| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * random.c -- A strong random number generator | 
|  | 3 | * | 
| Matt Mackall | 9e95ce2 | 2005-04-16 15:25:56 -0700 | [diff] [blame] | 4 | * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 | * | 
|  | 6 | * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All | 
|  | 7 | * rights reserved. | 
|  | 8 | * | 
|  | 9 | * Redistribution and use in source and binary forms, with or without | 
|  | 10 | * modification, are permitted provided that the following conditions | 
|  | 11 | * are met: | 
|  | 12 | * 1. Redistributions of source code must retain the above copyright | 
|  | 13 | *    notice, and the entire permission notice in its entirety, | 
|  | 14 | *    including the disclaimer of warranties. | 
|  | 15 | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | 16 | *    notice, this list of conditions and the following disclaimer in the | 
|  | 17 | *    documentation and/or other materials provided with the distribution. | 
|  | 18 | * 3. The name of the author may not be used to endorse or promote | 
|  | 19 | *    products derived from this software without specific prior | 
|  | 20 | *    written permission. | 
|  | 21 | * | 
|  | 22 | * ALTERNATIVELY, this product may be distributed under the terms of | 
|  | 23 | * the GNU General Public License, in which case the provisions of the GPL are | 
|  | 24 | * required INSTEAD OF the above restrictions.  (This clause is | 
|  | 25 | * necessary due to a potential bad interaction between the GPL and | 
|  | 26 | * the restrictions contained in a BSD-style copyright.) | 
|  | 27 | * | 
|  | 28 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
|  | 29 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | 30 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | 
|  | 31 | * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE | 
|  | 32 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | 33 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | 
|  | 34 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
|  | 35 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
|  | 36 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | 37 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
|  | 38 | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | 
|  | 39 | * DAMAGE. | 
|  | 40 | */ | 
|  | 41 |  | 
|  | 42 | /* | 
|  | 43 | * (now, with legal B.S. out of the way.....) | 
|  | 44 | * | 
|  | 45 | * This routine gathers environmental noise from device drivers, etc., | 
|  | 46 | * and returns good random numbers, suitable for cryptographic use. | 
|  | 47 | * Besides the obvious cryptographic uses, these numbers are also good | 
|  | 48 | * for seeding TCP sequence numbers, and other places where it is | 
|  | 49 | * desirable to have numbers which are not only random, but hard to | 
|  | 50 | * predict by an attacker. | 
|  | 51 | * | 
|  | 52 | * Theory of operation | 
|  | 53 | * =================== | 
|  | 54 | * | 
|  | 55 | * Computers are very predictable devices.  Hence it is extremely hard | 
|  | 56 | * to produce truly random numbers on a computer --- as opposed to | 
|  | 57 | * pseudo-random numbers, which can easily generated by using a | 
|  | 58 | * algorithm.  Unfortunately, it is very easy for attackers to guess | 
|  | 59 | * the sequence of pseudo-random number generators, and for some | 
|  | 60 | * applications this is not acceptable.  So instead, we must try to | 
|  | 61 | * gather "environmental noise" from the computer's environment, which | 
|  | 62 | * must be hard for outside attackers to observe, and use that to | 
|  | 63 | * generate random numbers.  In a Unix environment, this is best done | 
|  | 64 | * from inside the kernel. | 
|  | 65 | * | 
|  | 66 | * Sources of randomness from the environment include inter-keyboard | 
|  | 67 | * timings, inter-interrupt timings from some interrupts, and other | 
|  | 68 | * events which are both (a) non-deterministic and (b) hard for an | 
|  | 69 | * outside observer to measure.  Randomness from these sources are | 
|  | 70 | * added to an "entropy pool", which is mixed using a CRC-like function. | 
|  | 71 | * This is not cryptographically strong, but it is adequate assuming | 
|  | 72 | * the randomness is not chosen maliciously, and it is fast enough that | 
|  | 73 | * the overhead of doing it on every interrupt is very reasonable. | 
|  | 74 | * As random bytes are mixed into the entropy pool, the routines keep | 
|  | 75 | * an *estimate* of how many bits of randomness have been stored into | 
|  | 76 | * the random number generator's internal state. | 
|  | 77 | * | 
|  | 78 | * When random bytes are desired, they are obtained by taking the SHA | 
|  | 79 | * hash of the contents of the "entropy pool".  The SHA hash avoids | 
|  | 80 | * exposing the internal state of the entropy pool.  It is believed to | 
|  | 81 | * be computationally infeasible to derive any useful information | 
|  | 82 | * about the input of SHA from its output.  Even if it is possible to | 
|  | 83 | * analyze SHA in some clever way, as long as the amount of data | 
|  | 84 | * returned from the generator is less than the inherent entropy in | 
|  | 85 | * the pool, the output data is totally unpredictable.  For this | 
|  | 86 | * reason, the routine decreases its internal estimate of how many | 
|  | 87 | * bits of "true randomness" are contained in the entropy pool as it | 
|  | 88 | * outputs random numbers. | 
|  | 89 | * | 
|  | 90 | * If this estimate goes to zero, the routine can still generate | 
|  | 91 | * random numbers; however, an attacker may (at least in theory) be | 
|  | 92 | * able to infer the future output of the generator from prior | 
|  | 93 | * outputs.  This requires successful cryptanalysis of SHA, which is | 
|  | 94 | * not believed to be feasible, but there is a remote possibility. | 
|  | 95 | * Nonetheless, these numbers should be useful for the vast majority | 
|  | 96 | * of purposes. | 
|  | 97 | * | 
|  | 98 | * Exported interfaces ---- output | 
|  | 99 | * =============================== | 
|  | 100 | * | 
|  | 101 | * There are three exported interfaces; the first is one designed to | 
|  | 102 | * be used from within the kernel: | 
|  | 103 | * | 
|  | 104 | * 	void get_random_bytes(void *buf, int nbytes); | 
|  | 105 | * | 
|  | 106 | * This interface will return the requested number of random bytes, | 
|  | 107 | * and place it in the requested buffer. | 
|  | 108 | * | 
|  | 109 | * The two other interfaces are two character devices /dev/random and | 
|  | 110 | * /dev/urandom.  /dev/random is suitable for use when very high | 
|  | 111 | * quality randomness is desired (for example, for key generation or | 
|  | 112 | * one-time pads), as it will only return a maximum of the number of | 
|  | 113 | * bits of randomness (as estimated by the random number generator) | 
|  | 114 | * contained in the entropy pool. | 
|  | 115 | * | 
|  | 116 | * The /dev/urandom device does not have this limit, and will return | 
|  | 117 | * as many bytes as are requested.  As more and more random bytes are | 
|  | 118 | * requested without giving time for the entropy pool to recharge, | 
|  | 119 | * this will result in random numbers that are merely cryptographically | 
|  | 120 | * strong.  For many applications, however, this is acceptable. | 
|  | 121 | * | 
|  | 122 | * Exported interfaces ---- input | 
|  | 123 | * ============================== | 
|  | 124 | * | 
|  | 125 | * The current exported interfaces for gathering environmental noise | 
|  | 126 | * from the devices are: | 
|  | 127 | * | 
|  | 128 | * 	void add_input_randomness(unsigned int type, unsigned int code, | 
|  | 129 | *                                unsigned int value); | 
|  | 130 | * 	void add_interrupt_randomness(int irq); | 
|  | 131 | * | 
|  | 132 | * add_input_randomness() uses the input layer interrupt timing, as well as | 
|  | 133 | * the event type information from the hardware. | 
|  | 134 | * | 
|  | 135 | * add_interrupt_randomness() uses the inter-interrupt timing as random | 
|  | 136 | * inputs to the entropy pool.  Note that not all interrupts are good | 
|  | 137 | * sources of randomness!  For example, the timer interrupts is not a | 
|  | 138 | * good choice, because the periodicity of the interrupts is too | 
|  | 139 | * regular, and hence predictable to an attacker.  Disk interrupts are | 
|  | 140 | * a better measure, since the timing of the disk interrupts are more | 
|  | 141 | * unpredictable. | 
|  | 142 | * | 
|  | 143 | * All of these routines try to estimate how many bits of randomness a | 
|  | 144 | * particular randomness source.  They do this by keeping track of the | 
|  | 145 | * first and second order deltas of the event timings. | 
|  | 146 | * | 
|  | 147 | * Ensuring unpredictability at system startup | 
|  | 148 | * ============================================ | 
|  | 149 | * | 
