|  | /* | 
|  | *	linux/mm/filemap.c | 
|  | * | 
|  | * Copyright (C) 1994-1999  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the generic file mmap semantics used by | 
|  | * most "normal" filesystems (but you don't /have/ to use this: | 
|  | * the NFS filesystem used to do this differently, for example) | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mm_inline.h> /* for page_is_file_cache() */ | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * FIXME: remove all knowledge of the buffer layer from the core VM | 
|  | */ | 
|  | #include <linux/buffer_head.h> /* for try_to_free_buffers */ | 
|  |  | 
|  | #include <asm/mman.h> | 
|  |  | 
|  | /* | 
|  | * Shared mappings implemented 30.11.1994. It's not fully working yet, | 
|  | * though. | 
|  | * | 
|  | * Shared mappings now work. 15.8.1995  Bruno. | 
|  | * | 
|  | * finished 'unifying' the page and buffer cache and SMP-threaded the | 
|  | * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock ordering: | 
|  | * | 
|  | *  ->i_mmap_lock		(truncate_pagecache) | 
|  | *    ->private_lock		(__free_pte->__set_page_dirty_buffers) | 
|  | *      ->swap_lock		(exclusive_swap_page, others) | 
|  | *        ->mapping->tree_lock | 
|  | * | 
|  | *  ->i_mutex | 
|  | *    ->i_mmap_lock		(truncate->unmap_mapping_range) | 
|  | * | 
|  | *  ->mmap_sem | 
|  | *    ->i_mmap_lock | 
|  | *      ->page_table_lock or pte_lock	(various, mainly in memory.c) | 
|  | *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock) | 
|  | * | 
|  | *  ->mmap_sem | 
|  | *    ->lock_page		(access_process_vm) | 
|  | * | 
|  | *  ->i_mutex			(generic_file_buffered_write) | 
|  | *    ->mmap_sem		(fault_in_pages_readable->do_page_fault) | 
|  | * | 
|  | *  ->i_mutex | 
|  | *    ->i_alloc_sem             (various) | 
|  | * | 
|  | *  ->inode_lock | 
|  | *    ->sb_lock			(fs/fs-writeback.c) | 
|  | *    ->mapping->tree_lock	(__sync_single_inode) | 
|  | * | 
|  | *  ->i_mmap_lock | 
|  | *    ->anon_vma.lock		(vma_adjust) | 
|  | * | 
|  | *  ->anon_vma.lock | 
|  | *    ->page_table_lock or pte_lock	(anon_vma_prepare and various) | 
|  | * | 
|  | *  ->page_table_lock or pte_lock | 
|  | *    ->swap_lock		(try_to_unmap_one) | 
|  | *    ->private_lock		(try_to_unmap_one) | 
|  | *    ->tree_lock		(try_to_unmap_one) | 
|  | *    ->zone.lru_lock		(follow_page->mark_page_accessed) | 
|  | *    ->zone.lru_lock		(check_pte_range->isolate_lru_page) | 
|  | *    ->private_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->tree_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->inode_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->inode_lock		(zap_pte_range->set_page_dirty) | 
|  | *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers) | 
|  | * | 
|  | *  ->task->proc_lock | 
|  | *    ->dcache_lock		(proc_pid_lookup) | 
|  | * | 
|  | *  (code doesn't rely on that order, so you could switch it around) | 
|  | *  ->tasklist_lock             (memory_failure, collect_procs_ao) | 
|  | *    ->i_mmap_lock | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Remove a page from the page cache and free it. Caller has to make | 
|  | * sure the page is locked and that nobody else uses it - or that usage | 
|  | * is safe.  The caller must hold the mapping's tree_lock. | 
|  | */ | 
|  | void __remove_from_page_cache(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  |  | 
|  | radix_tree_delete(&mapping->page_tree, page->index); | 
|  | page->mapping = NULL; | 
|  | mapping->nrpages--; | 
|  | __dec_zone_page_state(page, NR_FILE_PAGES); | 
|  | if (PageSwapBacked(page)) | 
|  | __dec_zone_page_state(page, NR_SHMEM); | 
|  | BUG_ON(page_mapped(page)); | 
|  |  | 
|  | /* | 
|  | * Some filesystems seem to re-dirty the page even after | 
|  | * the VM has canceled the dirty bit (eg ext3 journaling). | 
|  | * | 
|  | * Fix it up by doing a final dirty accounting check after | 
|  | * having removed the page entirely. | 
|  | */ | 
|  | if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { | 
|  | dec_zone_page_state(page, NR_FILE_DIRTY); | 
|  | dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | void remove_from_page_cache(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | void (*freepage)(struct page *); | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | freepage = mapping->a_ops->freepage; | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | __remove_from_page_cache(page); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | mem_cgroup_uncharge_cache_page(page); | 
|  |  | 
|  | if (freepage) | 
|  | freepage(page); | 
|  | } | 
|  | EXPORT_SYMBOL(remove_from_page_cache); | 
|  |  | 
|  | static int sync_page(void *word) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | struct page *page; | 
|  |  | 
|  | page = container_of((unsigned long *)word, struct page, flags); | 
|  |  | 
|  | /* | 
|  | * page_mapping() is being called without PG_locked held. | 
|  | * Some knowledge of the state and use of the page is used to | 
|  | * reduce the requirements down to a memory barrier. | 
|  | * The danger here is of a stale page_mapping() return value | 
|  | * indicating a struct address_space different from the one it's | 
|  | * associated with when it is associated with one. | 
|  | * After smp_mb(), it's either the correct page_mapping() for | 
|  | * the page, or an old page_mapping() and the page's own | 
|  | * page_mapping() has gone NULL. | 
|  | * The ->sync_page() address_space operation must tolerate | 
|  | * page_mapping() going NULL. By an amazing coincidence, | 
|  | * this comes about because none of the users of the page | 
|  | * in the ->sync_page() methods make essential use of the | 
|  | * page_mapping(), merely passing the page down to the backing | 
|  | * device's unplug functions when it's non-NULL, which in turn | 
|  | * ignore it for all cases but swap, where only page_private(page) is | 
|  | * of interest. When page_mapping() does go NULL, the entire | 
|  | * call stack gracefully ignores the page and returns. | 
|  | * -- wli | 
|  | */ | 
|  | smp_mb(); | 
|  | mapping = page_mapping(page); | 
|  | if (mapping && mapping->a_ops && mapping->a_ops->sync_page) | 
|  | mapping->a_ops->sync_page(page); | 
|  | io_schedule(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sync_page_killable(void *word) | 
|  | { | 
|  | sync_page(word); | 
|  | return fatal_signal_pending(current) ? -EINTR : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | 
|  | * @mapping:	address space structure to write | 
|  | * @start:	offset in bytes where the range starts | 
|  | * @end:	offset in bytes where the range ends (inclusive) | 
|  | * @sync_mode:	enable synchronous operation | 
|  | * | 
|  | * Start writeback against all of a mapping's dirty pages that lie | 
|  | * within the byte offsets <start, end> inclusive. | 
|  | * | 
|  | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | 
|  | * opposed to a regular memory cleansing writeback.  The difference between | 
|  | * these two operations is that if a dirty page/buffer is encountered, it must | 
|  | * be waited upon, and not just skipped over. | 
|  | */ | 
|  | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end, int sync_mode) | 
|  | { | 
|  | int ret; | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = sync_mode, | 
|  | .nr_to_write = LONG_MAX, | 
|  | .range_start = start, | 
|  | .range_end = end, | 
|  | }; | 
|  |  | 
|  | if (!mapping_cap_writeback_dirty(mapping)) | 
|  | return 0; | 
|  |  | 
|  | ret = do_writepages(mapping, &wbc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int __filemap_fdatawrite(struct address_space *mapping, | 
|  | int sync_mode) | 
|  | { | 
|  | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); | 
|  | } | 
|  |  | 
|  | int filemap_fdatawrite(struct address_space *mapping) | 
|  | { | 
|  | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite); | 
|  |  | 
|  | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end) | 
|  | { | 
|  | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite_range); | 
|  |  | 
|  | /** | 
|  | * filemap_flush - mostly a non-blocking flush | 
|  | * @mapping:	target address_space | 
|  | * | 
|  | * This is a mostly non-blocking flush.  Not suitable for data-integrity | 
|  | * purposes - I/O may not be started against all dirty pages. | 
|  | */ | 
|  | int filemap_flush(struct address_space *mapping) | 
|  | { | 
|  | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_flush); | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait_range - wait for writeback to complete | 
|  | * @mapping:		address space structure to wait for | 
|  | * @start_byte:		offset in bytes where the range starts | 
|  | * @end_byte:		offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space | 
|  | * in the given range and wait for all of them. | 
|  | */ | 
|  | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | 
|  | loff_t end_byte) | 
|  | { | 
|  | pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; | 
|  | pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | int ret = 0; | 
|  |  | 
|  | if (end_byte < start_byte) | 
|  | return 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | while ((index <= end) && | 
|  | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
|  | PAGECACHE_TAG_WRITEBACK, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | /* until radix tree lookup accepts end_index */ | 
|  | if (page->index > end) | 
|  | continue; | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  | if (PageError(page)) | 
|  | ret = -EIO; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* Check for outstanding write errors */ | 
|  | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | 
