| Leo Chen | 859277f | 2009-08-07 20:01:13 +0100 | [diff] [blame] | 1 | /***************************************************************************** | 
 | 2 | * Copyright 2004 - 2008 Broadcom Corporation.  All rights reserved. | 
 | 3 | * | 
 | 4 | * Unless you and Broadcom execute a separate written software license | 
 | 5 | * agreement governing use of this software, this software is licensed to you | 
 | 6 | * under the terms of the GNU General Public License version 2, available at | 
 | 7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | 
 | 8 | * | 
 | 9 | * Notwithstanding the above, under no circumstances may you combine this | 
 | 10 | * software in any way with any other Broadcom software provided under a | 
 | 11 | * license other than the GPL, without Broadcom's express prior written | 
 | 12 | * consent. | 
 | 13 | *****************************************************************************/ | 
 | 14 |  | 
 | 15 | /****************************************************************************/ | 
 | 16 | /** | 
 | 17 | *   @file   dma.c | 
 | 18 | * | 
 | 19 | *   @brief  Implements the DMA interface. | 
 | 20 | */ | 
 | 21 | /****************************************************************************/ | 
 | 22 |  | 
 | 23 | /* ---- Include Files ---------------------------------------------------- */ | 
 | 24 |  | 
 | 25 | #include <linux/module.h> | 
 | 26 | #include <linux/device.h> | 
 | 27 | #include <linux/dma-mapping.h> | 
 | 28 | #include <linux/interrupt.h> | 
 | 29 | #include <linux/irqreturn.h> | 
 | 30 | #include <linux/proc_fs.h> | 
 | 31 |  | 
 | 32 | #include <mach/timer.h> | 
 | 33 |  | 
 | 34 | #include <linux/mm.h> | 
 | 35 | #include <linux/pfn.h> | 
 | 36 | #include <asm/atomic.h> | 
 | 37 | #include <mach/dma.h> | 
 | 38 |  | 
 | 39 | /* I don't quite understand why dc4 fails when this is set to 1 and DMA is enabled */ | 
 | 40 | /* especially since dc4 doesn't use kmalloc'd memory. */ | 
 | 41 |  | 
 | 42 | #define ALLOW_MAP_OF_KMALLOC_MEMORY 0 | 
 | 43 |  | 
 | 44 | /* ---- Public Variables ------------------------------------------------- */ | 
 | 45 |  | 
 | 46 | /* ---- Private Constants and Types -------------------------------------- */ | 
 | 47 |  | 
 | 48 | #define MAKE_HANDLE(controllerIdx, channelIdx)    (((controllerIdx) << 4) | (channelIdx)) | 
 | 49 |  | 
 | 50 | #define CONTROLLER_FROM_HANDLE(handle)    (((handle) >> 4) & 0x0f) | 
 | 51 | #define CHANNEL_FROM_HANDLE(handle)       ((handle) & 0x0f) | 
 | 52 |  | 
 | 53 | #define DMA_MAP_DEBUG   0 | 
 | 54 |  | 
 | 55 | #if DMA_MAP_DEBUG | 
 | 56 | #   define  DMA_MAP_PRINT(fmt, args...)   printk("%s: " fmt, __func__,  ## args) | 
 | 57 | #else | 
 | 58 | #   define  DMA_MAP_PRINT(fmt, args...) | 
 | 59 | #endif | 
 | 60 |  | 
 | 61 | /* ---- Private Variables ------------------------------------------------ */ | 
 | 62 |  | 
 | 63 | static DMA_Global_t gDMA; | 
 | 64 | static struct proc_dir_entry *gDmaDir; | 
 | 65 |  | 
 | 66 | static atomic_t gDmaStatMemTypeKmalloc = ATOMIC_INIT(0); | 
 | 67 | static atomic_t gDmaStatMemTypeVmalloc = ATOMIC_INIT(0); | 
 | 68 | static atomic_t gDmaStatMemTypeUser = ATOMIC_INIT(0); | 
 | 69 | static atomic_t gDmaStatMemTypeCoherent = ATOMIC_INIT(0); | 
 | 70 |  | 
 | 71 | #include "dma_device.c" | 
 | 72 |  | 
 | 73 | /* ---- Private Function Prototypes -------------------------------------- */ | 
 | 74 |  | 
 | 75 | /* ---- Functions  ------------------------------------------------------- */ | 
 | 76 |  | 
 | 77 | /****************************************************************************/ | 
 | 78 | /** | 
 | 79 | *   Displays information for /proc/dma/mem-type | 
 | 80 | */ | 
 | 81 | /****************************************************************************/ | 
 | 82 |  | 
 | 83 | static int dma_proc_read_mem_type(char *buf, char **start, off_t offset, | 
 | 84 | 				  int count, int *eof, void *data) | 
 | 85 | { | 
 | 86 | 	int len = 0; | 
 | 87 |  | 
 | 88 | 	len += sprintf(buf + len, "dma_map_mem statistics\n"); | 
 | 89 | 	len += | 
 | 90 | 	    sprintf(buf + len, "coherent: %d\n", | 
 | 91 | 		    atomic_read(&gDmaStatMemTypeCoherent)); | 
 | 92 | 	len += | 
 | 93 | 	    sprintf(buf + len, "kmalloc:  %d\n", | 
 | 94 | 		    atomic_read(&gDmaStatMemTypeKmalloc)); | 
 | 95 | 	len += | 
 | 96 | 	    sprintf(buf + len, "vmalloc:  %d\n", | 
 | 97 | 		    atomic_read(&gDmaStatMemTypeVmalloc)); | 
 | 98 | 	len += | 
 | 99 | 	    sprintf(buf + len, "user:     %d\n", | 
 | 100 | 		    atomic_read(&gDmaStatMemTypeUser)); | 
 | 101 |  | 
 | 102 | 	return len; | 
 | 103 | } | 
 | 104 |  | 
 | 105 | /****************************************************************************/ | 
 | 106 | /** | 
 | 107 | *   Displays information for /proc/dma/channels | 
 | 108 | */ | 
 | 109 | /****************************************************************************/ | 
 | 110 |  | 
 | 111 | static int dma_proc_read_channels(char *buf, char **start, off_t offset, | 
 | 112 | 				  int count, int *eof, void *data) | 
 | 113 | { | 
 | 114 | 	int controllerIdx; | 
 | 115 | 	int channelIdx; | 
 | 116 | 	int limit = count - 200; | 
 | 117 | 	int len = 0; | 
 | 118 | 	DMA_Channel_t *channel; | 
 | 119 |  | 
 | 120 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 121 | 		return -ERESTARTSYS; | 
 | 122 | 	} | 
 | 123 |  | 
 | 124 | 	for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | 
 | 125 | 	     controllerIdx++) { | 
 | 126 | 		for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | 
 | 127 | 		     channelIdx++) { | 
 | 128 | 			if (len >= limit) { | 
 | 129 | 				break; | 
 | 130 | 			} | 
 | 131 |  | 
 | 132 | 			channel = | 
 | 133 | 			    &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 | 134 |  | 
 | 135 | 			len += | 
 | 136 | 			    sprintf(buf + len, "%d:%d ", controllerIdx, | 
 | 137 | 				    channelIdx); | 
 | 138 |  | 
 | 139 | 			if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != | 
 | 140 | 			    0) { | 
 | 141 | 				len += | 
 | 142 | 				    sprintf(buf + len, "Dedicated for %s ", | 
 | 143 | 					    DMA_gDeviceAttribute[channel-> | 
 | 144 | 								 devType].name); | 
 | 145 | 			} else { | 
 | 146 | 				len += sprintf(buf + len, "Shared "); | 
 | 147 | 			} | 
 | 148 |  | 
 | 149 | 			if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) != 0) { | 
 | 150 | 				len += sprintf(buf + len, "No ISR "); | 
 | 151 | 			} | 
 | 152 |  | 
 | 153 | 			if ((channel->flags & DMA_CHANNEL_FLAG_LARGE_FIFO) != 0) { | 
 | 154 | 				len += sprintf(buf + len, "Fifo: 128 "); | 
 | 155 | 			} else { | 
 | 156 | 				len += sprintf(buf + len, "Fifo: 64  "); | 
 | 157 | 			} | 
 | 158 |  | 
 | 159 | 			if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { | 
 | 160 | 				len += | 
 | 161 | 				    sprintf(buf + len, "InUse by %s", | 
 | 162 | 					    DMA_gDeviceAttribute[channel-> | 
 | 163 | 								 devType].name); | 
 | 164 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 165 | 				len += | 
 | 166 | 				    sprintf(buf + len, " (%s:%d)", | 
 | 167 | 					    channel->fileName, | 
 | 168 | 					    channel->lineNum); | 
 | 169 | #endif | 
 | 170 | 			} else { | 
 | 171 | 				len += sprintf(buf + len, "Avail "); | 
 | 172 | 			} | 
 | 173 |  | 
 | 174 | 			if (channel->lastDevType != DMA_DEVICE_NONE) { | 
 | 175 | 				len += | 
 | 176 | 				    sprintf(buf + len, "Last use: %s ", | 
 | 177 | 					    DMA_gDeviceAttribute[channel-> | 
 | 178 | 								 lastDevType]. | 
 | 179 | 					    name); | 
 | 180 | 			} | 
 | 181 |  | 
 | 182 | 			len += sprintf(buf + len, "\n"); | 
 | 183 | 		} | 
 | 184 | 	} | 
 | 185 | 	up(&gDMA.lock); | 
 | 186 | 	*eof = 1; | 
 | 187 |  | 
 | 188 | 	return len; | 
 | 189 | } | 
 | 190 |  | 
 | 191 | /****************************************************************************/ | 
 | 192 | /** | 
 | 193 | *   Displays information for /proc/dma/devices | 
 | 194 | */ | 
 | 195 | /****************************************************************************/ | 
 | 196 |  | 
 | 197 | static int dma_proc_read_devices(char *buf, char **start, off_t offset, | 
 | 198 | 				 int count, int *eof, void *data) | 
 | 199 | { | 
 | 200 | 	int limit = count - 200; | 
 | 201 | 	int len = 0; | 
 | 202 | 	int devIdx; | 
 | 203 |  | 
 | 204 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 205 | 		return -ERESTARTSYS; | 
 | 206 | 	} | 
 | 207 |  | 
 | 208 | 	for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { | 
 | 209 | 		DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; | 
 | 210 |  | 
 | 211 | 		if (devAttr->name == NULL) { | 
 | 212 | 			continue; | 
 | 213 | 		} | 
 | 214 |  | 
 | 215 | 		if (len >= limit) { | 
 | 216 | 			break; | 
 | 217 | 		} | 
 | 218 |  | 
 | 219 | 		len += sprintf(buf + len, "%-12s ", devAttr->name); | 
 | 220 |  | 
 | 221 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | 
 | 222 | 			len += | 
 | 223 | 			    sprintf(buf + len, "Dedicated %d:%d ", | 
 | 224 | 				    devAttr->dedicatedController, | 
 | 225 | 				    devAttr->dedicatedChannel); | 
 | 226 | 		} else { | 
 | 227 | 			len += sprintf(buf + len, "Shared DMA:"); | 
 | 228 | 			if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA0) != 0) { | 
 | 229 | 				len += sprintf(buf + len, "0"); | 
 | 230 | 			} | 
 | 231 | 			if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA1) != 0) { | 
 | 232 | 				len += sprintf(buf + len, "1"); | 
 | 233 | 			} | 
 | 234 | 			len += sprintf(buf + len, " "); | 
 | 235 | 		} | 
 | 236 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) { | 
 | 237 | 			len += sprintf(buf + len, "NoISR "); | 
 | 238 | 		} | 
 | 239 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) != 0) { | 
 | 240 | 			len += sprintf(buf + len, "Allow-128 "); | 
 | 241 | 		} | 
 | 242 |  | 
 | 243 | 		len += | 
 | 244 | 		    sprintf(buf + len, | 
 | 245 | 			    "Xfer #: %Lu Ticks: %Lu Bytes: %Lu DescLen: %u\n", | 
 | 246 | 			    devAttr->numTransfers, devAttr->transferTicks, | 
 | 247 | 			    devAttr->transferBytes, | 
 | 248 | 			    devAttr->ring.bytesAllocated); | 
 | 249 |  | 
 | 250 | 	} | 
 | 251 |  | 
 | 252 | 	up(&gDMA.lock); | 
 | 253 | 	*eof = 1; | 
 | 254 |  | 
 | 255 | 	return len; | 
 | 256 | } | 
 | 257 |  | 
 | 258 | /****************************************************************************/ | 
 | 259 | /** | 
 | 260 | *   Determines if a DMA_Device_t is "valid". | 
 | 261 | * | 
 | 262 | *   @return | 
 | 263 | *       TRUE        - dma device is valid | 
 | 264 | *       FALSE       - dma device isn't valid | 
 | 265 | */ | 
 | 266 | /****************************************************************************/ | 
 | 267 |  | 
 | 268 | static inline int IsDeviceValid(DMA_Device_t device) | 
 | 269 | { | 
 | 270 | 	return (device >= 0) && (device < DMA_NUM_DEVICE_ENTRIES); | 
 | 271 | } | 
 | 272 |  | 
 | 273 | /****************************************************************************/ | 
 | 274 | /** | 
 | 275 | *   Translates a DMA handle into a pointer to a channel. | 
 | 276 | * | 
 | 277 | *   @return | 
 | 278 | *       non-NULL    - pointer to DMA_Channel_t | 
 | 279 | *       NULL        - DMA Handle was invalid | 
 | 280 | */ | 
 | 281 | /****************************************************************************/ | 
 | 282 |  | 
 | 283 | static inline DMA_Channel_t *HandleToChannel(DMA_Handle_t handle) | 
 | 284 | { | 
 | 285 | 	int controllerIdx; | 
 | 286 | 	int channelIdx; | 
 | 287 |  | 
 | 288 | 	controllerIdx = CONTROLLER_FROM_HANDLE(handle); | 
 | 289 | 	channelIdx = CHANNEL_FROM_HANDLE(handle); | 