|  | 150 | * When any operating system starts up, it will go through a sequence | 
|  | 151 | * of actions that are fairly predictable by an adversary, especially | 
|  | 152 | * if the start-up does not involve interaction with a human operator. | 
|  | 153 | * This reduces the actual number of bits of unpredictability in the | 
|  | 154 | * entropy pool below the value in entropy_count.  In order to | 
|  | 155 | * counteract this effect, it helps to carry information in the | 
|  | 156 | * entropy pool across shut-downs and start-ups.  To do this, put the | 
|  | 157 | * following lines an appropriate script which is run during the boot | 
|  | 158 | * sequence: | 
|  | 159 | * | 
|  | 160 | *	echo "Initializing random number generator..." | 
|  | 161 | *	random_seed=/var/run/random-seed | 
|  | 162 | *	# Carry a random seed from start-up to start-up | 
|  | 163 | *	# Load and then save the whole entropy pool | 
|  | 164 | *	if [ -f $random_seed ]; then | 
|  | 165 | *		cat $random_seed >/dev/urandom | 
|  | 166 | *	else | 
|  | 167 | *		touch $random_seed | 
|  | 168 | *	fi | 
|  | 169 | *	chmod 600 $random_seed | 
|  | 170 | *	dd if=/dev/urandom of=$random_seed count=1 bs=512 | 
|  | 171 | * | 
|  | 172 | * and the following lines in an appropriate script which is run as | 
|  | 173 | * the system is shutdown: | 
|  | 174 | * | 
|  | 175 | *	# Carry a random seed from shut-down to start-up | 
|  | 176 | *	# Save the whole entropy pool | 
|  | 177 | *	echo "Saving random seed..." | 
|  | 178 | *	random_seed=/var/run/random-seed | 
|  | 179 | *	touch $random_seed | 
|  | 180 | *	chmod 600 $random_seed | 
|  | 181 | *	dd if=/dev/urandom of=$random_seed count=1 bs=512 | 
|  | 182 | * | 
|  | 183 | * For example, on most modern systems using the System V init | 
|  | 184 | * scripts, such code fragments would be found in | 
|  | 185 | * /etc/rc.d/init.d/random.  On older Linux systems, the correct script | 
|  | 186 | * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. | 
|  | 187 | * | 
|  | 188 | * Effectively, these commands cause the contents of the entropy pool | 
|  | 189 | * to be saved at shut-down time and reloaded into the entropy pool at | 
|  | 190 | * start-up.  (The 'dd' in the addition to the bootup script is to | 
|  | 191 | * make sure that /etc/random-seed is different for every start-up, | 
|  | 192 | * even if the system crashes without executing rc.0.)  Even with | 
|  | 193 | * complete knowledge of the start-up activities, predicting the state | 
|  | 194 | * of the entropy pool requires knowledge of the previous history of | 
|  | 195 | * the system. | 
|  | 196 | * | 
|  | 197 | * Configuring the /dev/random driver under Linux | 
|  | 198 | * ============================================== | 
|  | 199 | * | 
|  | 200 | * The /dev/random driver under Linux uses minor numbers 8 and 9 of | 
|  | 201 | * the /dev/mem major number (#1).  So if your system does not have | 
|  | 202 | * /dev/random and /dev/urandom created already, they can be created | 
|  | 203 | * by using the commands: | 
|  | 204 | * | 
|  | 205 | * 	mknod /dev/random c 1 8 | 
|  | 206 | * 	mknod /dev/urandom c 1 9 | 
|  | 207 | * | 
|  | 208 | * Acknowledgements: | 
|  | 209 | * ================= | 
|  | 210 | * | 
|  | 211 | * Ideas for constructing this random number generator were derived | 
|  | 212 | * from Pretty Good Privacy's random number generator, and from private | 
|  | 213 | * discussions with Phil Karn.  Colin Plumb provided a faster random | 
|  | 214 | * number generator, which speed up the mixing function of the entropy | 
|  | 215 | * pool, taken from PGPfone.  Dale Worley has also contributed many | 
|  | 216 | * useful ideas and suggestions to improve this driver. | 
|  | 217 | * | 
|  | 218 | * Any flaws in the design are solely my responsibility, and should | 
|  | 219 | * not be attributed to the Phil, Colin, or any of authors of PGP. | 
|  | 220 | * | 
|  | 221 | * Further background information on this topic may be obtained from | 
|  | 222 | * RFC 1750, "Randomness Recommendations for Security", by Donald | 
|  | 223 | * Eastlake, Steve Crocker, and Jeff Schiller. | 
|  | 224 | */ | 
|  | 225 |  | 
|  | 226 | #include <linux/utsname.h> | 
|  | 227 | #include <linux/config.h> | 
|  | 228 | #include <linux/module.h> | 
|  | 229 | #include <linux/kernel.h> | 
|  | 230 | #include <linux/major.h> | 
|  | 231 | #include <linux/string.h> | 
|  | 232 | #include <linux/fcntl.h> | 
|  | 233 | #include <linux/slab.h> | 
|  | 234 | #include <linux/random.h> | 
|  | 235 | #include <linux/poll.h> | 
|  | 236 | #include <linux/init.h> | 
|  | 237 | #include <linux/fs.h> | 
|  | 238 | #include <linux/genhd.h> | 
|  | 239 | #include <linux/interrupt.h> | 
|  | 240 | #include <linux/spinlock.h> | 
|  | 241 | #include <linux/percpu.h> | 
|  | 242 | #include <linux/cryptohash.h> | 
|  | 243 |  | 
|  | 244 | #include <asm/processor.h> | 
|  | 245 | #include <asm/uaccess.h> | 
|  | 246 | #include <asm/irq.h> | 
|  | 247 | #include <asm/io.h> | 
|  | 248 |  | 
|  | 249 | /* | 
|  | 250 | * Configuration information | 
|  | 251 | */ | 
|  | 252 | #define INPUT_POOL_WORDS 128 | 
|  | 253 | #define OUTPUT_POOL_WORDS 32 | 
|  | 254 | #define SEC_XFER_SIZE 512 | 
|  | 255 |  | 
|  | 256 | /* | 
|  | 257 | * The minimum number of bits of entropy before we wake up a read on | 
|  | 258 | * /dev/random.  Should be enough to do a significant reseed. | 
|  | 259 | */ | 
|  | 260 | static int random_read_wakeup_thresh = 64; | 
|  | 261 |  | 
|  | 262 | /* | 
|  | 263 | * If the entropy count falls under this number of bits, then we | 
|  | 264 | * should wake up processes which are selecting or polling on write | 
|  | 265 | * access to /dev/random. | 
|  | 266 | */ | 
|  | 267 | static int random_write_wakeup_thresh = 128; | 
|  | 268 |  | 
|  | 269 | /* | 
|  | 270 | * When the input pool goes over trickle_thresh, start dropping most | 
|  | 271 | * samples to avoid wasting CPU time and reduce lock contention. | 
|  | 272 | */ | 
|  | 273 |  | 
| Christoph Lameter | 6c03652 | 2005-07-07 17:56:59 -0700 | [diff] [blame] | 274 | static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 275 |  | 
|  | 276 | static DEFINE_PER_CPU(int, trickle_count) = 0; | 
|  | 277 |  | 
|  | 278 | /* | 
|  | 279 | * A pool of size .poolwords is stirred with a primitive polynomial | 
|  | 280 | * of degree .poolwords over GF(2).  The taps for various sizes are | 
|  | 281 | * defined below.  They are chosen to be evenly spaced (minimum RMS | 
|  | 282 | * distance from evenly spaced; the numbers in the comments are a | 
|  | 283 | * scaled squared error sum) except for the last tap, which is 1 to | 
|  | 284 | * get the twisting happening as fast as possible. | 
|  | 285 | */ | 
|  | 286 | static struct poolinfo { | 
|  | 287 | int poolwords; | 
|  | 288 | int tap1, tap2, tap3, tap4, tap5; | 
|  | 289 | } poolinfo_table[] = { | 
|  | 290 | /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ | 
|  | 291 | { 128,	103,	76,	51,	25,	1 }, | 
|  | 292 | /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ | 
|  | 293 | { 32,	26,	20,	14,	7,	1 }, | 
|  | 294 | #if 0 | 
|  | 295 | /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */ | 
|  | 296 | { 2048,	1638,	1231,	819,	411,	1 }, | 
|  | 297 |  | 
|  | 298 | /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ | 
|  | 299 | { 1024,	817,	615,	412,	204,	1 }, | 
|  | 300 |  | 
|  | 301 | /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ | 
|  | 302 | { 1024,	819,	616,	410,	207,	2 }, | 
|  | 303 |  | 
|  | 304 | /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ | 
|  | 305 | { 512,	411,	308,	208,	104,	1 }, | 
|  | 306 |  | 
|  | 307 | /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ | 
|  | 308 | { 512,	409,	307,	206,	102,	2 }, | 
|  | 309 | /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ | 
|  | 310 | { 512,	409,	309,	205,	103,	2 }, | 
|  | 311 |  | 
|  | 312 | /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ | 
|  | 313 | { 256,	205,	155,	101,	52,	1 }, | 
|  | 314 |  | 
|  | 315 | /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ | 
|  | 316 | { 128,	103,	78,	51,	27,	2 }, | 
|  | 317 |  | 
|  | 318 | /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ | 
|  | 319 | { 64,	52,	39,	26,	14,	1 }, | 
|  | 320 | #endif | 
|  | 321 | }; | 
|  | 322 |  | 
|  | 323 | #define POOLBITS	poolwords*32 | 
|  | 324 | #define POOLBYTES	poolwords*4 | 
|  | 325 |  | 
|  | 326 | /* | 
|  | 327 | * For the purposes of better mixing, we use the CRC-32 polynomial as | 
|  | 328 | * well to make a twisted Generalized Feedback Shift Reigster | 
|  | 329 | * | 
|  | 330 | * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM | 
|  | 331 | * Transactions on Modeling and Computer Simulation 2(3):179-194. | 
|  | 332 | * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators | 
|  | 333 | * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266) | 
|  | 334 | * | 