|  | ret = -ENOSPC; | 
|  | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | 
|  | ret = -EIO; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait_range); | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait - wait for all under-writeback pages to complete | 
|  | * @mapping: address space structure to wait for | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space | 
|  | * and wait for all of them. | 
|  | */ | 
|  | int filemap_fdatawait(struct address_space *mapping) | 
|  | { | 
|  | loff_t i_size = i_size_read(mapping->host); | 
|  |  | 
|  | if (i_size == 0) | 
|  | return 0; | 
|  |  | 
|  | return filemap_fdatawait_range(mapping, 0, i_size - 1); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait); | 
|  |  | 
|  | int filemap_write_and_wait(struct address_space *mapping) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (mapping->nrpages) { | 
|  | err = filemap_fdatawrite(mapping); | 
|  | /* | 
|  | * Even if the above returned error, the pages may be | 
|  | * written partially (e.g. -ENOSPC), so we wait for it. | 
|  | * But the -EIO is special case, it may indicate the worst | 
|  | * thing (e.g. bug) happened, so we avoid waiting for it. | 
|  | */ | 
|  | if (err != -EIO) { | 
|  | int err2 = filemap_fdatawait(mapping); | 
|  | if (!err) | 
|  | err = err2; | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_write_and_wait); | 
|  |  | 
|  | /** | 
|  | * filemap_write_and_wait_range - write out & wait on a file range | 
|  | * @mapping:	the address_space for the pages | 
|  | * @lstart:	offset in bytes where the range starts | 
|  | * @lend:	offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Write out and wait upon file offsets lstart->lend, inclusive. | 
|  | * | 
|  | * Note that `lend' is inclusive (describes the last byte to be written) so | 
|  | * that this function can be used to write to the very end-of-file (end = -1). | 
|  | */ | 
|  | int filemap_write_and_wait_range(struct address_space *mapping, | 
|  | loff_t lstart, loff_t lend) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (mapping->nrpages) { | 
|  | err = __filemap_fdatawrite_range(mapping, lstart, lend, | 
|  | WB_SYNC_ALL); | 
|  | /* See comment of filemap_write_and_wait() */ | 
|  | if (err != -EIO) { | 
|  | int err2 = filemap_fdatawait_range(mapping, | 
|  | lstart, lend); | 
|  | if (!err) | 
|  | err = err2; | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_write_and_wait_range); | 
|  |  | 
|  | /** | 
|  | * add_to_page_cache_locked - add a locked page to the pagecache | 
|  | * @page:	page to add | 
|  | * @mapping:	the page's address_space | 
|  | * @offset:	page index | 
|  | * @gfp_mask:	page allocation mode | 
|  | * | 
|  | * This function is used to add a page to the pagecache. It must be locked. | 
|  | * This function does not add the page to the LRU.  The caller must do that. | 
|  | */ | 
|  | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | 
|  | pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | error = mem_cgroup_cache_charge(page, current->mm, | 
|  | gfp_mask & GFP_RECLAIM_MASK); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); | 
|  | if (error == 0) { | 
|  | page_cache_get(page); | 
|  | page->mapping = mapping; | 
|  | page->index = offset; | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | error = radix_tree_insert(&mapping->page_tree, offset, page); | 
|  | if (likely(!error)) { | 
|  | mapping->nrpages++; | 
|  | __inc_zone_page_state(page, NR_FILE_PAGES); | 
|  | if (PageSwapBacked(page)) | 
|  | __inc_zone_page_state(page, NR_SHMEM); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | } else { | 
|  | page->mapping = NULL; | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | mem_cgroup_uncharge_cache_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | radix_tree_preload_end(); | 
|  | } else | 
|  | mem_cgroup_uncharge_cache_page(page); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL(add_to_page_cache_locked); | 
|  |  | 
|  | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 
|  | pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Splice_read and readahead add shmem/tmpfs pages into the page cache | 
|  | * before shmem_readpage has a chance to mark them as SwapBacked: they | 
|  | * need to go on the anon lru below, and mem_cgroup_cache_charge | 
|  | * (called in add_to_page_cache) needs to know where they're going too. | 
|  | */ | 
|  | if (mapping_cap_swap_backed(mapping)) | 
|  | SetPageSwapBacked(page); | 
|  |  | 
|  | ret = add_to_page_cache(page, mapping, offset, gfp_mask); | 
|  | if (ret == 0) { | 
|  | if (page_is_file_cache(page)) | 
|  | lru_cache_add_file(page); | 
|  | else | 
|  | lru_cache_add_anon(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | struct page *__page_cache_alloc(gfp_t gfp) | 
|  | { | 
|  | int n; | 
|  | struct page *page; | 
|  |  | 
|  | if (cpuset_do_page_mem_spread()) { | 
|  | get_mems_allowed(); | 
|  | n = cpuset_mem_spread_node(); | 
|  | page = alloc_pages_exact_node(n, gfp, 0); | 
|  | put_mems_allowed(); | 
|  | return page; | 
|  | } | 
|  | return alloc_pages(gfp, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(__page_cache_alloc); | 
|  | #endif | 
|  |  | 
|  | static int __sleep_on_page_lock(void *word) | 
|  | { | 
|  | io_schedule(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to wait for pages to become available there must be | 
|  | * waitqueues associated with pages. By using a hash table of | 
|  | * waitqueues where the bucket discipline is to maintain all | 
|  | * waiters on the same queue and wake all when any of the pages | 
|  | * become available, and for the woken contexts to check to be | 
|  | * sure the appropriate page became available, this saves space | 
|  | * at a cost of "thundering herd" phenomena during rare hash | 
|  | * collisions. | 
|  | */ | 
|  | static wait_queue_head_t *page_waitqueue(struct page *page) | 
|  | { | 
|  | const struct zone *zone = page_zone(page); | 
|  |  | 
|  | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; | 
|  | } | 
|  |  | 
|  | static inline void wake_up_page(struct page *page, int bit) | 
|  | { | 
|  | __wake_up_bit(page_waitqueue(page), &page->flags, bit); | 
|  | } | 
|  |  | 
|  | void wait_on_page_bit(struct page *page, int bit_nr) | 
|  | { | 
|  | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | 
|  |  | 
|  | if (test_bit(bit_nr, &page->flags)) | 
|  | __wait_on_bit(page_waitqueue(page), &wait, sync_page, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_on_page_bit); | 
|  |  | 
|  | /** | 
|  | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | 
|  | * @page: Page defining the wait queue of interest | 
|  | * @waiter: Waiter to add to the queue | 
|  | * | 
|  | * Add an arbitrary @waiter to the wait queue for the nominated @page. | 
|  | */ | 
|  | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) | 
|  | { | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue(q, waiter); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_page_wait_queue); | 
|  |  | 
|  | /** | 
|  | * unlock_page - unlock a locked page | 
|  | * @page: the page | 
|  | * | 
|  | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | 
|  | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | 
|  | * mechananism between PageLocked pages and PageWriteback pages is shared. | 
|  | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | 
|  | * | 
|  | * The mb is necessary to enforce ordering between the clear_bit and the read | 
|  | * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). | 
|  | */ | 
|  | void unlock_page(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | clear_bit_unlock(PG_locked, &page->flags); | 
|  | smp_mb__after_clear_bit(); | 
|  | wake_up_page(page, PG_locked); | 
|  | } | 
|  | EXPORT_SYMBOL(unlock_page); | 
|  |  | 
|  | /** | 
|  | * end_page_writeback - end writeback against a page | 
|  | * @page: the page | 
|  | */ | 
|  | void end_page_writeback(struct page *page) | 
|  | { | 
|  | if (TestClearPageReclaim(page)) | 
|  | rotate_reclaimable_page(page); | 
|  |  | 
|  | if (!test_clear_page_writeback(page)) | 
|  | BUG(); | 
|  |  | 
|  | smp_mb__after_clear_bit(); | 
|  | wake_up_page(page, PG_writeback); | 
|  | } | 
|  | EXPORT_SYMBOL(end_page_writeback); | 
|  |  | 
|  | /** | 
|  | * __lock_page - get a lock on the page, assuming we need to sleep to get it | 
|  | * @page: the page to lock | 
|  | * | 
|  | * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some | 
|  | * random driver's requestfn sets TASK_RUNNING, we could busywait.  However | 
|  | * chances are that on the second loop, the block layer's plug list is empty, | 
|  | * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. | 
|  | */ | 
|  | void __lock_page(struct page *page) | 
|  | { | 
|  | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | 
|  |  | 
|  | __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(__lock_page); | 
|  |  | 
|  | int __lock_page_killable(struct page *page) | 
|  | { | 
|  | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | 
|  |  | 
|  | return __wait_on_bit_lock(page_waitqueue(page), &wait, | 
|  | sync_page_killable, TASK_KILLABLE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__lock_page_killable); | 
|  |  | 
|  | /** | 
|  | * __lock_page_nosync - get a lock on the page, without calling sync_page() | 
|  | * @page: the page to lock | 
|  | * | 
|  | * Variant of lock_page that does not require the caller to hold a reference | 
|  | * on the page's mapping. | 
|  | */ | 
|  | void __lock_page_nosync(struct page *page) | 
|  | { | 
|  | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | 
|  | __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, | 
