| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright 2001 MontaVista Software Inc. | 
 | 3 |  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net | 
 | 4 |  * Copyright (c) 2003, 2004  Maciej W. Rozycki | 
 | 5 |  * | 
 | 6 |  * Common time service routines for MIPS machines. See | 
 | 7 |  * Documentation/mips/time.README. | 
 | 8 |  * | 
 | 9 |  * This program is free software; you can redistribute  it and/or modify it | 
 | 10 |  * under  the terms of  the GNU General  Public License as published by the | 
 | 11 |  * Free Software Foundation;  either version 2 of the  License, or (at your | 
 | 12 |  * option) any later version. | 
 | 13 |  */ | 
| Pete Popov | bdf21b1 | 2005-07-14 17:47:57 +0000 | [diff] [blame] | 14 | #include <linux/config.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 15 | #include <linux/types.h> | 
 | 16 | #include <linux/kernel.h> | 
 | 17 | #include <linux/init.h> | 
 | 18 | #include <linux/sched.h> | 
 | 19 | #include <linux/param.h> | 
 | 20 | #include <linux/time.h> | 
 | 21 | #include <linux/timex.h> | 
 | 22 | #include <linux/smp.h> | 
 | 23 | #include <linux/kernel_stat.h> | 
 | 24 | #include <linux/spinlock.h> | 
 | 25 | #include <linux/interrupt.h> | 
 | 26 | #include <linux/module.h> | 
 | 27 |  | 
 | 28 | #include <asm/bootinfo.h> | 
| Ralf Baechle | ec74e36 | 2005-07-13 11:48:45 +0000 | [diff] [blame] | 29 | #include <asm/cache.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | #include <asm/compiler.h> | 
 | 31 | #include <asm/cpu.h> | 
 | 32 | #include <asm/cpu-features.h> | 
 | 33 | #include <asm/div64.h> | 
 | 34 | #include <asm/sections.h> | 
 | 35 | #include <asm/time.h> | 
 | 36 |  | 
 | 37 | /* | 
 | 38 |  * The integer part of the number of usecs per jiffy is taken from tick, | 
 | 39 |  * but the fractional part is not recorded, so we calculate it using the | 
 | 40 |  * initial value of HZ.  This aids systems where tick isn't really an | 
 | 41 |  * integer (e.g. for HZ = 128). | 
 | 42 |  */ | 
 | 43 | #define USECS_PER_JIFFY		TICK_SIZE | 
 | 44 | #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ)) | 
 | 45 |  | 
 | 46 | #define TICK_SIZE	(tick_nsec / 1000) | 
 | 47 |  | 
 | 48 | u64 jiffies_64 = INITIAL_JIFFIES; | 
 | 49 |  | 
 | 50 | EXPORT_SYMBOL(jiffies_64); | 
 | 51 |  | 
 | 52 | /* | 
 | 53 |  * forward reference | 
 | 54 |  */ | 
 | 55 | extern volatile unsigned long wall_jiffies; | 
 | 56 |  | 
 | 57 | DEFINE_SPINLOCK(rtc_lock); | 
 | 58 |  | 
 | 59 | /* | 
 | 60 |  * By default we provide the null RTC ops | 
 | 61 |  */ | 
 | 62 | static unsigned long null_rtc_get_time(void) | 
 | 63 | { | 
 | 64 | 	return mktime(2000, 1, 1, 0, 0, 0); | 
 | 65 | } | 
 | 66 |  | 
 | 67 | static int null_rtc_set_time(unsigned long sec) | 
 | 68 | { | 
 | 69 | 	return 0; | 
 | 70 | } | 
 | 71 |  | 
 | 72 | unsigned long (*rtc_get_time)(void) = null_rtc_get_time; | 
 | 73 | int (*rtc_set_time)(unsigned long) = null_rtc_set_time; | 
 | 74 | int (*rtc_set_mmss)(unsigned long); | 
 | 75 |  | 
 | 76 |  | 
 | 77 | /* usecs per counter cycle, shifted to left by 32 bits */ | 
 | 78 | static unsigned int sll32_usecs_per_cycle; | 
 | 79 |  | 
 | 80 | /* how many counter cycles in a jiffy */ | 
| Ralf Baechle | ec74e36 | 2005-07-13 11:48:45 +0000 | [diff] [blame] | 81 | static unsigned long cycles_per_jiffy __read_mostly; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 82 |  | 
 | 83 | /* Cycle counter value at the previous timer interrupt.. */ | 
 | 84 | static unsigned int timerhi, timerlo; | 
 | 85 |  | 