|  | 335 | * Thanks to Colin Plumb for suggesting this. | 
|  | 336 | * | 
|  | 337 | * We have not analyzed the resultant polynomial to prove it primitive; | 
|  | 338 | * in fact it almost certainly isn't.  Nonetheless, the irreducible factors | 
|  | 339 | * of a random large-degree polynomial over GF(2) are more than large enough | 
|  | 340 | * that periodicity is not a concern. | 
|  | 341 | * | 
|  | 342 | * The input hash is much less sensitive than the output hash.  All | 
|  | 343 | * that we want of it is that it be a good non-cryptographic hash; | 
|  | 344 | * i.e. it not produce collisions when fed "random" data of the sort | 
|  | 345 | * we expect to see.  As long as the pool state differs for different | 
|  | 346 | * inputs, we have preserved the input entropy and done a good job. | 
|  | 347 | * The fact that an intelligent attacker can construct inputs that | 
|  | 348 | * will produce controlled alterations to the pool's state is not | 
|  | 349 | * important because we don't consider such inputs to contribute any | 
|  | 350 | * randomness.  The only property we need with respect to them is that | 
|  | 351 | * the attacker can't increase his/her knowledge of the pool's state. | 
|  | 352 | * Since all additions are reversible (knowing the final state and the | 
|  | 353 | * input, you can reconstruct the initial state), if an attacker has | 
|  | 354 | * any uncertainty about the initial state, he/she can only shuffle | 
|  | 355 | * that uncertainty about, but never cause any collisions (which would | 
|  | 356 | * decrease the uncertainty). | 
|  | 357 | * | 
|  | 358 | * The chosen system lets the state of the pool be (essentially) the input | 
|  | 359 | * modulo the generator polymnomial.  Now, for random primitive polynomials, | 
|  | 360 | * this is a universal class of hash functions, meaning that the chance | 
|  | 361 | * of a collision is limited by the attacker's knowledge of the generator | 
|  | 362 | * polynomail, so if it is chosen at random, an attacker can never force | 
|  | 363 | * a collision.  Here, we use a fixed polynomial, but we *can* assume that | 
|  | 364 | * ###--> it is unknown to the processes generating the input entropy. <-### | 
|  | 365 | * Because of this important property, this is a good, collision-resistant | 
|  | 366 | * hash; hash collisions will occur no more often than chance. | 
|  | 367 | */ | 
|  | 368 |  | 
|  | 369 | /* | 
|  | 370 | * Static global variables | 
|  | 371 | */ | 
|  | 372 | static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); | 
|  | 373 | static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); | 
|  | 374 |  | 
|  | 375 | #if 0 | 
|  | 376 | static int debug = 0; | 
|  | 377 | module_param(debug, bool, 0644); | 
|  | 378 | #define DEBUG_ENT(fmt, arg...) do { if (debug) \ | 
|  | 379 | printk(KERN_DEBUG "random %04d %04d %04d: " \ | 
|  | 380 | fmt,\ | 
|  | 381 | input_pool.entropy_count,\ | 
|  | 382 | blocking_pool.entropy_count,\ | 
|  | 383 | nonblocking_pool.entropy_count,\ | 
|  | 384 | ## arg); } while (0) | 
|  | 385 | #else | 
|  | 386 | #define DEBUG_ENT(fmt, arg...) do {} while (0) | 
|  | 387 | #endif | 
|  | 388 |  | 
|  | 389 | /********************************************************************** | 
|  | 390 | * | 
|  | 391 | * OS independent entropy store.   Here are the functions which handle | 
|  | 392 | * storing entropy in an entropy pool. | 
|  | 393 | * | 
|  | 394 | **********************************************************************/ | 
|  | 395 |  | 
|  | 396 | struct entropy_store; | 
|  | 397 | struct entropy_store { | 
|  | 398 | /* mostly-read data: */ | 
|  | 399 | struct poolinfo *poolinfo; | 
|  | 400 | __u32 *pool; | 
|  | 401 | const char *name; | 
|  | 402 | int limit; | 
|  | 403 | struct entropy_store *pull; | 
|  | 404 |  | 
|  | 405 | /* read-write data: */ | 
|  | 406 | spinlock_t lock ____cacheline_aligned_in_smp; | 
|  | 407 | unsigned add_ptr; | 
|  | 408 | int entropy_count; | 
|  | 409 | int input_rotate; | 
|  | 410 | }; | 
|  | 411 |  | 
|  | 412 | static __u32 input_pool_data[INPUT_POOL_WORDS]; | 
|  | 413 | static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; | 
|  | 414 | static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; | 
|  | 415 |  | 
|  | 416 | static struct entropy_store input_pool = { | 
|  | 417 | .poolinfo = &poolinfo_table[0], | 
|  | 418 | .name = "input", | 
|  | 419 | .limit = 1, | 
|  | 420 | .lock = SPIN_LOCK_UNLOCKED, | 
|  | 421 | .pool = input_pool_data | 
|  | 422 | }; | 
|  | 423 |  | 
|  | 424 | static struct entropy_store blocking_pool = { | 
|  | 425 | .poolinfo = &poolinfo_table[1], | 
|  | 426 | .name = "blocking", | 
|  | 427 | .limit = 1, | 
|  | 428 | .pull = &input_pool, | 
|  | 429 | .lock = SPIN_LOCK_UNLOCKED, | 
|  | 430 | .pool = blocking_pool_data | 
|  | 431 | }; | 
|  | 432 |  | 
|  | 433 | static struct entropy_store nonblocking_pool = { | 
|  | 434 | .poolinfo = &poolinfo_table[1], | 
|  | 435 | .name = "nonblocking", | 
|  | 436 | .pull = &input_pool, | 
|  | 437 | .lock = SPIN_LOCK_UNLOCKED, | 
|  | 438 | .pool = nonblocking_pool_data | 
|  | 439 | }; | 
|  | 440 |  | 
|  | 441 | /* | 
|  | 442 | * This function adds a byte into the entropy "pool".  It does not | 
|  | 443 | * update the entropy estimate.  The caller should call | 
|  | 444 | * credit_entropy_store if this is appropriate. | 
|  | 445 | * | 
|  | 446 | * The pool is stirred with a primitive polynomial of the appropriate | 
|  | 447 | * degree, and then twisted.  We twist by three bits at a time because | 
|  | 448 | * it's cheap to do so and helps slightly in the expected case where | 
|  | 449 | * the entropy is concentrated in the low-order bits. | 
|  | 450 | */ | 
|  | 451 | static void __add_entropy_words(struct entropy_store *r, const __u32 *in, | 
|  | 452 | int nwords, __u32 out[16]) | 
|  | 453 | { | 
|  | 454 | static __u32 const twist_table[8] = { | 
|  | 455 | 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, | 
|  | 456 | 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; | 
|  | 457 | unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5; | 
|  | 458 | int new_rotate, input_rotate; | 
|  | 459 | int wordmask = r->poolinfo->poolwords - 1; | 
|  | 460 | __u32 w, next_w; | 
|  | 461 | unsigned long flags; | 
|  | 462 |  | 
|  | 463 | /* Taps are constant, so we can load them without holding r->lock.  */ | 
|  | 464 | tap1 = r->poolinfo->tap1; | 
|  | 465 | tap2 = r->poolinfo->tap2; | 
|  | 466 | tap3 = r->poolinfo->tap3; | 
|  | 467 | tap4 = r->poolinfo->tap4; | 
|  | 468 | tap5 = r->poolinfo->tap5; | 
|  | 469 | next_w = *in++; | 
|  | 470 |  | 
|  | 471 | spin_lock_irqsave(&r->lock, flags); | 
|  | 472 | prefetch_range(r->pool, wordmask); | 
|  | 473 | input_rotate = r->input_rotate; | 
|  | 474 | add_ptr = r->add_ptr; | 
|  | 475 |  | 
|  | 476 | while (nwords--) { | 
|  | 477 | w = rol32(next_w, input_rotate); | 
|  | 478 | if (nwords > 0) | 
|  | 479 | next_w = *in++; | 
|  | 480 | i = add_ptr = (add_ptr - 1) & wordmask; | 
|  | 481 | /* | 
|  | 482 | * Normally, we add 7 bits of rotation to the pool. | 
|  | 483 | * At the beginning of the pool, add an extra 7 bits | 
|  | 484 | * rotation, so that successive passes spread the | 
|  | 485 | * input bits across the pool evenly. | 
|  | 486 | */ | 
|  | 487 | new_rotate = input_rotate + 14; | 
|  | 488 | if (i) | 
|  | 489 | new_rotate = input_rotate + 7; | 
|  | 490 | input_rotate = new_rotate & 31; | 
|  | 491 |  | 
|  | 492 | /* XOR in the various taps */ | 
|  | 493 | w ^= r->pool[(i + tap1) & wordmask]; | 
|  | 494 | w ^= r->pool[(i + tap2) & wordmask]; | 
|  | 495 | w ^= r->pool[(i + tap3) & wordmask]; | 
|  | 496 | w ^= r->pool[(i + tap4) & wordmask]; | 
|  | 497 | w ^= r->pool[(i + tap5) & wordmask]; | 
|  | 498 | w ^= r->pool[i]; | 
|  | 499 | r->pool[i] = (w >> 3) ^ twist_table[w & 7]; | 
|  | 500 | } | 
|  | 501 |  | 
|  | 502 | r->input_rotate = input_rotate; | 
|  | 503 | r->add_ptr = add_ptr; | 
|  | 504 |  | 
|  | 505 | if (out) { | 
|  | 506 | for (i = 0; i < 16; i++) { | 
|  | 507 | out[i] = r->pool[add_ptr]; | 
|  | 508 | add_ptr = (add_ptr - 1) & wordmask; | 
|  | 509 | } | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | spin_unlock_irqrestore(&r->lock, flags); | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | static inline void add_entropy_words(struct entropy_store *r, const __u32 *in, | 
|  | 516 | int nwords) | 
|  | 517 | { | 
|  | 518 | __add_entropy_words(r, in, nwords, NULL); | 
|  | 519 | } | 
|  | 520 |  | 
|  | 521 | /* | 
|  | 522 | * Credit (or debit) the entropy store with n bits of entropy | 
|  | 523 | */ | 
|  | 524 | static void credit_entropy_store(struct entropy_store *r, int nbits) | 
|  | 525 | { | 
|  | 526 | unsigned long flags; | 
|  | 527 |  | 
|  | 528 | spin_lock_irqsave(&r->lock, flags); | 
|  | 529 |  | 
|  | 530 | if (r->entropy_count + nbits < 0) { | 
|  | 531 | DEBUG_ENT("negative entropy/overflow (%d+%d)\n", | 