|  | unsigned int flags) | 
|  | { | 
|  | if (!(flags & FAULT_FLAG_ALLOW_RETRY)) { | 
|  | __lock_page(page); | 
|  | return 1; | 
|  | } else { | 
|  | up_read(&mm->mmap_sem); | 
|  | wait_on_page_locked(page); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_page - find and get a page reference | 
|  | * @mapping: the address_space to search | 
|  | * @offset: the page index | 
|  | * | 
|  | * Is there a pagecache struct page at the given (mapping, offset) tuple? | 
|  | * If yes, increment its refcount and return it; if no, return NULL. | 
|  | */ | 
|  | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) | 
|  | { | 
|  | void **pagep; | 
|  | struct page *page; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | repeat: | 
|  | page = NULL; | 
|  | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | 
|  | if (pagep) { | 
|  | page = radix_tree_deref_slot(pagep); | 
|  | if (unlikely(!page)) | 
|  | goto out; | 
|  | if (radix_tree_deref_retry(page)) | 
|  | goto repeat; | 
|  |  | 
|  | if (!page_cache_get_speculative(page)) | 
|  | goto repeat; | 
|  |  | 
|  | /* | 
|  | * Has the page moved? | 
|  | * This is part of the lockless pagecache protocol. See | 
|  | * include/linux/pagemap.h for details. | 
|  | */ | 
|  | if (unlikely(page != *pagep)) { | 
|  | page_cache_release(page); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_page); | 
|  |  | 
|  | /** | 
|  | * find_lock_page - locate, pin and lock a pagecache page | 
|  | * @mapping: the address_space to search | 
|  | * @offset: the page index | 
|  | * | 
|  | * Locates the desired pagecache page, locks it, increments its reference | 
|  | * count and returns its address. | 
|  | * | 
|  | * Returns zero if the page was not present. find_lock_page() may sleep. | 
|  | */ | 
|  | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | repeat: | 
|  | page = find_get_page(mapping, offset); | 
|  | if (page) { | 
|  | lock_page(page); | 
|  | /* Has the page been truncated? */ | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | goto repeat; | 
|  | } | 
|  | VM_BUG_ON(page->index != offset); | 
|  | } | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(find_lock_page); | 
|  |  | 
|  | /** | 
|  | * find_or_create_page - locate or add a pagecache page | 
|  | * @mapping: the page's address_space | 
|  | * @index: the page's index into the mapping | 
|  | * @gfp_mask: page allocation mode | 
|  | * | 
|  | * Locates a page in the pagecache.  If the page is not present, a new page | 
|  | * is allocated using @gfp_mask and is added to the pagecache and to the VM's | 
|  | * LRU list.  The returned page is locked and has its reference count | 
|  | * incremented. | 
|  | * | 
|  | * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic | 
|  | * allocation! | 
|  | * | 
|  | * find_or_create_page() returns the desired page's address, or zero on | 
|  | * memory exhaustion. | 
|  | */ | 
|  | struct page *find_or_create_page(struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp_mask) | 
|  | { | 
|  | struct page *page; | 
|  | int err; | 
|  | repeat: | 
|  | page = find_lock_page(mapping, index); | 
|  | if (!page) { | 
|  | page = __page_cache_alloc(gfp_mask); | 
|  | if (!page) | 
|  | return NULL; | 
|  | /* | 
|  | * We want a regular kernel memory (not highmem or DMA etc) | 
|  | * allocation for the radix tree nodes, but we need to honour | 
|  | * the context-specific requirements the caller has asked for. | 
|  | * GFP_RECLAIM_MASK collects those requirements. | 
|  | */ | 
|  | err = add_to_page_cache_lru(page, mapping, index, | 
|  | (gfp_mask & GFP_RECLAIM_MASK)); | 
|  | if (unlikely(err)) { | 
|  | page_cache_release(page); | 
|  | page = NULL; | 
|  | if (err == -EEXIST) | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(find_or_create_page); | 
|  |  | 
|  | /** | 
|  | * find_get_pages - gang pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @start:	The starting page index | 
|  | * @nr_pages:	The maximum number of pages | 
|  | * @pages:	Where the resulting pages are placed | 
|  | * | 
|  | * find_get_pages() will search for and return a group of up to | 
|  | * @nr_pages pages in the mapping.  The pages are placed at @pages. | 
|  | * find_get_pages() takes a reference against the returned pages. | 
|  | * | 
|  | * The search returns a group of mapping-contiguous pages with ascending | 
|  | * indexes.  There may be holes in the indices due to not-present pages. | 
|  | * | 
|  | * find_get_pages() returns the number of pages which were found. | 
|  | */ | 
|  | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | 
|  | unsigned int nr_pages, struct page **pages) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int ret; | 
|  | unsigned int nr_found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | restart: | 
|  | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | 
|  | (void ***)pages, start, nr_pages); | 
|  | ret = 0; | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | struct page *page; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot((void **)pages[i]); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | if (ret) | 
|  | start = pages[ret-1]->index; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | if (!page_cache_get_speculative(page)) | 
|  | goto repeat; | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *((void **)pages[i]))) { | 
|  | page_cache_release(page); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | pages[ret] = page; | 
|  | ret++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_pages_contig - gang contiguous pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @index:	The starting page index | 
|  | * @nr_pages:	The maximum number of pages | 
|  | * @pages:	Where the resulting pages are placed | 
|  | * | 
|  | * find_get_pages_contig() works exactly like find_get_pages(), except | 
|  | * that the returned number of pages are guaranteed to be contiguous. | 
|  | * | 
|  | * find_get_pages_contig() returns the number of pages which were found. | 
|  | */ | 
|  | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | 
|  | unsigned int nr_pages, struct page **pages) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int ret; | 
|  | unsigned int nr_found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | restart: | 
|  | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | 
|  | (void ***)pages, index, nr_pages); | 
|  | ret = 0; | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | struct page *page; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot((void **)pages[i]); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (radix_tree_deref_retry(page)) | 
|  | goto restart; | 
|  |  | 
|  | if (page->mapping == NULL || page->index != index) | 
|  | break; | 
|  |  | 
|  | if (!page_cache_get_speculative(page)) | 
|  | goto repeat; | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *((void **)pages[i]))) { | 
|  | page_cache_release(page); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | pages[ret] = page; | 
|  | ret++; | 
|  | index++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_pages_contig); | 
|  |  | 
|  | /** | 
|  | * find_get_pages_tag - find and return pages that match @tag | 
|  | * @mapping:	the address_space to search | 
|  | * @index:	the starting page index | 
|  | * @tag:	the tag index | 
|  | * @nr_pages:	the maximum number of pages | 
|  | * @pages:	where the resulting pages are placed | 
|  | * | 
|  | * Like find_get_pages, except we only return pages which are tagged with | 
|  | * @tag.   We update @index to index the next page for the traversal. | 
|  | */ | 
|  | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | 
|  | int tag, unsigned int nr_pages, struct page **pages) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int ret; | 
|  | unsigned int nr_found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | restart: | 
|  | nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, | 
|  | (void ***)pages, *index, nr_pages, tag); | 
|  | ret = 0; | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | struct page *page; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot((void **)pages[i]); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (radix_tree_deref_retry(page)) | 
|  | goto restart; | 
|  |  | 
|  | if (!page_cache_get_speculative(page)) | 
|  | goto repeat; | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *((void **)pages[i]))) { | 
|  | page_cache_release(page); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | pages[ret] = page; | 
|  | ret++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (ret) | 
|  | *index = pages[ret - 1]->index + 1; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_pages_tag); | 
|  |  | 
|  | /** | 
|  | * grab_cache_page_nowait - returns locked page at given index in given cache | 
|  | * @mapping: target address_space | 
|  | * @index: the page index | 
|  | * | 
|  | * Same as grab_cache_page(), but do not wait if the page is unavailable. | 
|  | * This is intended for speculative data generators, where the data can | 
|  | * be regenerated if the page couldn't be grabbed.  This routine should | 
|  | * be safe to call while holding the lock for another page. | 
|  | * | 
|  | * Clear __GFP_FS when allocating the page to avoid recursion into the fs | 
|  | * and deadlock against the caller's locked page. | 
|  | */ | 
|  | struct page * | 
|  | grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) | 
|  | { | 
|  | struct page *page = find_get_page(mapping, index); | 
|  |  | 
|  | if (page) { | 
|  | if (trylock_page(page)) | 
|  | return page; | 
|  | page_cache_release(page); | 
|  | return NULL; | 
|  | } | 
