		tf->lbal   = tf_inb(io_ports->lbal_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_LBAM) | 
 | 		tf->lbam   = tf_inb(io_ports->lbam_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_LBAH) | 
 | 		tf->lbah   = tf_inb(io_ports->lbah_addr); | 
 | 	if (task->tf_flags & IDE_TFLAG_IN_DEVICE) | 
 | 		tf->device = tf_inb(io_ports->device_addr); | 
 |  | 
 | 	if (task->tf_flags & IDE_TFLAG_LBA48) { | 
 | 		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr); | 
 |  | 
 | 		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE) | 
 | 			tf->hob_feature = tf_inb(io_ports->feature_addr); | 
 | 		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT) | 
 | 			tf->hob_nsect   = tf_inb(io_ports->nsect_addr); | 
 | 		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL) | 
 | 			tf->hob_lbal    = tf_inb(io_ports->lbal_addr); | 
 | 		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM) | 
 | 			tf->hob_lbam    = tf_inb(io_ports->lbam_addr); | 
 | 		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH) | 
 | 			tf->hob_lbah    = tf_inb(io_ports->lbah_addr); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_tf_read); | 
 |  | 
 | /* | 
 |  * Some localbus EIDE interfaces require a special access sequence | 
 |  * when using 32-bit I/O instructions to transfer data.  We call this | 
 |  * the "vlb_sync" sequence, which consists of three successive reads | 
 |  * of the sector count register location, with interrupts disabled | 
 |  * to ensure that the reads all happen together. | 
 |  */ | 
 | static void ata_vlb_sync(unsigned long port) | 
 | { | 
 | 	(void)inb(port); | 
 | 	(void)inb(port); | 
 | 	(void)inb(port); | 
 | } | 
 |  | 
 | /* | 
 |  * This is used for most PIO data transfers *from* the IDE interface | 
 |  * | 
 |  * These routines will round up any request for an odd number of bytes, | 
 |  * so if an odd len is specified, be sure that there's at least one | 
 |  * extra byte allocated for the buffer. | 
 |  */ | 
 | void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf, | 
 | 		    unsigned int len) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	struct ide_io_ports *io_ports = &hwif->io_ports; | 
 | 	unsigned long data_addr = io_ports->data_addr; | 
 | 	u8 io_32bit = drive->io_32bit; | 
 | 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; | 
 |  | 
 | 	len++; | 
 |  | 
 | 	if (io_32bit) { | 
 | 		unsigned long uninitialized_var(flags); | 
 |  | 
 | 		if ((io_32bit & 2) && !mmio) { | 
 | 			local_irq_save(flags); | 
 | 			ata_vlb_sync(io_ports->nsect_addr); | 
 | 		} | 
 |  | 
 | 		if (mmio) | 
 | 			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4); | 
 | 		else | 
 | 			insl(data_addr, buf, len / 4); | 
 |  | 
 | 		if ((io_32bit & 2) && !mmio) | 
 | 			local_irq_restore(flags); | 
 |  | 
 | 		if ((len & 3) >= 2) { | 
 | 			if (mmio) | 
 | 				__ide_mm_insw((void __iomem *)data_addr, | 
 | 						(u8 *)buf + (len & ~3), 1); | 
 | 			else | 
 | 				insw(data_addr, (u8 *)buf + (len & ~3), 1); | 
 | 		} | 
 | 	} else { | 
 | 		if (mmio) | 
 | 			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2); | 
 | 		else | 
 | 			insw(data_addr, buf, len / 2); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_input_data); | 
 |  | 
 | /* | 
 |  * This is used for most PIO data transfers *to* the IDE interface | 
 |  */ | 
 | void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf, | 
 | 		     unsigned int len) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	struct ide_io_ports *io_ports = &hwif->io_ports; | 
 | 	unsigned long data_addr = io_ports->data_addr; | 
 | 	u8 io_32bit = drive->io_32bit; | 
 | 	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; | 
 |  | 
 | 	if (io_32bit) { | 
 | 		unsigned long uninitialized_var(flags); | 
 |  | 
 | 		if ((io_32bit & 2) && !mmio) { | 
 | 			local_irq_save(flags); | 
 | 			ata_vlb_sync(io_ports->nsect_addr); | 
 | 		} | 
 |  | 
 | 		if (mmio) | 
 | 			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4); | 
 | 		else | 
 | 			outsl(data_addr, buf, len / 4); | 
 |  | 
 | 		if ((io_32bit & 2) && !mmio) | 
 | 			local_irq_restore(flags); | 
 |  | 