 | 86 | /* expirelo is the count value for next CPU timer interrupt */ | 
 | 87 | static unsigned int expirelo; | 
 | 88 |  | 
 | 89 |  | 
 | 90 | /* | 
 | 91 |  * Null timer ack for systems not needing one (e.g. i8254). | 
 | 92 |  */ | 
 | 93 | static void null_timer_ack(void) { /* nothing */ } | 
 | 94 |  | 
 | 95 | /* | 
 | 96 |  * Null high precision timer functions for systems lacking one. | 
 | 97 |  */ | 
 | 98 | static unsigned int null_hpt_read(void) | 
 | 99 | { | 
 | 100 | 	return 0; | 
 | 101 | } | 
 | 102 |  | 
| Ralf Baechle | ec74e36 | 2005-07-13 11:48:45 +0000 | [diff] [blame] | 103 | static void null_hpt_init(unsigned int count) | 
 | 104 | { | 
 | 105 | 	/* nothing */ | 
 | 106 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 107 |  | 
 | 108 |  | 
 | 109 | /* | 
 | 110 |  * Timer ack for an R4k-compatible timer of a known frequency. | 
 | 111 |  */ | 
 | 112 | static void c0_timer_ack(void) | 
 | 113 | { | 
 | 114 | 	unsigned int count; | 
 | 115 |  | 
| Pete Popov | bdf21b1 | 2005-07-14 17:47:57 +0000 | [diff] [blame] | 116 | #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 117 | 	/* Ack this timer interrupt and set the next one.  */ | 
 | 118 | 	expirelo += cycles_per_jiffy; | 
| Pete Popov | bdf21b1 | 2005-07-14 17:47:57 +0000 | [diff] [blame] | 119 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 120 | 	write_c0_compare(expirelo); | 
 | 121 |  | 
 | 122 | 	/* Check to see if we have missed any timer interrupts.  */ | 
 | 123 | 	count = read_c0_count(); | 
 | 124 | 	if ((count - expirelo) < 0x7fffffff) { | 
 | 125 | 		/* missed_timer_count++; */ | 
 | 126 | 		expirelo = count + cycles_per_jiffy; | 
 | 127 | 		write_c0_compare(expirelo); | 
 | 128 | 	} | 
 | 129 | } | 
 | 130 |  | 
 | 131 | /* | 
 | 132 |  * High precision timer functions for a R4k-compatible timer. | 
 | 133 |  */ | 
 | 134 | static unsigned int c0_hpt_read(void) | 
 | 135 | { | 
 | 136 | 	return read_c0_count(); | 
 | 137 | } | 
 | 138 |  | 
 | 139 | /* For use solely as a high precision timer.  */ | 
 | 140 | static void c0_hpt_init(unsigned int count) | 
 | 141 | { | 
 | 142 | 	write_c0_count(read_c0_count() - count); | 
 | 143 | } | 
 | 144 |  | 
 | 145 | /* For use both as a high precision timer and an interrupt source.  */ | 
 | 146 | static void c0_hpt_timer_init(unsigned int count) | 
 | 147 | { | 
 | 148 | 	count = read_c0_count() - count; | 
 | 149 | 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; | 
 | 150 | 	write_c0_count(expirelo - cycles_per_jiffy); | 
 | 151 | 	write_c0_compare(expirelo); | 
 | 152 | 	write_c0_count(count); | 
 | 153 | } | 
 | 154 |  | 
 | 155 | int (*mips_timer_state)(void); | 
 | 156 | void (*mips_timer_ack)(void); | 
 | 157 | unsigned int (*mips_hpt_read)(void); | 
 | 158 | void (*mips_hpt_init)(unsigned int); | 
 | 159 |  | 
 | 160 |  | 
 | 161 | /* | 
 | 162 |  * This version of gettimeofday has microsecond resolution and better than | 
 | 163 |  * microsecond precision on fast machines with cycle counter. | 
 | 164 |  */ | 
 | 165 | void do_gettimeofday(struct timeval *tv) | 
 | 166 | { | 
 | 167 | 	unsigned long seq; | 
 | 168 | 	unsigned long lost; | 
 | 169 | 	unsigned long usec, sec; | 
 | 170 | 	unsigned long max_ntp_tick = tick_usec - tickadj; | 
 | 171 |  | 
 | 172 | 	do { | 
 | 173 | 		seq = read_seqbegin(&xtime_lock); | 
 | 174 |  | 
 | 175 | 		usec = do_gettimeoffset(); | 
 | 176 |  | 
 | 177 | 		lost = jiffies - wall_jiffies; | 
 | 178 |  | 
 | 179 | 		/* | 
 | 180 | 		 * If time_adjust is negative then NTP is slowing the clock | 
 | 181 | 		 * so make sure not to go into next possible interval. | 