|  | 532 | r->entropy_count, nbits); | 
|  | 533 | r->entropy_count = 0; | 
|  | 534 | } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) { | 
|  | 535 | r->entropy_count = r->poolinfo->POOLBITS; | 
|  | 536 | } else { | 
|  | 537 | r->entropy_count += nbits; | 
|  | 538 | if (nbits) | 
|  | 539 | DEBUG_ENT("added %d entropy credits to %s\n", | 
|  | 540 | nbits, r->name); | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | spin_unlock_irqrestore(&r->lock, flags); | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | /********************************************************************* | 
|  | 547 | * | 
|  | 548 | * Entropy input management | 
|  | 549 | * | 
|  | 550 | *********************************************************************/ | 
|  | 551 |  | 
|  | 552 | /* There is one of these per entropy source */ | 
|  | 553 | struct timer_rand_state { | 
|  | 554 | cycles_t last_time; | 
|  | 555 | long last_delta,last_delta2; | 
|  | 556 | unsigned dont_count_entropy:1; | 
|  | 557 | }; | 
|  | 558 |  | 
|  | 559 | static struct timer_rand_state input_timer_state; | 
|  | 560 | static struct timer_rand_state *irq_timer_state[NR_IRQS]; | 
|  | 561 |  | 
|  | 562 | /* | 
|  | 563 | * This function adds entropy to the entropy "pool" by using timing | 
|  | 564 | * delays.  It uses the timer_rand_state structure to make an estimate | 
|  | 565 | * of how many bits of entropy this call has added to the pool. | 
|  | 566 | * | 
|  | 567 | * The number "num" is also added to the pool - it should somehow describe | 
|  | 568 | * the type of event which just happened.  This is currently 0-255 for | 
|  | 569 | * keyboard scan codes, and 256 upwards for interrupts. | 
|  | 570 | * | 
|  | 571 | */ | 
|  | 572 | static void add_timer_randomness(struct timer_rand_state *state, unsigned num) | 
|  | 573 | { | 
|  | 574 | struct { | 
|  | 575 | cycles_t cycles; | 
|  | 576 | long jiffies; | 
|  | 577 | unsigned num; | 
|  | 578 | } sample; | 
|  | 579 | long delta, delta2, delta3; | 
|  | 580 |  | 
|  | 581 | preempt_disable(); | 
|  | 582 | /* if over the trickle threshold, use only 1 in 4096 samples */ | 
|  | 583 | if (input_pool.entropy_count > trickle_thresh && | 
|  | 584 | (__get_cpu_var(trickle_count)++ & 0xfff)) | 
|  | 585 | goto out; | 
|  | 586 |  | 
|  | 587 | sample.jiffies = jiffies; | 
|  | 588 | sample.cycles = get_cycles(); | 
|  | 589 | sample.num = num; | 
|  | 590 | add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4); | 
|  | 591 |  | 
|  | 592 | /* | 
|  | 593 | * Calculate number of bits of randomness we probably added. | 
|  | 594 | * We take into account the first, second and third-order deltas | 
|  | 595 | * in order to make our estimate. | 
|  | 596 | */ | 
|  | 597 |  | 
|  | 598 | if (!state->dont_count_entropy) { | 
|  | 599 | delta = sample.jiffies - state->last_time; | 
|  | 600 | state->last_time = sample.jiffies; | 
|  | 601 |  | 
|  | 602 | delta2 = delta - state->last_delta; | 
|  | 603 | state->last_delta = delta; | 
|  | 604 |  | 
|  | 605 | delta3 = delta2 - state->last_delta2; | 
|  | 606 | state->last_delta2 = delta2; | 
|  | 607 |  | 
|  | 608 | if (delta < 0) | 
|  | 609 | delta = -delta; | 
|  | 610 | if (delta2 < 0) | 
|  | 611 | delta2 = -delta2; | 
|  | 612 | if (delta3 < 0) | 
|  | 613 | delta3 = -delta3; | 
|  | 614 | if (delta > delta2) | 
|  | 615 | delta = delta2; | 
|  | 616 | if (delta > delta3) | 
|  | 617 | delta = delta3; | 
|  | 618 |  | 
|  | 619 | /* | 
|  | 620 | * delta is now minimum absolute delta. | 
|  | 621 | * Round down by 1 bit on general principles, | 
|  | 622 | * and limit entropy entimate to 12 bits. | 
|  | 623 | */ | 
|  | 624 | credit_entropy_store(&input_pool, | 
|  | 625 | min_t(int, fls(delta>>1), 11)); | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | if(input_pool.entropy_count >= random_read_wakeup_thresh) | 
|  | 629 | wake_up_interruptible(&random_read_wait); | 
|  | 630 |  | 
|  | 631 | out: | 
|  | 632 | preempt_enable(); | 
|  | 633 | } | 
|  | 634 |  | 
| Stephen Hemminger | d251575 | 2006-01-11 12:17:38 -0800 | [diff] [blame] | 635 | void add_input_randomness(unsigned int type, unsigned int code, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 636 | unsigned int value) | 
|  | 637 | { | 
|  | 638 | static unsigned char last_value; | 
|  | 639 |  | 
|  | 640 | /* ignore autorepeat and the like */ | 
|  | 641 | if (value == last_value) | 
|  | 642 | return; | 
|  | 643 |  | 
|  | 644 | DEBUG_ENT("input event\n"); | 
|  | 645 | last_value = value; | 
|  | 646 | add_timer_randomness(&input_timer_state, | 
|  | 647 | (type << 4) ^ code ^ (code >> 4) ^ value); | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | void add_interrupt_randomness(int irq) | 
|  | 651 | { | 
|  | 652 | if (irq >= NR_IRQS || irq_timer_state[irq] == 0) | 
|  | 653 | return; | 
|  | 654 |  | 
|  | 655 | DEBUG_ENT("irq event %d\n", irq); | 
|  | 656 | add_timer_randomness(irq_timer_state[irq], 0x100 + irq); | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | void add_disk_randomness(struct gendisk *disk) | 
|  | 660 | { | 
|  | 661 | if (!disk || !disk->random) | 
|  | 662 | return; | 
|  | 663 | /* first major is 1, so we get >= 0x200 here */ | 
|  | 664 | DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor); | 
|  | 665 |  | 
|  | 666 | add_timer_randomness(disk->random, | 
|  | 667 | 0x100 + MKDEV(disk->major, disk->first_minor)); | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | EXPORT_SYMBOL(add_disk_randomness); | 
|  | 671 |  | 
|  | 672 | #define EXTRACT_SIZE 10 | 
|  | 673 |  | 
|  | 674 | /********************************************************************* | 
|  | 675 | * | 
|  | 676 | * Entropy extraction routines | 
|  | 677 | * | 
|  | 678 | *********************************************************************/ | 
|  | 679 |  | 
|  | 680 | static ssize_t extract_entropy(struct entropy_store *r, void * buf, | 
|  | 681 | size_t nbytes, int min, int rsvd); | 
|  | 682 |  | 
|  | 683 | /* | 
|  | 684 | * This utility inline function is responsible for transfering entropy | 
|  | 685 | * from the primary pool to the secondary extraction pool. We make | 
|  | 686 | * sure we pull enough for a 'catastrophic reseed'. | 
|  | 687 | */ | 
|  | 688 | static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) | 
|  | 689 | { | 
|  | 690 | __u32 tmp[OUTPUT_POOL_WORDS]; | 
|  | 691 |  | 
|  | 692 | if (r->pull && r->entropy_count < nbytes * 8 && | 
|  | 693 | r->entropy_count < r->poolinfo->POOLBITS) { | 
|  | 694 | int bytes = max_t(int, random_read_wakeup_thresh / 8, | 
|  | 695 | min_t(int, nbytes, sizeof(tmp))); | 
|  | 696 | int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; | 
|  | 697 |  | 
|  | 698 | DEBUG_ENT("going to reseed %s with %d bits " | 
|  | 699 | "(%d of %d requested)\n", | 
|  | 700 | r->name, bytes * 8, nbytes * 8, r->entropy_count); | 
|  | 701 |  | 
|  | 702 | bytes=extract_entropy(r->pull, tmp, bytes, | 
|  | 703 | random_read_wakeup_thresh / 8, rsvd); | 
|  | 704 | add_entropy_words(r, tmp, (bytes + 3) / 4); | 
|  | 705 | credit_entropy_store(r, bytes*8); | 
|  | 706 | } | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | /* | 
|  | 710 | * These functions extracts randomness from the "entropy pool", and | 
|  | 711 | * returns it in a buffer. | 
|  | 712 | * | 
|  | 713 | * The min parameter specifies the minimum amount we can pull before | 
|  | 714 | * failing to avoid races that defeat catastrophic reseeding while the | 
|  | 715 | * reserved parameter indicates how much entropy we must leave in the | 
|  | 716 | * pool after each pull to avoid starving other readers. | 
|  | 717 | * | 
|  | 718 | * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. | 
|  | 719 | */ | 
|  | 720 |  | 
|  | 721 | static size_t account(struct entropy_store *r, size_t nbytes, int min, | 
|  | 722 | int reserved) | 
|  | 723 | { | 
|  | 724 | unsigned long flags; | 
|  | 725 |  | 
|  | 726 | BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); | 
|  | 727 |  | 
|  | 728 | /* Hold lock while accounting */ | 
|  | 729 | spin_lock_irqsave(&r->lock, flags); | 
|  | 730 |  | 
|  | 731 | DEBUG_ENT("trying to extract %d bits from %s\n", | 
|  | 732 | nbytes * 8, r->name); | 
|  | 733 |  | 
|  | 734 | /* Can we pull enough? */ | 
|  | 735 | if (r->entropy_count / 8 < min + reserved) { | 
|  | 736 | nbytes = 0; | 
|  | 737 | } else { | 
|  | 738 | /* If limited, never pull more than available */ | 
|  | 739 | if (r->limit && nbytes + reserved >= r->entropy_count / 8) | 
|  | 740 | nbytes = r->entropy_count/8 - reserved; | 
|  | 741 |  | 
|  | 742 | if(r->entropy_count / 8 >= nbytes + reserved) | 
|  | 743 | r->entropy_count -= nbytes*8; | 
|  | 744 | else | 
|  | 745 | r->entropy_count = reserved; | 
|  | 746 |  | 
|  | 747 | if (r->entropy_count < random_write_wakeup_thresh) | 
|  | 748 | wake_up_interruptible(&random_write_wait); | 
|  | 749 | } | 
|  | 750 |  | 
|  | 751 | DEBUG_ENT("debiting %d entropy credits from %s%s\n", | 