 | 		if ((len & 3) >= 2) { | 
 | 			if (mmio) | 
 | 				__ide_mm_outsw((void __iomem *)data_addr, | 
 | 						 (u8 *)buf + (len & ~3), 1); | 
 | 			else | 
 | 				outsw(data_addr, (u8 *)buf + (len & ~3), 1); | 
 | 		} | 
 | 	} else { | 
 | 		if (mmio) | 
 | 			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2); | 
 | 		else | 
 | 			outsw(data_addr, buf, len / 2); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_output_data); | 
 |  | 
 | u8 ide_read_error(ide_drive_t *drive) | 
 | { | 
 | 	ide_task_t task; | 
 |  | 
 | 	memset(&task, 0, sizeof(task)); | 
 | 	task.tf_flags = IDE_TFLAG_IN_FEATURE; | 
 |  | 
 | 	drive->hwif->tp_ops->tf_read(drive, &task); | 
 |  | 
 | 	return task.tf.error; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_read_error); | 
 |  | 
 | void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason) | 
 | { | 
 | 	ide_task_t task; | 
 |  | 
 | 	memset(&task, 0, sizeof(task)); | 
 | 	task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM | | 
 | 			IDE_TFLAG_IN_NSECT; | 
 |  | 
 | 	drive->hwif->tp_ops->tf_read(drive, &task); | 
 |  | 
 | 	*bcount = (task.tf.lbah << 8) | task.tf.lbam; | 
 | 	*ireason = task.tf.nsect & 3; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason); | 
 |  | 
 | const struct ide_tp_ops default_tp_ops = { | 
 | 	.exec_command		= ide_exec_command, | 
 | 	.read_status		= ide_read_status, | 
 | 	.read_altstatus		= ide_read_altstatus, | 
 | 	.read_sff_dma_status	= ide_read_sff_dma_status, | 
 |  | 
 | 	.set_irq		= ide_set_irq, | 
 |  | 
 | 	.tf_load		= ide_tf_load, | 
 | 	.tf_read		= ide_tf_read, | 
 |  | 
 | 	.input_data		= ide_input_data, | 
 | 	.output_data		= ide_output_data, | 
 | }; | 
 |  | 
 | void ide_fix_driveid(u16 *id) | 
 | { | 
 | #ifndef __LITTLE_ENDIAN | 
 | # ifdef __BIG_ENDIAN | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 256; i++) | 
 | 		id[i] = __le16_to_cpu(id[i]); | 
 | # else | 
 | #  error "Please fix <asm/byteorder.h>" | 
 | # endif | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * ide_fixstring() cleans up and (optionally) byte-swaps a text string, | 
 |  * removing leading/trailing blanks and compressing internal blanks. | 
 |  * It is primarily used to tidy up the model name/number fields as | 
 |  * returned by the ATA_CMD_ID_ATA[PI] commands. | 
 |  */ | 
 |  | 
 | void ide_fixstring (u8 *s, const int bytecount, const int byteswap) | 
 | { | 
 | 	u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */ | 
 |  | 
 | 	if (byteswap) { | 
 | 		/* convert from big-endian to host byte order */ | 
 | 		for (p = s ; p != end ; p += 2) | 
 | 			be16_to_cpus((u16 *) p); | 
 | 	} | 
 |  | 
 | 	/* strip leading blanks */ | 
 | 	p = s; | 
 | 	while (s != end && *s == ' ') | 
 | 		++s; | 
 | 	/* compress internal blanks and strip trailing blanks */ | 
 | 	while (s != end && *s) { | 
 | 		if (*s++ != ' ' || (s != end && *s && *s != ' ')) | 
 | 			*p++ = *(s-1); | 
 | 	} | 
 | 	/* wipe out trailing garbage */ | 
 | 	while (p != end) | 
 | 		*p++ = '\0'; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_fixstring); | 
 |  | 
 | /* | 
 |  * Needed for PCI irq sharing | 
 |  */ | 
 | int drive_is_ready (ide_drive_t *drive) | 
 | { | 
 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 	u8 stat			= 0; | 
 |  | 
 | 	if (drive->waiting_for_dma) | 
 | 		return hwif->dma_ops->dma_test_irq(drive); | 
 |  | 
 | 	/* | 
 | 	 * We do a passive status test under shared PCI interrupts on | 
 | 	 * cards that truly share the ATA side interrupt, but may also share | 
 | 	 * an interrupt with another pci card/device.  We make no assumptions | 
 | 	 * about possible isa-pnp and pci-pnp issues yet. | 
 | 	 */ | 
 | 	if (hwif->io_ports.ctl_addr && | 
 | 	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0) | 
 | 		stat = hwif->tp_ops->read_altstatus(hwif); | 
 | 	else | 
 | 		/* Note: this may clear a pending IRQ!! */ | 
 | 		stat = hwif->tp_ops->read_status(hwif); | 
 |  | 
 | 	if (stat & ATA_BUSY) | 
 | 		/* drive busy:  definitely not interrupting */ | 
 | 		return 0; | 
 |  | 
 | 	/* drive ready: *might* be interrupting */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(drive_is_ready); | 