|  | page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); | 
|  | if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { | 
|  | page_cache_release(page); | 
|  | page = NULL; | 
|  | } | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(grab_cache_page_nowait); | 
|  |  | 
|  | /* | 
|  | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | 
|  | * a _large_ part of the i/o request. Imagine the worst scenario: | 
|  | * | 
|  | *      ---R__________________________________________B__________ | 
|  | *         ^ reading here                             ^ bad block(assume 4k) | 
|  | * | 
|  | * read(R) => miss => readahead(R...B) => media error => frustrating retries | 
|  | * => failing the whole request => read(R) => read(R+1) => | 
|  | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | 
|  | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | 
|  | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | 
|  | * | 
|  | * It is going insane. Fix it by quickly scaling down the readahead size. | 
|  | */ | 
|  | static void shrink_readahead_size_eio(struct file *filp, | 
|  | struct file_ra_state *ra) | 
|  | { | 
|  | ra->ra_pages /= 4; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_generic_file_read - generic file read routine | 
|  | * @filp:	the file to read | 
|  | * @ppos:	current file position | 
|  | * @desc:	read_descriptor | 
|  | * @actor:	read method | 
|  | * | 
|  | * This is a generic file read routine, and uses the | 
|  | * mapping->a_ops->readpage() function for the actual low-level stuff. | 
|  | * | 
|  | * This is really ugly. But the goto's actually try to clarify some | 
|  | * of the logic when it comes to error handling etc. | 
|  | */ | 
|  | static void do_generic_file_read(struct file *filp, loff_t *ppos, | 
|  | read_descriptor_t *desc, read_actor_t actor) | 
|  | { | 
|  | struct address_space *mapping = filp->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | struct file_ra_state *ra = &filp->f_ra; | 
|  | pgoff_t index; | 
|  | pgoff_t last_index; | 
|  | pgoff_t prev_index; | 
|  | unsigned long offset;      /* offset into pagecache page */ | 
|  | unsigned int prev_offset; | 
|  | int error; | 
|  |  | 
|  | index = *ppos >> PAGE_CACHE_SHIFT; | 
|  | prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; | 
|  | prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); | 
|  | last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; | 
|  | offset = *ppos & ~PAGE_CACHE_MASK; | 
|  |  | 
|  | for (;;) { | 
|  | struct page *page; | 
|  | pgoff_t end_index; | 
|  | loff_t isize; | 
|  | unsigned long nr, ret; | 
|  |  | 
|  | cond_resched(); | 
|  | find_page: | 
|  | page = find_get_page(mapping, index); | 
|  | if (!page) { | 
|  | page_cache_sync_readahead(mapping, | 
|  | ra, filp, | 
|  | index, last_index - index); | 
|  | page = find_get_page(mapping, index); | 
|  | if (unlikely(page == NULL)) | 
|  | goto no_cached_page; | 
|  | } | 
|  | if (PageReadahead(page)) { | 
|  | page_cache_async_readahead(mapping, | 
|  | ra, filp, page, | 
|  | index, last_index - index); | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | if (inode->i_blkbits == PAGE_CACHE_SHIFT || | 
|  | !mapping->a_ops->is_partially_uptodate) | 
|  | goto page_not_up_to_date; | 
|  | if (!trylock_page(page)) | 
|  | goto page_not_up_to_date; | 
|  | /* Did it get truncated before we got the lock? */ | 
|  | if (!page->mapping) | 
|  | goto page_not_up_to_date_locked; | 
|  | if (!mapping->a_ops->is_partially_uptodate(page, | 
|  | desc, offset)) | 
|  | goto page_not_up_to_date_locked; | 
|  | unlock_page(page); | 
|  | } | 
|  | page_ok: | 
|  | /* | 
|  | * i_size must be checked after we know the page is Uptodate. | 
|  | * | 
|  | * Checking i_size after the check allows us to calculate | 
|  | * the correct value for "nr", which means the zero-filled | 
|  | * part of the page is not copied back to userspace (unless | 
|  | * another truncate extends the file - this is desired though). | 
|  | */ | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | 
|  | if (unlikely(!isize || index > end_index)) { | 
|  | page_cache_release(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* nr is the maximum number of bytes to copy from this page */ | 
|  | nr = PAGE_CACHE_SIZE; | 
|  | if (index == end_index) { | 
|  | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | 
|  | if (nr <= offset) { | 
|  | page_cache_release(page); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | nr = nr - offset; | 
|  |  | 
|  | /* If users can be writing to this page using arbitrary | 
|  | * virtual addresses, take care about potential aliasing | 
|  | * before reading the page on the kernel side. | 
|  | */ | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | /* | 
|  | * When a sequential read accesses a page several times, | 
|  | * only mark it as accessed the first time. | 
|  | */ | 
|  | if (prev_index != index || offset != prev_offset) | 
|  | mark_page_accessed(page); | 
|  | prev_index = index; | 
|  |  | 
|  | /* | 
|  | * Ok, we have the page, and it's up-to-date, so | 
|  | * now we can copy it to user space... | 
|  | * | 
|  | * The actor routine returns how many bytes were actually used.. | 
|  | * NOTE! This may not be the same as how much of a user buffer | 
|  | * we filled up (we may be padding etc), so we can only update | 
|  | * "pos" here (the actor routine has to update the user buffer | 
|  | * pointers and the remaining count). | 
|  | */ | 
|  | ret = actor(desc, page, offset, nr); | 
|  | offset += ret; | 
|  | index += offset >> PAGE_CACHE_SHIFT; | 
|  | offset &= ~PAGE_CACHE_MASK; | 
|  | prev_offset = offset; | 
|  |  | 
|  | page_cache_release(page); | 
|  | if (ret == nr && desc->count) | 
|  | continue; | 
|  | goto out; | 
|  |  | 
|  | page_not_up_to_date: | 
|  | /* Get exclusive access to the page ... */ | 
|  | error = lock_page_killable(page); | 
|  | if (unlikely(error)) | 
|  | goto readpage_error; | 
|  |  | 
|  | page_not_up_to_date_locked: | 
|  | /* Did it get truncated before we got the lock? */ | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Did somebody else fill it already? */ | 
|  | if (PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | goto page_ok; | 
|  | } | 
|  |  | 
|  | readpage: | 
|  | /* | 
|  | * A previous I/O error may have been due to temporary | 
|  | * failures, eg. multipath errors. | 
|  | * PG_error will be set again if readpage fails. | 
|  | */ | 
|  | ClearPageError(page); | 
|  | /* Start the actual read. The read will unlock the page. */ | 
|  | error = mapping->a_ops->readpage(filp, page); | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | if (error == AOP_TRUNCATED_PAGE) { | 
|  | page_cache_release(page); | 
|  | goto find_page; | 
|  | } | 
|  | goto readpage_error; | 
|  | } | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | error = lock_page_killable(page); | 
|  | if (unlikely(error)) | 
|  | goto readpage_error; | 
|  | if (!PageUptodate(page)) { | 
|  | if (page->mapping == NULL) { | 
|  | /* | 
|  | * invalidate_mapping_pages got it | 
|  | */ | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | goto find_page; | 
|  | } | 
|  | unlock_page(page); | 
|  | shrink_readahead_size_eio(filp, ra); | 
|  | error = -EIO; | 
|  | goto readpage_error; | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  |  | 
|  | goto page_ok; | 
|  |  | 
|  | readpage_error: | 
|  | /* UHHUH! A synchronous read error occurred. Report it */ | 
|  | desc->error = error; | 
|  | page_cache_release(page); | 
|  | goto out; | 
|  |  | 
|  | no_cached_page: | 
|  | /* | 
|  | * Ok, it wasn't cached, so we need to create a new | 
|  | * page.. | 
|  | */ | 
|  | page = page_cache_alloc_cold(mapping); | 
|  | if (!page) { | 
|  | desc->error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | error = add_to_page_cache_lru(page, mapping, | 
|  | index, GFP_KERNEL); | 
|  | if (error) { | 
|  | page_cache_release(page); | 
|  | if (error == -EEXIST) | 
|  | goto find_page; | 
|  | desc->error = error; | 
|  | goto out; | 
|  | } | 
|  | goto readpage; | 
|  | } | 
|  |  | 
|  | out: | 
|  | ra->prev_pos = prev_index; | 
|  | ra->prev_pos <<= PAGE_CACHE_SHIFT; | 
|  | ra->prev_pos |= prev_offset; | 
|  |  | 
|  | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; | 
|  | file_accessed(filp); | 
|  | } | 
|  |  | 
|  | int file_read_actor(read_descriptor_t *desc, struct page *page, | 
|  | unsigned long offset, unsigned long size) | 
|  | { | 
|  | char *kaddr; | 
|  | unsigned long left, count = desc->count; | 
|  |  | 
|  | if (size > count) | 
|  | size = count; | 
|  |  | 
|  | /* | 
|  | * Faults on the destination of a read are common, so do it before | 
|  | * taking the kmap. | 
|  | */ | 
|  | if (!fault_in_pages_writeable(desc->arg.buf, size)) { | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | left = __copy_to_user_inatomic(desc->arg.buf, | 
|  | kaddr + offset, size); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | if (left == 0) | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* Do it the slow way */ | 
|  | kaddr = kmap(page); | 
|  | left = __copy_to_user(desc->arg.buf, kaddr + offset, size); | 
|  | kunmap(page); | 
|  |  | 
|  | if (left) { | 
|  | size -= left; | 
|  | desc->error = -EFAULT; | 
|  | } | 
|  | success: | 
|  | desc->count = count - size; | 
|  | desc->written += size; | 
|  | desc->arg.buf += size; | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Performs necessary checks before doing a write | 
|  | * @iov:	io vector request | 
|  | * @nr_segs:	number of segments in the iovec | 
|  | * @count:	number of bytes to write | 
|  | * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE | 
|  | * | 
