blob: 74599286230ce0e00c89280eb5dfdbbb1d6b4426 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070055#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080060 * Scheduler clock - returns current time in nanosec units.
61 * This is default implementation.
62 * Architectures and sub-architectures can override this.
63 */
64unsigned long long __attribute__((weak)) sched_clock(void)
65{
66 return (unsigned long long)jiffies * (1000000000 / HZ);
67}
68
69/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070070 * Convert user-nice values [ -20 ... 0 ... 19 ]
71 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
72 * and back.
73 */
74#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
75#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
76#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
77
78/*
79 * 'User priority' is the nice value converted to something we
80 * can work with better when scaling various scheduler parameters,
81 * it's a [ 0 ... 39 ] range.
82 */
83#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
84#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
85#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
86
87/*
88 * Some helpers for converting nanosecond timing to jiffy resolution
89 */
90#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
91#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
92
93/*
94 * These are the 'tuning knobs' of the scheduler:
95 *
96 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
97 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
98 * Timeslices get refilled after they expire.
99 */
100#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
101#define DEF_TIMESLICE (100 * HZ / 1000)
102#define ON_RUNQUEUE_WEIGHT 30
103#define CHILD_PENALTY 95
104#define PARENT_PENALTY 100
105#define EXIT_WEIGHT 3
106#define PRIO_BONUS_RATIO 25
107#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
108#define INTERACTIVE_DELTA 2
109#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
110#define STARVATION_LIMIT (MAX_SLEEP_AVG)
111#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
112
113/*
114 * If a task is 'interactive' then we reinsert it in the active
115 * array after it has expired its current timeslice. (it will not
116 * continue to run immediately, it will still roundrobin with
117 * other interactive tasks.)
118 *
119 * This part scales the interactivity limit depending on niceness.
120 *
121 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
122 * Here are a few examples of different nice levels:
123 *
124 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
125 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
126 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
127 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
129 *
130 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
131 * priority range a task can explore, a value of '1' means the
132 * task is rated interactive.)
133 *
134 * Ie. nice +19 tasks can never get 'interactive' enough to be
135 * reinserted into the active array. And only heavily CPU-hog nice -20
136 * tasks will be expired. Default nice 0 tasks are somewhere between,
137 * it takes some effort for them to get interactive, but it's not
138 * too hard.
139 */
140
141#define CURRENT_BONUS(p) \
142 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
143 MAX_SLEEP_AVG)
144
145#define GRANULARITY (10 * HZ / 1000 ? : 1)
146
147#ifdef CONFIG_SMP
148#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
149 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
150 num_online_cpus())
151#else
152#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
154#endif
155
156#define SCALE(v1,v1_max,v2_max) \
157 (v1) * (v2_max) / (v1_max)
158
159#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800160 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
161 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
163#define TASK_INTERACTIVE(p) \
164 ((p)->prio <= (p)->static_prio - DELTA(p))
165
166#define INTERACTIVE_SLEEP(p) \
167 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
168 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
169
170#define TASK_PREEMPTS_CURR(p, rq) \
171 ((p)->prio < (rq)->curr->prio)
172
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700174 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175
Peter Williams2dd73a42006-06-27 02:54:34 -0700176static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177{
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 if (static_prio < NICE_TO_PRIO(0))
179 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700181 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182}
Peter Williams2dd73a42006-06-27 02:54:34 -0700183
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700184/*
185 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
186 * to time slice values: [800ms ... 100ms ... 5ms]
187 *
188 * The higher a thread's priority, the bigger timeslices
189 * it gets during one round of execution. But even the lowest
190 * priority thread gets MIN_TIMESLICE worth of execution time.
191 */
192
Ingo Molnar36c8b582006-07-03 00:25:41 -0700193static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700194{
195 return static_prio_timeslice(p->static_prio);
196}
197
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198/*
199 * These are the runqueue data structures:
200 */
201
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202struct prio_array {
203 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700204 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205 struct list_head queue[MAX_PRIO];
206};
207
208/*
209 * This is the main, per-CPU runqueue data structure.
210 *
211 * Locking rule: those places that want to lock multiple runqueues
212 * (such as the load balancing or the thread migration code), lock
213 * acquire operations must be ordered by ascending &runqueue.
214 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700215struct rq {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216 spinlock_t lock;
217
218 /*
219 * nr_running and cpu_load should be in the same cacheline because
220 * remote CPUs use both these fields when doing load calculation.