 |  | 
 | /* | 
 |  * This routine busy-waits for the drive status to be not "busy". | 
 |  * It then checks the status for all of the "good" bits and none | 
 |  * of the "bad" bits, and if all is okay it returns 0.  All other | 
 |  * cases return error -- caller may then invoke ide_error(). | 
 |  * | 
 |  * This routine should get fixed to not hog the cpu during extra long waits.. | 
 |  * That could be done by busy-waiting for the first jiffy or two, and then | 
 |  * setting a timer to wake up at half second intervals thereafter, | 
 |  * until timeout is achieved, before timing out. | 
 |  */ | 
 | static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	const struct ide_tp_ops *tp_ops = hwif->tp_ops; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 | 	u8 stat; | 
 |  | 
 | 	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */ | 
 | 	stat = tp_ops->read_status(hwif); | 
 |  | 
 | 	if (stat & ATA_BUSY) { | 
 | 		local_irq_set(flags); | 
 | 		timeout += jiffies; | 
 | 		while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) { | 
 | 			if (time_after(jiffies, timeout)) { | 
 | 				/* | 
 | 				 * One last read after the timeout in case | 
 | 				 * heavy interrupt load made us not make any | 
 | 				 * progress during the timeout.. | 
 | 				 */ | 
 | 				stat = tp_ops->read_status(hwif); | 
 | 				if ((stat & ATA_BUSY) == 0) | 
 | 					break; | 
 |  | 
 | 				local_irq_restore(flags); | 
 | 				*rstat = stat; | 
 | 				return -EBUSY; | 
 | 			} | 
 | 		} | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | 	/* | 
 | 	 * Allow status to settle, then read it again. | 
 | 	 * A few rare drives vastly violate the 400ns spec here, | 
 | 	 * so we'll wait up to 10usec for a "good" status | 
 | 	 * rather than expensively fail things immediately. | 
 | 	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | 
 | 	 */ | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		udelay(1); | 
 | 		stat = tp_ops->read_status(hwif); | 
 |  | 
 | 		if (OK_STAT(stat, good, bad)) { | 
 | 			*rstat = stat; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	*rstat = stat; | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | /* | 
 |  * In case of error returns error value after doing "*startstop = ide_error()". | 
 |  * The caller should return the updated value of "startstop" in this case, | 
 |  * "startstop" is unchanged when the function returns 0. | 
 |  */ | 
 | int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) | 
 | { | 
 | 	int err; | 
 | 	u8 stat; | 
 |  | 
 | 	/* bail early if we've exceeded max_failures */ | 
 | 	if (drive->max_failures && (drive->failures > drive->max_failures)) { | 
 | 		*startstop = ide_stopped; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	err = __ide_wait_stat(drive, good, bad, timeout, &stat); | 
 |  | 
 | 	if (err) { | 
 | 		char *s = (err == -EBUSY) ? "status timeout" : "status error"; | 
 | 		*startstop = ide_error(drive, s, stat); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_wait_stat); | 
 |  | 
 | /** | 
 |  *	ide_in_drive_list	-	look for drive in black/white list | 
 |  *	@id: drive identifier | 
 |  *	@table: list to inspect | 
 |  * | 
 |  *	Look for a drive in the blacklist and the whitelist tables | 
 |  *	Returns 1 if the drive is found in the table. | 
 |  */ | 
 |  | 
 | int ide_in_drive_list(u16 *id, const struct drive_list_entry *table) | 
 | { | 
 | 	for ( ; table->id_model; table++) | 
 | 		if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) && | 
 | 		    (!table->id_firmware || | 
 | 		     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware))) | 
 | 			return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ide_in_drive_list); | 
 |  | 
 | /* | 
 |  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid. | 
 |  * We list them here and depend on the device side cable detection for them. | 
 |  * | 
 |  * Some optical devices with the buggy firmwares have the same problem. | 
 |  */ | 
 | static const struct drive_list_entry ivb_list[] = { | 
 | 	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	}, | 
 | 	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	}, | 