|  | * Adjust number of segments and amount of bytes to write (nr_segs should be | 
|  | * properly initialized first). Returns appropriate error code that caller | 
|  | * should return or zero in case that write should be allowed. | 
|  | */ | 
|  | int generic_segment_checks(const struct iovec *iov, | 
|  | unsigned long *nr_segs, size_t *count, int access_flags) | 
|  | { | 
|  | unsigned long   seg; | 
|  | size_t cnt = 0; | 
|  | for (seg = 0; seg < *nr_segs; seg++) { | 
|  | const struct iovec *iv = &iov[seg]; | 
|  |  | 
|  | /* | 
|  | * If any segment has a negative length, or the cumulative | 
|  | * length ever wraps negative then return -EINVAL. | 
|  | */ | 
|  | cnt += iv->iov_len; | 
|  | if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) | 
|  | return -EINVAL; | 
|  | if (access_ok(access_flags, iv->iov_base, iv->iov_len)) | 
|  | continue; | 
|  | if (seg == 0) | 
|  | return -EFAULT; | 
|  | *nr_segs = seg; | 
|  | cnt -= iv->iov_len;	/* This segment is no good */ | 
|  | break; | 
|  | } | 
|  | *count = cnt; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_segment_checks); | 
|  |  | 
|  | /** | 
|  | * generic_file_aio_read - generic filesystem read routine | 
|  | * @iocb:	kernel I/O control block | 
|  | * @iov:	io vector request | 
|  | * @nr_segs:	number of segments in the iovec | 
|  | * @pos:	current file position | 
|  | * | 
|  | * This is the "read()" routine for all filesystems | 
|  | * that can use the page cache directly. | 
|  | */ | 
|  | ssize_t | 
|  | generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t pos) | 
|  | { | 
|  | struct file *filp = iocb->ki_filp; | 
|  | ssize_t retval; | 
|  | unsigned long seg = 0; | 
|  | size_t count; | 
|  | loff_t *ppos = &iocb->ki_pos; | 
|  |  | 
|  | count = 0; | 
|  | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | 
|  | if (filp->f_flags & O_DIRECT) { | 
|  | loff_t size; | 
|  | struct address_space *mapping; | 
|  | struct inode *inode; | 
|  |  | 
|  | mapping = filp->f_mapping; | 
|  | inode = mapping->host; | 
|  | if (!count) | 
|  | goto out; /* skip atime */ | 
|  | size = i_size_read(inode); | 
|  | if (pos < size) { | 
|  | retval = filemap_write_and_wait_range(mapping, pos, | 
|  | pos + iov_length(iov, nr_segs) - 1); | 
|  | if (!retval) { | 
|  | retval = mapping->a_ops->direct_IO(READ, iocb, | 
|  | iov, pos, nr_segs); | 
|  | } | 
|  | if (retval > 0) { | 
|  | *ppos = pos + retval; | 
|  | count -= retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Btrfs can have a short DIO read if we encounter | 
|  | * compressed extents, so if there was an error, or if | 
|  | * we've already read everything we wanted to, or if | 
|  | * there was a short read because we hit EOF, go ahead | 
|  | * and return.  Otherwise fallthrough to buffered io for | 
|  | * the rest of the read. | 
|  | */ | 
|  | if (retval < 0 || !count || *ppos >= size) { | 
|  | file_accessed(filp); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | count = retval; | 
|  | for (seg = 0; seg < nr_segs; seg++) { | 
|  | read_descriptor_t desc; | 
|  | loff_t offset = 0; | 
|  |  | 
|  | /* | 
|  | * If we did a short DIO read we need to skip the section of the | 
|  | * iov that we've already read data into. | 
|  | */ | 
|  | if (count) { | 
|  | if (count > iov[seg].iov_len) { | 
|  | count -= iov[seg].iov_len; | 
|  | continue; | 
|  | } | 
|  | offset = count; | 
|  | count = 0; | 
|  | } | 
|  |  | 
|  | desc.written = 0; | 
|  | desc.arg.buf = iov[seg].iov_base + offset; | 
|  | desc.count = iov[seg].iov_len - offset; | 
|  | if (desc.count == 0) | 
|  | continue; | 
|  | desc.error = 0; | 
|  | do_generic_file_read(filp, ppos, &desc, file_read_actor); | 
|  | retval += desc.written; | 
|  | if (desc.error) { | 
|  | retval = retval ?: desc.error; | 
|  | break; | 
|  | } | 
|  | if (desc.count > 0) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_aio_read); | 
|  |  | 
|  | static ssize_t | 
|  | do_readahead(struct address_space *mapping, struct file *filp, | 
|  | pgoff_t index, unsigned long nr) | 
|  | { | 
|  | if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) | 
|  | return -EINVAL; | 
|  |  | 
|  | force_page_cache_readahead(mapping, filp, index, nr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) | 
|  | { | 
|  | ssize_t ret; | 
|  | struct file *file; | 
|  |  | 
|  | ret = -EBADF; | 
|  | file = fget(fd); | 
|  | if (file) { | 
|  | if (file->f_mode & FMODE_READ) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | pgoff_t start = offset >> PAGE_CACHE_SHIFT; | 
|  | pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; | 
|  | unsigned long len = end - start + 1; | 
|  | ret = do_readahead(mapping, file, start, len); | 
|  | } | 
|  | fput(file); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS | 
|  | asmlinkage long SyS_readahead(long fd, loff_t offset, long count) | 
|  | { | 
|  | return SYSC_readahead((int) fd, offset, (size_t) count); | 
|  | } | 
|  | SYSCALL_ALIAS(sys_readahead, SyS_readahead); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /** | 
|  | * page_cache_read - adds requested page to the page cache if not already there | 
|  | * @file:	file to read | 
|  | * @offset:	page index | 
|  | * | 
|  | * This adds the requested page to the page cache if it isn't already there, | 
|  | * and schedules an I/O to read in its contents from disk. | 
|  | */ | 
|  | static int page_cache_read(struct file *file, pgoff_t offset) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | page = page_cache_alloc_cold(mapping); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); | 
|  | if (ret == 0) | 
|  | ret = mapping->a_ops->readpage(file, page); | 
|  | else if (ret == -EEXIST) | 
|  | ret = 0; /* losing race to add is OK */ | 
|  |  | 
|  | page_cache_release(page); | 
|  |  | 
|  | } while (ret == AOP_TRUNCATED_PAGE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define MMAP_LOTSAMISS  (100) | 
|  |  | 
|  | /* | 
|  | * Synchronous readahead happens when we don't even find | 
|  | * a page in the page cache at all. | 
|  | */ | 
|  | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | 
|  | struct file_ra_state *ra, | 
|  | struct file *file, | 
|  | pgoff_t offset) | 
|  | { | 
|  | unsigned long ra_pages; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | /* If we don't want any read-ahead, don't bother */ | 
|  | if (VM_RandomReadHint(vma)) | 
|  | return; | 
|  |  | 
|  | if (VM_SequentialReadHint(vma) || | 
|  | offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { | 
|  | page_cache_sync_readahead(mapping, ra, file, offset, | 
|  | ra->ra_pages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ra->mmap_miss < INT_MAX) | 
|  | ra->mmap_miss++; | 
|  |  | 
|  | /* | 
|  | * Do we miss much more than hit in this file? If so, | 
|  | * stop bothering with read-ahead. It will only hurt. | 
|  | */ | 
|  | if (ra->mmap_miss > MMAP_LOTSAMISS) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * mmap read-around | 
|  | */ | 
|  | ra_pages = max_sane_readahead(ra->ra_pages); | 
|  | if (ra_pages) { | 
|  | ra->start = max_t(long, 0, offset - ra_pages/2); | 
|  | ra->size = ra_pages; | 
|  | ra->async_size = 0; | 
|  | ra_submit(ra, mapping, file); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Asynchronous readahead happens when we find the page and PG_readahead, | 
|  | * so we want to possibly extend the readahead further.. | 
|  | */ | 
|  | static void do_async_mmap_readahead(struct vm_area_struct *vma, | 
|  | struct file_ra_state *ra, | 
|  | struct file *file, | 
|  | struct page *page, | 
|  | pgoff_t offset) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | /* If we don't want any read-ahead, don't bother */ | 
|  | if (VM_RandomReadHint(vma)) | 
|  | return; | 
|  | if (ra->mmap_miss > 0) | 
|  | ra->mmap_miss--; | 
|  | if (PageReadahead(page)) | 
|  | page_cache_async_readahead(mapping, ra, file, | 
|  | page, offset, ra->ra_pages); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_fault - read in file data for page fault handling | 
|  | * @vma:	vma in which the fault was taken | 
|  | * @vmf:	struct vm_fault containing details of the fault | 
|  | * | 
|  | * filemap_fault() is invoked via the vma operations vector for a | 
|  | * mapped memory region to read in file data during a page fault. | 
|  | * | 
|  | * The goto's are kind of ugly, but this streamlines the normal case of having | 
|  | * it in the page cache, and handles the special cases reasonably without | 
|  | * having a lot of duplicated code. | 
|  | */ | 
|  | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | int error; | 
|  | struct file *file = vma->vm_file; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct file_ra_state *ra = &file->f_ra; | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t offset = vmf->pgoff; | 
|  | struct page *page; | 
|  | pgoff_t size; | 
|  | int ret = 0; | 
|  |  | 
|  | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | if (offset >= size) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* | 
|  | * Do we have something in the page cache already? | 
|  | */ | 
|  | page = find_get_page(mapping, offset); | 
|  | if (likely(page)) { | 
|  | /* | 
|  | * We found the page, so try async readahead before | 
|  | * waiting for the lock. | 
|  | */ | 
|  | do_async_mmap_readahead(vma, ra, file, page, offset); | 
|  | } else { | 
|  | /* No page in the page cache at all */ | 
|  | do_sync_mmap_readahead(vma, ra, file, offset); | 
|  | count_vm_event(PGMAJFAULT); | 
|  | ret = VM_FAULT_MAJOR; | 
|  | retry_find: | 
|  | page = find_get_page(mapping, offset); | 
|  | if (!page) | 
|  | goto no_cached_page; | 
|  | } | 
|  |  | 