 | 290 |  | 
 | 291 | 	if ((controllerIdx > DMA_NUM_CONTROLLERS) | 
 | 292 | 	    || (channelIdx > DMA_NUM_CHANNELS)) { | 
 | 293 | 		return NULL; | 
 | 294 | 	} | 
 | 295 | 	return &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 | 296 | } | 
 | 297 |  | 
 | 298 | /****************************************************************************/ | 
 | 299 | /** | 
 | 300 | *   Interrupt handler which is called to process DMA interrupts. | 
 | 301 | */ | 
 | 302 | /****************************************************************************/ | 
 | 303 |  | 
 | 304 | static irqreturn_t dma_interrupt_handler(int irq, void *dev_id) | 
 | 305 | { | 
 | 306 | 	DMA_Channel_t *channel; | 
 | 307 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 308 | 	int irqStatus; | 
 | 309 |  | 
 | 310 | 	channel = (DMA_Channel_t *) dev_id; | 
 | 311 |  | 
 | 312 | 	/* Figure out why we were called, and knock down the interrupt */ | 
 | 313 |  | 
 | 314 | 	irqStatus = dmacHw_getInterruptStatus(channel->dmacHwHandle); | 
 | 315 | 	dmacHw_clearInterrupt(channel->dmacHwHandle); | 
 | 316 |  | 
 | 317 | 	if ((channel->devType < 0) | 
 | 318 | 	    || (channel->devType > DMA_NUM_DEVICE_ENTRIES)) { | 
 | 319 | 		printk(KERN_ERR "dma_interrupt_handler: Invalid devType: %d\n", | 
 | 320 | 		       channel->devType); | 
 | 321 | 		return IRQ_NONE; | 
 | 322 | 	} | 
 | 323 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 324 |  | 
 | 325 | 	/* Update stats */ | 
 | 326 |  | 
 | 327 | 	if ((irqStatus & dmacHw_INTERRUPT_STATUS_TRANS) != 0) { | 
 | 328 | 		devAttr->transferTicks += | 
 | 329 | 		    (timer_get_tick_count() - devAttr->transferStartTime); | 
 | 330 | 	} | 
 | 331 |  | 
 | 332 | 	if ((irqStatus & dmacHw_INTERRUPT_STATUS_ERROR) != 0) { | 
 | 333 | 		printk(KERN_ERR | 
 | 334 | 		       "dma_interrupt_handler: devType :%d DMA error (%s)\n", | 
 | 335 | 		       channel->devType, devAttr->name); | 
 | 336 | 	} else { | 
 | 337 | 		devAttr->numTransfers++; | 
 | 338 | 		devAttr->transferBytes += devAttr->numBytes; | 
 | 339 | 	} | 
 | 340 |  | 
 | 341 | 	/* Call any installed handler */ | 
 | 342 |  | 
 | 343 | 	if (devAttr->devHandler != NULL) { | 
 | 344 | 		devAttr->devHandler(channel->devType, irqStatus, | 
 | 345 | 				    devAttr->userData); | 
 | 346 | 	} | 
 | 347 |  | 
 | 348 | 	return IRQ_HANDLED; | 
 | 349 | } | 
 | 350 |  | 
 | 351 | /****************************************************************************/ | 
 | 352 | /** | 
 | 353 | *   Allocates memory to hold a descriptor ring. The descriptor ring then | 
 | 354 | *   needs to be populated by making one or more calls to | 
 | 355 | *   dna_add_descriptors. | 
 | 356 | * | 
 | 357 | *   The returned descriptor ring will be automatically initialized. | 
 | 358 | * | 
 | 359 | *   @return | 
 | 360 | *       0           Descriptor ring was allocated successfully | 
 | 361 | *       -EINVAL     Invalid parameters passed in | 
 | 362 | *       -ENOMEM     Unable to allocate memory for the desired number of descriptors. | 
 | 363 | */ | 
 | 364 | /****************************************************************************/ | 
 | 365 |  | 
 | 366 | int dma_alloc_descriptor_ring(DMA_DescriptorRing_t *ring,	/* Descriptor ring to populate */ | 
 | 367 | 			      int numDescriptors	/* Number of descriptors that need to be allocated. */ | 
 | 368 |     ) { | 
 | 369 | 	size_t bytesToAlloc = dmacHw_descriptorLen(numDescriptors); | 
 | 370 |  | 
 | 371 | 	if ((ring == NULL) || (numDescriptors <= 0)) { | 
 | 372 | 		return -EINVAL; | 
 | 373 | 	} | 
 | 374 |  | 
 | 375 | 	ring->physAddr = 0; | 
 | 376 | 	ring->descriptorsAllocated = 0; | 
 | 377 | 	ring->bytesAllocated = 0; | 
 | 378 |  | 
 | 379 | 	ring->virtAddr = dma_alloc_writecombine(NULL, | 
 | 380 | 						     bytesToAlloc, | 
 | 381 | 						     &ring->physAddr, | 
 | 382 | 						     GFP_KERNEL); | 
 | 383 | 	if (ring->virtAddr == NULL) { | 
 | 384 | 		return -ENOMEM; | 
 | 385 | 	} | 
 | 386 |  | 
 | 387 | 	ring->bytesAllocated = bytesToAlloc; | 
 | 388 | 	ring->descriptorsAllocated = numDescriptors; | 
 | 389 |  | 
 | 390 | 	return dma_init_descriptor_ring(ring, numDescriptors); | 
 | 391 | } | 
 | 392 |  | 
 | 393 | EXPORT_SYMBOL(dma_alloc_descriptor_ring); | 
 | 394 |  | 
 | 395 | /****************************************************************************/ | 
 | 396 | /** | 
 | 397 | *   Releases the memory which was previously allocated for a descriptor ring. | 
 | 398 | */ | 
 | 399 | /****************************************************************************/ | 
 | 400 |  | 
 | 401 | void dma_free_descriptor_ring(DMA_DescriptorRing_t *ring	/* Descriptor to release */ | 
 | 402 |     ) { | 
 | 403 | 	if (ring->virtAddr != NULL) { | 
 | 404 | 		dma_free_writecombine(NULL, | 
 | 405 | 				      ring->bytesAllocated, | 
 | 406 | 				      ring->virtAddr, ring->physAddr); | 
 | 407 | 	} | 
 | 408 |  | 
 | 409 | 	ring->bytesAllocated = 0; | 
 | 410 | 	ring->descriptorsAllocated = 0; | 
 | 411 | 	ring->virtAddr = NULL; | 
 | 412 | 	ring->physAddr = 0; | 
 | 413 | } | 
 | 414 |  | 
 | 415 | EXPORT_SYMBOL(dma_free_descriptor_ring); | 
 | 416 |  | 
 | 417 | /****************************************************************************/ | 
 | 418 | /** | 
 | 419 | *   Initializes a descriptor ring, so that descriptors can be added to it. | 
 | 420 | *   Once a descriptor ring has been allocated, it may be reinitialized for | 
 | 421 | *   use with additional/different regions of memory. | 
 | 422 | * | 
 | 423 | *   Note that if 7 descriptors are allocated, it's perfectly acceptable to | 
 | 424 | *   initialize the ring with a smaller number of descriptors. The amount | 
 | 425 | *   of memory allocated for the descriptor ring will not be reduced, and | 
 | 426 | *   the descriptor ring may be reinitialized later | 
 | 427 | * | 
 | 428 | *   @return | 
 | 429 | *       0           Descriptor ring was initialized successfully | 
 | 430 | *       -ENOMEM     The descriptor which was passed in has insufficient space | 
 | 431 | *                   to hold the desired number of descriptors. | 
 | 432 | */ | 
 | 433 | /****************************************************************************/ | 
 | 434 |  | 
 | 435 | int dma_init_descriptor_ring(DMA_DescriptorRing_t *ring,	/* Descriptor ring to initialize */ | 
 | 436 | 			     int numDescriptors	/* Number of descriptors to initialize. */ | 
 | 437 |     ) { | 
 | 438 | 	if (ring->virtAddr == NULL) { | 
 | 439 | 		return -EINVAL; | 
 | 440 | 	} | 
 | 441 | 	if (dmacHw_initDescriptor(ring->virtAddr, | 
 | 442 | 				  ring->physAddr, | 
 | 443 | 				  ring->bytesAllocated, numDescriptors) < 0) { | 
 | 444 | 		printk(KERN_ERR | 
 | 445 | 		       "dma_init_descriptor_ring: dmacHw_initDescriptor failed\n"); | 
 | 446 | 		return -ENOMEM; | 
 | 447 | 	} | 
 | 448 |  | 
 | 449 | 	return 0; | 
 | 450 | } | 
 | 451 |  | 
 | 452 | EXPORT_SYMBOL(dma_init_descriptor_ring); | 
 | 453 |  | 
 | 454 | /****************************************************************************/ | 
 | 455 | /** | 
 | 456 | *   Determines the number of descriptors which would be required for a | 
 | 457 | *   transfer of the indicated memory region. | 
 | 458 | * | 
 | 459 | *   This function also needs to know which DMA device this transfer will | 
 | 460 | *   be destined for, so that the appropriate DMA configuration can be retrieved. | 
 | 461 | *   DMA parameters such as transfer width, and whether this is a memory-to-memory | 
 | 462 | *   or memory-to-peripheral, etc can all affect the actual number of descriptors | 
 | 463 | *   required. | 
 | 464 | * | 
 | 465 | *   @return | 
 | 466 | *       > 0     Returns the number of descriptors required for the indicated transfer | 
 | 467 | *       -ENODEV - Device handed in is invalid. | 
 | 468 | *       -EINVAL Invalid parameters | 
 | 469 | *       -ENOMEM Memory exhausted | 
 | 470 | */ | 
 | 471 | /****************************************************************************/ | 
 | 472 |  | 
 | 473 | int dma_calculate_descriptor_count(DMA_Device_t device,	/* DMA Device that this will be associated with */ | 
 | 474 | 				   dma_addr_t srcData,	/* Place to get data to write to device */ | 
 | 475 | 				   dma_addr_t dstData,	/* Pointer to device data address */ | 
 | 476 | 				   size_t numBytes	/* Number of bytes to transfer to the device */ | 
 | 477 |     ) { | 
 | 478 | 	int numDescriptors; | 
 | 479 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 480 |  | 
 | 481 | 	if (!IsDeviceValid(device)) { | 
 | 482 | 		return -ENODEV; | 
 | 483 | 	} | 
 | 484 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 | 485 |  | 
 | 486 | 	numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, | 
 | 487 | 							      (void *)srcData, | 
 | 488 | 							      (void *)dstData, | 
 | 489 | 							      numBytes); | 
 | 490 | 	if (numDescriptors < 0) { | 
 | 491 | 		printk(KERN_ERR | 
 | 492 | 		       "dma_calculate_descriptor_count: dmacHw_calculateDescriptorCount failed\n"); | 
 | 493 | 		return -EINVAL; | 
 | 494 | 	} | 
 | 495 |  | 
 | 496 | 	return numDescriptors; | 
 | 497 | } | 
 | 498 |  | 
 | 499 | EXPORT_SYMBOL(dma_calculate_descriptor_count); | 
 | 500 |  | 
 | 501 | /****************************************************************************/ | 
 | 502 | /** | 
 | 503 | *   Adds a region of memory to the descriptor ring. Note that it may take | 
 | 504 | *   multiple descriptors for each region of memory. It is the callers | 
 | 505 | *   responsibility to allocate a sufficiently large descriptor ring. | 
 | 506 | * | 
 | 507 | *   @return | 
 | 508 | *       0       Descriptors were added successfully | 
 | 509 | *       -ENODEV Device handed in is invalid. | 
 | 510 | *       -EINVAL Invalid parameters | 
 | 511 | *       -ENOMEM Memory exhausted | 
 | 512 | */ | 
 | 513 | /****************************************************************************/ | 
 | 514 |  | 
 | 515 | int dma_add_descriptors(DMA_DescriptorRing_t *ring,	/* Descriptor ring to add descriptors to */ | 
 | 516 | 			DMA_Device_t device,	/* DMA Device that descriptors are for */ | 
 | 517 | 			dma_addr_t srcData,	/* Place to get data (memory or device) */ | 
 | 518 | 			dma_addr_t dstData,	/* Place to put data (memory or device) */ | 
 | 519 | 			size_t numBytes	/* Number of bytes to transfer to the device */ | 
 | 520 |     ) { | 
 | 521 | 	int rc; | 
 | 522 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 523 |  | 
 | 524 | 	if (!IsDeviceValid(device)) { | 
 | 525 | 		return -ENODEV; | 
 | 526 | 	} | 
 | 527 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 | 528 |  | 
 | 529 | 	rc = dmacHw_setDataDescriptor(&devAttr->config, | 
 | 530 | 				      ring->virtAddr, | 
 | 531 | 				      (void *)srcData, | 
 | 532 | 				      (void *)dstData, numBytes); | 
 | 533 | 	if (rc < 0) { | 
 | 534 | 		printk(KERN_ERR | 
 | 535 | 		       "dma_add_descriptors: dmacHw_setDataDescriptor failed with code: %d\n", | 
 | 536 | 		       rc); | 
 | 537 | 		return -ENOMEM; | 
 | 538 | 	} | 
 | 539 |  | 
 | 540 | 	return 0; | 
 | 541 | } | 
 | 542 |  | 
 | 543 | EXPORT_SYMBOL(dma_add_descriptors); | 
 | 544 |  | 
 | 545 | /****************************************************************************/ | 
 | 546 | /** | 
 | 547 | *   Sets the descriptor ring associated with a device. | 
 | 548 | * | 
 | 549 | *   Once set, the descriptor ring will be associated with the device, even | 
 | 550 | *   across channel request/free calls. Passing in a NULL descriptor ring | 