221 */
222 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700223 unsigned long raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700225 unsigned long cpu_load[3];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700226 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700227#ifdef CONFIG_NO_HZ
228 unsigned char in_nohz_recently;
229#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230#endif
231 unsigned long long nr_switches;
232
233 /*
234 * This is part of a global counter where only the total sum
235 * over all CPUs matters. A task can increase this counter on
236 * one CPU and if it got migrated afterwards it may decrease
237 * it on another CPU. Always updated under the runqueue lock:
238 */
239 unsigned long nr_uninterruptible;
240
241 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800242 /* Cached timestamp set by update_cpu_clock() */
243 unsigned long long most_recent_timestamp;
Ingo Molnar36c8b582006-07-03 00:25:41 -0700244 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800245 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246 struct mm_struct *prev_mm;
Ingo Molnar70b97a72006-07-03 00:25:42 -0700247 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248 int best_expired_prio;
249 atomic_t nr_iowait;
250
251#ifdef CONFIG_SMP
252 struct sched_domain *sd;
253
254 /* For active balancing */
255 int active_balance;
256 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700257 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258
Ingo Molnar36c8b582006-07-03 00:25:41 -0700259 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 struct list_head migration_queue;
261#endif
262
263#ifdef CONFIG_SCHEDSTATS
264 /* latency stats */
265 struct sched_info rq_sched_info;
266
267 /* sys_sched_yield() stats */
268 unsigned long yld_exp_empty;
269 unsigned long yld_act_empty;
270 unsigned long yld_both_empty;
271 unsigned long yld_cnt;
272
273 /* schedule() stats */
274 unsigned long sched_switch;
275 unsigned long sched_cnt;
276 unsigned long sched_goidle;
277
278 /* try_to_wake_up() stats */
279 unsigned long ttwu_cnt;
280 unsigned long ttwu_local;
281#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700282 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283};
284
Ingo Molnar70b97a72006-07-03 00:25:42 -0700285static DEFINE_PER_CPU(struct rq, runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700287static inline int cpu_of(struct rq *rq)
288{
289#ifdef CONFIG_SMP
290 return rq->cpu;
291#else
292 return 0;
293#endif
294}
295
Nick Piggin674311d2005-06-25 14:57:27 -0700296/*
297 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700298 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700299 *
300 * The domain tree of any CPU may only be accessed from within
301 * preempt-disabled sections.
302 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700303#define for_each_domain(cpu, __sd) \
304 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305
306#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
307#define this_rq() (&__get_cpu_var(runqueues))
308#define task_rq(p) cpu_rq(task_cpu(p))
309#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
310
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700312# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700314#ifndef finish_arch_switch
315# define finish_arch_switch(prev) do { } while (0)
316#endif
317
318#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700319static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700320{
321 return rq->curr == p;
322}
323
Ingo Molnar70b97a72006-07-03 00:25:42 -0700324static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700325{
326}
327
Ingo Molnar70b97a72006-07-03 00:25:42 -0700328static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700329{
Ingo Molnarda04c032005-09-13 11:17:59 +0200330#ifdef CONFIG_DEBUG_SPINLOCK
331 /* this is a valid case when another task releases the spinlock */
332 rq->lock.owner = current;
333#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700334 /*
335 * If we are tracking spinlock dependencies then we have to
336 * fix up the runqueue lock - which gets 'carried over' from
337 * prev into current:
338 */
339 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
340
Nick Piggin4866cde2005-06-25 14:57:23 -0700341 spin_unlock_irq(&rq->lock);
342}
343
344#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700345static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700346{
347#ifdef CONFIG_SMP
348 return p->oncpu;
349#else
350 return rq->curr == p;
351#endif
352}
353
Ingo Molnar70b97a72006-07-03 00:25:42 -0700354static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700355{
356#ifdef CONFIG_SMP
357 /*
358 * We can optimise this out completely for !SMP, because the
359 * SMP rebalancing from interrupt is the only thing that cares
360 * here.
361 */
362 next->oncpu = 1;
363#endif
364#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
365 spin_unlock_irq(&rq->lock);
366#else
367 spin_unlock(&rq->lock);
368#endif
369}
370
Ingo Molnar70b97a72006-07-03 00:25:42 -0700371static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700372{
373#ifdef CONFIG_SMP
374 /*
375 * After ->oncpu is cleared, the task can be moved to a different CPU.
376 * We must ensure this doesn't happen until the switch is completely
377 * finished.
378 */
379 smp_wmb();
380 prev->oncpu = 0;
381#endif
382#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
383 local_irq_enable();
384#endif
385}
386#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387
388/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700389 * __task_rq_lock - lock the runqueue a given task resides on.
390 * Must be called interrupts disabled.
391 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700392static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700393 __acquires(rq->lock)
394{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700395 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700396
397repeat_lock_task:
398 rq = task_rq(p);
399 spin_lock(&rq->lock);
400 if (unlikely(rq != task_rq(p))) {
401 spin_unlock(&rq->lock);
402 goto repeat_lock_task;
403 }
404 return rq;
405}
406
407/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408 * task_rq_lock - lock the runqueue a given task resides on and disable
409 * interrupts. Note the ordering: we can safely lookup the task_rq without
410 * explicitly disabling preemption.