 | 	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	}, | 
 | 	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	}, | 
 | 	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	}, | 
 | 	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	}, | 
 | 	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	}, | 
 | 	{ "SAMSUNG SP0822N"		, "WA100-10"	}, | 
 | 	{ NULL				, NULL		} | 
 | }; | 
 |  | 
 | /* | 
 |  *  All hosts that use the 80c ribbon must use! | 
 |  *  The name is derived from upper byte of word 93 and the 80c ribbon. | 
 |  */ | 
 | u8 eighty_ninty_three (ide_drive_t *drive) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	u16 *id = drive->id; | 
 | 	int ivb = ide_in_drive_list(id, ivb_list); | 
 |  | 
 | 	if (hwif->cbl == ATA_CBL_PATA40_SHORT) | 
 | 		return 1; | 
 |  | 
 | 	if (ivb) | 
 | 		printk(KERN_DEBUG "%s: skipping word 93 validity check\n", | 
 | 				  drive->name); | 
 |  | 
 | 	if (ata_id_is_sata(id) && !ivb) | 
 | 		return 1; | 
 |  | 
 | 	if (hwif->cbl != ATA_CBL_PATA80 && !ivb) | 
 | 		goto no_80w; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: | 
 | 	 * - change master/slave IDENTIFY order | 
 | 	 * - force bit13 (80c cable present) check also for !ivb devices | 
 | 	 *   (unless the slave device is pre-ATA3) | 
 | 	 */ | 
 | 	if ((id[ATA_ID_HW_CONFIG] & 0x4000) || | 
 | 	    (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000))) | 
 | 		return 1; | 
 |  | 
 | no_80w: | 
 | 	if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED) | 
 | 		return 0; | 
 |  | 
 | 	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, " | 
 | 			    "limiting max speed to UDMA33\n", | 
 | 			    drive->name, | 
 | 			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host"); | 
 |  | 
 | 	drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ide_driveid_update(ide_drive_t *drive) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	const struct ide_tp_ops *tp_ops = hwif->tp_ops; | 
 | 	u16 *id; | 
 | 	unsigned long flags; | 
 | 	u8 stat; | 
 |  | 
 | 	/* | 
 | 	 * Re-read drive->id for possible DMA mode | 
 | 	 * change (copied from ide-probe.c) | 
 | 	 */ | 
 |  | 
 | 	SELECT_MASK(drive, 1); | 
 | 	tp_ops->set_irq(hwif, 0); | 
 | 	msleep(50); | 
 | 	tp_ops->exec_command(hwif, ATA_CMD_ID_ATA); | 
 |  | 
 | 	if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) { | 
 | 		SELECT_MASK(drive, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	msleep(50);	/* wait for IRQ and ATA_DRQ */ | 
 | 	stat = tp_ops->read_status(hwif); | 
 |  | 
 | 	if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) { | 
 | 		SELECT_MASK(drive, 0); | 
 | 		printk("%s: CHECK for good STATUS\n", drive->name); | 
 | 		return 0; | 
 | 	} | 
 | 	local_irq_save(flags); | 
 | 	SELECT_MASK(drive, 0); | 
 | 	id = kmalloc(SECTOR_SIZE, GFP_ATOMIC); | 
 | 	if (!id) { | 
 | 		local_irq_restore(flags); | 
 | 		return 0; | 
 | 	} | 
 | 	tp_ops->input_data(drive, NULL, id, SECTOR_SIZE); | 
 | 	(void)tp_ops->read_status(hwif);	/* clear drive IRQ */ | 
 | 	local_irq_enable(); | 
 | 	local_irq_restore(flags); | 
 | 	ide_fix_driveid(id); | 
 |  | 
 | 	drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES]; | 
 | 	drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES]; | 
 | 	drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES]; | 
 | 	/* anything more ? */ | 
 |  | 
 | 	kfree(id); | 
 |  | 
 | 	if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive)) | 
 | 		ide_dma_off(drive); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int ide_config_drive_speed(ide_drive_t *drive, u8 speed) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	const struct ide_tp_ops *tp_ops = hwif->tp_ops; | 
 | 	u16 *id = drive->id, i; | 
 | 	int error = 0; | 
 | 	u8 stat; | 
 | 	ide_task_t task; | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
 | 	if (hwif->dma_ops)	/* check if host supports DMA */ | 
 | 		hwif->dma_ops->dma_host_set(drive, 0); | 
 | #endif | 
 |  | 
 | 	/* Skip setting PIO flow-control modes on pre-EIDE drives */ | 
 | 	if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0) | 
 | 		goto skip; | 
 |  | 