 | 551 | *   will release any descriptor ring currently associated with the device. | 
 | 552 | * | 
 | 553 | *   Note: If you call dma_transfer, or one of the other dma_alloc_ functions | 
 | 554 | *         the descriptor ring may be released and reallocated. | 
 | 555 | * | 
 | 556 | *   Note: This function will release the descriptor memory for any current | 
 | 557 | *         descriptor ring associated with this device. | 
 | 558 | * | 
 | 559 | *   @return | 
 | 560 | *       0       Descriptors were added successfully | 
 | 561 | *       -ENODEV Device handed in is invalid. | 
 | 562 | */ | 
 | 563 | /****************************************************************************/ | 
 | 564 |  | 
 | 565 | int dma_set_device_descriptor_ring(DMA_Device_t device,	/* Device to update the descriptor ring for. */ | 
 | 566 | 				   DMA_DescriptorRing_t *ring	/* Descriptor ring to add descriptors to */ | 
 | 567 |     ) { | 
 | 568 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 569 |  | 
 | 570 | 	if (!IsDeviceValid(device)) { | 
 | 571 | 		return -ENODEV; | 
 | 572 | 	} | 
 | 573 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 | 574 |  | 
 | 575 | 	/* Free the previously allocated descriptor ring */ | 
 | 576 |  | 
 | 577 | 	dma_free_descriptor_ring(&devAttr->ring); | 
 | 578 |  | 
 | 579 | 	if (ring != NULL) { | 
 | 580 | 		/* Copy in the new one */ | 
 | 581 |  | 
 | 582 | 		devAttr->ring = *ring; | 
 | 583 | 	} | 
 | 584 |  | 
 | 585 | 	/* Set things up so that if dma_transfer is called then this descriptor */ | 
 | 586 | 	/* ring will get freed. */ | 
 | 587 |  | 
 | 588 | 	devAttr->prevSrcData = 0; | 
 | 589 | 	devAttr->prevDstData = 0; | 
 | 590 | 	devAttr->prevNumBytes = 0; | 
 | 591 |  | 
 | 592 | 	return 0; | 
 | 593 | } | 
 | 594 |  | 
 | 595 | EXPORT_SYMBOL(dma_set_device_descriptor_ring); | 
 | 596 |  | 
 | 597 | /****************************************************************************/ | 
 | 598 | /** | 
 | 599 | *   Retrieves the descriptor ring associated with a device. | 
 | 600 | * | 
 | 601 | *   @return | 
 | 602 | *       0       Descriptors were added successfully | 
 | 603 | *       -ENODEV Device handed in is invalid. | 
 | 604 | */ | 
 | 605 | /****************************************************************************/ | 
 | 606 |  | 
 | 607 | int dma_get_device_descriptor_ring(DMA_Device_t device,	/* Device to retrieve the descriptor ring for. */ | 
 | 608 | 				   DMA_DescriptorRing_t *ring	/* Place to store retrieved ring */ | 
 | 609 |     ) { | 
 | 610 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 611 |  | 
 | 612 | 	memset(ring, 0, sizeof(*ring)); | 
 | 613 |  | 
 | 614 | 	if (!IsDeviceValid(device)) { | 
 | 615 | 		return -ENODEV; | 
 | 616 | 	} | 
 | 617 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 | 618 |  | 
 | 619 | 	*ring = devAttr->ring; | 
 | 620 |  | 
 | 621 | 	return 0; | 
 | 622 | } | 
 | 623 |  | 
 | 624 | EXPORT_SYMBOL(dma_get_device_descriptor_ring); | 
 | 625 |  | 
 | 626 | /****************************************************************************/ | 
 | 627 | /** | 
 | 628 | *   Configures a DMA channel. | 
 | 629 | * | 
 | 630 | *   @return | 
 | 631 | *       >= 0    - Initialization was successfull. | 
 | 632 | * | 
 | 633 | *       -EBUSY  - Device is currently being used. | 
 | 634 | *       -ENODEV - Device handed in is invalid. | 
 | 635 | */ | 
 | 636 | /****************************************************************************/ | 
 | 637 |  | 
 | 638 | static int ConfigChannel(DMA_Handle_t handle) | 
 | 639 | { | 
 | 640 | 	DMA_Channel_t *channel; | 
 | 641 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 642 | 	int controllerIdx; | 
 | 643 |  | 
 | 644 | 	channel = HandleToChannel(handle); | 
 | 645 | 	if (channel == NULL) { | 
 | 646 | 		return -ENODEV; | 
 | 647 | 	} | 
 | 648 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 649 | 	controllerIdx = CONTROLLER_FROM_HANDLE(handle); | 
 | 650 |  | 
 | 651 | 	if ((devAttr->flags & DMA_DEVICE_FLAG_PORT_PER_DMAC) != 0) { | 
 | 652 | 		if (devAttr->config.transferType == | 
 | 653 | 		    dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL) { | 
 | 654 | 			devAttr->config.dstPeripheralPort = | 
 | 655 | 			    devAttr->dmacPort[controllerIdx]; | 
 | 656 | 		} else if (devAttr->config.transferType == | 
 | 657 | 			   dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM) { | 
 | 658 | 			devAttr->config.srcPeripheralPort = | 
 | 659 | 			    devAttr->dmacPort[controllerIdx]; | 
 | 660 | 		} | 
 | 661 | 	} | 
 | 662 |  | 
 | 663 | 	if (dmacHw_configChannel(channel->dmacHwHandle, &devAttr->config) != 0) { | 
 | 664 | 		printk(KERN_ERR "ConfigChannel: dmacHw_configChannel failed\n"); | 
 | 665 | 		return -EIO; | 
 | 666 | 	} | 
 | 667 |  | 
 | 668 | 	return 0; | 
 | 669 | } | 
 | 670 |  | 
 | 671 | /****************************************************************************/ | 
 | 672 | /** | 
 | 673 | *   Intializes all of the data structures associated with the DMA. | 
 | 674 | *   @return | 
 | 675 | *       >= 0    - Initialization was successfull. | 
 | 676 | * | 
 | 677 | *       -EBUSY  - Device is currently being used. | 
 | 678 | *       -ENODEV - Device handed in is invalid. | 
 | 679 | */ | 
 | 680 | /****************************************************************************/ | 
 | 681 |  | 
 | 682 | int dma_init(void) | 
 | 683 | { | 
 | 684 | 	int rc = 0; | 
 | 685 | 	int controllerIdx; | 
 | 686 | 	int channelIdx; | 
 | 687 | 	DMA_Device_t devIdx; | 
 | 688 | 	DMA_Channel_t *channel; | 
 | 689 | 	DMA_Handle_t dedicatedHandle; | 
 | 690 |  | 
 | 691 | 	memset(&gDMA, 0, sizeof(gDMA)); | 
 | 692 |  | 
 | 693 | 	init_MUTEX_LOCKED(&gDMA.lock); | 
 | 694 | 	init_waitqueue_head(&gDMA.freeChannelQ); | 
 | 695 |  | 
 | 696 | 	/* Initialize the Hardware */ | 
 | 697 |  | 
 | 698 | 	dmacHw_initDma(); | 
 | 699 |  | 
 | 700 | 	/* Start off by marking all of the DMA channels as shared. */ | 
 | 701 |  | 
 | 702 | 	for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | 
 | 703 | 	     controllerIdx++) { | 
 | 704 | 		for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | 
 | 705 | 		     channelIdx++) { | 
 | 706 | 			channel = | 
 | 707 | 			    &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 | 708 |  | 
 | 709 | 			channel->flags = 0; | 
 | 710 | 			channel->devType = DMA_DEVICE_NONE; | 
 | 711 | 			channel->lastDevType = DMA_DEVICE_NONE; | 
 | 712 |  | 
 | 713 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 714 | 			channel->fileName = ""; | 
 | 715 | 			channel->lineNum = 0; | 
 | 716 | #endif | 
 | 717 |  | 
 | 718 | 			channel->dmacHwHandle = | 
 | 719 | 			    dmacHw_getChannelHandle(dmacHw_MAKE_CHANNEL_ID | 
 | 720 | 						    (controllerIdx, | 
 | 721 | 						     channelIdx)); | 
 | 722 | 			dmacHw_initChannel(channel->dmacHwHandle); | 
 | 723 | 		} | 
 | 724 | 	} | 
 | 725 |  | 
 | 726 | 	/* Record any special attributes that channels may have */ | 
 | 727 |  | 
 | 728 | 	gDMA.controller[0].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 729 | 	gDMA.controller[0].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 730 | 	gDMA.controller[1].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 731 | 	gDMA.controller[1].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 732 |  | 
 | 733 | 	/* Now walk through and record the dedicated channels. */ | 
 | 734 |  | 
 | 735 | 	for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { | 
 | 736 | 		DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; | 
 | 737 |  | 
 | 738 | 		if (((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) | 
 | 739 | 		    && ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0)) { | 
 | 740 | 			printk(KERN_ERR | 
 | 741 | 			       "DMA Device: %s Can only request NO_ISR for dedicated devices\n", | 
 | 742 | 			       devAttr->name); | 
 | 743 | 			rc = -EINVAL; | 
 | 744 | 			goto out; | 
 | 745 | 		} | 
 | 746 |  | 
 | 747 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | 
 | 748 | 			/* This is a dedicated device. Mark the channel as being reserved. */ | 
 | 749 |  | 
 | 750 | 			if (devAttr->dedicatedController >= DMA_NUM_CONTROLLERS) { | 
 | 751 | 				printk(KERN_ERR | 
 | 752 | 				       "DMA Device: %s DMA Controller %d is out of range\n", | 
 | 753 | 				       devAttr->name, | 
 | 754 | 				       devAttr->dedicatedController); | 
 | 755 | 				rc = -EINVAL; | 
 | 756 | 				goto out; | 
 | 757 | 			} | 
 | 758 |  | 
 | 759 | 			if (devAttr->dedicatedChannel >= DMA_NUM_CHANNELS) { | 
 | 760 | 				printk(KERN_ERR | 
 | 761 | 				       "DMA Device: %s DMA Channel %d is out of range\n", | 
 | 762 | 				       devAttr->name, | 
 | 763 | 				       devAttr->dedicatedChannel); | 
 | 764 | 				rc = -EINVAL; | 
 | 765 | 				goto out; | 
 | 766 | 			} | 
 | 767 |  | 
 | 768 | 			dedicatedHandle = | 
 | 769 | 			    MAKE_HANDLE(devAttr->dedicatedController, | 
 | 770 | 					devAttr->dedicatedChannel); | 
 | 771 | 			channel = HandleToChannel(dedicatedHandle); | 
 | 772 |  | 
 | 773 | 			if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != | 
 | 774 | 			    0) { | 
 | 775 | 				printk | 
 | 776 | 				    ("DMA Device: %s attempting to use same DMA Controller:Channel (%d:%d) as %s\n", | 
 | 777 | 				     devAttr->name, | 
 | 778 | 				     devAttr->dedicatedController, | 
 | 779 | 				     devAttr->dedicatedChannel, | 
 | 780 | 				     DMA_gDeviceAttribute[channel->devType]. | 
 | 781 | 				     name); | 
 | 782 | 				rc = -EBUSY; | 
 | 783 | 				goto out; | 
 | 784 | 			} | 
 | 785 |  | 
 | 786 | 			channel->flags |= DMA_CHANNEL_FLAG_IS_DEDICATED; | 
 | 787 | 			channel->devType = devIdx; | 
 | 788 |  | 
 | 789 | 			if (devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) { | 
 | 790 | 				channel->flags |= DMA_CHANNEL_FLAG_NO_ISR; | 
 | 791 | 			} | 
 | 792 |  | 
 | 793 | 			/* For dedicated channels, we can go ahead and configure the DMA channel now */ | 
 | 794 | 			/* as well. */ | 
 | 795 |  | 
 | 796 | 			ConfigChannel(dedicatedHandle); | 
 | 797 | 		} | 
 | 798 | 	} | 
 | 799 |  | 
 | 800 | 	/* Go through and register the interrupt handlers */ | 
 | 801 |  | 
 | 802 | 	for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | 
 | 803 | 	     controllerIdx++) { | 
 | 804 | 		for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | 
 | 805 | 		     channelIdx++) { | 
 | 806 | 			channel = | 
 | 807 | 			    &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 | 808 |  | 
 | 809 | 			if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) == 0) { | 
 | 810 | 				snprintf(channel->name, sizeof(channel->name), | 
 | 811 | 					 "dma %d:%d %s", controllerIdx, | 
 | 812 | 					 channelIdx, | 
 | 813 | 					 channel->devType == | 
 | 814 | 					 DMA_DEVICE_NONE ? "" : | 
 | 815 | 					 DMA_gDeviceAttribute[channel->devType]. | 
 | 816 | 					 name); | 
 | 817 |  | 
 | 818 | 				rc = | 
 | 819 | 				     request_irq(IRQ_DMA0C0 + | 
 | 820 | 						 (controllerIdx * | 
 | 821 | 						  DMA_NUM_CHANNELS) + | 
 | 822 | 						 channelIdx, | 
 | 823 | 						 dma_interrupt_handler, | 
 | 824 | 						 IRQF_DISABLED, channel->name, | 
 | 825 | 						 channel); | 
 | 826 | 				if (rc != 0) { | 
 | 827 | 					printk(KERN_ERR | 
 | 828 | 					       "request_irq for IRQ_DMA%dC%d failed\n", | 
 | 829 | 					       controllerIdx, channelIdx); | 
 | 830 | 				} | 
 | 831 | 			} | 
 | 832 | 		} | 
 | 833 | 	} | 
 | 834 |  | 
 | 835 | 	/* Create /proc/dma/channels and /proc/dma/devices */ | 
 | 836 |  | 
 | 837 | 	gDmaDir = create_proc_entry("dma", S_IFDIR | S_IRUGO | S_IXUGO, NULL); | 