|  | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { | 
|  | page_cache_release(page); | 
|  | return ret | VM_FAULT_RETRY; | 
|  | } | 
|  |  | 
|  | /* Did it get truncated? */ | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto retry_find; | 
|  | } | 
|  | VM_BUG_ON(page->index != offset); | 
|  |  | 
|  | /* | 
|  | * We have a locked page in the page cache, now we need to check | 
|  | * that it's up-to-date. If not, it is going to be due to an error. | 
|  | */ | 
|  | if (unlikely(!PageUptodate(page))) | 
|  | goto page_not_uptodate; | 
|  |  | 
|  | /* | 
|  | * Found the page and have a reference on it. | 
|  | * We must recheck i_size under page lock. | 
|  | */ | 
|  | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | if (unlikely(offset >= size)) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; | 
|  | vmf->page = page; | 
|  | return ret | VM_FAULT_LOCKED; | 
|  |  | 
|  | no_cached_page: | 
|  | /* | 
|  | * We're only likely to ever get here if MADV_RANDOM is in | 
|  | * effect. | 
|  | */ | 
|  | error = page_cache_read(file, offset); | 
|  |  | 
|  | /* | 
|  | * The page we want has now been added to the page cache. | 
|  | * In the unlikely event that someone removed it in the | 
|  | * meantime, we'll just come back here and read it again. | 
|  | */ | 
|  | if (error >= 0) | 
|  | goto retry_find; | 
|  |  | 
|  | /* | 
|  | * An error return from page_cache_read can result if the | 
|  | * system is low on memory, or a problem occurs while trying | 
|  | * to schedule I/O. | 
|  | */ | 
|  | if (error == -ENOMEM) | 
|  | return VM_FAULT_OOM; | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | page_not_uptodate: | 
|  | /* | 
|  | * Umm, take care of errors if the page isn't up-to-date. | 
|  | * Try to re-read it _once_. We do this synchronously, | 
|  | * because there really aren't any performance issues here | 
|  | * and we need to check for errors. | 
|  | */ | 
|  | ClearPageError(page); | 
|  | error = mapping->a_ops->readpage(file, page); | 
|  | if (!error) { | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) | 
|  | error = -EIO; | 
|  | } | 
|  | page_cache_release(page); | 
|  |  | 
|  | if (!error || error == AOP_TRUNCATED_PAGE) | 
|  | goto retry_find; | 
|  |  | 
|  | /* Things didn't work out. Return zero to tell the mm layer so. */ | 
|  | shrink_readahead_size_eio(file, ra); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fault); | 
|  |  | 
|  | const struct vm_operations_struct generic_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | }; | 
|  |  | 
|  | /* This is used for a general mmap of a disk file */ | 
|  |  | 
|  | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (!mapping->a_ops->readpage) | 
|  | return -ENOEXEC; | 
|  | file_accessed(file); | 
|  | vma->vm_ops = &generic_file_vm_ops; | 
|  | vma->vm_flags |= VM_CAN_NONLINEAR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for filesystems which do not implement ->writepage. | 
|  | */ | 
|  | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | 
|  | return -EINVAL; | 
|  | return generic_file_mmap(file, vma); | 
|  | } | 
|  | #else | 
|  | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | EXPORT_SYMBOL(generic_file_mmap); | 
|  | EXPORT_SYMBOL(generic_file_readonly_mmap); | 
|  |  | 
|  | static struct page *__read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *,struct page*), | 
|  | void *data, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct page *page; | 
|  | int err; | 
|  | repeat: | 
|  | page = find_get_page(mapping, index); | 
|  | if (!page) { | 
|  | page = __page_cache_alloc(gfp | __GFP_COLD); | 
|  | if (!page) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); | 
|  | if (unlikely(err)) { | 
|  | page_cache_release(page); | 
|  | if (err == -EEXIST) | 
|  | goto repeat; | 
|  | /* Presumably ENOMEM for radix tree node */ | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | err = filler(data, page); | 
|  | if (err < 0) { | 
|  | page_cache_release(page); | 
|  | page = ERR_PTR(err); | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *do_read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *,struct page*), | 
|  | void *data, | 
|  | gfp_t gfp) | 
|  |  | 
|  | { | 
|  | struct page *page; | 
|  | int err; | 
|  |  | 
|  | retry: | 
|  | page = __read_cache_page(mapping, index, filler, data, gfp); | 
|  | if (IS_ERR(page)) | 
|  | return page; | 
|  | if (PageUptodate(page)) | 
|  | goto out; | 
|  |  | 
|  | lock_page(page); | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | goto retry; | 
|  | } | 
|  | if (PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | goto out; | 
|  | } | 
|  | err = filler(data, page); | 
|  | if (err < 0) { | 
|  | page_cache_release(page); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | out: | 
|  | mark_page_accessed(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_cache_page_async - read into page cache, fill it if needed | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @filler:	function to perform the read | 
|  | * @data:	destination for read data | 
|  | * | 
|  | * Same as read_cache_page, but don't wait for page to become unlocked | 
|  | * after submitting it to the filler. | 
|  | * | 
|  | * Read into the page cache. If a page already exists, and PageUptodate() is | 
|  | * not set, try to fill the page but don't wait for it to become unlocked. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | */ | 
|  | struct page *read_cache_page_async(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *,struct page*), | 
|  | void *data) | 
|  | { | 
|  | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page_async); | 
|  |  | 
|  | static struct page *wait_on_page_read(struct page *page) | 
|  | { | 
|  | if (!IS_ERR(page)) { | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) { | 
|  | page_cache_release(page); | 
|  | page = ERR_PTR(-EIO); | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @gfp:	the page allocator flags to use if allocating | 
|  | * | 
|  | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | 
|  | * any new page allocations done using the specified allocation flags. Note | 
|  | * that the Radix tree operations will still use GFP_KERNEL, so you can't | 
|  | * expect to do this atomically or anything like that - but you can pass in | 
|  | * other page requirements. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | */ | 
|  | struct page *read_cache_page_gfp(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | gfp_t gfp) | 
|  | { | 
|  | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | 
|  |  | 
|  | return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page_gfp); | 
|  |  | 
|  | /** | 
|  | * read_cache_page - read into page cache, fill it if needed | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @filler:	function to perform the read | 
|  | * @data:	destination for read data | 
|  | * | 
|  | * Read into the page cache. If a page already exists, and PageUptodate() is | 
|  | * not set, try to fill the page then wait for it to become unlocked. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | */ | 
|  | struct page *read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *,struct page*), | 
|  | void *data) | 
|  | { | 
|  | return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page); | 
|  |  | 
|  | /* | 
|  | * The logic we want is | 
|  | * | 
|  | *	if suid or (sgid and xgrp) | 
|  | *		remove privs | 
|  | */ | 
|  | int should_remove_suid(struct dentry *dentry) | 
|  | { | 
|  | mode_t mode = dentry->d_inode->i_mode; | 
|  | int kill = 0; | 
|  |  | 
|  | /* suid always must be killed */ | 
|  | if (unlikely(mode & S_ISUID)) | 
|  | kill = ATTR_KILL_SUID; | 
|  |  | 
|  | /* | 
|  | * sgid without any exec bits is just a mandatory locking mark; leave | 
|  | * it alone.  If some exec bits are set, it's a real sgid; kill it. | 
|  | */ | 
|  | if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) | 
|  | kill |= ATTR_KILL_SGID; | 
|  |  | 
|  | if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) | 
|  | return kill; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(should_remove_suid); | 
|  |  | 
|  | static int __remove_suid(struct dentry *dentry, int kill) | 
|  | { | 
|  | struct iattr newattrs; | 
|  |  | 
|  | newattrs.ia_valid = ATTR_FORCE | kill; | 
|  | return notify_change(dentry, &newattrs); | 
|  | } | 
|  |  | 
|  | int file_remove_suid(struct file *file) | 
|  | { | 
|  | struct dentry *dentry = file->f_path.dentry; | 
|  | int killsuid = should_remove_suid(dentry); | 
|  | int killpriv = security_inode_need_killpriv(dentry); | 
|  | int error = 0; | 
|  |  | 
|  | if (killpriv < 0) | 
|  | return killpriv; | 
|  | if (killpriv) | 
|  | error = security_inode_killpriv(dentry); | 
|  | if (!error && killsuid) | 
|  | error = __remove_suid(dentry, killsuid); | 
|  |  | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL(file_remove_suid); | 
|  |  | 
|  | static size_t __iovec_copy_from_user_inatomic(char *vaddr, | 
|  | const struct iovec *iov, size_t base, size_t bytes) | 
|  | { | 
|  | size_t copied = 0, left = 0; | 
|  |  | 
|  | while (bytes) { | 
|  | char __user *buf = iov->iov_base + base; | 
|  | int copy = min(bytes, iov->iov_len - base); | 
|  |  | 
|  | base = 0; | 
|  | left = __copy_from_user_inatomic(vaddr, buf, copy); | 
|  | copied += copy; | 
|  | bytes -= copy; | 
|  | vaddr += copy; | 
|  | iov++; | 
|  |  | 
|  | if (unlikely(left)) | 
|  | break; | 
|  | } | 
|  | return copied - left; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy as much as we can into the page and return the number of bytes which | 
|  | * were successfully copied.  If a fault is encountered then return the number of | 