 | 	/* | 
 | 	 * Don't use ide_wait_cmd here - it will | 
 | 	 * attempt to set_geometry and recalibrate, | 
 | 	 * but for some reason these don't work at | 
 | 	 * this point (lost interrupt). | 
 | 	 */ | 
 |         /* | 
 |          * Select the drive, and issue the SETFEATURES command | 
 |          */ | 
 | 	disable_irq_nosync(hwif->irq); | 
 | 	 | 
 | 	/* | 
 | 	 *	FIXME: we race against the running IRQ here if | 
 | 	 *	this is called from non IRQ context. If we use | 
 | 	 *	disable_irq() we hang on the error path. Work | 
 | 	 *	is needed. | 
 | 	 */ | 
 | 	  | 
 | 	udelay(1); | 
 | 	SELECT_DRIVE(drive); | 
 | 	SELECT_MASK(drive, 1); | 
 | 	udelay(1); | 
 | 	tp_ops->set_irq(hwif, 0); | 
 |  | 
 | 	memset(&task, 0, sizeof(task)); | 
 | 	task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT; | 
 | 	task.tf.feature = SETFEATURES_XFER; | 
 | 	task.tf.nsect   = speed; | 
 |  | 
 | 	tp_ops->tf_load(drive, &task); | 
 |  | 
 | 	tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES); | 
 |  | 
 | 	if (drive->quirk_list == 2) | 
 | 		tp_ops->set_irq(hwif, 1); | 
 |  | 
 | 	error = __ide_wait_stat(drive, drive->ready_stat, | 
 | 				ATA_BUSY | ATA_DRQ | ATA_ERR, | 
 | 				WAIT_CMD, &stat); | 
 |  | 
 | 	SELECT_MASK(drive, 0); | 
 |  | 
 | 	enable_irq(hwif->irq); | 
 |  | 
 | 	if (error) { | 
 | 		(void) ide_dump_status(drive, "set_drive_speed_status", stat); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	id[ATA_ID_UDMA_MODES]  &= ~0xFF00; | 
 | 	id[ATA_ID_MWDMA_MODES] &= ~0x0F00; | 
 | 	id[ATA_ID_SWDMA_MODES] &= ~0x0F00; | 
 |  | 
 |  skip: | 
 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
 | 	if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA)) | 
 | 		hwif->dma_ops->dma_host_set(drive, 1); | 
 | 	else if (hwif->dma_ops)	/* check if host supports DMA */ | 
 | 		ide_dma_off_quietly(drive); | 
 | #endif | 
 |  | 
 | 	if (speed >= XFER_UDMA_0) { | 
 | 		i = 1 << (speed - XFER_UDMA_0); | 
 | 		id[ATA_ID_UDMA_MODES] |= (i << 8 | i); | 
 | 	} else if (speed >= XFER_MW_DMA_0) { | 
 | 		i = 1 << (speed - XFER_MW_DMA_0); | 
 | 		id[ATA_ID_MWDMA_MODES] |= (i << 8 | i); | 
 | 	} else if (speed >= XFER_SW_DMA_0) { | 
 | 		i = 1 << (speed - XFER_SW_DMA_0); | 
 | 		id[ATA_ID_SWDMA_MODES] |= (i << 8 | i); | 
 | 	} | 
 |  | 
 | 	if (!drive->init_speed) | 
 | 		drive->init_speed = speed; | 
 | 	drive->current_speed = speed; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This should get invoked any time we exit the driver to | 
 |  * wait for an interrupt response from a drive.  handler() points | 
 |  * at the appropriate code to handle the next interrupt, and a | 
 |  * timer is started to prevent us from waiting forever in case | 
 |  * something goes wrong (see the ide_timer_expiry() handler later on). | 
 |  * | 
 |  * See also ide_execute_command | 
 |  */ | 
 | static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
 | 		      unsigned int timeout, ide_expiry_t *expiry) | 
 | { | 
 | 	ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
 |  | 
 | 	BUG_ON(hwgroup->handler); | 
 | 	hwgroup->handler	= handler; | 
 | 	hwgroup->expiry		= expiry; | 
 | 	hwgroup->timer.expires	= jiffies + timeout; | 
 | 	hwgroup->req_gen_timer	= hwgroup->req_gen; | 
 | 	add_timer(&hwgroup->timer); | 
 | } | 
 |  | 
 | void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
 | 		      unsigned int timeout, ide_expiry_t *expiry) | 
 | { | 
 | 	ide_hwgroup_t *hwgroup = drive->hwif->hwgroup; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&hwgroup->lock, flags); | 
 | 	__ide_set_handler(drive, handler, timeout, expiry); | 
 | 	spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_set_handler); | 
 |   | 
 | /** | 
 |  *	ide_execute_command	-	execute an IDE command | 
 |  *	@drive: IDE drive to issue the command against | 
 |  *	@command: command byte to write | 
 |  *	@handler: handler for next phase | 
 |  *	@timeout: timeout for command | 
 |  *	@expiry:  handler to run on timeout | 
 |  * | 
 |  *	Helper function to issue an IDE command. This handles the | 
 |  *	atomicity requirements, command timing and ensures that the  | 