 | 838 |  | 
 | 839 | 	if (gDmaDir == NULL) { | 
 | 840 | 		printk(KERN_ERR "Unable to create /proc/dma\n"); | 
 | 841 | 	} else { | 
 | 842 | 		create_proc_read_entry("channels", 0, gDmaDir, | 
 | 843 | 				       dma_proc_read_channels, NULL); | 
 | 844 | 		create_proc_read_entry("devices", 0, gDmaDir, | 
 | 845 | 				       dma_proc_read_devices, NULL); | 
 | 846 | 		create_proc_read_entry("mem-type", 0, gDmaDir, | 
 | 847 | 				       dma_proc_read_mem_type, NULL); | 
 | 848 | 	} | 
 | 849 |  | 
 | 850 | out: | 
 | 851 |  | 
 | 852 | 	up(&gDMA.lock); | 
 | 853 |  | 
 | 854 | 	return rc; | 
 | 855 | } | 
 | 856 |  | 
 | 857 | /****************************************************************************/ | 
 | 858 | /** | 
 | 859 | *   Reserves a channel for use with @a dev. If the device is setup to use | 
 | 860 | *   a shared channel, then this function will block until a free channel | 
 | 861 | *   becomes available. | 
 | 862 | * | 
 | 863 | *   @return | 
 | 864 | *       >= 0    - A valid DMA Handle. | 
 | 865 | *       -EBUSY  - Device is currently being used. | 
 | 866 | *       -ENODEV - Device handed in is invalid. | 
 | 867 | */ | 
 | 868 | /****************************************************************************/ | 
 | 869 |  | 
 | 870 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 871 | DMA_Handle_t dma_request_channel_dbg | 
 | 872 |     (DMA_Device_t dev, const char *fileName, int lineNum) | 
 | 873 | #else | 
 | 874 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) | 
 | 875 | #endif | 
 | 876 | { | 
 | 877 | 	DMA_Handle_t handle; | 
 | 878 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 879 | 	DMA_Channel_t *channel; | 
 | 880 | 	int controllerIdx; | 
 | 881 | 	int controllerIdx2; | 
 | 882 | 	int channelIdx; | 
 | 883 |  | 
 | 884 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 885 | 		return -ERESTARTSYS; | 
 | 886 | 	} | 
 | 887 |  | 
 | 888 | 	if ((dev < 0) || (dev >= DMA_NUM_DEVICE_ENTRIES)) { | 
 | 889 | 		handle = -ENODEV; | 
 | 890 | 		goto out; | 
 | 891 | 	} | 
 | 892 | 	devAttr = &DMA_gDeviceAttribute[dev]; | 
 | 893 |  | 
 | 894 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 895 | 	{ | 
 | 896 | 		char *s; | 
 | 897 |  | 
 | 898 | 		s = strrchr(fileName, '/'); | 
 | 899 | 		if (s != NULL) { | 
 | 900 | 			fileName = s + 1; | 
 | 901 | 		} | 
 | 902 | 	} | 
 | 903 | #endif | 
 | 904 | 	if ((devAttr->flags & DMA_DEVICE_FLAG_IN_USE) != 0) { | 
 | 905 | 		/* This device has already been requested and not been freed */ | 
 | 906 |  | 
 | 907 | 		printk(KERN_ERR "%s: device %s is already requested\n", | 
 | 908 | 		       __func__, devAttr->name); | 
 | 909 | 		handle = -EBUSY; | 
 | 910 | 		goto out; | 
 | 911 | 	} | 
 | 912 |  | 
 | 913 | 	if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | 
 | 914 | 		/* This device has a dedicated channel. */ | 
 | 915 |  | 
 | 916 | 		channel = | 
 | 917 | 		    &gDMA.controller[devAttr->dedicatedController]. | 
 | 918 | 		    channel[devAttr->dedicatedChannel]; | 
 | 919 | 		if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { | 
 | 920 | 			handle = -EBUSY; | 
 | 921 | 			goto out; | 
 | 922 | 		} | 
 | 923 |  | 
 | 924 | 		channel->flags |= DMA_CHANNEL_FLAG_IN_USE; | 
 | 925 | 		devAttr->flags |= DMA_DEVICE_FLAG_IN_USE; | 
 | 926 |  | 
 | 927 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 928 | 		channel->fileName = fileName; | 
 | 929 | 		channel->lineNum = lineNum; | 
 | 930 | #endif | 
 | 931 | 		handle = | 
 | 932 | 		    MAKE_HANDLE(devAttr->dedicatedController, | 
 | 933 | 				devAttr->dedicatedChannel); | 
 | 934 | 		goto out; | 
 | 935 | 	} | 
 | 936 |  | 
 | 937 | 	/* This device needs to use one of the shared channels. */ | 
 | 938 |  | 
 | 939 | 	handle = DMA_INVALID_HANDLE; | 
 | 940 | 	while (handle == DMA_INVALID_HANDLE) { | 
 | 941 | 		/* Scan through the shared channels and see if one is available */ | 
 | 942 |  | 
 | 943 | 		for (controllerIdx2 = 0; controllerIdx2 < DMA_NUM_CONTROLLERS; | 
 | 944 | 		     controllerIdx2++) { | 
 | 945 | 			/* Check to see if we should try on controller 1 first. */ | 
 | 946 |  | 
 | 947 | 			controllerIdx = controllerIdx2; | 
 | 948 | 			if ((devAttr-> | 
 | 949 | 			     flags & DMA_DEVICE_FLAG_ALLOC_DMA1_FIRST) != 0) { | 
 | 950 | 				controllerIdx = 1 - controllerIdx; | 
 | 951 | 			} | 
 | 952 |  | 
 | 953 | 			/* See if the device is available on the controller being tested */ | 
 | 954 |  | 
 | 955 | 			if ((devAttr-> | 
 | 956 | 			     flags & (DMA_DEVICE_FLAG_ON_DMA0 << controllerIdx)) | 
 | 957 | 			    != 0) { | 
 | 958 | 				for (channelIdx = 0; | 
 | 959 | 				     channelIdx < DMA_NUM_CHANNELS; | 
 | 960 | 				     channelIdx++) { | 
 | 961 | 					channel = | 
 | 962 | 					    &gDMA.controller[controllerIdx]. | 
 | 963 | 					    channel[channelIdx]; | 
 | 964 |  | 
 | 965 | 					if (((channel-> | 
 | 966 | 					      flags & | 
 | 967 | 					      DMA_CHANNEL_FLAG_IS_DEDICATED) == | 
 | 968 | 					     0) | 
 | 969 | 					    && | 
 | 970 | 					    ((channel-> | 
 | 971 | 					      flags & DMA_CHANNEL_FLAG_IN_USE) | 
 | 972 | 					     == 0)) { | 
 | 973 | 						if (((channel-> | 
 | 974 | 						      flags & | 
 | 975 | 						      DMA_CHANNEL_FLAG_LARGE_FIFO) | 
 | 976 | 						     != 0) | 
 | 977 | 						    && | 
 | 978 | 						    ((devAttr-> | 
 | 979 | 						      flags & | 
 | 980 | 						      DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) | 
 | 981 | 						     == 0)) { | 
 | 982 | 							/* This channel is a large fifo - don't tie it up */ | 
 | 983 | 							/* with devices that we don't want using it. */ | 
 | 984 |  | 
 | 985 | 							continue; | 
 | 986 | 						} | 
 | 987 |  | 
 | 988 | 						channel->flags |= | 
 | 989 | 						    DMA_CHANNEL_FLAG_IN_USE; | 
 | 990 | 						channel->devType = dev; | 
 | 991 | 						devAttr->flags |= | 
 | 992 | 						    DMA_DEVICE_FLAG_IN_USE; | 
 | 993 |  | 
 | 994 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 995 | 						channel->fileName = fileName; | 
 | 996 | 						channel->lineNum = lineNum; | 
 | 997 | #endif | 
 | 998 | 						handle = | 
 | 999 | 						    MAKE_HANDLE(controllerIdx, | 
 | 1000 | 								channelIdx); | 
 | 1001 |  | 
 | 1002 | 						/* Now that we've reserved the channel - we can go ahead and configure it */ | 
 | 1003 |  | 
 | 1004 | 						if (ConfigChannel(handle) != 0) { | 
 | 1005 | 							handle = -EIO; | 
 | 1006 | 							printk(KERN_ERR | 
 | 1007 | 							       "dma_request_channel: ConfigChannel failed\n"); | 
 | 1008 | 						} | 
 | 1009 | 						goto out; | 
 | 1010 | 					} | 
 | 1011 | 				} | 
 | 1012 | 			} | 
 | 1013 | 		} | 
 | 1014 |  | 
 | 1015 | 		/* No channels are currently available. Let's wait for one to free up. */ | 
 | 1016 |  | 
 | 1017 | 		{ | 
 | 1018 | 			DEFINE_WAIT(wait); | 
 | 1019 |  | 
 | 1020 | 			prepare_to_wait(&gDMA.freeChannelQ, &wait, | 
 | 1021 | 					TASK_INTERRUPTIBLE); | 
 | 1022 | 			up(&gDMA.lock); | 
 | 1023 | 			schedule(); | 
 | 1024 | 			finish_wait(&gDMA.freeChannelQ, &wait); | 
 | 1025 |  | 
 | 1026 | 			if (signal_pending(current)) { | 
 | 1027 | 				/* We don't currently hold gDMA.lock, so we return directly */ | 
 | 1028 |  | 
 | 1029 | 				return -ERESTARTSYS; | 
 | 1030 | 			} | 
 | 1031 | 		} | 
 | 1032 |  | 
 | 1033 | 		if (down_interruptible(&gDMA.lock)) { | 
 | 1034 | 			return -ERESTARTSYS; | 
 | 1035 | 		} | 
 | 1036 | 	} | 
 | 1037 |  | 
 | 1038 | out: | 
 | 1039 | 	up(&gDMA.lock); | 
 | 1040 |  | 
 | 1041 | 	return handle; | 
 | 1042 | } | 
 | 1043 |  | 
 | 1044 | /* Create both _dbg and non _dbg functions for modules. */ | 
 | 1045 |  | 
 | 1046 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 1047 | #undef dma_request_channel | 
 | 1048 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) | 
 | 1049 | { | 
 | 1050 | 	return dma_request_channel_dbg(dev, __FILE__, __LINE__); | 
 | 1051 | } | 
 | 1052 |  | 
 | 1053 | EXPORT_SYMBOL(dma_request_channel_dbg); | 
 | 1054 | #endif | 
 | 1055 | EXPORT_SYMBOL(dma_request_channel); | 
 | 1056 |  | 
 | 1057 | /****************************************************************************/ | 
 | 1058 | /** | 
 | 1059 | *   Frees a previously allocated DMA Handle. | 
 | 1060 | */ | 
 | 1061 | /****************************************************************************/ | 
 | 1062 |  | 
 | 1063 | int dma_free_channel(DMA_Handle_t handle	/* DMA handle. */ | 
 | 1064 |     ) { | 
 | 1065 | 	int rc = 0; | 
 | 1066 | 	DMA_Channel_t *channel; | 
 | 1067 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1068 |  | 
 | 1069 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 1070 | 		return -ERESTARTSYS; | 
 | 1071 | 	} | 
 | 1072 |  | 
 | 1073 | 	channel = HandleToChannel(handle); | 
 | 1074 | 	if (channel == NULL) { | 
 | 1075 | 		rc = -EINVAL; | 
 | 1076 | 		goto out; | 
 | 1077 | 	} | 
 | 1078 |  | 
 | 1079 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 1080 |  | 
 | 1081 | 	if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) == 0) { | 
 | 1082 | 		channel->lastDevType = channel->devType; | 
 | 1083 | 		channel->devType = DMA_DEVICE_NONE; | 
 | 1084 | 	} | 
 | 1085 | 	channel->flags &= ~DMA_CHANNEL_FLAG_IN_USE; | 
 | 1086 | 	devAttr->flags &= ~DMA_DEVICE_FLAG_IN_USE; | 
 | 1087 |  | 
 | 1088 | out: | 
 | 1089 | 	up(&gDMA.lock); | 
 | 1090 |  | 
 | 1091 | 	wake_up_interruptible(&gDMA.freeChannelQ); | 
 | 1092 |  | 
 | 1093 | 	return rc; | 
 | 1094 | } | 
 | 1095 |  | 
 | 1096 | EXPORT_SYMBOL(dma_free_channel); | 
 | 1097 |  | 
 | 1098 | /****************************************************************************/ | 
 | 1099 | /** | 
 | 1100 | *   Determines if a given device has been configured as using a shared | 
 | 1101 | *   channel. | 
 | 1102 | * | 
 | 1103 | *   @return | 
 | 1104 | *       0           Device uses a dedicated channel | 
 | 1105 | *       > zero      Device uses a shared channel | 
 | 1106 | *       < zero      Error code | 
 | 1107 | */ | 
 | 1108 | /****************************************************************************/ | 
 | 1109 |  | 
 | 1110 | int dma_device_is_channel_shared(DMA_Device_t device	/* Device to check. */ | 
 | 1111 |     ) { | 
 | 1112 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1113 |  | 
 | 1114 | 	if (!IsDeviceValid(device)) { | 
 | 1115 | 		return -ENODEV; | 
 | 1116 | 	} | 
 | 1117 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 | 1118 |  | 
 | 1119 | 	return ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0); | 
 | 1120 | } | 
 | 1121 |  | 
 | 1122 | EXPORT_SYMBOL(dma_device_is_channel_shared); | 
 | 1123 |  | 
 | 1124 | /****************************************************************************/ | 
 | 1125 | /** | 
 | 1126 | *   Allocates buffers for the descriptors. This is normally done automatically | 
 | 1127 | *   but needs to be done explicitly when initiating a dma from interrupt | 
 | 1128 | *   context. | 
 | 1129 | * | 
 | 1130 | *   @return | 
 | 1131 | *       0       Descriptors were allocated successfully | 
 | 1132 | *       -EINVAL Invalid device type for this kind of transfer | 
 | 1133 | *               (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) | 
 | 1134 | *       -ENOMEM Memory exhausted | 
 | 1135 | */ | 
 | 1136 | /****************************************************************************/ | 
 | 1137 |  | 
 | 1138 | int dma_alloc_descriptors(DMA_Handle_t handle,	/* DMA Handle */ | 
 | 1139 | 			  dmacHw_TRANSFER_TYPE_e transferType,	/* Type of transfer being performed */ | 