|  | * bytes which were copied. | 
|  | */ | 
|  | size_t iov_iter_copy_from_user_atomic(struct page *page, | 
|  | struct iov_iter *i, unsigned long offset, size_t bytes) | 
|  | { | 
|  | char *kaddr; | 
|  | size_t copied; | 
|  |  | 
|  | BUG_ON(!in_atomic()); | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | if (likely(i->nr_segs == 1)) { | 
|  | int left; | 
|  | char __user *buf = i->iov->iov_base + i->iov_offset; | 
|  | left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); | 
|  | copied = bytes - left; | 
|  | } else { | 
|  | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 
|  | i->iov, i->iov_offset, bytes); | 
|  | } | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  |  | 
|  | return copied; | 
|  | } | 
|  | EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); | 
|  |  | 
|  | /* | 
|  | * This has the same sideeffects and return value as | 
|  | * iov_iter_copy_from_user_atomic(). | 
|  | * The difference is that it attempts to resolve faults. | 
|  | * Page must not be locked. | 
|  | */ | 
|  | size_t iov_iter_copy_from_user(struct page *page, | 
|  | struct iov_iter *i, unsigned long offset, size_t bytes) | 
|  | { | 
|  | char *kaddr; | 
|  | size_t copied; | 
|  |  | 
|  | kaddr = kmap(page); | 
|  | if (likely(i->nr_segs == 1)) { | 
|  | int left; | 
|  | char __user *buf = i->iov->iov_base + i->iov_offset; | 
|  | left = __copy_from_user(kaddr + offset, buf, bytes); | 
|  | copied = bytes - left; | 
|  | } else { | 
|  | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 
|  | i->iov, i->iov_offset, bytes); | 
|  | } | 
|  | kunmap(page); | 
|  | return copied; | 
|  | } | 
|  | EXPORT_SYMBOL(iov_iter_copy_from_user); | 
|  |  | 
|  | void iov_iter_advance(struct iov_iter *i, size_t bytes) | 
|  | { | 
|  | BUG_ON(i->count < bytes); | 
|  |  | 
|  | if (likely(i->nr_segs == 1)) { | 
|  | i->iov_offset += bytes; | 
|  | i->count -= bytes; | 
|  | } else { | 
|  | const struct iovec *iov = i->iov; | 
|  | size_t base = i->iov_offset; | 
|  |  | 
|  | /* | 
|  | * The !iov->iov_len check ensures we skip over unlikely | 
|  | * zero-length segments (without overruning the iovec). | 
|  | */ | 
|  | while (bytes || unlikely(i->count && !iov->iov_len)) { | 
|  | int copy; | 
|  |  | 
|  | copy = min(bytes, iov->iov_len - base); | 
|  | BUG_ON(!i->count || i->count < copy); | 
|  | i->count -= copy; | 
|  | bytes -= copy; | 
|  | base += copy; | 
|  | if (iov->iov_len == base) { | 
|  | iov++; | 
|  | base = 0; | 
|  | } | 
|  | } | 
|  | i->iov = iov; | 
|  | i->iov_offset = base; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(iov_iter_advance); | 
|  |  | 
|  | /* | 
|  | * Fault in the first iovec of the given iov_iter, to a maximum length | 
|  | * of bytes. Returns 0 on success, or non-zero if the memory could not be | 
|  | * accessed (ie. because it is an invalid address). | 
|  | * | 
|  | * writev-intensive code may want this to prefault several iovecs -- that | 
|  | * would be possible (callers must not rely on the fact that _only_ the | 
|  | * first iovec will be faulted with the current implementation). | 
|  | */ | 
|  | int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) | 
|  | { | 
|  | char __user *buf = i->iov->iov_base + i->iov_offset; | 
|  | bytes = min(bytes, i->iov->iov_len - i->iov_offset); | 
|  | return fault_in_pages_readable(buf, bytes); | 
|  | } | 
|  | EXPORT_SYMBOL(iov_iter_fault_in_readable); | 
|  |  | 
|  | /* | 
|  | * Return the count of just the current iov_iter segment. | 
|  | */ | 
|  | size_t iov_iter_single_seg_count(struct iov_iter *i) | 
|  | { | 
|  | const struct iovec *iov = i->iov; | 
|  | if (i->nr_segs == 1) | 
|  | return i->count; | 
|  | else | 
|  | return min(i->count, iov->iov_len - i->iov_offset); | 
|  | } | 
|  | EXPORT_SYMBOL(iov_iter_single_seg_count); | 
|  |  | 
|  | /* | 
|  | * Performs necessary checks before doing a write | 
|  | * | 
|  | * Can adjust writing position or amount of bytes to write. | 
|  | * Returns appropriate error code that caller should return or | 
|  | * zero in case that write should be allowed. | 
|  | */ | 
|  | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | unsigned long limit = rlimit(RLIMIT_FSIZE); | 
|  |  | 
|  | if (unlikely(*pos < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!isblk) { | 
|  | /* FIXME: this is for backwards compatibility with 2.4 */ | 
|  | if (file->f_flags & O_APPEND) | 
|  | *pos = i_size_read(inode); | 
|  |  | 
|  | if (limit != RLIM_INFINITY) { | 
|  | if (*pos >= limit) { | 
|  | send_sig(SIGXFSZ, current, 0); | 
|  | return -EFBIG; | 
|  | } | 
|  | if (*count > limit - (typeof(limit))*pos) { | 
|  | *count = limit - (typeof(limit))*pos; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LFS rule | 
|  | */ | 
|  | if (unlikely(*pos + *count > MAX_NON_LFS && | 
|  | !(file->f_flags & O_LARGEFILE))) { | 
|  | if (*pos >= MAX_NON_LFS) { | 
|  | return -EFBIG; | 
|  | } | 
|  | if (*count > MAX_NON_LFS - (unsigned long)*pos) { | 
|  | *count = MAX_NON_LFS - (unsigned long)*pos; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are we about to exceed the fs block limit ? | 
|  | * | 
|  | * If we have written data it becomes a short write.  If we have | 
|  | * exceeded without writing data we send a signal and return EFBIG. | 
|  | * Linus frestrict idea will clean these up nicely.. | 
|  | */ | 
|  | if (likely(!isblk)) { | 
|  | if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { | 
|  | if (*count || *pos > inode->i_sb->s_maxbytes) { | 
|  | return -EFBIG; | 
|  | } | 
|  | /* zero-length writes at ->s_maxbytes are OK */ | 
|  | } | 
|  |  | 
|  | if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) | 
|  | *count = inode->i_sb->s_maxbytes - *pos; | 
|  | } else { | 
|  | #ifdef CONFIG_BLOCK | 
|  | loff_t isize; | 
|  | if (bdev_read_only(I_BDEV(inode))) | 
|  | return -EPERM; | 
|  | isize = i_size_read(inode); | 
|  | if (*pos >= isize) { | 
|  | if (*count || *pos > isize) | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (*pos + *count > isize) | 
|  | *count = isize - *pos; | 
|  | #else | 
|  | return -EPERM; | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_write_checks); | 
|  |  | 
|  | int pagecache_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  |  | 
|  | return aops->write_begin(file, mapping, pos, len, flags, | 
|  | pagep, fsdata); | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_write_begin); | 
|  |  | 
|  | int pagecache_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  |  | 
|  | mark_page_accessed(page); | 
|  | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_write_end); | 
|  |  | 
|  | ssize_t | 
|  | generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | 
|  | unsigned long *nr_segs, loff_t pos, loff_t *ppos, | 
|  | size_t count, size_t ocount) | 
|  | { | 
|  | struct file	*file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode	*inode = mapping->host; | 
|  | ssize_t		written; | 
|  | size_t		write_len; | 
|  | pgoff_t		end; | 
|  |  | 
|  | if (count != ocount) | 
|  | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); | 
|  |  | 
|  | write_len = iov_length(iov, *nr_segs); | 
|  | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); | 
|  | if (written) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * After a write we want buffered reads to be sure to go to disk to get | 
|  | * the new data.  We invalidate clean cached page from the region we're | 
|  | * about to write.  We do this *before* the write so that we can return | 
|  | * without clobbering -EIOCBQUEUED from ->direct_IO(). | 
|  | */ | 
|  | if (mapping->nrpages) { | 
|  | written = invalidate_inode_pages2_range(mapping, | 
|  | pos >> PAGE_CACHE_SHIFT, end); | 
|  | /* | 
|  | * If a page can not be invalidated, return 0 to fall back | 
|  | * to buffered write. | 
|  | */ | 
|  | if (written) { | 
|  | if (written == -EBUSY) | 
|  | return 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); | 
|  |  | 
|  | /* | 
|  | * Finally, try again to invalidate clean pages which might have been | 
|  | * cached by non-direct readahead, or faulted in by get_user_pages() | 
|  | * if the source of the write was an mmap'ed region of the file | 
|  | * we're writing.  Either one is a pretty crazy thing to do, | 
|  | * so we don't support it 100%.  If this invalidation | 
|  | * fails, tough, the write still worked... | 
|  | */ | 
|  | if (mapping->nrpages) { | 
|  | invalidate_inode_pages2_range(mapping, | 
|  | pos >> PAGE_CACHE_SHIFT, end); | 
|  | } | 
|  |  | 
|  | if (written > 0) { | 
|  | pos += written; | 
|  | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 
|  | i_size_write(inode, pos); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | *ppos = pos; | 
|  | } | 
|  | out: | 
|  | return written; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_direct_write); | 
|  |  | 
|  | /* | 
|  | * Find or create a page at the given pagecache position. Return the locked | 
|  | * page. This function is specifically for buffered writes. | 
|  | */ | 
|  | struct page *grab_cache_page_write_begin(struct address_space *mapping, | 
|  | pgoff_t index, unsigned flags) | 
|  | { | 
|  | int status; | 
|  | struct page *page; | 
|  | gfp_t gfp_notmask = 0; | 
|  | if (flags & AOP_FLAG_NOFS) | 
|  | gfp_notmask = __GFP_FS; | 
|  | repeat: | 
|  | page = find_lock_page(mapping, index); | 
|  | if (likely(page)) | 
|  | return page; | 
|  |  | 
|  | page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); | 
|  | if (!page) | 
|  | return NULL; | 
|  | status = add_to_page_cache_lru(page, mapping, index, | 
|  | GFP_KERNEL & ~gfp_notmask); | 
|  | if (unlikely(status)) { | 