 | 182 | 		 * Better to lose some accuracy than have time go backwards.. | 
 | 183 | 		 */ | 
 | 184 | 		if (unlikely(time_adjust < 0)) { | 
 | 185 | 			usec = min(usec, max_ntp_tick); | 
 | 186 |  | 
 | 187 | 			if (lost) | 
 | 188 | 				usec += lost * max_ntp_tick; | 
 | 189 | 		} else if (unlikely(lost)) | 
 | 190 | 			usec += lost * tick_usec; | 
 | 191 |  | 
 | 192 | 		sec = xtime.tv_sec; | 
 | 193 | 		usec += (xtime.tv_nsec / 1000); | 
 | 194 |  | 
 | 195 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 | 196 |  | 
 | 197 | 	while (usec >= 1000000) { | 
 | 198 | 		usec -= 1000000; | 
 | 199 | 		sec++; | 
 | 200 | 	} | 
 | 201 |  | 
 | 202 | 	tv->tv_sec = sec; | 
 | 203 | 	tv->tv_usec = usec; | 
 | 204 | } | 
 | 205 |  | 
 | 206 | EXPORT_SYMBOL(do_gettimeofday); | 
 | 207 |  | 
 | 208 | int do_settimeofday(struct timespec *tv) | 
 | 209 | { | 
 | 210 | 	time_t wtm_sec, sec = tv->tv_sec; | 
 | 211 | 	long wtm_nsec, nsec = tv->tv_nsec; | 
 | 212 |  | 
 | 213 | 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
 | 214 | 		return -EINVAL; | 
 | 215 |  | 
 | 216 | 	write_seqlock_irq(&xtime_lock); | 
 | 217 |  | 
 | 218 | 	/* | 
 | 219 | 	 * This is revolting.  We need to set "xtime" correctly.  However, | 
 | 220 | 	 * the value in this location is the value at the most recent update | 
 | 221 | 	 * of wall time.  Discover what correction gettimeofday() would have | 
 | 222 | 	 * made, and then undo it! | 
 | 223 | 	 */ | 
 | 224 | 	nsec -= do_gettimeoffset() * NSEC_PER_USEC; | 
 | 225 | 	nsec -= (jiffies - wall_jiffies) * tick_nsec; | 
 | 226 |  | 
 | 227 | 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
 | 228 | 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
 | 229 |  | 
 | 230 | 	set_normalized_timespec(&xtime, sec, nsec); | 
 | 231 | 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
 | 232 |  | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 233 | 	ntp_clear(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 234 | 	write_sequnlock_irq(&xtime_lock); | 
 | 235 | 	clock_was_set(); | 
 | 236 | 	return 0; | 
 | 237 | } | 
 | 238 |  | 
 | 239 | EXPORT_SYMBOL(do_settimeofday); | 
 | 240 |  | 
 | 241 | /* | 
 | 242 |  * Gettimeoffset routines.  These routines returns the time duration | 
 | 243 |  * since last timer interrupt in usecs. | 
 | 244 |  * | 
 | 245 |  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. | 
 | 246 |  * Otherwise use calibrate_gettimeoffset() | 
 | 247 |  * | 
 | 248 |  * If the CPU does not have the counter register, you can either supply | 
 | 249 |  * your own gettimeoffset() routine, or use null_gettimeoffset(), which | 
 | 250 |  * gives the same resolution as HZ. | 
 | 251 |  */ | 
 | 252 |  | 
 | 253 | static unsigned long null_gettimeoffset(void) | 
 | 254 | { | 
 | 255 | 	return 0; | 
 | 256 | } | 
 | 257 |  | 
 | 258 |  | 
 | 259 | /* The function pointer to one of the gettimeoffset funcs.  */ | 
 | 260 | unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; | 
 | 261 |  | 
 | 262 |  | 
 | 263 | static unsigned long fixed_rate_gettimeoffset(void) | 
 | 264 | { | 
 | 265 | 	u32 count; | 
 | 266 | 	unsigned long res; | 
 | 267 |  | 
 | 268 | 	/* Get last timer tick in absolute kernel time */ | 
 | 269 | 	count = mips_hpt_read(); | 
 | 270 |  | 
 | 271 | 	/* .. relative to previous jiffy (32 bits is enough) */ | 
 | 272 | 	count -= timerlo; | 
 | 273 |  | 
 | 274 | 	__asm__("multu	%1,%2" | 
 | 275 | 		: "=h" (res) | 
 | 276 | 		: "r" (count), "r" (sll32_usecs_per_cycle) | 
 | 277 | 		: "lo", GCC_REG_ACCUM); | 