411 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700412static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413 __acquires(rq->lock)
414{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700415 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416
417repeat_lock_task:
418 local_irq_save(*flags);
419 rq = task_rq(p);
420 spin_lock(&rq->lock);
421 if (unlikely(rq != task_rq(p))) {
422 spin_unlock_irqrestore(&rq->lock, *flags);
423 goto repeat_lock_task;
424 }
425 return rq;
426}
427
Ingo Molnar70b97a72006-07-03 00:25:42 -0700428static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700429 __releases(rq->lock)
430{
431 spin_unlock(&rq->lock);
432}
433
Ingo Molnar70b97a72006-07-03 00:25:42 -0700434static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 __releases(rq->lock)
436{
437 spin_unlock_irqrestore(&rq->lock, *flags);
438}
439
440#ifdef CONFIG_SCHEDSTATS
441/*
442 * bump this up when changing the output format or the meaning of an existing
443 * format, so that tools can adapt (or abort)
444 */
Chen, Kenneth W06066712006-12-10 02:20:35 -0800445#define SCHEDSTAT_VERSION 14
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446
447static int show_schedstat(struct seq_file *seq, void *v)
448{
449 int cpu;
450
451 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
452 seq_printf(seq, "timestamp %lu\n", jiffies);
453 for_each_online_cpu(cpu) {
Ingo Molnar70b97a72006-07-03 00:25:42 -0700454 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455#ifdef CONFIG_SMP
456 struct sched_domain *sd;
457 int dcnt = 0;
458#endif
459
460 /* runqueue-specific stats */
461 seq_printf(seq,
462 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
463 cpu, rq->yld_both_empty,
464 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
465 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
466 rq->ttwu_cnt, rq->ttwu_local,
467 rq->rq_sched_info.cpu_time,
468 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
469
470 seq_printf(seq, "\n");
471
472#ifdef CONFIG_SMP
473 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700474 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475 for_each_domain(cpu, sd) {
476 enum idle_type itype;
477 char mask_str[NR_CPUS];
478
479 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
480 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
481 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
482 itype++) {
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800483 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
484 "%lu",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485 sd->lb_cnt[itype],
486 sd->lb_balanced[itype],
487 sd->lb_failed[itype],
488 sd->lb_imbalance[itype],
489 sd->lb_gained[itype],
490 sd->lb_hot_gained[itype],
491 sd->lb_nobusyq[itype],
Chen, Kenneth W06066712006-12-10 02:20:35 -0800492 sd->lb_nobusyg[itype]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493 }
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800494 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
495 " %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700496 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700497 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
498 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800499 sd->ttwu_wake_remote, sd->ttwu_move_affine,
500 sd->ttwu_move_balance);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501 }
Nick Piggin674311d2005-06-25 14:57:27 -0700502 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503#endif
504 }
505 return 0;
506}
507
508static int schedstat_open(struct inode *inode, struct file *file)
509{
510 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
511 char *buf = kmalloc(size, GFP_KERNEL);
512 struct seq_file *m;
513 int res;
514
515 if (!buf)
516 return -ENOMEM;
517 res = single_open(file, show_schedstat, NULL);
518 if (!res) {
519 m = file->private_data;
520 m->buf = buf;
521 m->size = size;
522 } else
523 kfree(buf);
524 return res;
525}
526
Helge Deller15ad7cd2006-12-06 20:40:36 -0800527const struct file_operations proc_schedstat_operations = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528 .open = schedstat_open,
529 .read = seq_read,
530 .llseek = seq_lseek,
531 .release = single_release,
532};
533
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700534/*
535 * Expects runqueue lock to be held for atomicity of update
536 */
537static inline void
538rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
539{
540 if (rq) {
541 rq->rq_sched_info.run_delay += delta_jiffies;
542 rq->rq_sched_info.pcnt++;
543 }
544}
545
546/*
547 * Expects runqueue lock to be held for atomicity of update
548 */
549static inline void
550rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
551{
552 if (rq)
553 rq->rq_sched_info.cpu_time += delta_jiffies;
554}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
556# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
557#else /* !CONFIG_SCHEDSTATS */
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700558static inline void
559rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
560{}
561static inline void
562rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
563{}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564# define schedstat_inc(rq, field) do { } while (0)
565# define schedstat_add(rq, field, amt) do { } while (0)
566#endif
567
568/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800569 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700570 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700571static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700572 __acquires(rq->lock)
573{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700574 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700575
576 local_irq_disable();
577 rq = this_rq();
578 spin_lock(&rq->lock);
579
580 return rq;
581}
582
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700583#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584/*
585 * Called when a process is dequeued from the active array and given
586 * the cpu. We should note that with the exception of interactive
587 * tasks, the expired queue will become the active queue after the active
588 * queue is empty, without explicitly dequeuing and requeuing tasks in the
589 * expired queue. (Interactive tasks may be requeued directly to the
590 * active queue, thus delaying tasks in the expired queue from running;
591 * see scheduler_tick()).
592 *
593 * This function is only called from sched_info_arrive(), rather than
594 * dequeue_task(). Even though a task may be queued and dequeued multiple
595 * times as it is shuffled about, we're really interested in knowing how
596 * long it was from the *first* time it was queued to the time that it
597 * finally hit a cpu.
598 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700599static inline void sched_info_dequeued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600{
601 t->sched_info.last_queued = 0;
602}
603
604/*
605 * Called when a task finally hits the cpu. We can now calculate how
606 * long it was waiting to run. We also note when it began so that we
607 * can keep stats on how long its timeslice is.