|  | 752 | nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); | 
|  | 753 |  | 
|  | 754 | spin_unlock_irqrestore(&r->lock, flags); | 
|  | 755 |  | 
|  | 756 | return nbytes; | 
|  | 757 | } | 
|  | 758 |  | 
|  | 759 | static void extract_buf(struct entropy_store *r, __u8 *out) | 
|  | 760 | { | 
|  | 761 | int i, x; | 
|  | 762 | __u32 data[16], buf[5 + SHA_WORKSPACE_WORDS]; | 
|  | 763 |  | 
|  | 764 | sha_init(buf); | 
|  | 765 | /* | 
|  | 766 | * As we hash the pool, we mix intermediate values of | 
|  | 767 | * the hash back into the pool.  This eliminates | 
|  | 768 | * backtracking attacks (where the attacker knows | 
|  | 769 | * the state of the pool plus the current outputs, and | 
|  | 770 | * attempts to find previous ouputs), unless the hash | 
|  | 771 | * function can be inverted. | 
|  | 772 | */ | 
|  | 773 | for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) { | 
|  | 774 | sha_transform(buf, (__u8 *)r->pool+i, buf + 5); | 
|  | 775 | add_entropy_words(r, &buf[x % 5], 1); | 
|  | 776 | } | 
|  | 777 |  | 
|  | 778 | /* | 
|  | 779 | * To avoid duplicates, we atomically extract a | 
|  | 780 | * portion of the pool while mixing, and hash one | 
|  | 781 | * final time. | 
|  | 782 | */ | 
|  | 783 | __add_entropy_words(r, &buf[x % 5], 1, data); | 
|  | 784 | sha_transform(buf, (__u8 *)data, buf + 5); | 
|  | 785 |  | 
|  | 786 | /* | 
|  | 787 | * In case the hash function has some recognizable | 
|  | 788 | * output pattern, we fold it in half. | 
|  | 789 | */ | 
|  | 790 |  | 
|  | 791 | buf[0] ^= buf[3]; | 
|  | 792 | buf[1] ^= buf[4]; | 
|  | 793 | buf[0] ^= rol32(buf[3], 16); | 
|  | 794 | memcpy(out, buf, EXTRACT_SIZE); | 
|  | 795 | memset(buf, 0, sizeof(buf)); | 
|  | 796 | } | 
|  | 797 |  | 
|  | 798 | static ssize_t extract_entropy(struct entropy_store *r, void * buf, | 
|  | 799 | size_t nbytes, int min, int reserved) | 
|  | 800 | { | 
|  | 801 | ssize_t ret = 0, i; | 
|  | 802 | __u8 tmp[EXTRACT_SIZE]; | 
|  | 803 |  | 
|  | 804 | xfer_secondary_pool(r, nbytes); | 
|  | 805 | nbytes = account(r, nbytes, min, reserved); | 
|  | 806 |  | 
|  | 807 | while (nbytes) { | 
|  | 808 | extract_buf(r, tmp); | 
|  | 809 | i = min_t(int, nbytes, EXTRACT_SIZE); | 
|  | 810 | memcpy(buf, tmp, i); | 
|  | 811 | nbytes -= i; | 
|  | 812 | buf += i; | 
|  | 813 | ret += i; | 
|  | 814 | } | 
|  | 815 |  | 
|  | 816 | /* Wipe data just returned from memory */ | 
|  | 817 | memset(tmp, 0, sizeof(tmp)); | 
|  | 818 |  | 
|  | 819 | return ret; | 
|  | 820 | } | 
|  | 821 |  | 
|  | 822 | static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, | 
|  | 823 | size_t nbytes) | 
|  | 824 | { | 
|  | 825 | ssize_t ret = 0, i; | 
|  | 826 | __u8 tmp[EXTRACT_SIZE]; | 
|  | 827 |  | 
|  | 828 | xfer_secondary_pool(r, nbytes); | 
|  | 829 | nbytes = account(r, nbytes, 0, 0); | 
|  | 830 |  | 
|  | 831 | while (nbytes) { | 
|  | 832 | if (need_resched()) { | 
|  | 833 | if (signal_pending(current)) { | 
|  | 834 | if (ret == 0) | 
|  | 835 | ret = -ERESTARTSYS; | 
|  | 836 | break; | 
|  | 837 | } | 
|  | 838 | schedule(); | 
|  | 839 | } | 
|  | 840 |  | 
|  | 841 | extract_buf(r, tmp); | 
|  | 842 | i = min_t(int, nbytes, EXTRACT_SIZE); | 
|  | 843 | if (copy_to_user(buf, tmp, i)) { | 
|  | 844 | ret = -EFAULT; | 
|  | 845 | break; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | nbytes -= i; | 
|  | 849 | buf += i; | 
|  | 850 | ret += i; | 
|  | 851 | } | 
|  | 852 |  | 
|  | 853 | /* Wipe data just returned from memory */ | 
|  | 854 | memset(tmp, 0, sizeof(tmp)); | 
|  | 855 |  | 
|  | 856 | return ret; | 
|  | 857 | } | 
|  | 858 |  | 
|  | 859 | /* | 
|  | 860 | * This function is the exported kernel interface.  It returns some | 
|  | 861 | * number of good random numbers, suitable for seeding TCP sequence | 
|  | 862 | * numbers, etc. | 
|  | 863 | */ | 
|  | 864 | void get_random_bytes(void *buf, int nbytes) | 
|  | 865 | { | 
|  | 866 | extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | EXPORT_SYMBOL(get_random_bytes); | 
|  | 870 |  | 
|  | 871 | /* | 
|  | 872 | * init_std_data - initialize pool with system data | 
|  | 873 | * | 
|  | 874 | * @r: pool to initialize | 
|  | 875 | * | 
|  | 876 | * This function clears the pool's entropy count and mixes some system | 
|  | 877 | * data into the pool to prepare it for use. The pool is not cleared | 
|  | 878 | * as that can only decrease the entropy in the pool. | 
|  | 879 | */ | 
|  | 880 | static void init_std_data(struct entropy_store *r) | 
|  | 881 | { | 
|  | 882 | struct timeval tv; | 
|  | 883 | unsigned long flags; | 
|  | 884 |  | 
|  | 885 | spin_lock_irqsave(&r->lock, flags); | 
|  | 886 | r->entropy_count = 0; | 
|  | 887 | spin_unlock_irqrestore(&r->lock, flags); | 
|  | 888 |  | 
|  | 889 | do_gettimeofday(&tv); | 
|  | 890 | add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4); | 
|  | 891 | add_entropy_words(r, (__u32 *)&system_utsname, | 
|  | 892 | sizeof(system_utsname)/4); | 
|  | 893 | } | 
|  | 894 |  | 
|  | 895 | static int __init rand_initialize(void) | 
|  | 896 | { | 
|  | 897 | init_std_data(&input_pool); | 
|  | 898 | init_std_data(&blocking_pool); | 
|  | 899 | init_std_data(&nonblocking_pool); | 
|  | 900 | return 0; | 
|  | 901 | } | 
|  | 902 | module_init(rand_initialize); | 
|  | 903 |  | 
|  | 904 | void rand_initialize_irq(int irq) | 
|  | 905 | { | 
|  | 906 | struct timer_rand_state *state; | 
|  | 907 |  | 
|  | 908 | if (irq >= NR_IRQS || irq_timer_state[irq]) | 
|  | 909 | return; | 
|  | 910 |  | 
|  | 911 | /* | 
|  | 912 | * If kmalloc returns null, we just won't use that entropy | 
|  | 913 | * source. | 
|  | 914 | */ | 
|  | 915 | state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL); | 
|  | 916 | if (state) { | 
|  | 917 | memset(state, 0, sizeof(struct timer_rand_state)); | 
|  | 918 | irq_timer_state[irq] = state; | 
|  | 919 | } | 
|  | 920 | } | 
|  | 921 |  | 
|  | 922 | void rand_initialize_disk(struct gendisk *disk) | 
|  | 923 | { | 
|  | 924 | struct timer_rand_state *state; | 
|  | 925 |  | 
|  | 926 | /* | 
|  | 927 | * If kmalloc returns null, we just won't use that entropy | 
|  | 928 | * source. | 
|  | 929 | */ | 
|  | 930 | state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL); | 
|  | 931 | if (state) { | 
|  | 932 | memset(state, 0, sizeof(struct timer_rand_state)); | 
|  | 933 | disk->random = state; | 
|  | 934 | } | 
|  | 935 | } | 
|  | 936 |  | 
|  | 937 | static ssize_t | 
|  | 938 | random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos) | 
|  | 939 | { | 
|  | 940 | ssize_t n, retval = 0, count = 0; | 
|  | 941 |  | 
|  | 942 | if (nbytes == 0) | 
|  | 943 | return 0; | 
|  | 944 |  | 
|  | 945 | while (nbytes > 0) { | 
|  | 946 | n = nbytes; | 
|  | 947 | if (n > SEC_XFER_SIZE) | 
|  | 948 | n = SEC_XFER_SIZE; | 
|  | 949 |  | 
|  | 950 | DEBUG_ENT("reading %d bits\n", n*8); | 
|  | 951 |  | 
|  | 952 | n = extract_entropy_user(&blocking_pool, buf, n); | 
|  | 953 |  | 
|  | 954 | DEBUG_ENT("read got %d bits (%d still needed)\n", | 
|  | 955 | n*8, (nbytes-n)*8); | 
|  | 956 |  | 
|  | 957 | if (n == 0) { | 
|  | 958 | if (file->f_flags & O_NONBLOCK) { | 
|  | 959 | retval = -EAGAIN; | 
|  | 960 | break; | 
|  | 961 | } | 
|  | 962 |  | 
|  | 963 | DEBUG_ENT("sleeping?\n"); | 
|  | 964 |  | 
|  | 965 | wait_event_interruptible(random_read_wait, | 
|  | 966 | input_pool.entropy_count >= | 
|  | 967 | random_read_wakeup_thresh); | 
|  | 968 |  | 
|  | 969 | DEBUG_ENT("awake\n"); | 
|  | 970 |  | 
|  | 971 | if (signal_pending(current)) { | 
|  | 972 | retval = -ERESTARTSYS; | 
|  | 973 | break; | 
|  | 974 | } | 
|  | 975 |  | 
|  | 976 | continue; | 
|  | 977 | } | 
|  | 978 |  | 
|  | 979 | if (n < 0) { | 
|  | 980 | retval = n; | 
|  | 981 | break; | 
|  | 982 | } | 
|  | 983 | count += n; | 
|  | 984 | buf += n; | 
|  | 985 | nbytes -= n; | 
|  | 986 | break;		/* This break makes the device work */ | 
|  | 987 | /* like a named pipe */ | 
|  | 988 | } | 
|  | 989 |  | 
|  | 990 | /* | 
|  | 991 | * If we gave the user some bytes, update the access time. | 
|  | 992 | */ | 
|  | 993 | if (count) | 
|  | 994 | file_accessed(file); | 
|  | 995 |  | 
|  | 996 | return (count ? count : retval); | 
|  | 997 | } | 
|  | 998 |  | 
|  | 999 | static ssize_t | 
|  | 1000 | urandom_read(struct file * file, char __user * buf, | 
|  | 1001 | size_t nbytes, loff_t *ppos) | 
|  | 1002 | { | 
|  | 1003 | return extract_entropy_user(&nonblocking_pool, buf, nbytes); | 
|  | 1004 | } | 
|  | 1005 |  | 
|  | 1006 | static unsigned int | 
|  | 1007 | random_poll(struct file *file, poll_table * wait) | 
|  | 1008 | { | 
|  | 1009 | unsigned int mask; | 
|  | 1010 |  | 
|  | 1011 | poll_wait(file, &random_read_wait, wait); | 
|  | 1012 | poll_wait(file, &random_write_wait, wait); | 
|  | 1013 | mask = 0; | 
|  | 1014 | if (input_pool.entropy_count >= random_read_wakeup_thresh) | 