 | 1140 | 			  dma_addr_t srcData,	/* Place to get data to write to device */ | 
 | 1141 | 			  dma_addr_t dstData,	/* Pointer to device data address */ | 
 | 1142 | 			  size_t numBytes	/* Number of bytes to transfer to the device */ | 
 | 1143 |     ) { | 
 | 1144 | 	DMA_Channel_t *channel; | 
 | 1145 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1146 | 	int numDescriptors; | 
 | 1147 | 	size_t ringBytesRequired; | 
 | 1148 | 	int rc = 0; | 
 | 1149 |  | 
 | 1150 | 	channel = HandleToChannel(handle); | 
 | 1151 | 	if (channel == NULL) { | 
 | 1152 | 		return -ENODEV; | 
 | 1153 | 	} | 
 | 1154 |  | 
 | 1155 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 1156 |  | 
 | 1157 | 	if (devAttr->config.transferType != transferType) { | 
 | 1158 | 		return -EINVAL; | 
 | 1159 | 	} | 
 | 1160 |  | 
 | 1161 | 	/* Figure out how many descriptors we need. */ | 
 | 1162 |  | 
 | 1163 | 	/* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ | 
 | 1164 | 	/*        srcData, dstData, numBytes); */ | 
 | 1165 |  | 
 | 1166 | 	numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, | 
 | 1167 | 							      (void *)srcData, | 
 | 1168 | 							      (void *)dstData, | 
 | 1169 | 							      numBytes); | 
 | 1170 | 	if (numDescriptors < 0) { | 
 | 1171 | 		printk(KERN_ERR "%s: dmacHw_calculateDescriptorCount failed\n", | 
 | 1172 | 		       __func__); | 
 | 1173 | 		return -EINVAL; | 
 | 1174 | 	} | 
 | 1175 |  | 
 | 1176 | 	/* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ | 
 | 1177 | 	/* a new one. */ | 
 | 1178 |  | 
 | 1179 | 	ringBytesRequired = dmacHw_descriptorLen(numDescriptors); | 
 | 1180 |  | 
 | 1181 | 	/* printk("ringBytesRequired: %d\n", ringBytesRequired); */ | 
 | 1182 |  | 
 | 1183 | 	if (ringBytesRequired > devAttr->ring.bytesAllocated) { | 
 | 1184 | 		/* Make sure that this code path is never taken from interrupt context. */ | 
 | 1185 | 		/* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ | 
 | 1186 | 		/* allocation needs to have already been done. */ | 
 | 1187 |  | 
 | 1188 | 		might_sleep(); | 
 | 1189 |  | 
 | 1190 | 		/* Free the old descriptor ring and allocate a new one. */ | 
 | 1191 |  | 
 | 1192 | 		dma_free_descriptor_ring(&devAttr->ring); | 
 | 1193 |  | 
 | 1194 | 		/* And allocate a new one. */ | 
 | 1195 |  | 
 | 1196 | 		rc = | 
 | 1197 | 		     dma_alloc_descriptor_ring(&devAttr->ring, | 
 | 1198 | 					       numDescriptors); | 
 | 1199 | 		if (rc < 0) { | 
 | 1200 | 			printk(KERN_ERR | 
 | 1201 | 			       "%s: dma_alloc_descriptor_ring(%d) failed\n", | 
 | 1202 | 			       __func__, numDescriptors); | 
 | 1203 | 			return rc; | 
 | 1204 | 		} | 
 | 1205 | 		/* Setup the descriptor for this transfer */ | 
 | 1206 |  | 
 | 1207 | 		if (dmacHw_initDescriptor(devAttr->ring.virtAddr, | 
 | 1208 | 					  devAttr->ring.physAddr, | 
 | 1209 | 					  devAttr->ring.bytesAllocated, | 
 | 1210 | 					  numDescriptors) < 0) { | 
 | 1211 | 			printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", | 
 | 1212 | 			       __func__); | 
 | 1213 | 			return -EINVAL; | 
 | 1214 | 		} | 
 | 1215 | 	} else { | 
 | 1216 | 		/* We've already got enough ring buffer allocated. All we need to do is reset */ | 
 | 1217 | 		/* any control information, just in case the previous DMA was stopped. */ | 
 | 1218 |  | 
 | 1219 | 		dmacHw_resetDescriptorControl(devAttr->ring.virtAddr); | 
 | 1220 | 	} | 
 | 1221 |  | 
 | 1222 | 	/* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ | 
 | 1223 | 	/* as last time, then we don't need to call setDataDescriptor again. */ | 
 | 1224 |  | 
 | 1225 | 	if (dmacHw_setDataDescriptor(&devAttr->config, | 
 | 1226 | 				     devAttr->ring.virtAddr, | 
 | 1227 | 				     (void *)srcData, | 
 | 1228 | 				     (void *)dstData, numBytes) < 0) { | 
 | 1229 | 		printk(KERN_ERR "%s: dmacHw_setDataDescriptor failed\n", | 
 | 1230 | 		       __func__); | 
 | 1231 | 		return -EINVAL; | 
 | 1232 | 	} | 
 | 1233 |  | 
 | 1234 | 	/* Remember the critical information for this transfer so that we can eliminate */ | 
 | 1235 | 	/* another call to dma_alloc_descriptors if the caller reuses the same buffers */ | 
 | 1236 |  | 
 | 1237 | 	devAttr->prevSrcData = srcData; | 
 | 1238 | 	devAttr->prevDstData = dstData; | 
 | 1239 | 	devAttr->prevNumBytes = numBytes; | 
 | 1240 |  | 
 | 1241 | 	return 0; | 
 | 1242 | } | 
 | 1243 |  | 
 | 1244 | EXPORT_SYMBOL(dma_alloc_descriptors); | 
 | 1245 |  | 
 | 1246 | /****************************************************************************/ | 
 | 1247 | /** | 
 | 1248 | *   Allocates and sets up descriptors for a double buffered circular buffer. | 
 | 1249 | * | 
 | 1250 | *   This is primarily intended to be used for things like the ingress samples | 
 | 1251 | *   from a microphone. | 
 | 1252 | * | 
 | 1253 | *   @return | 
 | 1254 | *       > 0     Number of descriptors actually allocated. | 
 | 1255 | *       -EINVAL Invalid device type for this kind of transfer | 
 | 1256 | *               (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) | 
 | 1257 | *       -ENOMEM Memory exhausted | 
 | 1258 | */ | 
 | 1259 | /****************************************************************************/ | 
 | 1260 |  | 
 | 1261 | int dma_alloc_double_dst_descriptors(DMA_Handle_t handle,	/* DMA Handle */ | 
 | 1262 | 				     dma_addr_t srcData,	/* Physical address of source data */ | 
 | 1263 | 				     dma_addr_t dstData1,	/* Physical address of first destination buffer */ | 
 | 1264 | 				     dma_addr_t dstData2,	/* Physical address of second destination buffer */ | 
 | 1265 | 				     size_t numBytes	/* Number of bytes in each destination buffer */ | 
 | 1266 |     ) { | 
 | 1267 | 	DMA_Channel_t *channel; | 
 | 1268 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1269 | 	int numDst1Descriptors; | 
 | 1270 | 	int numDst2Descriptors; | 
 | 1271 | 	int numDescriptors; | 
 | 1272 | 	size_t ringBytesRequired; | 
 | 1273 | 	int rc = 0; | 
 | 1274 |  | 
 | 1275 | 	channel = HandleToChannel(handle); | 
 | 1276 | 	if (channel == NULL) { | 
 | 1277 | 		return -ENODEV; | 
 | 1278 | 	} | 
 | 1279 |  | 
 | 1280 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 1281 |  | 
 | 1282 | 	/* Figure out how many descriptors we need. */ | 
 | 1283 |  | 
 | 1284 | 	/* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ | 
 | 1285 | 	/*        srcData, dstData, numBytes); */ | 
 | 1286 |  | 
 | 1287 | 	numDst1Descriptors = | 
 | 1288 | 	     dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, | 
 | 1289 | 					     (void *)dstData1, numBytes); | 
 | 1290 | 	if (numDst1Descriptors < 0) { | 
 | 1291 | 		return -EINVAL; | 
 | 1292 | 	} | 
 | 1293 | 	numDst2Descriptors = | 
 | 1294 | 	     dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, | 
 | 1295 | 					     (void *)dstData2, numBytes); | 
 | 1296 | 	if (numDst2Descriptors < 0) { | 
 | 1297 | 		return -EINVAL; | 
 | 1298 | 	} | 
 | 1299 | 	numDescriptors = numDst1Descriptors + numDst2Descriptors; | 
 | 1300 | 	/* printk("numDescriptors: %d\n", numDescriptors); */ | 
 | 1301 |  | 
 | 1302 | 	/* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ | 
 | 1303 | 	/* a new one. */ | 
 | 1304 |  | 
 | 1305 | 	ringBytesRequired = dmacHw_descriptorLen(numDescriptors); | 
 | 1306 |  | 
 | 1307 | 	/* printk("ringBytesRequired: %d\n", ringBytesRequired); */ | 
 | 1308 |  | 
 | 1309 | 	if (ringBytesRequired > devAttr->ring.bytesAllocated) { | 
 | 1310 | 		/* Make sure that this code path is never taken from interrupt context. */ | 
 | 1311 | 		/* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ | 
 | 1312 | 		/* allocation needs to have already been done. */ | 
 | 1313 |  | 
 | 1314 | 		might_sleep(); | 
 | 1315 |  | 
 | 1316 | 		/* Free the old descriptor ring and allocate a new one. */ | 
 | 1317 |  | 
 | 1318 | 		dma_free_descriptor_ring(&devAttr->ring); | 
 | 1319 |  | 
 | 1320 | 		/* And allocate a new one. */ | 
 | 1321 |  | 
 | 1322 | 		rc = | 
 | 1323 | 		     dma_alloc_descriptor_ring(&devAttr->ring, | 
 | 1324 | 					       numDescriptors); | 
 | 1325 | 		if (rc < 0) { | 
 | 1326 | 			printk(KERN_ERR | 
 | 1327 | 			       "%s: dma_alloc_descriptor_ring(%d) failed\n", | 
 | 1328 | 			       __func__, ringBytesRequired); | 
 | 1329 | 			return rc; | 
 | 1330 | 		} | 
 | 1331 | 	} | 
 | 1332 |  | 
 | 1333 | 	/* Setup the descriptor for this transfer. Since this function is used with */ | 
 | 1334 | 	/* CONTINUOUS DMA operations, we need to reinitialize every time, otherwise */ | 
 | 1335 | 	/* setDataDescriptor will keep trying to append onto the end. */ | 
 | 1336 |  | 
 | 1337 | 	if (dmacHw_initDescriptor(devAttr->ring.virtAddr, | 
 | 1338 | 				  devAttr->ring.physAddr, | 
 | 1339 | 				  devAttr->ring.bytesAllocated, | 
 | 1340 | 				  numDescriptors) < 0) { | 
 | 1341 | 		printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", __func__); | 
 | 1342 | 		return -EINVAL; | 
 | 1343 | 	} | 
 | 1344 |  | 
 | 1345 | 	/* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ | 
 | 1346 | 	/* as last time, then we don't need to call setDataDescriptor again. */ | 
 | 1347 |  | 
 | 1348 | 	if (dmacHw_setDataDescriptor(&devAttr->config, | 
 | 1349 | 				     devAttr->ring.virtAddr, | 
 | 1350 | 				     (void *)srcData, | 
 | 1351 | 				     (void *)dstData1, numBytes) < 0) { | 
 | 1352 | 		printk(KERN_ERR "%s: dmacHw_setDataDescriptor 1 failed\n", | 
 | 1353 | 		       __func__); | 
 | 1354 | 		return -EINVAL; | 
 | 1355 | 	} | 
 | 1356 | 	if (dmacHw_setDataDescriptor(&devAttr->config, | 
 | 1357 | 				     devAttr->ring.virtAddr, | 
 | 1358 | 				     (void *)srcData, | 
 | 1359 | 				     (void *)dstData2, numBytes) < 0) { | 
 | 1360 | 		printk(KERN_ERR "%s: dmacHw_setDataDescriptor 2 failed\n", | 
 | 1361 | 		       __func__); | 
 | 1362 | 		return -EINVAL; | 
 | 1363 | 	} | 
 | 1364 |  | 
 | 1365 | 	/* You should use dma_start_transfer rather than dma_transfer_xxx so we don't */ | 
 | 1366 | 	/* try to make the 'prev' variables right. */ | 
 | 1367 |  | 
 | 1368 | 	devAttr->prevSrcData = 0; | 
 | 1369 | 	devAttr->prevDstData = 0; | 
 | 1370 | 	devAttr->prevNumBytes = 0; | 
 | 1371 |  | 
 | 1372 | 	return numDescriptors; | 
 | 1373 | } | 
 | 1374 |  | 
 | 1375 | EXPORT_SYMBOL(dma_alloc_double_dst_descriptors); | 
 | 1376 |  | 
 | 1377 | /****************************************************************************/ | 
 | 1378 | /** | 
 | 1379 | *   Initiates a transfer when the descriptors have already been setup. | 
 | 1380 | * | 
 | 1381 | *   This is a special case, and normally, the dma_transfer_xxx functions should | 
 | 1382 | *   be used. | 
 | 1383 | * | 
 | 1384 | *   @return | 
 | 1385 | *       0       Transfer was started successfully | 
 | 1386 | *       -ENODEV Invalid handle | 
 | 1387 | */ | 
 | 1388 | /****************************************************************************/ | 
 | 1389 |  | 
 | 1390 | int dma_start_transfer(DMA_Handle_t handle) | 
 | 1391 | { | 
 | 1392 | 	DMA_Channel_t *channel; | 
 | 1393 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1394 |  | 
 | 1395 | 	channel = HandleToChannel(handle); | 
 | 1396 | 	if (channel == NULL) { | 
 | 1397 | 		return -ENODEV; | 
 | 1398 | 	} | 
 | 1399 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 1400 |  | 
 | 1401 | 	dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, | 
 | 1402 | 				devAttr->ring.virtAddr); | 
 | 1403 |  | 
 | 1404 | 	/* Since we got this far, everything went successfully */ | 
 | 1405 |  | 
 | 1406 | 	return 0; | 
 | 1407 | } | 
 | 1408 |  | 
 | 1409 | EXPORT_SYMBOL(dma_start_transfer); | 
 | 1410 |  | 