608 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700609static void sched_info_arrive(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700611 unsigned long now = jiffies, delta_jiffies = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612
613 if (t->sched_info.last_queued)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700614 delta_jiffies = now - t->sched_info.last_queued;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615 sched_info_dequeued(t);
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700616 t->sched_info.run_delay += delta_jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700617 t->sched_info.last_arrival = now;
618 t->sched_info.pcnt++;
619
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700620 rq_sched_info_arrive(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621}
622
623/*
624 * Called when a process is queued into either the active or expired
625 * array. The time is noted and later used to determine how long we
626 * had to wait for us to reach the cpu. Since the expired queue will
627 * become the active queue after active queue is empty, without dequeuing
628 * and requeuing any tasks, we are interested in queuing to either. It
629 * is unusual but not impossible for tasks to be dequeued and immediately
630 * requeued in the same or another array: this can happen in sched_yield(),
631 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
632 * to runqueue.
633 *
634 * This function is only called from enqueue_task(), but also only updates
635 * the timestamp if it is already not set. It's assumed that
636 * sched_info_dequeued() will clear that stamp when appropriate.
637 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700638static inline void sched_info_queued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700640 if (unlikely(sched_info_on()))
641 if (!t->sched_info.last_queued)
642 t->sched_info.last_queued = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643}
644
645/*
646 * Called when a process ceases being the active-running process, either
647 * voluntarily or involuntarily. Now we can calculate how long we ran.
648 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700649static inline void sched_info_depart(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700650{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700651 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700652
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700653 t->sched_info.cpu_time += delta_jiffies;
654 rq_sched_info_depart(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655}
656
657/*
658 * Called when tasks are switched involuntarily due, typically, to expiring
659 * their time slice. (This may also be called when switching to or from
660 * the idle task.) We are only called when prev != next.
661 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700662static inline void
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700663__sched_info_switch(struct task_struct *prev, struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700665 struct rq *rq = task_rq(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666
667 /*
668 * prev now departs the cpu. It's not interesting to record
669 * stats about how efficient we were at scheduling the idle
670 * process, however.
671 */
672 if (prev != rq->idle)
673 sched_info_depart(prev);
674
675 if (next != rq->idle)
676 sched_info_arrive(next);
677}
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700678static inline void
679sched_info_switch(struct task_struct *prev, struct task_struct *next)
680{
681 if (unlikely(sched_info_on()))
682 __sched_info_switch(prev, next);
683}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684#else
685#define sched_info_queued(t) do { } while (0)
686#define sched_info_switch(t, next) do { } while (0)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700687#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688
689/*
690 * Adding/removing a task to/from a priority array:
691 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700692static void dequeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700693{
694 array->nr_active--;
695 list_del(&p->run_list);
696 if (list_empty(array->queue + p->prio))
697 __clear_bit(p->prio, array->bitmap);
698}
699
Ingo Molnar70b97a72006-07-03 00:25:42 -0700700static void enqueue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701{
702 sched_info_queued(p);
703 list_add_tail(&p->run_list, array->queue + p->prio);
704 __set_bit(p->prio, array->bitmap);
705 array->nr_active++;
706 p->array = array;
707}
708
709/*
710 * Put task to the end of the run list without the overhead of dequeue
711 * followed by enqueue.
712 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700713static void requeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714{
715 list_move_tail(&p->run_list, array->queue + p->prio);
716}
717
Ingo Molnar70b97a72006-07-03 00:25:42 -0700718static inline void
719enqueue_task_head(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720{
721 list_add(&p->run_list, array->queue + p->prio);
722 __set_bit(p->prio, array->bitmap);
723 array->nr_active++;
724 p->array = array;
725}
726
727/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700728 * __normal_prio - return the priority that is based on the static
Linus Torvalds1da177e2005-04-16 15:20:36 -0700729 * priority but is modified by bonuses/penalties.
730 *
731 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
732 * into the -5 ... 0 ... +5 bonus/penalty range.
733 *
734 * We use 25% of the full 0...39 priority range so that:
735 *
736 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
737 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
738 *
739 * Both properties are important to certain workloads.
740 */
Ingo Molnarb29739f2006-06-27 02:54:51 -0700741
Ingo Molnar36c8b582006-07-03 00:25:41 -0700742static inline int __normal_prio(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743{
744 int bonus, prio;
745
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
747
748 prio = p->static_prio - bonus;
749 if (prio < MAX_RT_PRIO)
750 prio = MAX_RT_PRIO;
751 if (prio > MAX_PRIO-1)
752 prio = MAX_PRIO-1;
753 return prio;
754}
755
756/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700757 * To aid in avoiding the subversion of "niceness" due to uneven distribution
758 * of tasks with abnormal "nice" values across CPUs the contribution that
759 * each task makes to its run queue's load is weighted according to its
760 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
761 * scaled version of the new time slice allocation that they receive on time
762 * slice expiry etc.