|  | 1015 | mask |= POLLIN | POLLRDNORM; | 
|  | 1016 | if (input_pool.entropy_count < random_write_wakeup_thresh) | 
|  | 1017 | mask |= POLLOUT | POLLWRNORM; | 
|  | 1018 | return mask; | 
|  | 1019 | } | 
|  | 1020 |  | 
|  | 1021 | static ssize_t | 
|  | 1022 | random_write(struct file * file, const char __user * buffer, | 
|  | 1023 | size_t count, loff_t *ppos) | 
|  | 1024 | { | 
|  | 1025 | int ret = 0; | 
|  | 1026 | size_t bytes; | 
|  | 1027 | __u32 buf[16]; | 
|  | 1028 | const char __user *p = buffer; | 
|  | 1029 | size_t c = count; | 
|  | 1030 |  | 
|  | 1031 | while (c > 0) { | 
|  | 1032 | bytes = min(c, sizeof(buf)); | 
|  | 1033 |  | 
|  | 1034 | bytes -= copy_from_user(&buf, p, bytes); | 
|  | 1035 | if (!bytes) { | 
|  | 1036 | ret = -EFAULT; | 
|  | 1037 | break; | 
|  | 1038 | } | 
|  | 1039 | c -= bytes; | 
|  | 1040 | p += bytes; | 
|  | 1041 |  | 
|  | 1042 | add_entropy_words(&input_pool, buf, (bytes + 3) / 4); | 
|  | 1043 | } | 
|  | 1044 | if (p == buffer) { | 
|  | 1045 | return (ssize_t)ret; | 
|  | 1046 | } else { | 
|  | 1047 | struct inode *inode = file->f_dentry->d_inode; | 
|  | 1048 | inode->i_mtime = current_fs_time(inode->i_sb); | 
|  | 1049 | mark_inode_dirty(inode); | 
|  | 1050 | return (ssize_t)(p - buffer); | 
|  | 1051 | } | 
|  | 1052 | } | 
|  | 1053 |  | 
|  | 1054 | static int | 
|  | 1055 | random_ioctl(struct inode * inode, struct file * file, | 
|  | 1056 | unsigned int cmd, unsigned long arg) | 
|  | 1057 | { | 
|  | 1058 | int size, ent_count; | 
|  | 1059 | int __user *p = (int __user *)arg; | 
|  | 1060 | int retval; | 
|  | 1061 |  | 
|  | 1062 | switch (cmd) { | 
|  | 1063 | case RNDGETENTCNT: | 
|  | 1064 | ent_count = input_pool.entropy_count; | 
|  | 1065 | if (put_user(ent_count, p)) | 
|  | 1066 | return -EFAULT; | 
|  | 1067 | return 0; | 
|  | 1068 | case RNDADDTOENTCNT: | 
|  | 1069 | if (!capable(CAP_SYS_ADMIN)) | 
|  | 1070 | return -EPERM; | 
|  | 1071 | if (get_user(ent_count, p)) | 
|  | 1072 | return -EFAULT; | 
|  | 1073 | credit_entropy_store(&input_pool, ent_count); | 
|  | 1074 | /* | 
|  | 1075 | * Wake up waiting processes if we have enough | 
|  | 1076 | * entropy. | 
|  | 1077 | */ | 
|  | 1078 | if (input_pool.entropy_count >= random_read_wakeup_thresh) | 
|  | 1079 | wake_up_interruptible(&random_read_wait); | 
|  | 1080 | return 0; | 
|  | 1081 | case RNDADDENTROPY: | 
|  | 1082 | if (!capable(CAP_SYS_ADMIN)) | 
|  | 1083 | return -EPERM; | 
|  | 1084 | if (get_user(ent_count, p++)) | 
|  | 1085 | return -EFAULT; | 
|  | 1086 | if (ent_count < 0) | 
|  | 1087 | return -EINVAL; | 
|  | 1088 | if (get_user(size, p++)) | 
|  | 1089 | return -EFAULT; | 
|  | 1090 | retval = random_write(file, (const char __user *) p, | 
|  | 1091 | size, &file->f_pos); | 
|  | 1092 | if (retval < 0) | 
|  | 1093 | return retval; | 
|  | 1094 | credit_entropy_store(&input_pool, ent_count); | 
|  | 1095 | /* | 
|  | 1096 | * Wake up waiting processes if we have enough | 
|  | 1097 | * entropy. | 
|  | 1098 | */ | 
|  | 1099 | if (input_pool.entropy_count >= random_read_wakeup_thresh) | 
|  | 1100 | wake_up_interruptible(&random_read_wait); | 
|  | 1101 | return 0; | 
|  | 1102 | case RNDZAPENTCNT: | 
|  | 1103 | case RNDCLEARPOOL: | 
|  | 1104 | /* Clear the entropy pool counters. */ | 
|  | 1105 | if (!capable(CAP_SYS_ADMIN)) | 
|  | 1106 | return -EPERM; | 
|  | 1107 | init_std_data(&input_pool); | 
|  | 1108 | init_std_data(&blocking_pool); | 
|  | 1109 | init_std_data(&nonblocking_pool); | 
|  | 1110 | return 0; | 
|  | 1111 | default: | 
|  | 1112 | return -EINVAL; | 
|  | 1113 | } | 
|  | 1114 | } | 
|  | 1115 |  | 
|  | 1116 | struct file_operations random_fops = { | 
|  | 1117 | .read  = random_read, | 
|  | 1118 | .write = random_write, | 
|  | 1119 | .poll  = random_poll, | 
|  | 1120 | .ioctl = random_ioctl, | 
|  | 1121 | }; | 
|  | 1122 |  | 
|  | 1123 | struct file_operations urandom_fops = { | 
|  | 1124 | .read  = urandom_read, | 
|  | 1125 | .write = random_write, | 
|  | 1126 | .ioctl = random_ioctl, | 
|  | 1127 | }; | 
|  | 1128 |  | 
|  | 1129 | /*************************************************************** | 
|  | 1130 | * Random UUID interface | 
|  | 1131 | * | 
|  | 1132 | * Used here for a Boot ID, but can be useful for other kernel | 
|  | 1133 | * drivers. | 
|  | 1134 | ***************************************************************/ | 
|  | 1135 |  | 
|  | 1136 | /* | 
|  | 1137 | * Generate random UUID | 
|  | 1138 | */ | 
|  | 1139 | void generate_random_uuid(unsigned char uuid_out[16]) | 
|  | 1140 | { | 
|  | 1141 | get_random_bytes(uuid_out, 16); | 
|  | 1142 | /* Set UUID version to 4 --- truely random generation */ | 
|  | 1143 | uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; | 
|  | 1144 | /* Set the UUID variant to DCE */ | 
|  | 1145 | uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; | 
|  | 1146 | } | 
|  | 1147 |  | 
|  | 1148 | EXPORT_SYMBOL(generate_random_uuid); | 
|  | 1149 |  | 
|  | 1150 | /******************************************************************** | 
|  | 1151 | * | 
|  | 1152 | * Sysctl interface | 
|  | 1153 | * | 
|  | 1154 | ********************************************************************/ | 
|  | 1155 |  | 
|  | 1156 | #ifdef CONFIG_SYSCTL | 
|  | 1157 |  | 
|  | 1158 | #include <linux/sysctl.h> | 
|  | 1159 |  | 
|  | 1160 | static int min_read_thresh = 8, min_write_thresh; | 
|  | 1161 | static int max_read_thresh = INPUT_POOL_WORDS * 32; | 
|  | 1162 | static int max_write_thresh = INPUT_POOL_WORDS * 32; | 
|  | 1163 | static char sysctl_bootid[16]; | 
|  | 1164 |  | 
|  | 1165 | /* | 
|  | 1166 | * These functions is used to return both the bootid UUID, and random | 
|  | 1167 | * UUID.  The difference is in whether table->data is NULL; if it is, | 
|  | 1168 | * then a new UUID is generated and returned to the user. | 
|  | 1169 | * | 
|  | 1170 | * If the user accesses this via the proc interface, it will be returned | 
|  | 1171 | * as an ASCII string in the standard UUID format.  If accesses via the | 
|  | 1172 | * sysctl system call, it is returned as 16 bytes of binary data. | 
|  | 1173 | */ | 
|  | 1174 | static int proc_do_uuid(ctl_table *table, int write, struct file *filp, | 
|  | 1175 | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | 1176 | { | 
|  | 1177 | ctl_table fake_table; | 
|  | 1178 | unsigned char buf[64], tmp_uuid[16], *uuid; | 
|  | 1179 |  | 
|  | 1180 | uuid = table->data; | 
|  | 1181 | if (!uuid) { | 
|  | 1182 | uuid = tmp_uuid; | 
|  | 1183 | uuid[8] = 0; | 
|  | 1184 | } | 
|  | 1185 | if (uuid[8] == 0) | 
|  | 1186 | generate_random_uuid(uuid); | 
|  | 1187 |  | 
|  | 1188 | sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" | 
|  | 1189 | "%02x%02x%02x%02x%02x%02x", | 
|  | 1190 | uuid[0],  uuid[1],  uuid[2],  uuid[3], | 
|  | 1191 | uuid[4],  uuid[5],  uuid[6],  uuid[7], | 
|  | 1192 | uuid[8],  uuid[9],  uuid[10], uuid[11], | 
|  | 1193 | uuid[12], uuid[13], uuid[14], uuid[15]); | 
|  | 1194 | fake_table.data = buf; | 
|  | 1195 | fake_table.maxlen = sizeof(buf); | 
|  | 1196 |  | 
|  | 1197 | return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); | 
|  | 1198 | } | 
|  | 1199 |  | 
|  | 1200 | static int uuid_strategy(ctl_table *table, int __user *name, int nlen, | 
|  | 1201 | void __user *oldval, size_t __user *oldlenp, | 
|  | 1202 | void __user *newval, size_t newlen, void **context) | 
|  | 1203 | { | 
|  | 1204 | unsigned char tmp_uuid[16], *uuid; | 
|  | 1205 | unsigned int len; | 
|  | 1206 |  | 
|  | 1207 | if (!oldval || !oldlenp) | 
|  | 1208 | return 1; | 
|  | 1209 |  | 
|  | 1210 | uuid = table->data; | 
|  | 1211 | if (!uuid) { | 
|  | 1212 | uuid = tmp_uuid; | 
|  | 1213 | uuid[8] = 0; | 
|  | 1214 | } | 
|  | 1215 | if (uuid[8] == 0) | 
|  | 1216 | generate_random_uuid(uuid); | 
|  | 1217 |  | 
|  | 1218 | if (get_user(len, oldlenp)) | 
|  | 1219 | return -EFAULT; | 
|  | 1220 | if (len) { | 
|  | 1221 | if (len > 16) | 
|  | 1222 | len = 16; | 
|  | 1223 | if (copy_to_user(oldval, uuid, len) || | 
|  | 1224 | put_user(len, oldlenp)) | 
|  | 1225 | return -EFAULT; | 
|  | 1226 | } | 
|  | 1227 | return 1; | 
|  | 1228 | } | 
|  | 1229 |  | 
|  | 1230 | static int sysctl_poolsize = INPUT_POOL_WORDS * 32; | 
|  | 1231 | ctl_table random_table[] = { | 
|  | 1232 | { | 
|  | 1233 | .ctl_name 	= RANDOM_POOLSIZE, | 
|  | 1234 | .procname	= "poolsize", | 
|  | 1235 | .data		= &sysctl_poolsize, | 
|  | 1236 | .maxlen		= sizeof(int), | 
|  | 1237 | .mode		= 0444, | 
|  | 1238 | .proc_handler	= &proc_dointvec, | 
|  | 1239 | }, | 
|  | 1240 | { | 
|  | 1241 | .ctl_name	= RANDOM_ENTROPY_COUNT, | 
|  | 1242 | .procname	= "entropy_avail", | 
|  | 1243 | .maxlen		= sizeof(int), | 
|  | 1244 | .mode		= 0444, | 
|  | 1245 | .proc_handler	= &proc_dointvec, | 
|  | 1246 | .data		= &input_pool.entropy_count, | 
|  | 1247 | }, | 
|  | 1248 | { | 
|  | 1249 | .ctl_name	= RANDOM_READ_THRESH, | 
|  | 1250 | .procname	= "read_wakeup_threshold", | 