 | 1411 | /****************************************************************************/ | 
 | 1412 | /** | 
 | 1413 | *   Stops a previously started DMA transfer. | 
 | 1414 | * | 
 | 1415 | *   @return | 
 | 1416 | *       0       Transfer was stopped successfully | 
 | 1417 | *       -ENODEV Invalid handle | 
 | 1418 | */ | 
 | 1419 | /****************************************************************************/ | 
 | 1420 |  | 
 | 1421 | int dma_stop_transfer(DMA_Handle_t handle) | 
 | 1422 | { | 
 | 1423 | 	DMA_Channel_t *channel; | 
 | 1424 |  | 
 | 1425 | 	channel = HandleToChannel(handle); | 
 | 1426 | 	if (channel == NULL) { | 
 | 1427 | 		return -ENODEV; | 
 | 1428 | 	} | 
 | 1429 |  | 
 | 1430 | 	dmacHw_stopTransfer(channel->dmacHwHandle); | 
 | 1431 |  | 
 | 1432 | 	return 0; | 
 | 1433 | } | 
 | 1434 |  | 
 | 1435 | EXPORT_SYMBOL(dma_stop_transfer); | 
 | 1436 |  | 
 | 1437 | /****************************************************************************/ | 
 | 1438 | /** | 
 | 1439 | *   Waits for a DMA to complete by polling. This function is only intended | 
 | 1440 | *   to be used for testing. Interrupts should be used for most DMA operations. | 
 | 1441 | */ | 
 | 1442 | /****************************************************************************/ | 
 | 1443 |  | 
 | 1444 | int dma_wait_transfer_done(DMA_Handle_t handle) | 
 | 1445 | { | 
 | 1446 | 	DMA_Channel_t *channel; | 
 | 1447 | 	dmacHw_TRANSFER_STATUS_e status; | 
 | 1448 |  | 
 | 1449 | 	channel = HandleToChannel(handle); | 
 | 1450 | 	if (channel == NULL) { | 
 | 1451 | 		return -ENODEV; | 
 | 1452 | 	} | 
 | 1453 |  | 
 | 1454 | 	while ((status = | 
 | 1455 | 		dmacHw_transferCompleted(channel->dmacHwHandle)) == | 
 | 1456 | 	       dmacHw_TRANSFER_STATUS_BUSY) { | 
 | 1457 | 		; | 
 | 1458 | 	} | 
 | 1459 |  | 
 | 1460 | 	if (status == dmacHw_TRANSFER_STATUS_ERROR) { | 
 | 1461 | 		printk(KERN_ERR "%s: DMA transfer failed\n", __func__); | 
 | 1462 | 		return -EIO; | 
 | 1463 | 	} | 
 | 1464 | 	return 0; | 
 | 1465 | } | 
 | 1466 |  | 
 | 1467 | EXPORT_SYMBOL(dma_wait_transfer_done); | 
 | 1468 |  | 
 | 1469 | /****************************************************************************/ | 
 | 1470 | /** | 
 | 1471 | *   Initiates a DMA, allocating the descriptors as required. | 
 | 1472 | * | 
 | 1473 | *   @return | 
 | 1474 | *       0       Transfer was started successfully | 
 | 1475 | *       -EINVAL Invalid device type for this kind of transfer | 
 | 1476 | *               (i.e. the device is _DEV_TO_MEM and not _MEM_TO_DEV) | 
 | 1477 | */ | 
 | 1478 | /****************************************************************************/ | 
 | 1479 |  | 
 | 1480 | int dma_transfer(DMA_Handle_t handle,	/* DMA Handle */ | 
 | 1481 | 		 dmacHw_TRANSFER_TYPE_e transferType,	/* Type of transfer being performed */ | 
 | 1482 | 		 dma_addr_t srcData,	/* Place to get data to write to device */ | 
 | 1483 | 		 dma_addr_t dstData,	/* Pointer to device data address */ | 
 | 1484 | 		 size_t numBytes	/* Number of bytes to transfer to the device */ | 
 | 1485 |     ) { | 
 | 1486 | 	DMA_Channel_t *channel; | 
 | 1487 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1488 | 	int rc = 0; | 
 | 1489 |  | 
 | 1490 | 	channel = HandleToChannel(handle); | 
 | 1491 | 	if (channel == NULL) { | 
 | 1492 | 		return -ENODEV; | 
 | 1493 | 	} | 
 | 1494 |  | 
 | 1495 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 1496 |  | 
 | 1497 | 	if (devAttr->config.transferType != transferType) { | 
 | 1498 | 		return -EINVAL; | 
 | 1499 | 	} | 
 | 1500 |  | 
 | 1501 | 	/* We keep track of the information about the previous request for this */ | 
 | 1502 | 	/* device, and if the attributes match, then we can use the descriptors we setup */ | 
 | 1503 | 	/* the last time, and not have to reinitialize everything. */ | 
 | 1504 |  | 
 | 1505 | 	{ | 
 | 1506 | 		rc = | 
 | 1507 | 		     dma_alloc_descriptors(handle, transferType, srcData, | 
 | 1508 | 					   dstData, numBytes); | 
 | 1509 | 		if (rc != 0) { | 
 | 1510 | 			return rc; | 
 | 1511 | 		} | 
 | 1512 | 	} | 
 | 1513 |  | 
 | 1514 | 	/* And kick off the transfer */ | 
 | 1515 |  | 
 | 1516 | 	devAttr->numBytes = numBytes; | 
 | 1517 | 	devAttr->transferStartTime = timer_get_tick_count(); | 
 | 1518 |  | 
 | 1519 | 	dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, | 
 | 1520 | 				devAttr->ring.virtAddr); | 
 | 1521 |  | 
 | 1522 | 	/* Since we got this far, everything went successfully */ | 
 | 1523 |  | 
 | 1524 | 	return 0; | 
 | 1525 | } | 
 | 1526 |  | 
 | 1527 | EXPORT_SYMBOL(dma_transfer); | 
 | 1528 |  | 
 | 1529 | /****************************************************************************/ | 
 | 1530 | /** | 
 | 1531 | *   Set the callback function which will be called when a transfer completes. | 
 | 1532 | *   If a NULL callback function is set, then no callback will occur. | 
 | 1533 | * | 
 | 1534 | *   @note   @a devHandler will be called from IRQ context. | 
 | 1535 | * | 
 | 1536 | *   @return | 
 | 1537 | *       0       - Success | 
 | 1538 | *       -ENODEV - Device handed in is invalid. | 
 | 1539 | */ | 
 | 1540 | /****************************************************************************/ | 
 | 1541 |  | 
 | 1542 | int dma_set_device_handler(DMA_Device_t dev,	/* Device to set the callback for. */ | 
 | 1543 | 			   DMA_DeviceHandler_t devHandler,	/* Function to call when the DMA completes */ | 
 | 1544 | 			   void *userData	/* Pointer which will be passed to devHandler. */ | 
 | 1545 |     ) { | 
 | 1546 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 1547 | 	unsigned long flags; | 
 | 1548 |  | 
 | 1549 | 	if (!IsDeviceValid(dev)) { | 
 | 1550 | 		return -ENODEV; | 
 | 1551 | 	} | 
 | 1552 | 	devAttr = &DMA_gDeviceAttribute[dev]; | 
 | 1553 |  | 
 | 1554 | 	local_irq_save(flags); | 
 | 1555 |  | 
 | 1556 | 	devAttr->userData = userData; | 
 | 1557 | 	devAttr->devHandler = devHandler; | 
 | 1558 |  | 
 | 1559 | 	local_irq_restore(flags); | 
 | 1560 |  | 
 | 1561 | 	return 0; | 
 | 1562 | } | 
 | 1563 |  | 
 | 1564 | EXPORT_SYMBOL(dma_set_device_handler); | 
 | 1565 |  | 
 | 1566 | /****************************************************************************/ | 
 | 1567 | /** | 
 | 1568 | *   Initializes a memory mapping structure | 
 | 1569 | */ | 
 | 1570 | /****************************************************************************/ | 
 | 1571 |  | 
 | 1572 | int dma_init_mem_map(DMA_MemMap_t *memMap) | 
 | 1573 | { | 
 | 1574 | 	memset(memMap, 0, sizeof(*memMap)); | 
 | 1575 |  | 
 | 1576 | 	init_MUTEX(&memMap->lock); | 
 | 1577 |  | 
 | 1578 | 	return 0; | 
 | 1579 | } | 
 | 1580 |  | 
 | 1581 | EXPORT_SYMBOL(dma_init_mem_map); | 
 | 1582 |  | 
 | 1583 | /****************************************************************************/ | 
 | 1584 | /** | 
 | 1585 | *   Releases any memory currently being held by a memory mapping structure. | 
 | 1586 | */ | 
 | 1587 | /****************************************************************************/ | 
 | 1588 |  | 
 | 1589 | int dma_term_mem_map(DMA_MemMap_t *memMap) | 
 | 1590 | { | 
 | 1591 | 	down(&memMap->lock);	/* Just being paranoid */ | 
 | 1592 |  | 
 | 1593 | 	/* Free up any allocated memory */ | 
 | 1594 |  | 
 | 1595 | 	up(&memMap->lock); | 
 | 1596 | 	memset(memMap, 0, sizeof(*memMap)); | 
 | 1597 |  | 
 | 1598 | 	return 0; | 
 | 1599 | } | 
 | 1600 |  | 
 | 1601 | EXPORT_SYMBOL(dma_term_mem_map); | 
 | 1602 |  | 
 | 1603 | /****************************************************************************/ | 
 | 1604 | /** | 
 | 1605 | *   Looks at a memory address and categorizes it. | 
 | 1606 | * | 
 | 1607 | *   @return One of the values from the DMA_MemType_t enumeration. | 
 | 1608 | */ | 
 | 1609 | /****************************************************************************/ | 
 | 1610 |  | 
 | 1611 | DMA_MemType_t dma_mem_type(void *addr) | 
 | 1612 | { | 
 | 1613 | 	unsigned long addrVal = (unsigned long)addr; | 
 | 1614 |  | 
 | 1615 | 	if (addrVal >= VMALLOC_END) { | 
 | 1616 | 		/* NOTE: DMA virtual memory space starts at 0xFFxxxxxx */ | 
 | 1617 |  | 
 | 1618 | 		/* dma_alloc_xxx pages are physically and virtually contiguous */ | 
 | 1619 |  | 
 | 1620 | 		return DMA_MEM_TYPE_DMA; | 
 | 1621 | 	} | 
 | 1622 |  | 
 | 1623 | 	/* Technically, we could add one more classification. Addresses between VMALLOC_END */ | 
 | 1624 | 	/* and the beginning of the DMA virtual address could be considered to be I/O space. */ | 
 | 1625 | 	/* Right now, nobody cares about this particular classification, so we ignore it. */ | 
 | 1626 |  | 
 | 1627 | 	if (is_vmalloc_addr(addr)) { | 
 | 1628 | 		/* Address comes from the vmalloc'd region. Pages are virtually */ | 
 | 1629 | 		/* contiguous but NOT physically contiguous */ | 
 | 1630 |  | 
 | 1631 | 		return DMA_MEM_TYPE_VMALLOC; | 
 | 1632 | 	} | 
 | 1633 |  | 
 | 1634 | 	if (addrVal >= PAGE_OFFSET) { | 
 | 1635 | 		/* PAGE_OFFSET is typically 0xC0000000 */ | 
 | 1636 |  | 
 | 1637 | 		/* kmalloc'd pages are physically contiguous */ | 
 | 1638 |  | 
 | 1639 | 		return DMA_MEM_TYPE_KMALLOC; | 
 | 1640 | 	} | 
 | 1641 |  | 
 | 1642 | 	return DMA_MEM_TYPE_USER; | 
 | 1643 | } | 
 | 1644 |  | 
 | 1645 | EXPORT_SYMBOL(dma_mem_type); | 
 | 1646 |  | 
 | 1647 | /****************************************************************************/ | 
 | 1648 | /** | 
 | 1649 | *   Looks at a memory address and determines if we support DMA'ing to/from | 
 | 1650 | *   that type of memory. | 
 | 1651 | * | 
 | 1652 | *   @return boolean - | 
 | 1653 | *               return value != 0 means dma supported | 
 | 1654 | *               return value == 0 means dma not supported | 
 | 1655 | */ | 
 | 1656 | /****************************************************************************/ | 
 | 1657 |  | 
 | 1658 | int dma_mem_supports_dma(void *addr) | 
 | 1659 | { | 
 | 1660 | 	DMA_MemType_t memType = dma_mem_type(addr); | 
 | 1661 |  | 
 | 1662 | 	return (memType == DMA_MEM_TYPE_DMA) | 
 | 1663 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | 
 | 1664 | 	    || (memType == DMA_MEM_TYPE_KMALLOC) | 
 | 1665 | #endif | 
 | 1666 | 	    || (memType == DMA_MEM_TYPE_USER); | 
 | 1667 | } | 
 | 1668 |  | 
 | 1669 | EXPORT_SYMBOL(dma_mem_supports_dma); | 
 | 1670 |  | 
 | 1671 | /****************************************************************************/ | 
 | 1672 | /** | 
 | 1673 | *   Maps in a memory region such that it can be used for performing a DMA. | 
 | 1674 | * | 
 | 1675 | *   @return | 
 | 1676 | */ | 
 | 1677 | /****************************************************************************/ | 
 | 1678 |  | 
 | 1679 | int dma_map_start(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 1680 | 		  enum dma_data_direction dir	/* Direction that the mapping will be going */ | 
 | 1681 |     ) { | 
 | 1682 | 	int rc; | 
 | 1683 |  | 
 | 1684 | 	down(&memMap->lock); | 
 | 1685 |  | 
 | 1686 | 	DMA_MAP_PRINT("memMap: %p\n", memMap); | 
 | 1687 |  | 
 | 1688 | 	if (memMap->inUse) { | 
 | 1689 | 		printk(KERN_ERR "%s: memory map %p is already being used\n", | 
 | 1690 | 		       __func__, memMap); | 
 | 1691 | 		rc = -EBUSY; | 
 | 1692 | 		goto out; | 
 | 1693 | 	} | 
 | 1694 |  | 
 | 1695 | 	memMap->inUse = 1; | 
 | 1696 | 	memMap->dir = dir; | 
 | 1697 | 	memMap->numRegionsUsed = 0; | 
 | 1698 |  | 
 | 1699 | 	rc = 0; | 
 | 1700 |  | 
 | 1701 | out: | 
 | 1702 |  | 
 | 1703 | 	DMA_MAP_PRINT("returning %d", rc); | 
 | 1704 |  | 
 | 1705 | 	up(&memMap->lock); | 
 | 1706 |  | 
 | 1707 | 	return rc; | 
 | 1708 | } | 