 | 278 |  | 
 | 279 | 	/* | 
 | 280 | 	 * Due to possible jiffies inconsistencies, we need to check | 
 | 281 | 	 * the result so that we'll get a timer that is monotonic. | 
 | 282 | 	 */ | 
 | 283 | 	if (res >= USECS_PER_JIFFY) | 
 | 284 | 		res = USECS_PER_JIFFY - 1; | 
 | 285 |  | 
 | 286 | 	return res; | 
 | 287 | } | 
 | 288 |  | 
 | 289 |  | 
 | 290 | /* | 
 | 291 |  * Cached "1/(clocks per usec) * 2^32" value. | 
 | 292 |  * It has to be recalculated once each jiffy. | 
 | 293 |  */ | 
 | 294 | static unsigned long cached_quotient; | 
 | 295 |  | 
 | 296 | /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ | 
 | 297 | static unsigned long last_jiffies; | 
 | 298 |  | 
 | 299 | /* | 
 | 300 |  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. | 
 | 301 |  */ | 
 | 302 | static unsigned long calibrate_div32_gettimeoffset(void) | 
 | 303 | { | 
 | 304 | 	u32 count; | 
 | 305 | 	unsigned long res, tmp; | 
 | 306 | 	unsigned long quotient; | 
 | 307 |  | 
 | 308 | 	tmp = jiffies; | 
 | 309 |  | 
 | 310 | 	quotient = cached_quotient; | 
 | 311 |  | 
 | 312 | 	if (last_jiffies != tmp) { | 
 | 313 | 		last_jiffies = tmp; | 
 | 314 | 		if (last_jiffies != 0) { | 
 | 315 | 			unsigned long r0; | 
 | 316 | 			do_div64_32(r0, timerhi, timerlo, tmp); | 
 | 317 | 			do_div64_32(quotient, USECS_PER_JIFFY, | 
 | 318 | 				    USECS_PER_JIFFY_FRAC, r0); | 
 | 319 | 			cached_quotient = quotient; | 
 | 320 | 		} | 
 | 321 | 	} | 
 | 322 |  | 
 | 323 | 	/* Get last timer tick in absolute kernel time */ | 
 | 324 | 	count = mips_hpt_read(); | 
 | 325 |  | 
 | 326 | 	/* .. relative to previous jiffy (32 bits is enough) */ | 
 | 327 | 	count -= timerlo; | 
 | 328 |  | 
 | 329 | 	__asm__("multu  %1,%2" | 
 | 330 | 		: "=h" (res) | 
 | 331 | 		: "r" (count), "r" (quotient) | 
 | 332 | 		: "lo", GCC_REG_ACCUM); | 
 | 333 |  | 
 | 334 | 	/* | 
 | 335 | 	 * Due to possible jiffies inconsistencies, we need to check | 
 | 336 | 	 * the result so that we'll get a timer that is monotonic. | 
 | 337 | 	 */ | 
 | 338 | 	if (res >= USECS_PER_JIFFY) | 
 | 339 | 		res = USECS_PER_JIFFY - 1; | 
 | 340 |  | 
 | 341 | 	return res; | 
 | 342 | } | 
 | 343 |  | 
 | 344 | static unsigned long calibrate_div64_gettimeoffset(void) | 
 | 345 | { | 
 | 346 | 	u32 count; | 
 | 347 | 	unsigned long res, tmp; | 
 | 348 | 	unsigned long quotient; | 
 | 349 |  | 
 | 350 | 	tmp = jiffies; | 
 | 351 |  | 
 | 352 | 	quotient = cached_quotient; | 
 | 353 |  | 
 | 354 | 	if (last_jiffies != tmp) { | 
 | 355 | 		last_jiffies = tmp; | 
 | 356 | 		if (last_jiffies) { | 
 | 357 | 			unsigned long r0; | 
 | 358 | 			__asm__(".set	push\n\t" | 
 | 359 | 				".set	mips3\n\t" | 
 | 360 | 				"lwu	%0,%3\n\t" | 
 | 361 | 				"dsll32	%1,%2,0\n\t" | 
 | 362 | 				"or	%1,%1,%0\n\t" | 
 | 363 | 				"ddivu	$0,%1,%4\n\t" | 
 | 364 | 				"mflo	%1\n\t" | 
 | 365 | 				"dsll32	%0,%5,0\n\t" | 
 | 366 | 				"or	%0,%0,%6\n\t" | 
 | 367 | 				"ddivu	$0,%0,%1\n\t" | 
 | 368 | 				"mflo	%0\n\t" | 
 | 369 | 				".set	pop" | 
 | 370 | 				: "=&r" (quotient), "=&r" (r0) | 
 | 371 | 				: "r" (timerhi), "m" (timerlo), | 
 | 372 | 				  "r" (tmp), "r" (USECS_PER_JIFFY), | 
 | 373 | 				  "r" (USECS_PER_JIFFY_FRAC) | 
 | 374 | 				: "hi", "lo", GCC_REG_ACCUM); | 
 | 375 | 			cached_quotient = quotient; | 
 | 376 | 		} | 
 | 377 | 	} | 
 | 378 |  | 
 | 379 | 	/* Get last timer tick in absolute kernel time */ | 
 | 380 | 	count = mips_hpt_read(); | 
 | 381 |  | 
 | 382 | 	/* .. relative to previous jiffy (32 bits is enough) */ | 
 | 383 | 	count -= timerlo; | 
 | 384 |  | 