|  | 1251 | .data		= &random_read_wakeup_thresh, | 
|  | 1252 | .maxlen		= sizeof(int), | 
|  | 1253 | .mode		= 0644, | 
|  | 1254 | .proc_handler	= &proc_dointvec_minmax, | 
|  | 1255 | .strategy	= &sysctl_intvec, | 
|  | 1256 | .extra1		= &min_read_thresh, | 
|  | 1257 | .extra2		= &max_read_thresh, | 
|  | 1258 | }, | 
|  | 1259 | { | 
|  | 1260 | .ctl_name	= RANDOM_WRITE_THRESH, | 
|  | 1261 | .procname	= "write_wakeup_threshold", | 
|  | 1262 | .data		= &random_write_wakeup_thresh, | 
|  | 1263 | .maxlen		= sizeof(int), | 
|  | 1264 | .mode		= 0644, | 
|  | 1265 | .proc_handler	= &proc_dointvec_minmax, | 
|  | 1266 | .strategy	= &sysctl_intvec, | 
|  | 1267 | .extra1		= &min_write_thresh, | 
|  | 1268 | .extra2		= &max_write_thresh, | 
|  | 1269 | }, | 
|  | 1270 | { | 
|  | 1271 | .ctl_name	= RANDOM_BOOT_ID, | 
|  | 1272 | .procname	= "boot_id", | 
|  | 1273 | .data		= &sysctl_bootid, | 
|  | 1274 | .maxlen		= 16, | 
|  | 1275 | .mode		= 0444, | 
|  | 1276 | .proc_handler	= &proc_do_uuid, | 
|  | 1277 | .strategy	= &uuid_strategy, | 
|  | 1278 | }, | 
|  | 1279 | { | 
|  | 1280 | .ctl_name	= RANDOM_UUID, | 
|  | 1281 | .procname	= "uuid", | 
|  | 1282 | .maxlen		= 16, | 
|  | 1283 | .mode		= 0444, | 
|  | 1284 | .proc_handler	= &proc_do_uuid, | 
|  | 1285 | .strategy	= &uuid_strategy, | 
|  | 1286 | }, | 
|  | 1287 | { .ctl_name = 0 } | 
|  | 1288 | }; | 
|  | 1289 | #endif 	/* CONFIG_SYSCTL */ | 
|  | 1290 |  | 
|  | 1291 | /******************************************************************** | 
|  | 1292 | * | 
|  | 1293 | * Random funtions for networking | 
|  | 1294 | * | 
|  | 1295 | ********************************************************************/ | 
|  | 1296 |  | 
|  | 1297 | /* | 
|  | 1298 | * TCP initial sequence number picking.  This uses the random number | 
|  | 1299 | * generator to pick an initial secret value.  This value is hashed | 
|  | 1300 | * along with the TCP endpoint information to provide a unique | 
|  | 1301 | * starting point for each pair of TCP endpoints.  This defeats | 
|  | 1302 | * attacks which rely on guessing the initial TCP sequence number. | 
|  | 1303 | * This algorithm was suggested by Steve Bellovin. | 
|  | 1304 | * | 
|  | 1305 | * Using a very strong hash was taking an appreciable amount of the total | 
|  | 1306 | * TCP connection establishment time, so this is a weaker hash, | 
|  | 1307 | * compensated for by changing the secret periodically. | 
|  | 1308 | */ | 
|  | 1309 |  | 
|  | 1310 | /* F, G and H are basic MD4 functions: selection, majority, parity */ | 
|  | 1311 | #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) | 
|  | 1312 | #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) | 
|  | 1313 | #define H(x, y, z) ((x) ^ (y) ^ (z)) | 
|  | 1314 |  | 
|  | 1315 | /* | 
|  | 1316 | * The generic round function.  The application is so specific that | 
|  | 1317 | * we don't bother protecting all the arguments with parens, as is generally | 
|  | 1318 | * good macro practice, in favor of extra legibility. | 
|  | 1319 | * Rotation is separate from addition to prevent recomputation | 
|  | 1320 | */ | 
|  | 1321 | #define ROUND(f, a, b, c, d, x, s)	\ | 
|  | 1322 | (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) | 
|  | 1323 | #define K1 0 | 
|  | 1324 | #define K2 013240474631UL | 
|  | 1325 | #define K3 015666365641UL | 
|  | 1326 |  | 
|  | 1327 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
|  | 1328 |  | 
|  | 1329 | static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12]) | 
|  | 1330 | { | 
|  | 1331 | __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; | 
|  | 1332 |  | 
|  | 1333 | /* Round 1 */ | 
|  | 1334 | ROUND(F, a, b, c, d, in[ 0] + K1,  3); | 
|  | 1335 | ROUND(F, d, a, b, c, in[ 1] + K1,  7); | 
|  | 1336 | ROUND(F, c, d, a, b, in[ 2] + K1, 11); | 
|  | 1337 | ROUND(F, b, c, d, a, in[ 3] + K1, 19); | 
|  | 1338 | ROUND(F, a, b, c, d, in[ 4] + K1,  3); | 
|  | 1339 | ROUND(F, d, a, b, c, in[ 5] + K1,  7); | 
|  | 1340 | ROUND(F, c, d, a, b, in[ 6] + K1, 11); | 
|  | 1341 | ROUND(F, b, c, d, a, in[ 7] + K1, 19); | 
|  | 1342 | ROUND(F, a, b, c, d, in[ 8] + K1,  3); | 
|  | 1343 | ROUND(F, d, a, b, c, in[ 9] + K1,  7); | 
|  | 1344 | ROUND(F, c, d, a, b, in[10] + K1, 11); | 
|  | 1345 | ROUND(F, b, c, d, a, in[11] + K1, 19); | 
|  | 1346 |  | 
|  | 1347 | /* Round 2 */ | 
|  | 1348 | ROUND(G, a, b, c, d, in[ 1] + K2,  3); | 
|  | 1349 | ROUND(G, d, a, b, c, in[ 3] + K2,  5); | 
|  | 1350 | ROUND(G, c, d, a, b, in[ 5] + K2,  9); | 
|  | 1351 | ROUND(G, b, c, d, a, in[ 7] + K2, 13); | 
|  | 1352 | ROUND(G, a, b, c, d, in[ 9] + K2,  3); | 
|  | 1353 | ROUND(G, d, a, b, c, in[11] + K2,  5); | 
|  | 1354 | ROUND(G, c, d, a, b, in[ 0] + K2,  9); | 
|  | 1355 | ROUND(G, b, c, d, a, in[ 2] + K2, 13); | 
|  | 1356 | ROUND(G, a, b, c, d, in[ 4] + K2,  3); | 
|  | 1357 | ROUND(G, d, a, b, c, in[ 6] + K2,  5); | 
|  | 1358 | ROUND(G, c, d, a, b, in[ 8] + K2,  9); | 
|  | 1359 | ROUND(G, b, c, d, a, in[10] + K2, 13); | 
|  | 1360 |  | 
|  | 1361 | /* Round 3 */ | 
|  | 1362 | ROUND(H, a, b, c, d, in[ 3] + K3,  3); | 
|  | 1363 | ROUND(H, d, a, b, c, in[ 7] + K3,  9); | 
|  | 1364 | ROUND(H, c, d, a, b, in[11] + K3, 11); | 
|  | 1365 | ROUND(H, b, c, d, a, in[ 2] + K3, 15); | 
|  | 1366 | ROUND(H, a, b, c, d, in[ 6] + K3,  3); | 
|  | 1367 | ROUND(H, d, a, b, c, in[10] + K3,  9); | 
|  | 1368 | ROUND(H, c, d, a, b, in[ 1] + K3, 11); | 
|  | 1369 | ROUND(H, b, c, d, a, in[ 5] + K3, 15); | 
|  | 1370 | ROUND(H, a, b, c, d, in[ 9] + K3,  3); | 
|  | 1371 | ROUND(H, d, a, b, c, in[ 0] + K3,  9); | 
|  | 1372 | ROUND(H, c, d, a, b, in[ 4] + K3, 11); | 
|  | 1373 | ROUND(H, b, c, d, a, in[ 8] + K3, 15); | 
|  | 1374 |  | 
|  | 1375 | return buf[1] + b; /* "most hashed" word */ | 
|  | 1376 | /* Alternative: return sum of all words? */ | 
|  | 1377 | } | 
|  | 1378 | #endif | 
|  | 1379 |  | 
|  | 1380 | #undef ROUND | 
|  | 1381 | #undef F | 
|  | 1382 | #undef G | 
|  | 1383 | #undef H | 
|  | 1384 | #undef K1 | 
|  | 1385 | #undef K2 | 
|  | 1386 | #undef K3 | 
|  | 1387 |  | 
|  | 1388 | /* This should not be decreased so low that ISNs wrap too fast. */ | 
|  | 1389 | #define REKEY_INTERVAL (300 * HZ) | 
|  | 1390 | /* | 
|  | 1391 | * Bit layout of the tcp sequence numbers (before adding current time): | 
|  | 1392 | * bit 24-31: increased after every key exchange | 
|  | 1393 | * bit 0-23: hash(source,dest) | 
|  | 1394 | * | 
|  | 1395 | * The implementation is similar to the algorithm described | 
|  | 1396 | * in the Appendix of RFC 1185, except that | 
|  | 1397 | * - it uses a 1 MHz clock instead of a 250 kHz clock | 
|  | 1398 | * - it performs a rekey every 5 minutes, which is equivalent | 
|  | 1399 | * 	to a (source,dest) tulple dependent forward jump of the | 
|  | 1400 | * 	clock by 0..2^(HASH_BITS+1) | 
|  | 1401 | * | 
|  | 1402 | * Thus the average ISN wraparound time is 68 minutes instead of | 
|  | 1403 | * 4.55 hours. | 
|  | 1404 | * | 
|  | 1405 | * SMP cleanup and lock avoidance with poor man's RCU. | 
|  | 1406 | * 			Manfred Spraul <manfred@colorfullife.com> | 
|  | 1407 | * | 
|  | 1408 | */ | 
|  | 1409 | #define COUNT_BITS 8 | 
|  | 1410 | #define COUNT_MASK ((1 << COUNT_BITS) - 1) | 
|  | 1411 | #define HASH_BITS 24 | 
|  | 1412 | #define HASH_MASK ((1 << HASH_BITS) - 1) | 
|  | 1413 |  | 
|  | 1414 | static struct keydata { | 
|  | 1415 | __u32 count; /* already shifted to the final position */ | 
|  | 1416 | __u32 secret[12]; | 
|  | 1417 | } ____cacheline_aligned ip_keydata[2]; | 
|  | 1418 |  | 
|  | 1419 | static unsigned int ip_cnt; | 
|  | 1420 |  | 
|  | 1421 | static void rekey_seq_generator(void *private_); | 
|  | 1422 |  | 
|  | 1423 | static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL); | 
|  | 1424 |  | 
|  | 1425 | /* | 
|  | 1426 | * Lock avoidance: | 
|  | 1427 | * The ISN generation runs lockless - it's just a hash over random data. | 
|  | 1428 | * State changes happen every 5 minutes when the random key is replaced. | 
|  | 1429 | * Synchronization is performed by having two copies of the hash function | 
|  | 1430 | * state and rekey_seq_generator always updates the inactive copy. | 
|  | 1431 | * The copy is then activated by updating ip_cnt. | 
|  | 1432 | * The implementation breaks down if someone blocks the thread | 
|  | 1433 | * that processes SYN requests for more than 5 minutes. Should never | 
|  | 1434 | * happen, and even if that happens only a not perfectly compliant | 
|  | 1435 | * ISN is generated, nothing fatal. | 
|  | 1436 | */ | 
|  | 1437 | static void rekey_seq_generator(void *private_) | 
|  | 1438 | { | 
|  | 1439 | struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; | 
|  | 1440 |  | 
|  | 1441 | get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); | 
|  | 1442 | keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; | 
|  | 1443 | smp_wmb(); | 
|  | 1444 | ip_cnt++; | 
|  | 1445 | schedule_delayed_work(&rekey_work, REKEY_INTERVAL); | 