 | 1709 |  | 
 | 1710 | EXPORT_SYMBOL(dma_map_start); | 
 | 1711 |  | 
 | 1712 | /****************************************************************************/ | 
 | 1713 | /** | 
 | 1714 | *   Adds a segment of memory to a memory map. Each segment is both | 
 | 1715 | *   physically and virtually contiguous. | 
 | 1716 | * | 
 | 1717 | *   @return     0 on success, error code otherwise. | 
 | 1718 | */ | 
 | 1719 | /****************************************************************************/ | 
 | 1720 |  | 
 | 1721 | static int dma_map_add_segment(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 1722 | 			       DMA_Region_t *region,	/* Region that the segment belongs to */ | 
 | 1723 | 			       void *virtAddr,	/* Virtual address of the segment being added */ | 
 | 1724 | 			       dma_addr_t physAddr,	/* Physical address of the segment being added */ | 
 | 1725 | 			       size_t numBytes	/* Number of bytes of the segment being added */ | 
 | 1726 |     ) { | 
 | 1727 | 	DMA_Segment_t *segment; | 
 | 1728 |  | 
 | 1729 | 	DMA_MAP_PRINT("memMap:%p va:%p pa:0x%x #:%d\n", memMap, virtAddr, | 
 | 1730 | 		      physAddr, numBytes); | 
 | 1731 |  | 
 | 1732 | 	/* Sanity check */ | 
 | 1733 |  | 
 | 1734 | 	if (((unsigned long)virtAddr < (unsigned long)region->virtAddr) | 
 | 1735 | 	    || (((unsigned long)virtAddr + numBytes)) > | 
 | 1736 | 	    ((unsigned long)region->virtAddr + region->numBytes)) { | 
 | 1737 | 		printk(KERN_ERR | 
 | 1738 | 		       "%s: virtAddr %p is outside region @ %p len: %d\n", | 
 | 1739 | 		       __func__, virtAddr, region->virtAddr, region->numBytes); | 
 | 1740 | 		return -EINVAL; | 
 | 1741 | 	} | 
 | 1742 |  | 
 | 1743 | 	if (region->numSegmentsUsed > 0) { | 
 | 1744 | 		/* Check to see if this segment is physically contiguous with the previous one */ | 
 | 1745 |  | 
 | 1746 | 		segment = ®ion->segment[region->numSegmentsUsed - 1]; | 
 | 1747 |  | 
 | 1748 | 		if ((segment->physAddr + segment->numBytes) == physAddr) { | 
 | 1749 | 			/* It is - just add on to the end */ | 
 | 1750 |  | 
 | 1751 | 			DMA_MAP_PRINT("appending %d bytes to last segment\n", | 
 | 1752 | 				      numBytes); | 
 | 1753 |  | 
 | 1754 | 			segment->numBytes += numBytes; | 
 | 1755 |  | 
 | 1756 | 			return 0; | 
 | 1757 | 		} | 
 | 1758 | 	} | 
 | 1759 |  | 
 | 1760 | 	/* Reallocate to hold more segments, if required. */ | 
 | 1761 |  | 
 | 1762 | 	if (region->numSegmentsUsed >= region->numSegmentsAllocated) { | 
 | 1763 | 		DMA_Segment_t *newSegment; | 
 | 1764 | 		size_t oldSize = | 
 | 1765 | 		    region->numSegmentsAllocated * sizeof(*newSegment); | 
 | 1766 | 		int newAlloc = region->numSegmentsAllocated + 4; | 
 | 1767 | 		size_t newSize = newAlloc * sizeof(*newSegment); | 
 | 1768 |  | 
 | 1769 | 		newSegment = kmalloc(newSize, GFP_KERNEL); | 
 | 1770 | 		if (newSegment == NULL) { | 
 | 1771 | 			return -ENOMEM; | 
 | 1772 | 		} | 
 | 1773 | 		memcpy(newSegment, region->segment, oldSize); | 
 | 1774 | 		memset(&((uint8_t *) newSegment)[oldSize], 0, | 
 | 1775 | 		       newSize - oldSize); | 
 | 1776 | 		kfree(region->segment); | 
 | 1777 |  | 
 | 1778 | 		region->numSegmentsAllocated = newAlloc; | 
 | 1779 | 		region->segment = newSegment; | 
 | 1780 | 	} | 
 | 1781 |  | 
 | 1782 | 	segment = ®ion->segment[region->numSegmentsUsed]; | 
 | 1783 | 	region->numSegmentsUsed++; | 
 | 1784 |  | 
 | 1785 | 	segment->virtAddr = virtAddr; | 
 | 1786 | 	segment->physAddr = physAddr; | 
 | 1787 | 	segment->numBytes = numBytes; | 
 | 1788 |  | 
 | 1789 | 	DMA_MAP_PRINT("returning success\n"); | 
 | 1790 |  | 
 | 1791 | 	return 0; | 
 | 1792 | } | 
 | 1793 |  | 
 | 1794 | /****************************************************************************/ | 
 | 1795 | /** | 
 | 1796 | *   Adds a region of memory to a memory map. Each region is virtually | 
 | 1797 | *   contiguous, but not necessarily physically contiguous. | 
 | 1798 | * | 
 | 1799 | *   @return     0 on success, error code otherwise. | 
 | 1800 | */ | 
 | 1801 | /****************************************************************************/ | 
 | 1802 |  | 
 | 1803 | int dma_map_add_region(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 1804 | 		       void *mem,	/* Virtual address that we want to get a map of */ | 
 | 1805 | 		       size_t numBytes	/* Number of bytes being mapped */ | 
 | 1806 |     ) { | 
 | 1807 | 	unsigned long addr = (unsigned long)mem; | 
 | 1808 | 	unsigned int offset; | 
 | 1809 | 	int rc = 0; | 
 | 1810 | 	DMA_Region_t *region; | 
 | 1811 | 	dma_addr_t physAddr; | 
 | 1812 |  | 
 | 1813 | 	down(&memMap->lock); | 
 | 1814 |  | 
 | 1815 | 	DMA_MAP_PRINT("memMap:%p va:%p #:%d\n", memMap, mem, numBytes); | 
 | 1816 |  | 
 | 1817 | 	if (!memMap->inUse) { | 
 | 1818 | 		printk(KERN_ERR "%s: Make sure you call dma_map_start first\n", | 
 | 1819 | 		       __func__); | 
 | 1820 | 		rc = -EINVAL; | 
 | 1821 | 		goto out; | 
 | 1822 | 	} | 
 | 1823 |  | 
 | 1824 | 	/* Reallocate to hold more regions. */ | 
 | 1825 |  | 
 | 1826 | 	if (memMap->numRegionsUsed >= memMap->numRegionsAllocated) { | 
 | 1827 | 		DMA_Region_t *newRegion; | 
 | 1828 | 		size_t oldSize = | 
 | 1829 | 		    memMap->numRegionsAllocated * sizeof(*newRegion); | 
 | 1830 | 		int newAlloc = memMap->numRegionsAllocated + 4; | 
 | 1831 | 		size_t newSize = newAlloc * sizeof(*newRegion); | 
 | 1832 |  | 
 | 1833 | 		newRegion = kmalloc(newSize, GFP_KERNEL); | 
 | 1834 | 		if (newRegion == NULL) { | 
 | 1835 | 			rc = -ENOMEM; | 
 | 1836 | 			goto out; | 
 | 1837 | 		} | 
 | 1838 | 		memcpy(newRegion, memMap->region, oldSize); | 
 | 1839 | 		memset(&((uint8_t *) newRegion)[oldSize], 0, newSize - oldSize); | 
 | 1840 |  | 
 | 1841 | 		kfree(memMap->region); | 
 | 1842 |  | 
 | 1843 | 		memMap->numRegionsAllocated = newAlloc; | 
 | 1844 | 		memMap->region = newRegion; | 
 | 1845 | 	} | 
 | 1846 |  | 
 | 1847 | 	region = &memMap->region[memMap->numRegionsUsed]; | 
 | 1848 | 	memMap->numRegionsUsed++; | 
 | 1849 |  | 
 | 1850 | 	offset = addr & ~PAGE_MASK; | 
 | 1851 |  | 
 | 1852 | 	region->memType = dma_mem_type(mem); | 
 | 1853 | 	region->virtAddr = mem; | 
 | 1854 | 	region->numBytes = numBytes; | 
 | 1855 | 	region->numSegmentsUsed = 0; | 
 | 1856 | 	region->numLockedPages = 0; | 
 | 1857 | 	region->lockedPages = NULL; | 
 | 1858 |  | 
 | 1859 | 	switch (region->memType) { | 
 | 1860 | 	case DMA_MEM_TYPE_VMALLOC: | 
 | 1861 | 		{ | 
 | 1862 | 			atomic_inc(&gDmaStatMemTypeVmalloc); | 
 | 1863 |  | 
 | 1864 | 			/* printk(KERN_ERR "%s: vmalloc'd pages are not supported\n", __func__); */ | 
 | 1865 |  | 
 | 1866 | 			/* vmalloc'd pages are not physically contiguous */ | 
 | 1867 |  | 
 | 1868 | 			rc = -EINVAL; | 
 | 1869 | 			break; | 
 | 1870 | 		} | 
 | 1871 |  | 
 | 1872 | 	case DMA_MEM_TYPE_KMALLOC: | 
 | 1873 | 		{ | 
 | 1874 | 			atomic_inc(&gDmaStatMemTypeKmalloc); | 
 | 1875 |  | 
 | 1876 | 			/* kmalloc'd pages are physically contiguous, so they'll have exactly */ | 
 | 1877 | 			/* one segment */ | 
 | 1878 |  | 
 | 1879 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | 
 | 1880 | 			physAddr = | 
 | 1881 | 			    dma_map_single(NULL, mem, numBytes, memMap->dir); | 
 | 1882 | 			rc = dma_map_add_segment(memMap, region, mem, physAddr, | 
 | 1883 | 						 numBytes); | 
 | 1884 | #else | 
 | 1885 | 			rc = -EINVAL; | 
 | 1886 | #endif | 
 | 1887 | 			break; | 
 | 1888 | 		} | 
 | 1889 |  | 
 | 1890 | 	case DMA_MEM_TYPE_DMA: | 
 | 1891 | 		{ | 
 | 1892 | 			/* dma_alloc_xxx pages are physically contiguous */ | 
 | 1893 |  | 
 | 1894 | 			atomic_inc(&gDmaStatMemTypeCoherent); | 
 | 1895 |  | 
 | 1896 | 			physAddr = (vmalloc_to_pfn(mem) << PAGE_SHIFT) + offset; | 
 | 1897 |  | 
 | 1898 | 			dma_sync_single_for_cpu(NULL, physAddr, numBytes, | 
 | 1899 | 						memMap->dir); | 
 | 1900 | 			rc = dma_map_add_segment(memMap, region, mem, physAddr, | 
 | 1901 | 						 numBytes); | 
 | 1902 | 			break; | 
 | 1903 | 		} | 
 | 1904 |  | 
 | 1905 | 	case DMA_MEM_TYPE_USER: | 
 | 1906 | 		{ | 
 | 1907 | 			size_t firstPageOffset; | 
 | 1908 | 			size_t firstPageSize; | 
 | 1909 | 			struct page **pages; | 
 | 1910 | 			struct task_struct *userTask; | 
 | 1911 |  | 
 | 1912 | 			atomic_inc(&gDmaStatMemTypeUser); | 
 | 1913 |  | 
 | 1914 | #if 1 | 
 | 1915 | 			/* If the pages are user pages, then the dma_mem_map_set_user_task function */ | 
 | 1916 | 			/* must have been previously called. */ | 
 | 1917 |  | 
 | 1918 | 			if (memMap->userTask == NULL) { | 
 | 1919 | 				printk(KERN_ERR | 
 | 1920 | 				       "%s: must call dma_mem_map_set_user_task when using user-mode memory\n", | 
 | 1921 | 				       __func__); | 
 | 1922 | 				return -EINVAL; | 
 | 1923 | 			} | 
 | 1924 |  | 
 | 1925 | 			/* User pages need to be locked. */ | 
 | 1926 |  | 
 | 1927 | 			firstPageOffset = | 
 | 1928 | 			    (unsigned long)region->virtAddr & (PAGE_SIZE - 1); | 
 | 1929 | 			firstPageSize = PAGE_SIZE - firstPageOffset; | 
 | 1930 |  | 
 | 1931 | 			region->numLockedPages = (firstPageOffset | 
 | 1932 | 						  + region->numBytes + | 
 | 1933 | 						  PAGE_SIZE - 1) / PAGE_SIZE; | 
 | 1934 | 			pages = | 
 | 1935 | 			    kmalloc(region->numLockedPages * | 
 | 1936 | 				    sizeof(struct page *), GFP_KERNEL); | 
 | 1937 |  | 
 | 1938 | 			if (pages == NULL) { | 
 | 1939 | 				region->numLockedPages = 0; | 
 | 1940 | 				return -ENOMEM; | 
 | 1941 | 			} | 
 | 1942 |  | 
 | 1943 | 			userTask = memMap->userTask; | 
 | 1944 |  | 
 | 1945 | 			down_read(&userTask->mm->mmap_sem); | 
 | 1946 | 			rc = get_user_pages(userTask,	/* task */ | 
 | 1947 | 					    userTask->mm,	/* mm */ | 
 | 1948 | 					    (unsigned long)region->virtAddr,	/* start */ | 
 | 1949 | 					    region->numLockedPages,	/* len */ | 
 | 1950 | 					    memMap->dir == DMA_FROM_DEVICE,	/* write */ | 
 | 1951 | 					    0,	/* force */ | 
 | 1952 | 					    pages,	/* pages (array of pointers to page) */ | 
 | 1953 | 					    NULL);	/* vmas */ | 
 | 1954 | 			up_read(&userTask->mm->mmap_sem); | 
 | 1955 |  | 
 | 1956 | 			if (rc != region->numLockedPages) { | 
 | 1957 | 				kfree(pages); | 
 | 1958 | 				region->numLockedPages = 0; | 
 | 1959 |  | 
 | 1960 | 				if (rc >= 0) { | 
 | 1961 | 					rc = -EINVAL; | 
 | 1962 | 				} | 
 | 1963 | 			} else { | 
 | 1964 | 				uint8_t *virtAddr = region->virtAddr; | 
 | 1965 | 				size_t bytesRemaining; | 
 | 1966 | 				int pageIdx; | 
 | 1967 |  | 
 | 1968 | 				rc = 0;	/* Since get_user_pages returns +ve number */ | 
 | 1969 |  | 
 | 1970 | 				region->lockedPages = pages; | 
 | 1971 |  | 
 | 1972 | 				/* We've locked the user pages. Now we need to walk them and figure */ | 
 | 1973 | 				/* out the physical addresses. */ | 
 | 1974 |  | 
 | 1975 | 				/* The first page may be partial */ | 
 | 1976 |  | 
 | 1977 | 				dma_map_add_segment(memMap, | 
 | 1978 | 						    region, | 
 | 1979 | 						    virtAddr, | 
 | 1980 | 						    PFN_PHYS(page_to_pfn | 
 | 1981 | 							     (pages[0])) + | 
 | 1982 | 						    firstPageOffset, | 
 | 1983 | 						    firstPageSize); | 
 | 1984 |  | 
 | 1985 | 				virtAddr += firstPageSize; | 
 | 1986 | 				bytesRemaining = | 
 | 1987 | 				    region->numBytes - firstPageSize; | 
 | 1988 |  | 
 | 1989 | 				for (pageIdx = 1; | 
 | 1990 | 				     pageIdx < region->numLockedPages; | 
 | 1991 | 				     pageIdx++) { | 
 | 1992 | 					size_t bytesThisPage = | 
 | 1993 | 					    (bytesRemaining > | 
 | 1994 | 					     PAGE_SIZE ? PAGE_SIZE : | 
 | 1995 | 					     bytesRemaining); | 
 | 1996 |  | 
 | 1997 | 					DMA_MAP_PRINT | 