 | 385 | 	__asm__("multu	%1,%2" | 
 | 386 | 		: "=h" (res) | 
 | 387 | 		: "r" (count), "r" (quotient) | 
 | 388 | 		: "lo", GCC_REG_ACCUM); | 
 | 389 |  | 
 | 390 | 	/* | 
 | 391 | 	 * Due to possible jiffies inconsistencies, we need to check | 
 | 392 | 	 * the result so that we'll get a timer that is monotonic. | 
 | 393 | 	 */ | 
 | 394 | 	if (res >= USECS_PER_JIFFY) | 
 | 395 | 		res = USECS_PER_JIFFY - 1; | 
 | 396 |  | 
 | 397 | 	return res; | 
 | 398 | } | 
 | 399 |  | 
 | 400 |  | 
 | 401 | /* last time when xtime and rtc are sync'ed up */ | 
 | 402 | static long last_rtc_update; | 
 | 403 |  | 
 | 404 | /* | 
 | 405 |  * local_timer_interrupt() does profiling and process accounting | 
 | 406 |  * on a per-CPU basis. | 
 | 407 |  * | 
 | 408 |  * In UP mode, it is invoked from the (global) timer_interrupt. | 
 | 409 |  * | 
 | 410 |  * In SMP mode, it might invoked by per-CPU timer interrupt, or | 
 | 411 |  * a broadcasted inter-processor interrupt which itself is triggered | 
 | 412 |  * by the global timer interrupt. | 
 | 413 |  */ | 
 | 414 | void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 415 | { | 
 | 416 | 	if (current->pid) | 
 | 417 | 		profile_tick(CPU_PROFILING, regs); | 
 | 418 | 	update_process_times(user_mode(regs)); | 
 | 419 | } | 
 | 420 |  | 
 | 421 | /* | 
 | 422 |  * High-level timer interrupt service routines.  This function | 
 | 423 |  * is set as irqaction->handler and is invoked through do_IRQ. | 
 | 424 |  */ | 
 | 425 | irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 426 | { | 
 | 427 | 	unsigned long j; | 
 | 428 | 	unsigned int count; | 
 | 429 |  | 
 | 430 | 	count = mips_hpt_read(); | 
 | 431 | 	mips_timer_ack(); | 
 | 432 |  | 
 | 433 | 	/* Update timerhi/timerlo for intra-jiffy calibration. */ | 
 | 434 | 	timerhi += count < timerlo;			/* Wrap around */ | 
 | 435 | 	timerlo = count; | 
 | 436 |  | 
 | 437 | 	/* | 
 | 438 | 	 * call the generic timer interrupt handling | 
 | 439 | 	 */ | 
 | 440 | 	do_timer(regs); | 
 | 441 |  | 
 | 442 | 	/* | 
 | 443 | 	 * If we have an externally synchronized Linux clock, then update | 
 | 444 | 	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be | 
 | 445 | 	 * called as close as possible to 500 ms before the new second starts. | 
 | 446 | 	 */ | 
 | 447 | 	write_seqlock(&xtime_lock); | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 448 | 	if (ntp_synced() && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 449 | 	    xtime.tv_sec > last_rtc_update + 660 && | 
 | 450 | 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | 
 | 451 | 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | 
 | 452 | 		if (rtc_set_mmss(xtime.tv_sec) == 0) { | 
 | 453 | 			last_rtc_update = xtime.tv_sec; | 
 | 454 | 		} else { | 
 | 455 | 			/* do it again in 60 s */ | 
 | 456 | 			last_rtc_update = xtime.tv_sec - 600; | 
 | 457 | 		} | 
 | 458 | 	} | 
 | 459 | 	write_sequnlock(&xtime_lock); | 
 | 460 |  | 
 | 461 | 	/* | 
 | 462 | 	 * If jiffies has overflown in this timer_interrupt, we must | 
 | 463 | 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs | 
 | 464 | 	 * quotient calc still valid. -arca | 
 | 465 | 	 * | 
 | 466 | 	 * The first timer interrupt comes late as interrupts are | 
 | 467 | 	 * enabled long after timers are initialized.  Therefore the | 
 | 468 | 	 * high precision timer is fast, leading to wrong gettimeoffset() | 
 | 469 | 	 * calculations.  We deal with it by setting it based on the | 
 | 470 | 	 * number of its ticks between the second and the third interrupt. | 