|  | page_cache_release(page); | 
|  | if (status == -EEXIST) | 
|  | goto repeat; | 
|  | return NULL; | 
|  | } | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(grab_cache_page_write_begin); | 
|  |  | 
|  | static ssize_t generic_perform_write(struct file *file, | 
|  | struct iov_iter *i, loff_t pos) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | const struct address_space_operations *a_ops = mapping->a_ops; | 
|  | long status = 0; | 
|  | ssize_t written = 0; | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | /* | 
|  | * Copies from kernel address space cannot fail (NFSD is a big user). | 
|  | */ | 
|  | if (segment_eq(get_fs(), KERNEL_DS)) | 
|  | flags |= AOP_FLAG_UNINTERRUPTIBLE; | 
|  |  | 
|  | do { | 
|  | struct page *page; | 
|  | unsigned long offset;	/* Offset into pagecache page */ | 
|  | unsigned long bytes;	/* Bytes to write to page */ | 
|  | size_t copied;		/* Bytes copied from user */ | 
|  | void *fsdata; | 
|  |  | 
|  | offset = (pos & (PAGE_CACHE_SIZE - 1)); | 
|  | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | 
|  | iov_iter_count(i)); | 
|  |  | 
|  | again: | 
|  |  | 
|  | /* | 
|  | * Bring in the user page that we will copy from _first_. | 
|  | * Otherwise there's a nasty deadlock on copying from the | 
|  | * same page as we're writing to, without it being marked | 
|  | * up-to-date. | 
|  | * | 
|  | * Not only is this an optimisation, but it is also required | 
|  | * to check that the address is actually valid, when atomic | 
|  | * usercopies are used, below. | 
|  | */ | 
|  | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | 
|  | status = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | status = a_ops->write_begin(file, mapping, pos, bytes, flags, | 
|  | &page, &fsdata); | 
|  | if (unlikely(status)) | 
|  | break; | 
|  |  | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | pagefault_disable(); | 
|  | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); | 
|  | pagefault_enable(); | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | mark_page_accessed(page); | 
|  | status = a_ops->write_end(file, mapping, pos, bytes, copied, | 
|  | page, fsdata); | 
|  | if (unlikely(status < 0)) | 
|  | break; | 
|  | copied = status; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | iov_iter_advance(i, copied); | 
|  | if (unlikely(copied == 0)) { | 
|  | /* | 
|  | * If we were unable to copy any data at all, we must | 
|  | * fall back to a single segment length write. | 
|  | * | 
|  | * If we didn't fallback here, we could livelock | 
|  | * because not all segments in the iov can be copied at | 
|  | * once without a pagefault. | 
|  | */ | 
|  | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | 
|  | iov_iter_single_seg_count(i)); | 
|  | goto again; | 
|  | } | 
|  | pos += copied; | 
|  | written += copied; | 
|  |  | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  |  | 
|  | } while (iov_iter_count(i)); | 
|  |  | 
|  | return written ? written : status; | 
|  | } | 
|  |  | 
|  | ssize_t | 
|  | generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t pos, loff_t *ppos, | 
|  | size_t count, ssize_t written) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | ssize_t status; | 
|  | struct iov_iter i; | 
|  |  | 
|  | iov_iter_init(&i, iov, nr_segs, count, written); | 
|  | status = generic_perform_write(file, &i, pos); | 
|  |  | 
|  | if (likely(status >= 0)) { | 
|  | written += status; | 
|  | *ppos = pos + status; | 
|  | } | 
|  |  | 
|  | return written ? written : status; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_buffered_write); | 
|  |  | 
|  | /** | 
|  | * __generic_file_aio_write - write data to a file | 
|  | * @iocb:	IO state structure (file, offset, etc.) | 
|  | * @iov:	vector with data to write | 
|  | * @nr_segs:	number of segments in the vector | 
|  | * @ppos:	position where to write | 
|  | * | 
|  | * This function does all the work needed for actually writing data to a | 
|  | * file. It does all basic checks, removes SUID from the file, updates | 
|  | * modification times and calls proper subroutines depending on whether we | 
|  | * do direct IO or a standard buffered write. | 
|  | * | 
|  | * It expects i_mutex to be grabbed unless we work on a block device or similar | 
|  | * object which does not need locking at all. | 
|  | * | 
|  | * This function does *not* take care of syncing data in case of O_SYNC write. | 
|  | * A caller has to handle it. This is mainly due to the fact that we want to | 
|  | * avoid syncing under i_mutex. | 
|  | */ | 
|  | ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t *ppos) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space * mapping = file->f_mapping; | 
|  | size_t ocount;		/* original count */ | 
|  | size_t count;		/* after file limit checks */ | 
|  | struct inode 	*inode = mapping->host; | 
|  | loff_t		pos; | 
|  | ssize_t		written; | 
|  | ssize_t		err; | 
|  |  | 
|  | ocount = 0; | 
|  | err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | count = ocount; | 
|  | pos = *ppos; | 
|  |  | 
|  | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | 
|  |  | 
|  | /* We can write back this queue in page reclaim */ | 
|  | current->backing_dev_info = mapping->backing_dev_info; | 
|  | written = 0; | 
|  |  | 
|  | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (count == 0) | 
|  | goto out; | 
|  |  | 
|  | err = file_remove_suid(file); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | file_update_time(file); | 
|  |  | 
|  | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | 
|  | if (unlikely(file->f_flags & O_DIRECT)) { | 
|  | loff_t endbyte; | 
|  | ssize_t written_buffered; | 
|  |  | 
|  | written = generic_file_direct_write(iocb, iov, &nr_segs, pos, | 
|  | ppos, count, ocount); | 
|  | if (written < 0 || written == count) | 
|  | goto out; | 
|  | /* | 
|  | * direct-io write to a hole: fall through to buffered I/O | 
|  | * for completing the rest of the request. | 
|  | */ | 
|  | pos += written; | 
|  | count -= written; | 
|  | written_buffered = generic_file_buffered_write(iocb, iov, | 
|  | nr_segs, pos, ppos, count, | 
|  | written); | 
|  | /* | 
|  | * If generic_file_buffered_write() retuned a synchronous error | 
|  | * then we want to return the number of bytes which were | 
|  | * direct-written, or the error code if that was zero.  Note | 
|  | * that this differs from normal direct-io semantics, which | 
|  | * will return -EFOO even if some bytes were written. | 
|  | */ | 
|  | if (written_buffered < 0) { | 
|  | err = written_buffered; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to ensure that the page cache pages are written to | 
|  | * disk and invalidated to preserve the expected O_DIRECT | 
|  | * semantics. | 
|  | */ | 
|  | endbyte = pos + written_buffered - written - 1; | 
|  | err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); | 
|  | if (err == 0) { | 
|  | written = written_buffered; | 
|  | invalidate_mapping_pages(mapping, | 
|  | pos >> PAGE_CACHE_SHIFT, | 
|  | endbyte >> PAGE_CACHE_SHIFT); | 
|  | } else { | 
|  | /* | 
|  | * We don't know how much we wrote, so just return | 
|  | * the number of bytes which were direct-written | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | written = generic_file_buffered_write(iocb, iov, nr_segs, | 
|  | pos, ppos, count, written); | 
|  | } | 
|  | out: | 
|  | current->backing_dev_info = NULL; | 
|  | return written ? written : err; | 
|  | } | 
|  | EXPORT_SYMBOL(__generic_file_aio_write); | 
|  |  | 
|  | /** | 
|  | * generic_file_aio_write - write data to a file | 
|  | * @iocb:	IO state structure | 
|  | * @iov:	vector with data to write | 
|  | * @nr_segs:	number of segments in the vector | 
|  | * @pos:	position in file where to write | 
|  | * | 
|  | * This is a wrapper around __generic_file_aio_write() to be used by most | 
|  | * filesystems. It takes care of syncing the file in case of O_SYNC file | 
|  | * and acquires i_mutex as needed. | 
|  | */ | 
|  | ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t pos) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | ssize_t ret; | 
|  |  | 
|  | BUG_ON(iocb->ki_pos != pos); | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | if (ret > 0 || ret == -EIOCBQUEUED) { | 
|  | ssize_t err; | 
|  |  | 
|  | err = generic_write_sync(file, pos, ret); | 
|  | if (err < 0 && ret > 0) | 
|  | ret = err; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_aio_write); | 
|  |  | 
|  | /** | 
|  | * try_to_release_page() - release old fs-specific metadata on a page | 
|  | * | 
|  | * @page: the page which the kernel is trying to free | 
|  | * @gfp_mask: memory allocation flags (and I/O mode) | 
|  | * | 
|  | * The address_space is to try to release any data against the page | 
|  | * (presumably at page->private).  If the release was successful, return `1'. | 
|  | * Otherwise return zero. | 
|  | * | 
|  | * This may also be called if PG_fscache is set on a page, indicating that the | 
|  | * page is known to the local caching routines. | 
|  | * | 
|  | * The @gfp_mask argument specifies whether I/O may be performed to release | 
|  | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). | 
|  | * | 
|  | */ | 
|  | int try_to_release_page(struct page *page, gfp_t gfp_mask) | 
|  | { | 
|  | struct address_space * const mapping = page->mapping; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (PageWriteback(page)) | 
|  | return 0; | 
|  |  | 
|  | if (mapping && mapping->a_ops->releasepage) | 
|  | return mapping->a_ops->releasepage(page, gfp_mask); | 
|  | return try_to_free_buffers(page); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(try_to_release_page); |