 |  *	handler and IRQ setup do not race. All IDE command kick off | 
 |  *	should go via this function or do equivalent locking. | 
 |  */ | 
 |  | 
 | void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler, | 
 | 			 unsigned timeout, ide_expiry_t *expiry) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	ide_hwgroup_t *hwgroup = hwif->hwgroup; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&hwgroup->lock, flags); | 
 | 	__ide_set_handler(drive, handler, timeout, expiry); | 
 | 	hwif->tp_ops->exec_command(hwif, cmd); | 
 | 	/* | 
 | 	 * Drive takes 400nS to respond, we must avoid the IRQ being | 
 | 	 * serviced before that. | 
 | 	 * | 
 | 	 * FIXME: we could skip this delay with care on non shared devices | 
 | 	 */ | 
 | 	ndelay(400); | 
 | 	spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(ide_execute_command); | 
 |  | 
 | void ide_execute_pkt_cmd(ide_drive_t *drive) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	ide_hwgroup_t *hwgroup = hwif->hwgroup; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&hwgroup->lock, flags); | 
 | 	hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET); | 
 | 	ndelay(400); | 
 | 	spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd); | 
 |  | 
 | static inline void ide_complete_drive_reset(ide_drive_t *drive, int err) | 
 | { | 
 | 	struct request *rq = drive->hwif->hwgroup->rq; | 
 |  | 
 | 	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET) | 
 | 		ide_end_request(drive, err ? err : 1, 0); | 
 | } | 
 |  | 
 | /* needed below */ | 
 | static ide_startstop_t do_reset1 (ide_drive_t *, int); | 
 |  | 
 | /* | 
 |  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
 |  * during an atapi drive reset operation. If the drive has not yet responded, | 
 |  * and we have not yet hit our maximum waiting time, then the timer is restarted | 
 |  * for another 50ms. | 
 |  */ | 
 | static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	ide_hwgroup_t *hwgroup = hwif->hwgroup; | 
 | 	u8 stat; | 
 |  | 
 | 	SELECT_DRIVE(drive); | 
 | 	udelay (10); | 
 | 	stat = hwif->tp_ops->read_status(hwif); | 
 |  | 
 | 	if (OK_STAT(stat, 0, ATA_BUSY)) | 
 | 		printk("%s: ATAPI reset complete\n", drive->name); | 
 | 	else { | 
 | 		if (time_before(jiffies, hwgroup->poll_timeout)) { | 
 | 			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
 | 			/* continue polling */ | 
 | 			return ide_started; | 
 | 		} | 
 | 		/* end of polling */ | 
 | 		hwgroup->polling = 0; | 
 | 		printk("%s: ATAPI reset timed-out, status=0x%02x\n", | 
 | 				drive->name, stat); | 
 | 		/* do it the old fashioned way */ | 
 | 		return do_reset1(drive, 1); | 
 | 	} | 
 | 	/* done polling */ | 
 | 	hwgroup->polling = 0; | 
 | 	ide_complete_drive_reset(drive, 0); | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | static void ide_reset_report_error(ide_hwif_t *hwif, u8 err) | 
 | { | 
 | 	static const char *err_master_vals[] = | 
 | 		{ NULL, "passed", "formatter device error", | 
 | 		  "sector buffer error", "ECC circuitry error", | 
 | 		  "controlling MPU error" }; | 
 |  | 
 | 	u8 err_master = err & 0x7f; | 
 |  | 
 | 	printk(KERN_ERR "%s: reset: master: ", hwif->name); | 
 | 	if (err_master && err_master < 6) | 
 | 		printk(KERN_CONT "%s", err_master_vals[err_master]); | 
 | 	else | 
 | 		printk(KERN_CONT "error (0x%02x?)", err); | 
 | 	if (err & 0x80) | 
 | 		printk(KERN_CONT "; slave: failed"); | 
 | 	printk(KERN_CONT "\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
 |  * during an ide reset operation. If the drives have not yet responded, | 
 |  * and we have not yet hit our maximum waiting time, then the timer is restarted | 
 |  * for another 50ms. | 
 |  */ | 
 | static ide_startstop_t reset_pollfunc (ide_drive_t *drive) | 
 | { | 
 | 	ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 	const struct ide_port_ops *port_ops = hwif->port_ops; | 
 | 	u8 tmp; | 
 | 	int err = 0; | 
 |  | 
 | 	if (port_ops && port_ops->reset_poll) { | 
 | 		err = port_ops->reset_poll(drive); | 
 | 		if (err) { | 
 | 			printk(KERN_ERR "%s: host reset_poll failure for %s.\n", | 