763 */
764
765/*
766 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
767 * If static_prio_timeslice() is ever changed to break this assumption then
768 * this code will need modification
769 */
770#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
771#define LOAD_WEIGHT(lp) \
772 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
773#define PRIO_TO_LOAD_WEIGHT(prio) \
774 LOAD_WEIGHT(static_prio_timeslice(prio))
775#define RTPRIO_TO_LOAD_WEIGHT(rp) \
776 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
777
Ingo Molnar36c8b582006-07-03 00:25:41 -0700778static void set_load_weight(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700779{
Ingo Molnarb29739f2006-06-27 02:54:51 -0700780 if (has_rt_policy(p)) {
Peter Williams2dd73a42006-06-27 02:54:34 -0700781#ifdef CONFIG_SMP
782 if (p == task_rq(p)->migration_thread)
783 /*
784 * The migration thread does the actual balancing.
785 * Giving its load any weight will skew balancing
786 * adversely.
787 */
788 p->load_weight = 0;
789 else
790#endif
791 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
792 } else
793 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
794}
795
Ingo Molnar36c8b582006-07-03 00:25:41 -0700796static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700797inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700798{
799 rq->raw_weighted_load += p->load_weight;
800}
801
Ingo Molnar36c8b582006-07-03 00:25:41 -0700802static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700803dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700804{
805 rq->raw_weighted_load -= p->load_weight;
806}
807
Ingo Molnar70b97a72006-07-03 00:25:42 -0700808static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700809{
810 rq->nr_running++;
811 inc_raw_weighted_load(rq, p);
812}
813
Ingo Molnar70b97a72006-07-03 00:25:42 -0700814static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700815{
816 rq->nr_running--;
817 dec_raw_weighted_load(rq, p);
818}
819
820/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700821 * Calculate the expected normal priority: i.e. priority
822 * without taking RT-inheritance into account. Might be
823 * boosted by interactivity modifiers. Changes upon fork,
824 * setprio syscalls, and whenever the interactivity
825 * estimator recalculates.
826 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700827static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700828{
829 int prio;
830
831 if (has_rt_policy(p))
832 prio = MAX_RT_PRIO-1 - p->rt_priority;
833 else
834 prio = __normal_prio(p);
835 return prio;
836}
837
838/*
839 * Calculate the current priority, i.e. the priority
840 * taken into account by the scheduler. This value might
841 * be boosted by RT tasks, or might be boosted by
842 * interactivity modifiers. Will be RT if the task got
843 * RT-boosted. If not then it returns p->normal_prio.
844 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700845static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700846{
847 p->normal_prio = normal_prio(p);
848 /*
849 * If we are RT tasks or we were boosted to RT priority,
850 * keep the priority unchanged. Otherwise, update priority
851 * to the normal priority:
852 */
853 if (!rt_prio(p->prio))
854 return p->normal_prio;
855 return p->prio;
856}
857
858/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859 * __activate_task - move a task to the runqueue.
860 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700861static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700863 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800864
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700865 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800866 target = rq->expired;
867 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700868 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869}
870
871/*
872 * __activate_idle_task - move idle task to the _front_ of runqueue.
873 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700874static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700875{
876 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700877 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878}
879
Ingo Molnarb29739f2006-06-27 02:54:51 -0700880/*
881 * Recalculate p->normal_prio and p->prio after having slept,
882 * updating the sleep-average too:
883 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700884static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885{
886 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700887 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888
Con Kolivasd425b272006-03-31 02:31:29 -0800889 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800890 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891
892 if (likely(sleep_time > 0)) {
893 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700894 * This ceiling is set to the lowest priority that would allow
895 * a task to be reinserted into the active array on timeslice
896 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 */
Con Kolivas72d28542006-06-27 02:54:30 -0700898 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800899
Con Kolivas72d28542006-06-27 02:54:30 -0700900 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
901 /*
902 * Prevents user tasks from achieving best priority
903 * with one single large enough sleep.
904 */
905 p->sleep_avg = ceiling;
906 /*
907 * Using INTERACTIVE_SLEEP() as a ceiling places a
908 * nice(0) task 1ms sleep away from promotion, and
909 * gives it 700ms to round-robin with no chance of
910 * being demoted. This is more than generous, so
911 * mark this sleep as non-interactive to prevent the
912 * on-runqueue bonus logic from intervening should
913 * this task not receive cpu immediately.
914 */
915 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700916 } else {
917 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918 * Tasks waking from uninterruptible sleep are
919 * limited in their sleep_avg rise as they
920 * are likely to be waiting on I/O
921 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800922 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700923 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924 sleep_time = 0;
925 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700926 ceiling) {
927 p->sleep_avg = ceiling;
928 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 }
930 }
931
932 /*
933 * This code gives a bonus to interactive tasks.
934 *
935 * The boost works by updating the 'average sleep time'
936 * value here, based on ->timestamp. The more time a
937 * task spends sleeping, the higher the average gets -
938 * and the higher the priority boost gets as well.
939 */
940 p->sleep_avg += sleep_time;
941
Linus Torvalds1da177e2005-04-16 15:20:36 -0700942 }
Con Kolivas72d28542006-06-27 02:54:30 -0700943 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
944 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 }
946
Chen Shanga3464a12005-06-25 14:57:31 -0700947 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948}
949
950/*
951 * activate_task - move a task to the runqueue and do priority recalculation
952 *
953 * Update all the scheduling statistics stuff. (sleep average
954 * calculation, priority modifiers, etc.)