 | 1998 | 					    ("pageIdx:%d pages[pageIdx]=%p pfn=%u phys=%u\n", | 
 | 1999 | 					     pageIdx, pages[pageIdx], | 
 | 2000 | 					     page_to_pfn(pages[pageIdx]), | 
 | 2001 | 					     PFN_PHYS(page_to_pfn | 
 | 2002 | 						      (pages[pageIdx]))); | 
 | 2003 |  | 
 | 2004 | 					dma_map_add_segment(memMap, | 
 | 2005 | 							    region, | 
 | 2006 | 							    virtAddr, | 
 | 2007 | 							    PFN_PHYS(page_to_pfn | 
 | 2008 | 								     (pages | 
 | 2009 | 								      [pageIdx])), | 
 | 2010 | 							    bytesThisPage); | 
 | 2011 |  | 
 | 2012 | 					virtAddr += bytesThisPage; | 
 | 2013 | 					bytesRemaining -= bytesThisPage; | 
 | 2014 | 				} | 
 | 2015 | 			} | 
 | 2016 | #else | 
 | 2017 | 			printk(KERN_ERR | 
 | 2018 | 			       "%s: User mode pages are not yet supported\n", | 
 | 2019 | 			       __func__); | 
 | 2020 |  | 
 | 2021 | 			/* user pages are not physically contiguous */ | 
 | 2022 |  | 
 | 2023 | 			rc = -EINVAL; | 
 | 2024 | #endif | 
 | 2025 | 			break; | 
 | 2026 | 		} | 
 | 2027 |  | 
 | 2028 | 	default: | 
 | 2029 | 		{ | 
 | 2030 | 			printk(KERN_ERR "%s: Unsupported memory type: %d\n", | 
 | 2031 | 			       __func__, region->memType); | 
 | 2032 |  | 
 | 2033 | 			rc = -EINVAL; | 
 | 2034 | 			break; | 
 | 2035 | 		} | 
 | 2036 | 	} | 
 | 2037 |  | 
 | 2038 | 	if (rc != 0) { | 
 | 2039 | 		memMap->numRegionsUsed--; | 
 | 2040 | 	} | 
 | 2041 |  | 
 | 2042 | out: | 
 | 2043 |  | 
 | 2044 | 	DMA_MAP_PRINT("returning %d\n", rc); | 
 | 2045 |  | 
 | 2046 | 	up(&memMap->lock); | 
 | 2047 |  | 
 | 2048 | 	return rc; | 
 | 2049 | } | 
 | 2050 |  | 
 | 2051 | EXPORT_SYMBOL(dma_map_add_segment); | 
 | 2052 |  | 
 | 2053 | /****************************************************************************/ | 
 | 2054 | /** | 
 | 2055 | *   Maps in a memory region such that it can be used for performing a DMA. | 
 | 2056 | * | 
 | 2057 | *   @return     0 on success, error code otherwise. | 
 | 2058 | */ | 
 | 2059 | /****************************************************************************/ | 
 | 2060 |  | 
 | 2061 | int dma_map_mem(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 2062 | 		void *mem,	/* Virtual address that we want to get a map of */ | 
 | 2063 | 		size_t numBytes,	/* Number of bytes being mapped */ | 
 | 2064 | 		enum dma_data_direction dir	/* Direction that the mapping will be going */ | 
 | 2065 |     ) { | 
 | 2066 | 	int rc; | 
 | 2067 |  | 
 | 2068 | 	rc = dma_map_start(memMap, dir); | 
 | 2069 | 	if (rc == 0) { | 
 | 2070 | 		rc = dma_map_add_region(memMap, mem, numBytes); | 
 | 2071 | 		if (rc < 0) { | 
 | 2072 | 			/* Since the add fails, this function will fail, and the caller won't */ | 
 | 2073 | 			/* call unmap, so we need to do it here. */ | 
 | 2074 |  | 
 | 2075 | 			dma_unmap(memMap, 0); | 
 | 2076 | 		} | 
 | 2077 | 	} | 
 | 2078 |  | 
 | 2079 | 	return rc; | 
 | 2080 | } | 
 | 2081 |  | 
 | 2082 | EXPORT_SYMBOL(dma_map_mem); | 
 | 2083 |  | 
 | 2084 | /****************************************************************************/ | 
 | 2085 | /** | 
 | 2086 | *   Setup a descriptor ring for a given memory map. | 
 | 2087 | * | 
 | 2088 | *   It is assumed that the descriptor ring has already been initialized, and | 
 | 2089 | *   this routine will only reallocate a new descriptor ring if the existing | 
 | 2090 | *   one is too small. | 
 | 2091 | * | 
 | 2092 | *   @return     0 on success, error code otherwise. | 
 | 2093 | */ | 
 | 2094 | /****************************************************************************/ | 
 | 2095 |  | 
 | 2096 | int dma_map_create_descriptor_ring(DMA_Device_t dev,	/* DMA device (where the ring is stored) */ | 
 | 2097 | 				   DMA_MemMap_t *memMap,	/* Memory map that will be used */ | 
 | 2098 | 				   dma_addr_t devPhysAddr	/* Physical address of device */ | 
 | 2099 |     ) { | 
 | 2100 | 	int rc; | 
 | 2101 | 	int numDescriptors; | 
 | 2102 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 2103 | 	DMA_Region_t *region; | 
 | 2104 | 	DMA_Segment_t *segment; | 
 | 2105 | 	dma_addr_t srcPhysAddr; | 
 | 2106 | 	dma_addr_t dstPhysAddr; | 
 | 2107 | 	int regionIdx; | 
 | 2108 | 	int segmentIdx; | 
 | 2109 |  | 
 | 2110 | 	devAttr = &DMA_gDeviceAttribute[dev]; | 
 | 2111 |  | 
 | 2112 | 	down(&memMap->lock); | 
 | 2113 |  | 
 | 2114 | 	/* Figure out how many descriptors we need */ | 
 | 2115 |  | 
 | 2116 | 	numDescriptors = 0; | 
 | 2117 | 	for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | 
 | 2118 | 		region = &memMap->region[regionIdx]; | 
 | 2119 |  | 
 | 2120 | 		for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | 
 | 2121 | 		     segmentIdx++) { | 
 | 2122 | 			segment = ®ion->segment[segmentIdx]; | 
 | 2123 |  | 
 | 2124 | 			if (memMap->dir == DMA_TO_DEVICE) { | 
 | 2125 | 				srcPhysAddr = segment->physAddr; | 
 | 2126 | 				dstPhysAddr = devPhysAddr; | 
 | 2127 | 			} else { | 
 | 2128 | 				srcPhysAddr = devPhysAddr; | 
 | 2129 | 				dstPhysAddr = segment->physAddr; | 
 | 2130 | 			} | 
 | 2131 |  | 
 | 2132 | 			rc = | 
 | 2133 | 			     dma_calculate_descriptor_count(dev, srcPhysAddr, | 
 | 2134 | 							    dstPhysAddr, | 
 | 2135 | 							    segment-> | 
 | 2136 | 							    numBytes); | 
 | 2137 | 			if (rc < 0) { | 
 | 2138 | 				printk(KERN_ERR | 
 | 2139 | 				       "%s: dma_calculate_descriptor_count failed: %d\n", | 
 | 2140 | 				       __func__, rc); | 
 | 2141 | 				goto out; | 
 | 2142 | 			} | 
 | 2143 | 			numDescriptors += rc; | 
 | 2144 | 		} | 
 | 2145 | 	} | 
 | 2146 |  | 
 | 2147 | 	/* Adjust the size of the ring, if it isn't big enough */ | 
 | 2148 |  | 
 | 2149 | 	if (numDescriptors > devAttr->ring.descriptorsAllocated) { | 
 | 2150 | 		dma_free_descriptor_ring(&devAttr->ring); | 
 | 2151 | 		rc = | 
 | 2152 | 		     dma_alloc_descriptor_ring(&devAttr->ring, | 
 | 2153 | 					       numDescriptors); | 
 | 2154 | 		if (rc < 0) { | 
 | 2155 | 			printk(KERN_ERR | 
 | 2156 | 			       "%s: dma_alloc_descriptor_ring failed: %d\n", | 
 | 2157 | 			       __func__, rc); | 
 | 2158 | 			goto out; | 
 | 2159 | 		} | 
 | 2160 | 	} else { | 
 | 2161 | 		rc = | 
 | 2162 | 		     dma_init_descriptor_ring(&devAttr->ring, | 
 | 2163 | 					      numDescriptors); | 
 | 2164 | 		if (rc < 0) { | 
 | 2165 | 			printk(KERN_ERR | 
 | 2166 | 			       "%s: dma_init_descriptor_ring failed: %d\n", | 
 | 2167 | 			       __func__, rc); | 
 | 2168 | 			goto out; | 
 | 2169 | 		} | 
 | 2170 | 	} | 
 | 2171 |  | 
 | 2172 | 	/* Populate the descriptors */ | 
 | 2173 |  | 
 | 2174 | 	for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | 
 | 2175 | 		region = &memMap->region[regionIdx]; | 
 | 2176 |  | 
 | 2177 | 		for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | 
 | 2178 | 		     segmentIdx++) { | 
 | 2179 | 			segment = ®ion->segment[segmentIdx]; | 
 | 2180 |  | 
 | 2181 | 			if (memMap->dir == DMA_TO_DEVICE) { | 
 | 2182 | 				srcPhysAddr = segment->physAddr; | 
 | 2183 | 				dstPhysAddr = devPhysAddr; | 
 | 2184 | 			} else { | 
 | 2185 | 				srcPhysAddr = devPhysAddr; | 
 | 2186 | 				dstPhysAddr = segment->physAddr; | 
 | 2187 | 			} | 
 | 2188 |  | 
 | 2189 | 			rc = | 
 | 2190 | 			     dma_add_descriptors(&devAttr->ring, dev, | 
 | 2191 | 						 srcPhysAddr, dstPhysAddr, | 
 | 2192 | 						 segment->numBytes); | 
 | 2193 | 			if (rc < 0) { | 
 | 2194 | 				printk(KERN_ERR | 
 | 2195 | 				       "%s: dma_add_descriptors failed: %d\n", | 
 | 2196 | 				       __func__, rc); | 
 | 2197 | 				goto out; | 
 | 2198 | 			} | 
 | 2199 | 		} | 
 | 2200 | 	} | 
 | 2201 |  | 
 | 2202 | 	rc = 0; | 
 | 2203 |  | 
 | 2204 | out: | 
 | 2205 |  | 
 | 2206 | 	up(&memMap->lock); | 
 | 2207 | 	return rc; | 
 | 2208 | } | 
 | 2209 |  | 
 | 2210 | EXPORT_SYMBOL(dma_map_create_descriptor_ring); | 
 | 2211 |  | 
 | 2212 | /****************************************************************************/ | 
 | 2213 | /** | 
 | 2214 | *   Maps in a memory region such that it can be used for performing a DMA. | 
 | 2215 | * | 
 | 2216 | *   @return | 
 | 2217 | */ | 
 | 2218 | /****************************************************************************/ | 
 | 2219 |  | 
 | 2220 | int dma_unmap(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 2221 | 	      int dirtied	/* non-zero if any of the pages were modified */ | 
 | 2222 |     ) { | 
 | 2223 | 	int regionIdx; | 
 | 2224 | 	int segmentIdx; | 
 | 2225 | 	DMA_Region_t *region; | 
 | 2226 | 	DMA_Segment_t *segment; | 
 | 2227 |  | 
 | 2228 | 	for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | 
 | 2229 | 		region = &memMap->region[regionIdx]; | 
 | 2230 |  | 
 | 2231 | 		for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | 
 | 2232 | 		     segmentIdx++) { | 
 | 2233 | 			segment = ®ion->segment[segmentIdx]; | 
 | 2234 |  | 
 | 2235 | 			switch (region->memType) { | 
 | 2236 | 			case DMA_MEM_TYPE_VMALLOC: | 
 | 2237 | 				{ | 
 | 2238 | 					printk(KERN_ERR | 
 | 2239 | 					       "%s: vmalloc'd pages are not yet supported\n", | 
 | 2240 | 					       __func__); | 
 | 2241 | 					return -EINVAL; | 
 | 2242 | 				} | 
 | 2243 |  | 
 | 2244 | 			case DMA_MEM_TYPE_KMALLOC: | 
 | 2245 | 				{ | 
 | 2246 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | 
 | 2247 | 					dma_unmap_single(NULL, | 
 | 2248 | 							 segment->physAddr, | 
 | 2249 | 							 segment->numBytes, | 
 | 2250 | 							 memMap->dir); | 
 | 2251 | #endif | 
 | 2252 | 					break; | 
 | 2253 | 				} | 
 | 2254 |  | 
 | 2255 | 			case DMA_MEM_TYPE_DMA: | 
 | 2256 | 				{ | 
 | 2257 | 					dma_sync_single_for_cpu(NULL, | 
 | 2258 | 								segment-> | 
 | 2259 | 								physAddr, | 
 | 2260 | 								segment-> | 
 | 2261 | 								numBytes, | 
 | 2262 | 								memMap->dir); | 
 | 2263 | 					break; | 
 | 2264 | 				} | 
 | 2265 |  | 
 | 2266 | 			case DMA_MEM_TYPE_USER: | 
 | 2267 | 				{ | 
 | 2268 | 					/* Nothing to do here. */ | 
 | 2269 |  | 
 | 2270 | 					break; | 
 | 2271 | 				} | 
 | 2272 |  | 
 | 2273 | 			default: | 
 | 2274 | 				{ | 
 | 2275 | 					printk(KERN_ERR | 
 | 2276 | 					       "%s: Unsupported memory type: %d\n", | 
 | 2277 | 					       __func__, region->memType); | 
 | 2278 | 					return -EINVAL; | 
 | 2279 | 				} | 
 | 2280 | 			} | 
 | 2281 |  | 
 | 2282 | 			segment->virtAddr = NULL; | 
 | 2283 | 			segment->physAddr = 0; | 
 | 2284 | 			segment->numBytes = 0; | 
 | 2285 | 		} | 
 | 2286 |  | 
 | 2287 | 		if (region->numLockedPages > 0) { | 
 | 2288 | 			int pageIdx; | 
 | 2289 |  | 
 | 2290 | 			/* Some user pages were locked. We need to go and unlock them now. */ | 
 | 2291 |  | 
 | 2292 | 			for (pageIdx = 0; pageIdx < region->numLockedPages; | 
 | 2293 | 			     pageIdx++) { | 
 | 2294 | 				struct page *page = | 
 | 2295 | 				    region->lockedPages[pageIdx]; | 
 | 2296 |  | 
 | 2297 | 				if (memMap->dir == DMA_FROM_DEVICE) { | 
 | 2298 | 					SetPageDirty(page); | 
 | 2299 | 				} | 
 | 2300 | 				page_cache_release(page); | 
 | 2301 | 			} | 
 | 2302 | 			kfree(region->lockedPages); | 
 | 2303 | 			region->numLockedPages = 0; | 
 | 2304 | 			region->lockedPages = NULL; | 
 | 2305 | 		} | 
 | 2306 |  | 
 | 2307 | 		region->memType = DMA_MEM_TYPE_NONE; | 
 | 2308 | 		region->virtAddr = NULL; | 
 | 2309 | 		region->numBytes = 0; | 
 | 2310 | 		region->numSegmentsUsed = 0; | 
 | 2311 | 	} | 
 | 2312 | 	memMap->userTask = NULL; | 
 | 2313 | 	memMap->numRegionsUsed = 0; | 
 | 2314 | 	memMap->inUse = 0; | 
 | 2315 |  | 
 | 2316 | 	up(&memMap->lock); | 
 | 2317 |  | 
 | 2318 | 	return 0; | 
 | 2319 | } | 
 | 2320 |  | 
 | 2321 | EXPORT_SYMBOL(dma_unmap); |