 | 				hwif->name, drive->name); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tmp = hwif->tp_ops->read_status(hwif); | 
 |  | 
 | 	if (!OK_STAT(tmp, 0, ATA_BUSY)) { | 
 | 		if (time_before(jiffies, hwgroup->poll_timeout)) { | 
 | 			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
 | 			/* continue polling */ | 
 | 			return ide_started; | 
 | 		} | 
 | 		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); | 
 | 		drive->failures++; | 
 | 		err = -EIO; | 
 | 	} else  { | 
 | 		tmp = ide_read_error(drive); | 
 |  | 
 | 		if (tmp == 1) { | 
 | 			printk(KERN_INFO "%s: reset: success\n", hwif->name); | 
 | 			drive->failures = 0; | 
 | 		} else { | 
 | 			ide_reset_report_error(hwif, tmp); | 
 | 			drive->failures++; | 
 | 			err = -EIO; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	hwgroup->polling = 0;	/* done polling */ | 
 | 	ide_complete_drive_reset(drive, err); | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | static void ide_disk_pre_reset(ide_drive_t *drive) | 
 | { | 
 | 	int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1; | 
 |  | 
 | 	drive->special.all = 0; | 
 | 	drive->special.b.set_geometry = legacy; | 
 | 	drive->special.b.recalibrate  = legacy; | 
 |  | 
 | 	drive->mult_count = 0; | 
 | 	drive->dev_flags &= ~IDE_DFLAG_PARKED; | 
 |  | 
 | 	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 && | 
 | 	    (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) | 
 | 		drive->mult_req = 0; | 
 |  | 
 | 	if (drive->mult_req != drive->mult_count) | 
 | 		drive->special.b.set_multmode = 1; | 
 | } | 
 |  | 
 | static void pre_reset(ide_drive_t *drive) | 
 | { | 
 | 	const struct ide_port_ops *port_ops = drive->hwif->port_ops; | 
 |  | 
 | 	if (drive->media == ide_disk) | 
 | 		ide_disk_pre_reset(drive); | 
 | 	else | 
 | 		drive->dev_flags |= IDE_DFLAG_POST_RESET; | 
 |  | 
 | 	if (drive->dev_flags & IDE_DFLAG_USING_DMA) { | 
 | 		if (drive->crc_count) | 
 | 			ide_check_dma_crc(drive); | 
 | 		else | 
 | 			ide_dma_off(drive); | 
 | 	} | 
 |  | 
 | 	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) { | 
 | 		if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) { | 
 | 			drive->dev_flags &= ~IDE_DFLAG_UNMASK; | 
 | 			drive->io_32bit = 0; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (port_ops && port_ops->pre_reset) | 
 | 		port_ops->pre_reset(drive); | 
 |  | 
 | 	if (drive->current_speed != 0xff) | 
 | 		drive->desired_speed = drive->current_speed; | 
 | 	drive->current_speed = 0xff; | 
 | } | 
 |  | 
 | /* | 
 |  * do_reset1() attempts to recover a confused drive by resetting it. | 
 |  * Unfortunately, resetting a disk drive actually resets all devices on | 
 |  * the same interface, so it can really be thought of as resetting the | 
 |  * interface rather than resetting the drive. | 
 |  * | 
 |  * ATAPI devices have their own reset mechanism which allows them to be | 
 |  * individually reset without clobbering other devices on the same interface. | 
 |  * | 
 |  * Unfortunately, the IDE interface does not generate an interrupt to let | 
 |  * us know when the reset operation has finished, so we must poll for this. | 
 |  * Equally poor, though, is the fact that this may a very long time to complete, | 
 |  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it, | 
 |  * we set a timer to poll at 50ms intervals. | 
 |  */ | 
 | static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	ide_hwgroup_t *hwgroup = hwif->hwgroup; | 
 | 	struct ide_io_ports *io_ports = &hwif->io_ports; | 
 | 	const struct ide_tp_ops *tp_ops = hwif->tp_ops; | 
 | 	const struct ide_port_ops *port_ops; | 
 | 	unsigned long flags, timeout; | 
 | 	unsigned int unit; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	spin_lock_irqsave(&hwgroup->lock, flags); | 
 |  | 
 | 	/* We must not reset with running handlers */ | 
 | 	BUG_ON(hwgroup->handler != NULL); | 
 |  | 
 | 	/* For an ATAPI device, first try an ATAPI SRST. */ | 
 | 	if (drive->media != ide_disk && !do_not_try_atapi) { | 
 | 		pre_reset(drive); | 
 | 		SELECT_DRIVE(drive); | 
 | 		udelay (20); | 
 | 		tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET); | 
 | 		ndelay(400); | 