955 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700956static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957{
958 unsigned long long now;
959
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800960 if (rt_task(p))
961 goto out;
962
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963 now = sched_clock();
964#ifdef CONFIG_SMP
965 if (!local) {
966 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700967 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -0800968 now = (now - this_rq->most_recent_timestamp)
969 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 }
971#endif
972
Ingo Molnarece8a682006-12-06 20:37:24 -0800973 /*
974 * Sleep time is in units of nanosecs, so shift by 20 to get a
975 * milliseconds-range estimation of the amount of time that the task
976 * spent sleeping:
977 */
978 if (unlikely(prof_on == SLEEP_PROFILING)) {
979 if (p->state == TASK_UNINTERRUPTIBLE)
980 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
981 (now - p->timestamp) >> 20);
982 }
983
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800984 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985
986 /*
987 * This checks to make sure it's not an uninterruptible task
988 * that is now waking up.
989 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800990 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991 /*
992 * Tasks which were woken up by interrupts (ie. hw events)
993 * are most likely of interactive nature. So we give them
994 * the credit of extending their sleep time to the period
995 * of time they spend on the runqueue, waiting for execution
996 * on a CPU, first time around:
997 */
998 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -0800999 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000 else {
1001 /*
1002 * Normal first-time wakeups get a credit too for
1003 * on-runqueue time, but it will be weighted down:
1004 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001005 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006 }
1007 }
1008 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001009out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001010 __activate_task(p, rq);
1011}
1012
1013/*
1014 * deactivate_task - remove a task from the runqueue.
1015 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001016static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017{
Peter Williams2dd73a42006-06-27 02:54:34 -07001018 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 dequeue_task(p, p->array);
1020 p->array = NULL;
1021}
1022
1023/*
1024 * resched_task - mark a task 'to be rescheduled now'.
1025 *
1026 * On UP this means the setting of the need_resched flag, on SMP it
1027 * might also involve a cross-CPU call to trigger the scheduler on
1028 * the target CPU.
1029 */
1030#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +02001031
1032#ifndef tsk_is_polling
1033#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1034#endif
1035
Ingo Molnar36c8b582006-07-03 00:25:41 -07001036static void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001038 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039
1040 assert_spin_locked(&task_rq(p)->lock);
1041
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001042 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1043 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001045 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1046
1047 cpu = task_cpu(p);
1048 if (cpu == smp_processor_id())
1049 return;
1050
Andi Kleen495ab9c2006-06-26 13:59:11 +02001051 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001052 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +02001053 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001054 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001055}
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07001056
1057static void resched_cpu(int cpu)
1058{
1059 struct rq *rq = cpu_rq(cpu);
1060 unsigned long flags;
1061
1062 if (!spin_trylock_irqsave(&rq->lock, flags))
1063 return;
1064 resched_task(cpu_curr(cpu));
1065 spin_unlock_irqrestore(&rq->lock, flags);
1066}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001068static inline void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001070 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001071 set_tsk_need_resched(p);
1072}
1073#endif
1074
1075/**
1076 * task_curr - is this task currently executing on a CPU?
1077 * @p: the task in question.
1078 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001079inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080{
1081 return cpu_curr(task_cpu(p)) == p;
1082}
1083
Peter Williams2dd73a42006-06-27 02:54:34 -07001084/* Used instead of source_load when we know the type == 0 */
1085unsigned long weighted_cpuload(const int cpu)
1086{
1087 return cpu_rq(cpu)->raw_weighted_load;
1088}
1089
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090#ifdef CONFIG_SMP
Ingo Molnar70b97a72006-07-03 00:25:42 -07001091struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093
Ingo Molnar36c8b582006-07-03 00:25:41 -07001094 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001095 int dest_cpu;
1096
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001098};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099
1100/*
1101 * The task's runqueue lock must be held.
1102 * Returns true if you have to wait for migration thread.
1103 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001104static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001105migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001107 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001108
1109 /*
1110 * If the task is not on a runqueue (and not running), then
1111 * it is sufficient to simply update the task's cpu field.
1112 */
1113 if (!p->array && !task_running(rq, p)) {
1114 set_task_cpu(p, dest_cpu);
1115 return 0;
1116 }
1117
1118 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 req->task = p;
1120 req->dest_cpu = dest_cpu;
1121 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001122
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 return 1;
1124}
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001135void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001136{
1137 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001138 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001139 int preempted;
1140
1141repeat:
1142 rq = task_rq_lock(p, &flags);
1143 /* Must be off runqueue entirely, not preempted. */
1144 if (unlikely(p->array || task_running(rq, p))) {
1145 /* If it's preempted, we yield. It could be a while. */
1146 preempted = !task_running(rq, p);
1147 task_rq_unlock(rq, &flags);
1148 cpu_relax();
1149 if (preempted)
1150 yield();
1151 goto repeat;
1152 }
1153 task_rq_unlock(rq, &flags);
1154}
1155
1156/***
1157 * kick_process - kick a running thread to enter/exit the kernel
1158 * @p: the to-be-kicked thread
1159 *
1160 * Cause a process which is running on another CPU to enter
1161 * kernel-mode, without any delay. (to get signals handled.)