 | 471 | 	 * That is still somewhat imprecise, but it's a good estimate. | 
 | 472 | 	 * --macro | 
 | 473 | 	 */ | 
 | 474 | 	j = jiffies; | 
 | 475 | 	if (j < 4) { | 
 | 476 | 		static unsigned int prev_count; | 
 | 477 | 		static int hpt_initialized; | 
 | 478 |  | 
 | 479 | 		switch (j) { | 
 | 480 | 		case 0: | 
 | 481 | 			timerhi = timerlo = 0; | 
 | 482 | 			mips_hpt_init(count); | 
 | 483 | 			break; | 
 | 484 | 		case 2: | 
 | 485 | 			prev_count = count; | 
 | 486 | 			break; | 
 | 487 | 		case 3: | 
 | 488 | 			if (!hpt_initialized) { | 
 | 489 | 				unsigned int c3 = 3 * (count - prev_count); | 
 | 490 |  | 
 | 491 | 				timerhi = 0; | 
 | 492 | 				timerlo = c3; | 
 | 493 | 				mips_hpt_init(count - c3); | 
 | 494 | 				hpt_initialized = 1; | 
 | 495 | 			} | 
 | 496 | 			break; | 
 | 497 | 		default: | 
 | 498 | 			break; | 
 | 499 | 		} | 
 | 500 | 	} | 
 | 501 |  | 
 | 502 | 	/* | 
 | 503 | 	 * In UP mode, we call local_timer_interrupt() to do profiling | 
 | 504 | 	 * and process accouting. | 
 | 505 | 	 * | 
 | 506 | 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate | 
 | 507 | 	 * low-level local timer interrupt handler. | 
 | 508 | 	 */ | 
 | 509 | 	local_timer_interrupt(irq, dev_id, regs); | 
 | 510 |  | 
 | 511 | 	return IRQ_HANDLED; | 
 | 512 | } | 
 | 513 |  | 
 | 514 | asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) | 
 | 515 | { | 
 | 516 | 	irq_enter(); | 
 | 517 | 	kstat_this_cpu.irqs[irq]++; | 
 | 518 |  | 
 | 519 | 	/* we keep interrupt disabled all the time */ | 
 | 520 | 	timer_interrupt(irq, NULL, regs); | 
 | 521 |  | 
 | 522 | 	irq_exit(); | 
 | 523 | } | 
 | 524 |  | 
 | 525 | asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) | 
 | 526 | { | 
 | 527 | 	irq_enter(); | 
 | 528 | 	if (smp_processor_id() != 0) | 
 | 529 | 		kstat_this_cpu.irqs[irq]++; | 
 | 530 |  | 
 | 531 | 	/* we keep interrupt disabled all the time */ | 
 | 532 | 	local_timer_interrupt(irq, NULL, regs); | 
 | 533 |  | 
 | 534 | 	irq_exit(); | 
 | 535 | } | 
 | 536 |  | 
 | 537 | /* | 
 | 538 |  * time_init() - it does the following things. | 
 | 539 |  * | 
 | 540 |  * 1) board_time_init() - | 
 | 541 |  * 	a) (optional) set up RTC routines, | 
 | 542 |  *      b) (optional) calibrate and set the mips_hpt_frequency | 
 | 543 |  *	    (only needed if you intended to use fixed_rate_gettimeoffset | 
 | 544 |  *	     or use cpu counter as timer interrupt source) | 
 | 545 |  * 2) setup xtime based on rtc_get_time(). | 
 | 546 |  * 3) choose a appropriate gettimeoffset routine. | 
 | 547 |  * 4) calculate a couple of cached variables for later usage | 
 | 548 |  * 5) board_timer_setup() - | 
 | 549 |  *	a) (optional) over-write any choices made above by time_init(). | 
 | 550 |  *	b) machine specific code should setup the timer irqaction. | 
 | 551 |  *	c) enable the timer interrupt | 
 | 552 |  */ | 
 | 553 |  | 
 | 554 | void (*board_time_init)(void); | 
 | 555 | void (*board_timer_setup)(struct irqaction *irq); | 
 | 556 |  | 
 | 557 | unsigned int mips_hpt_frequency; | 
 | 558 |  | 
 | 559 | static struct irqaction timer_irqaction = { | 
 | 560 | 	.handler = timer_interrupt, | 
 | 561 | 	.flags = SA_INTERRUPT, | 
 | 562 | 	.name = "timer", | 
 | 563 | }; | 
 | 564 |  | 
 | 565 | static unsigned int __init calibrate_hpt(void) | 
 | 566 | { | 
 | 567 | 	u64 frequency; | 
 | 568 | 	u32 hpt_start, hpt_end, hpt_count, hz; | 
 | 569 |  | 
 | 570 | 	const int loops = HZ / 10; | 
 | 571 | 	int log_2_loops = 0; | 
 | 572 | 	int i; | 
 | 573 |  | 
 | 574 | 	/* | 