 | 		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
 | 		hwgroup->polling = 1; | 
 | 		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
 | 		spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | 		return ide_started; | 
 | 	} | 
 |  | 
 | 	/* We must not disturb devices in the IDE_DFLAG_PARKED state. */ | 
 | 	do { | 
 | 		unsigned long now; | 
 |  | 
 | 		prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE); | 
 | 		timeout = jiffies; | 
 | 		for (unit = 0; unit < MAX_DRIVES; unit++) { | 
 | 			ide_drive_t *tdrive = &hwif->drives[unit]; | 
 |  | 
 | 			if (tdrive->dev_flags & IDE_DFLAG_PRESENT && | 
 | 			    tdrive->dev_flags & IDE_DFLAG_PARKED && | 
 | 			    time_after(tdrive->sleep, timeout)) | 
 | 				timeout = tdrive->sleep; | 
 | 		} | 
 |  | 
 | 		now = jiffies; | 
 | 		if (time_before_eq(timeout, now)) | 
 | 			break; | 
 |  | 
 | 		spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | 		timeout = schedule_timeout_uninterruptible(timeout - now); | 
 | 		spin_lock_irqsave(&hwgroup->lock, flags); | 
 | 	} while (timeout); | 
 | 	finish_wait(&ide_park_wq, &wait); | 
 |  | 
 | 	/* | 
 | 	 * First, reset any device state data we were maintaining | 
 | 	 * for any of the drives on this interface. | 
 | 	 */ | 
 | 	for (unit = 0; unit < MAX_DRIVES; ++unit) | 
 | 		pre_reset(&hwif->drives[unit]); | 
 |  | 
 | 	if (io_ports->ctl_addr == 0) { | 
 | 		spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | 		ide_complete_drive_reset(drive, -ENXIO); | 
 | 		return ide_stopped; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Note that we also set nIEN while resetting the device, | 
 | 	 * to mask unwanted interrupts from the interface during the reset. | 
 | 	 * However, due to the design of PC hardware, this will cause an | 
 | 	 * immediate interrupt due to the edge transition it produces. | 
 | 	 * This single interrupt gives us a "fast poll" for drives that | 
 | 	 * recover from reset very quickly, saving us the first 50ms wait time. | 
 | 	 * | 
 | 	 * TODO: add ->softreset method and stop abusing ->set_irq | 
 | 	 */ | 
 | 	/* set SRST and nIEN */ | 
 | 	tp_ops->set_irq(hwif, 4); | 
 | 	/* more than enough time */ | 
 | 	udelay(10); | 
 | 	/* clear SRST, leave nIEN (unless device is on the quirk list) */ | 
 | 	tp_ops->set_irq(hwif, drive->quirk_list == 2); | 
 | 	/* more than enough time */ | 
 | 	udelay(10); | 
 | 	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
 | 	hwgroup->polling = 1; | 
 | 	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Some weird controller like resetting themselves to a strange | 
 | 	 * state when the disks are reset this way. At least, the Winbond | 
 | 	 * 553 documentation says that | 
 | 	 */ | 
 | 	port_ops = hwif->port_ops; | 
 | 	if (port_ops && port_ops->resetproc) | 
 | 		port_ops->resetproc(drive); | 
 |  | 
 | 	spin_unlock_irqrestore(&hwgroup->lock, flags); | 
 | 	return ide_started; | 
 | } | 
 |  | 
 | /* | 
 |  * ide_do_reset() is the entry point to the drive/interface reset code. | 
 |  */ | 
 |  | 
 | ide_startstop_t ide_do_reset (ide_drive_t *drive) | 
 | { | 
 | 	return do_reset1(drive, 0); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_do_reset); | 
 |  | 
 | /* | 
 |  * ide_wait_not_busy() waits for the currently selected device on the hwif | 
 |  * to report a non-busy status, see comments in ide_probe_port(). | 
 |  */ | 
 | int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) | 
 | { | 
 | 	u8 stat = 0; | 
 |  | 
 | 	while(timeout--) { | 
 | 		/* | 
 | 		 * Turn this into a schedule() sleep once I'm sure | 
 | 		 * about locking issues (2.5 work ?). | 
 | 		 */ | 
 | 		mdelay(1); | 
 | 		stat = hwif->tp_ops->read_status(hwif); | 
 | 		if ((stat & ATA_BUSY) == 0) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * Assume a value of 0xff means nothing is connected to | 
 | 		 * the interface and it doesn't implement the pull-down | 
 | 		 * resistor on D7. | 
 | 		 */ | 
 | 		if (stat == 0xff) | 
 | 			return -ENODEV; | 
 | 		touch_softlockup_watchdog(); | 
 | 		touch_nmi_watchdog(); | 
 | 	} | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ide_wait_not_busy); | 
 |  |