1162 *
1163 * NOTE: this function doesnt have to take the runqueue lock,
1164 * because all it wants to ensure is that the remote task enters
1165 * the kernel. If the IPI races and the task has been migrated
1166 * to another CPU then no harm is done and the purpose has been
1167 * achieved as well.
1168 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001169void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170{
1171 int cpu;
1172
1173 preempt_disable();
1174 cpu = task_cpu(p);
1175 if ((cpu != smp_processor_id()) && task_curr(p))
1176 smp_send_reschedule(cpu);
1177 preempt_enable();
1178}
1179
1180/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001181 * Return a low guess at the load of a migration-source cpu weighted
1182 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183 *
1184 * We want to under-estimate the load of migration sources, to
1185 * balance conservatively.
1186 */
Con Kolivasb9104722005-11-08 21:38:55 -08001187static inline unsigned long source_load(int cpu, int type)
1188{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001189 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001190
Peter Williams2dd73a42006-06-27 02:54:34 -07001191 if (type == 0)
1192 return rq->raw_weighted_load;
1193
1194 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195}
1196
1197/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001198 * Return a high guess at the load of a migration-target cpu weighted
1199 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 */
Con Kolivasb9104722005-11-08 21:38:55 -08001201static inline unsigned long target_load(int cpu, int type)
1202{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001203 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001204
Peter Williams2dd73a42006-06-27 02:54:34 -07001205 if (type == 0)
1206 return rq->raw_weighted_load;
1207
1208 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1209}
1210
1211/*
1212 * Return the average load per task on the cpu's run queue
1213 */
1214static inline unsigned long cpu_avg_load_per_task(int cpu)
1215{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001216 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001217 unsigned long n = rq->nr_running;
1218
Ingo Molnar48f24c42006-07-03 00:25:40 -07001219 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220}
1221
Nick Piggin147cbb42005-06-25 14:57:19 -07001222/*
1223 * find_idlest_group finds and returns the least busy CPU group within the
1224 * domain.
1225 */
1226static struct sched_group *
1227find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1228{
1229 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1230 unsigned long min_load = ULONG_MAX, this_load = 0;
1231 int load_idx = sd->forkexec_idx;
1232 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1233
1234 do {
1235 unsigned long load, avg_load;
1236 int local_group;
1237 int i;
1238
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001239 /* Skip over this group if it has no CPUs allowed */
1240 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1241 goto nextgroup;
1242
Nick Piggin147cbb42005-06-25 14:57:19 -07001243 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001244
1245 /* Tally up the load of all CPUs in the group */
1246 avg_load = 0;
1247
1248 for_each_cpu_mask(i, group->cpumask) {
1249 /* Bias balancing toward cpus of our domain */
1250 if (local_group)
1251 load = source_load(i, load_idx);
1252 else
1253 load = target_load(i, load_idx);
1254
1255 avg_load += load;
1256 }
1257
1258 /* Adjust by relative CPU power of the group */
1259 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1260
1261 if (local_group) {
1262 this_load = avg_load;
1263 this = group;
1264 } else if (avg_load < min_load) {
1265 min_load = avg_load;
1266 idlest = group;
1267 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001268nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001269 group = group->next;
1270 } while (group != sd->groups);
1271
1272 if (!idlest || 100*this_load < imbalance*min_load)
1273 return NULL;
1274 return idlest;
1275}
1276
1277/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001278 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001279 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001280static int
1281find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001282{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001283 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001284 unsigned long load, min_load = ULONG_MAX;
1285 int idlest = -1;
1286 int i;
1287
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001288 /* Traverse only the allowed CPUs */
1289 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1290
1291 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001292 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001293
1294 if (load < min_load || (load == min_load && i == this_cpu)) {
1295 min_load = load;
1296 idlest = i;
1297 }
1298 }
1299
1300 return idlest;
1301}
1302
Nick Piggin476d1392005-06-25 14:57:29 -07001303/*
1304 * sched_balance_self: balance the current task (running on cpu) in domains
1305 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1306 * SD_BALANCE_EXEC.
1307 *
1308 * Balance, ie. select the least loaded group.
1309 *
1310 * Returns the target CPU number, or the same CPU if no balancing is needed.
1311 *
1312 * preempt must be disabled.
1313 */
1314static int sched_balance_self(int cpu, int flag)
1315{
1316 struct task_struct *t = current;
1317 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001318
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001319 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001320 /*
1321 * If power savings logic is enabled for a domain, stop there.