 | 575 | 	 * We want to calibrate for 0.1s, but to avoid a 64-bit | 
 | 576 | 	 * division we round the number of loops up to the nearest | 
 | 577 | 	 * power of 2. | 
 | 578 | 	 */ | 
 | 579 | 	while (loops > 1 << log_2_loops) | 
 | 580 | 		log_2_loops++; | 
 | 581 | 	i = 1 << log_2_loops; | 
 | 582 |  | 
 | 583 | 	/* | 
 | 584 | 	 * Wait for a rising edge of the timer interrupt. | 
 | 585 | 	 */ | 
 | 586 | 	while (mips_timer_state()); | 
 | 587 | 	while (!mips_timer_state()); | 
 | 588 |  | 
 | 589 | 	/* | 
 | 590 | 	 * Now see how many high precision timer ticks happen | 
 | 591 | 	 * during the calculated number of periods between timer | 
 | 592 | 	 * interrupts. | 
 | 593 | 	 */ | 
 | 594 | 	hpt_start = mips_hpt_read(); | 
 | 595 | 	do { | 
 | 596 | 		while (mips_timer_state()); | 
 | 597 | 		while (!mips_timer_state()); | 
 | 598 | 	} while (--i); | 
 | 599 | 	hpt_end = mips_hpt_read(); | 
 | 600 |  | 
 | 601 | 	hpt_count = hpt_end - hpt_start; | 
 | 602 | 	hz = HZ; | 
 | 603 | 	frequency = (u64)hpt_count * (u64)hz; | 
 | 604 |  | 
 | 605 | 	return frequency >> log_2_loops; | 
 | 606 | } | 
 | 607 |  | 
 | 608 | void __init time_init(void) | 
 | 609 | { | 
 | 610 | 	if (board_time_init) | 
 | 611 | 		board_time_init(); | 
 | 612 |  | 
 | 613 | 	if (!rtc_set_mmss) | 
 | 614 | 		rtc_set_mmss = rtc_set_time; | 
 | 615 |  | 
 | 616 | 	xtime.tv_sec = rtc_get_time(); | 
 | 617 | 	xtime.tv_nsec = 0; | 
 | 618 |  | 
 | 619 | 	set_normalized_timespec(&wall_to_monotonic, | 
 | 620 | 	                        -xtime.tv_sec, -xtime.tv_nsec); | 
 | 621 |  | 
 | 622 | 	/* Choose appropriate high precision timer routines.  */ | 
 | 623 | 	if (!cpu_has_counter && !mips_hpt_read) { | 
 | 624 | 		/* No high precision timer -- sorry.  */ | 
 | 625 | 		mips_hpt_read = null_hpt_read; | 
 | 626 | 		mips_hpt_init = null_hpt_init; | 
 | 627 | 	} else if (!mips_hpt_frequency && !mips_timer_state) { | 
 | 628 | 		/* A high precision timer of unknown frequency.  */ | 
 | 629 | 		if (!mips_hpt_read) { | 
 | 630 | 			/* No external high precision timer -- use R4k.  */ | 
 | 631 | 			mips_hpt_read = c0_hpt_read; | 
 | 632 | 			mips_hpt_init = c0_hpt_init; | 
 | 633 | 		} | 
 | 634 |  | 
 | 635 | 		if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || | 
 | 636 | 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || | 
 | 637 | 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) | 
 | 638 | 			/* | 
 | 639 | 			 * We need to calibrate the counter but we don't have | 
 | 640 | 			 * 64-bit division. | 
 | 641 | 			 */ | 
 | 642 | 			do_gettimeoffset = calibrate_div32_gettimeoffset; | 
 | 643 | 		else | 
 | 644 | 			/* | 
 | 645 | 			 * We need to calibrate the counter but we *do* have | 
 | 646 | 			 * 64-bit division. | 
 | 647 | 			 */ | 
 | 648 | 			do_gettimeoffset = calibrate_div64_gettimeoffset; | 
 | 649 | 	} else { | 
 | 650 | 		/* We know counter frequency.  Or we can get it.  */ | 
 | 651 | 		if (!mips_hpt_read) { | 
 | 652 | 			/* No external high precision timer -- use R4k.  */ | 
 | 653 | 			mips_hpt_read = c0_hpt_read; | 
 | 654 |  | 
 | 655 | 			if (mips_timer_state) | 
 | 656 | 				mips_hpt_init = c0_hpt_init; | 
 | 657 | 			else { | 
 | 658 | 				/* No external timer interrupt -- use R4k.  */ | 
 | 659 | 				mips_hpt_init = c0_hpt_timer_init; | 
 | 660 | 				mips_timer_ack = c0_timer_ack; | 
 | 661 | 			} | 
 | 662 | 		} | 
 | 663 | 		if (!mips_hpt_frequency) | 
 | 664 | 			mips_hpt_frequency = calibrate_hpt(); | 
 | 665 |  | 
 | 666 | 		do_gettimeoffset = fixed_rate_gettimeoffset; | 
 | 667 |  | 
 | 668 | 		/* Calculate cache parameters.  */ | 