|  | 1446 | } | 
|  | 1447 |  | 
|  | 1448 | static inline struct keydata *get_keyptr(void) | 
|  | 1449 | { | 
|  | 1450 | struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; | 
|  | 1451 |  | 
|  | 1452 | smp_rmb(); | 
|  | 1453 |  | 
|  | 1454 | return keyptr; | 
|  | 1455 | } | 
|  | 1456 |  | 
|  | 1457 | static __init int seqgen_init(void) | 
|  | 1458 | { | 
|  | 1459 | rekey_seq_generator(NULL); | 
|  | 1460 | return 0; | 
|  | 1461 | } | 
|  | 1462 | late_initcall(seqgen_init); | 
|  | 1463 |  | 
|  | 1464 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
|  | 1465 | __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr, | 
|  | 1466 | __u16 sport, __u16 dport) | 
|  | 1467 | { | 
|  | 1468 | struct timeval tv; | 
|  | 1469 | __u32 seq; | 
|  | 1470 | __u32 hash[12]; | 
|  | 1471 | struct keydata *keyptr = get_keyptr(); | 
|  | 1472 |  | 
|  | 1473 | /* The procedure is the same as for IPv4, but addresses are longer. | 
|  | 1474 | * Thus we must use twothirdsMD4Transform. | 
|  | 1475 | */ | 
|  | 1476 |  | 
|  | 1477 | memcpy(hash, saddr, 16); | 
|  | 1478 | hash[4]=(sport << 16) + dport; | 
|  | 1479 | memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); | 
|  | 1480 |  | 
|  | 1481 | seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK; | 
|  | 1482 | seq += keyptr->count; | 
|  | 1483 |  | 
|  | 1484 | do_gettimeofday(&tv); | 
|  | 1485 | seq += tv.tv_usec + tv.tv_sec * 1000000; | 
|  | 1486 |  | 
|  | 1487 | return seq; | 
|  | 1488 | } | 
|  | 1489 | EXPORT_SYMBOL(secure_tcpv6_sequence_number); | 
|  | 1490 | #endif | 
|  | 1491 |  | 
|  | 1492 | /*  The code below is shamelessly stolen from secure_tcp_sequence_number(). | 
|  | 1493 | *  All blames to Andrey V. Savochkin <saw@msu.ru>. | 
|  | 1494 | */ | 
|  | 1495 | __u32 secure_ip_id(__u32 daddr) | 
|  | 1496 | { | 
|  | 1497 | struct keydata *keyptr; | 
|  | 1498 | __u32 hash[4]; | 
|  | 1499 |  | 
|  | 1500 | keyptr = get_keyptr(); | 
|  | 1501 |  | 
|  | 1502 | /* | 
|  | 1503 | *  Pick a unique starting offset for each IP destination. | 
|  | 1504 | *  The dest ip address is placed in the starting vector, | 
|  | 1505 | *  which is then hashed with random data. | 
|  | 1506 | */ | 
|  | 1507 | hash[0] = daddr; | 
|  | 1508 | hash[1] = keyptr->secret[9]; | 
|  | 1509 | hash[2] = keyptr->secret[10]; | 
|  | 1510 | hash[3] = keyptr->secret[11]; | 
|  | 1511 |  | 
|  | 1512 | return half_md4_transform(hash, keyptr->secret); | 
|  | 1513 | } | 
|  | 1514 |  | 
|  | 1515 | #ifdef CONFIG_INET | 
|  | 1516 |  | 
|  | 1517 | __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr, | 
|  | 1518 | __u16 sport, __u16 dport) | 
|  | 1519 | { | 
|  | 1520 | struct timeval tv; | 
|  | 1521 | __u32 seq; | 
|  | 1522 | __u32 hash[4]; | 
|  | 1523 | struct keydata *keyptr = get_keyptr(); | 
|  | 1524 |  | 
|  | 1525 | /* | 
|  | 1526 | *  Pick a unique starting offset for each TCP connection endpoints | 
|  | 1527 | *  (saddr, daddr, sport, dport). | 
|  | 1528 | *  Note that the words are placed into the starting vector, which is | 
|  | 1529 | *  then mixed with a partial MD4 over random data. | 
|  | 1530 | */ | 
|  | 1531 | hash[0]=saddr; | 
|  | 1532 | hash[1]=daddr; | 
|  | 1533 | hash[2]=(sport << 16) + dport; | 
|  | 1534 | hash[3]=keyptr->secret[11]; | 
|  | 1535 |  | 
|  | 1536 | seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; | 
|  | 1537 | seq += keyptr->count; | 
|  | 1538 | /* | 
|  | 1539 | *	As close as possible to RFC 793, which | 
|  | 1540 | *	suggests using a 250 kHz clock. | 
|  | 1541 | *	Further reading shows this assumes 2 Mb/s networks. | 
|  | 1542 | *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. | 
|  | 1543 | *	That's funny, Linux has one built in!  Use it! | 
|  | 1544 | *	(Networks are faster now - should this be increased?) | 
|  | 1545 | */ | 
|  | 1546 | do_gettimeofday(&tv); | 
|  | 1547 | seq += tv.tv_usec + tv.tv_sec * 1000000; | 
|  | 1548 | #if 0 | 
|  | 1549 | printk("init_seq(%lx, %lx, %d, %d) = %d\n", | 
|  | 1550 | saddr, daddr, sport, dport, seq); | 
|  | 1551 | #endif | 
|  | 1552 | return seq; | 
|  | 1553 | } | 
|  | 1554 |  | 
|  | 1555 | EXPORT_SYMBOL(secure_tcp_sequence_number); | 
|  | 1556 |  | 
| Arnaldo Carvalho de Melo | a7f5e7f | 2005-12-13 23:25:31 -0800 | [diff] [blame] | 1557 | /* Generate secure starting point for ephemeral IPV4 transport port search */ | 
|  | 1558 | u32 secure_ipv4_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1559 | { | 
|  | 1560 | struct keydata *keyptr = get_keyptr(); | 
|  | 1561 | u32 hash[4]; | 
|  | 1562 |  | 
|  | 1563 | /* | 
|  | 1564 | *  Pick a unique starting offset for each ephemeral port search | 
|  | 1565 | *  (saddr, daddr, dport) and 48bits of random data. | 
|  | 1566 | */ | 
|  | 1567 | hash[0] = saddr; | 
|  | 1568 | hash[1] = daddr; | 
|  | 1569 | hash[2] = dport ^ keyptr->secret[10]; | 
|  | 1570 | hash[3] = keyptr->secret[11]; | 
|  | 1571 |  | 
|  | 1572 | return half_md4_transform(hash, keyptr->secret); | 
|  | 1573 | } | 
|  | 1574 |  | 
|  | 1575 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
| Arnaldo Carvalho de Melo | d8313f5 | 2005-12-13 23:25:44 -0800 | [diff] [blame] | 1576 | u32 secure_ipv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1577 | { | 
|  | 1578 | struct keydata *keyptr = get_keyptr(); | 
|  | 1579 | u32 hash[12]; | 
|  | 1580 |  | 
|  | 1581 | memcpy(hash, saddr, 16); | 
|  | 1582 | hash[4] = dport; | 
|  | 1583 | memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); | 
|  | 1584 |  | 
|  | 1585 | return twothirdsMD4Transform(daddr, hash); | 
|  | 1586 | } | 
| Arnaldo Carvalho de Melo | d8313f5 | 2005-12-13 23:25:44 -0800 | [diff] [blame] | 1587 | EXPORT_SYMBOL(secure_ipv6_port_ephemeral); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1588 | #endif | 
|  | 1589 |  | 
| Arnaldo Carvalho de Melo | c4365c9 | 2005-08-09 20:12:30 -0700 | [diff] [blame] | 1590 | #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) | 
|  | 1591 | /* Similar to secure_tcp_sequence_number but generate a 48 bit value | 
|  | 1592 | * bit's 32-47 increase every key exchange | 
|  | 1593 | *       0-31  hash(source, dest) | 
|  | 1594 | */ | 
|  | 1595 | u64 secure_dccp_sequence_number(__u32 saddr, __u32 daddr, | 
|  | 1596 | __u16 sport, __u16 dport) | 
|  | 1597 | { | 
|  | 1598 | struct timeval tv; | 
|  | 1599 | u64 seq; | 
|  | 1600 | __u32 hash[4]; | 
|  | 1601 | struct keydata *keyptr = get_keyptr(); | 
|  | 1602 |  | 
|  | 1603 | hash[0] = saddr; | 
|  | 1604 | hash[1] = daddr; | 
|  | 1605 | hash[2] = (sport << 16) + dport; | 
|  | 1606 | hash[3] = keyptr->secret[11]; | 
|  | 1607 |  | 
|  | 1608 | seq = half_md4_transform(hash, keyptr->secret); | 
|  | 1609 | seq |= ((u64)keyptr->count) << (32 - HASH_BITS); | 
|  | 1610 |  | 
|  | 1611 | do_gettimeofday(&tv); | 
|  | 1612 | seq += tv.tv_usec + tv.tv_sec * 1000000; | 
|  | 1613 | seq &= (1ull << 48) - 1; | 
|  | 1614 | #if 0 | 
|  | 1615 | printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n", | 
|  | 1616 | saddr, daddr, sport, dport, seq); | 
|  | 1617 | #endif | 
|  | 1618 | return seq; | 
|  | 1619 | } | 
|  | 1620 |  | 
|  | 1621 | EXPORT_SYMBOL(secure_dccp_sequence_number); | 
|  | 1622 | #endif | 
|  | 1623 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1624 | #endif /* CONFIG_INET */ | 
|  | 1625 |  | 
|  | 1626 |  | 
|  | 1627 | /* | 
|  | 1628 | * Get a random word for internal kernel use only. Similar to urandom but | 
|  | 1629 | * with the goal of minimal entropy pool depletion. As a result, the random | 
|  | 1630 | * value is not cryptographically secure but for several uses the cost of | 
|  | 1631 | * depleting entropy is too high | 
|  | 1632 | */ | 
|  | 1633 | unsigned int get_random_int(void) | 
|  | 1634 | { | 
|  | 1635 | /* | 
|  | 1636 | * Use IP's RNG. It suits our purpose perfectly: it re-keys itself | 
|  | 1637 | * every second, from the entropy pool (and thus creates a limited | 
|  | 1638 | * drain on it), and uses halfMD4Transform within the second. We | 
|  | 1639 | * also mix it with jiffies and the PID: | 
|  | 1640 | */ | 
|  | 1641 | return secure_ip_id(current->pid + jiffies); | 
|  | 1642 | } | 
|  | 1643 |  | 
|  | 1644 | /* | 
|  | 1645 | * randomize_range() returns a start address such that | 
|  | 1646 | * | 
|  | 1647 | *    [...... <range> .....] | 
|  | 1648 | *  start                  end | 
|  | 1649 | * | 
|  | 1650 | * a <range> with size "len" starting at the return value is inside in the | 
|  | 1651 | * area defined by [start, end], but is otherwise randomized. | 
|  | 1652 | */ | 
|  | 1653 | unsigned long | 
|  | 1654 | randomize_range(unsigned long start, unsigned long end, unsigned long len) | 
|  | 1655 | { | 
|  | 1656 | unsigned long range = end - len - start; | 
|  | 1657 |  | 
|  | 1658 | if (end <= start + len) | 
|  | 1659 | return 0; | 
|  | 1660 | return PAGE_ALIGN(get_random_int() % range + start); | 
|  | 1661 | } |