 | 669 | 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; | 
 | 670 |  | 
 | 671 | 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */ | 
 | 672 | 		do_div64_32(sll32_usecs_per_cycle, | 
 | 673 | 			    1000000, mips_hpt_frequency / 2, | 
 | 674 | 			    mips_hpt_frequency); | 
 | 675 |  | 
 | 676 | 		/* Report the high precision timer rate for a reference.  */ | 
 | 677 | 		printk("Using %u.%03u MHz high precision timer.\n", | 
 | 678 | 		       ((mips_hpt_frequency + 500) / 1000) / 1000, | 
 | 679 | 		       ((mips_hpt_frequency + 500) / 1000) % 1000); | 
 | 680 | 	} | 
 | 681 |  | 
 | 682 | 	if (!mips_timer_ack) | 
 | 683 | 		/* No timer interrupt ack (e.g. i8254).  */ | 
 | 684 | 		mips_timer_ack = null_timer_ack; | 
 | 685 |  | 
 | 686 | 	/* This sets up the high precision timer for the first interrupt.  */ | 
 | 687 | 	mips_hpt_init(mips_hpt_read()); | 
 | 688 |  | 
 | 689 | 	/* | 
 | 690 | 	 * Call board specific timer interrupt setup. | 
 | 691 | 	 * | 
 | 692 | 	 * this pointer must be setup in machine setup routine. | 
 | 693 | 	 * | 
 | 694 | 	 * Even if a machine chooses to use a low-level timer interrupt, | 
 | 695 | 	 * it still needs to setup the timer_irqaction. | 
 | 696 | 	 * In that case, it might be better to set timer_irqaction.handler | 
 | 697 | 	 * to be NULL function so that we are sure the high-level code | 
 | 698 | 	 * is not invoked accidentally. | 
 | 699 | 	 */ | 
 | 700 | 	board_timer_setup(&timer_irqaction); | 
 | 701 | } | 
 | 702 |  | 
 | 703 | #define FEBRUARY		2 | 
 | 704 | #define STARTOFTIME		1970 | 
 | 705 | #define SECDAY			86400L | 
 | 706 | #define SECYR			(SECDAY * 365) | 
 | 707 | #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400)) | 
 | 708 | #define days_in_year(y)		(leapyear(y) ? 366 : 365) | 
 | 709 | #define days_in_month(m)	(month_days[(m) - 1]) | 
 | 710 |  | 
 | 711 | static int month_days[12] = { | 
 | 712 | 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
 | 713 | }; | 
 | 714 |  | 
 | 715 | void to_tm(unsigned long tim, struct rtc_time *tm) | 
 | 716 | { | 
 | 717 | 	long hms, day, gday; | 
 | 718 | 	int i; | 
 | 719 |  | 
 | 720 | 	gday = day = tim / SECDAY; | 
 | 721 | 	hms = tim % SECDAY; | 
 | 722 |  | 
 | 723 | 	/* Hours, minutes, seconds are easy */ | 
 | 724 | 	tm->tm_hour = hms / 3600; | 
 | 725 | 	tm->tm_min = (hms % 3600) / 60; | 
 | 726 | 	tm->tm_sec = (hms % 3600) % 60; | 
 | 727 |  | 
 | 728 | 	/* Number of years in days */ | 
 | 729 | 	for (i = STARTOFTIME; day >= days_in_year(i); i++) | 
 | 730 | 		day -= days_in_year(i); | 
 | 731 | 	tm->tm_year = i; | 
 | 732 |  | 
 | 733 | 	/* Number of months in days left */ | 
 | 734 | 	if (leapyear(tm->tm_year)) | 
 | 735 | 		days_in_month(FEBRUARY) = 29; | 
 | 736 | 	for (i = 1; day >= days_in_month(i); i++) | 
 | 737 | 		day -= days_in_month(i); | 
 | 738 | 	days_in_month(FEBRUARY) = 28; | 
 | 739 | 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */ | 
 | 740 |  | 
 | 741 | 	/* Days are what is left over (+1) from all that. */ | 
 | 742 | 	tm->tm_mday = day + 1; | 
 | 743 |  | 
 | 744 | 	/* | 
 | 745 | 	 * Determine the day of week | 
 | 746 | 	 */ | 
 | 747 | 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */ | 
 | 748 | } | 
 | 749 |  | 
 | 750 | EXPORT_SYMBOL(rtc_lock); | 
 | 751 | EXPORT_SYMBOL(to_tm); | 
 | 752 | EXPORT_SYMBOL(rtc_set_time); | 
 | 753 | EXPORT_SYMBOL(rtc_get_time); | 
 | 754 |  | 
 | 755 | unsigned long long sched_clock(void) | 
 | 756 | { | 
 | 757 | 	return (unsigned long long)jiffies*(1000000000/HZ); | 
 | 758 | } |