1322 */
1323 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1324 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001325 if (tmp->flags & flag)
1326 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001327 }
Nick Piggin476d1392005-06-25 14:57:29 -07001328
1329 while (sd) {
1330 cpumask_t span;
1331 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001332 int new_cpu, weight;
1333
1334 if (!(sd->flags & flag)) {
1335 sd = sd->child;
1336 continue;
1337 }
Nick Piggin476d1392005-06-25 14:57:29 -07001338
1339 span = sd->span;
1340 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001341 if (!group) {
1342 sd = sd->child;
1343 continue;
1344 }
Nick Piggin476d1392005-06-25 14:57:29 -07001345
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001346 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001347 if (new_cpu == -1 || new_cpu == cpu) {
1348 /* Now try balancing at a lower domain level of cpu */
1349 sd = sd->child;
1350 continue;
1351 }
Nick Piggin476d1392005-06-25 14:57:29 -07001352
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001353 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001354 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001355 sd = NULL;
1356 weight = cpus_weight(span);
1357 for_each_domain(cpu, tmp) {
1358 if (weight <= cpus_weight(tmp->span))
1359 break;
1360 if (tmp->flags & flag)
1361 sd = tmp;
1362 }
1363 /* while loop will break here if sd == NULL */
1364 }
1365
1366 return cpu;
1367}
1368
1369#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001370
1371/*
1372 * wake_idle() will wake a task on an idle cpu if task->cpu is
1373 * not idle and an idle cpu is available. The span of cpus to
1374 * search starts with cpus closest then further out as needed,
1375 * so we always favor a closer, idle cpu.
1376 *
1377 * Returns the CPU we should wake onto.
1378 */
1379#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001380static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001381{
1382 cpumask_t tmp;
1383 struct sched_domain *sd;
1384 int i;
1385
1386 if (idle_cpu(cpu))
1387 return cpu;
1388
1389 for_each_domain(cpu, sd) {
1390 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001391 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392 for_each_cpu_mask(i, tmp) {
1393 if (idle_cpu(i))
1394 return i;
1395 }
1396 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001397 else
1398 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399 }
1400 return cpu;
1401}
1402#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001403static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404{
1405 return cpu;
1406}
1407#endif
1408
1409/***
1410 * try_to_wake_up - wake up a thread
1411 * @p: the to-be-woken-up thread
1412 * @state: the mask of task states that can be woken
1413 * @sync: do a synchronous wakeup?
1414 *
1415 * Put it on the run-queue if it's not already there. The "current"
1416 * thread is always on the run-queue (except when the actual
1417 * re-schedule is in progress), and as such you're allowed to do
1418 * the simpler "current->state = TASK_RUNNING" to mark yourself
1419 * runnable without the overhead of this.
1420 *
1421 * returns failure only if the task is already active.
1422 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001423static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001424{
1425 int cpu, this_cpu, success = 0;
1426 unsigned long flags;
1427 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001428 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001430 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001431 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 int new_cpu;
1433#endif
1434
1435 rq = task_rq_lock(p, &flags);
1436 old_state = p->state;
1437 if (!(old_state & state))
1438 goto out;
1439
1440 if (p->array)
1441 goto out_running;
1442
1443 cpu = task_cpu(p);
1444 this_cpu = smp_processor_id();
1445
1446#ifdef CONFIG_SMP
1447 if (unlikely(task_running(rq, p)))
1448 goto out_activate;
1449
Nick Piggin78979862005-06-25 14:57:13 -07001450 new_cpu = cpu;
1451
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 schedstat_inc(rq, ttwu_cnt);
1453 if (cpu == this_cpu) {
1454 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001455 goto out_set_cpu;
1456 }
1457
1458 for_each_domain(this_cpu, sd) {
1459 if (cpu_isset(cpu, sd->span)) {
1460 schedstat_inc(sd, ttwu_wake_remote);
1461 this_sd = sd;
1462 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463 }
1464 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465
Nick Piggin78979862005-06-25 14:57:13 -07001466 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001467 goto out_set_cpu;
1468
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 /*
Nick Piggin78979862005-06-25 14:57:13 -07001470 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001471 */
Nick Piggin78979862005-06-25 14:57:13 -07001472 if (this_sd) {
1473 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475
Nick Piggina3f21bc2005-06-25 14:57:15 -07001476 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1477
Nick Piggin78979862005-06-25 14:57:13 -07001478 load = source_load(cpu, idx);
1479 this_load = target_load(this_cpu, idx);
1480
Nick Piggin78979862005-06-25 14:57:13 -07001481 new_cpu = this_cpu; /* Wake to this CPU if we can */
1482
Nick Piggina3f21bc2005-06-25 14:57:15 -07001483 if (this_sd->flags & SD_WAKE_AFFINE) {
1484 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001485 unsigned long tl_per_task;
1486
1487 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001488
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001490 * If sync wakeup then subtract the (maximum possible)
1491 * effect of the currently running task from the load
1492 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001494 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001495 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001496
1497 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001498 tl + target_load(cpu, idx) <= tl_per_task) ||
1499 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001500 /*
1501 * This domain has SD_WAKE_AFFINE and
1502 * p is cache cold in this domain, and
1503 * there is no bad imbalance.
1504 */
1505 schedstat_inc(this_sd, ttwu_move_affine);
1506 goto out_set_cpu;
1507 }
1508 }
1509
1510 /*
1511 * Start passive balancing when half the imbalance_pct
1512 * limit is reached.
1513 */
1514 if (this_sd->flags & SD_WAKE_BALANCE) {
1515 if (imbalance*this_load <= 100*load) {
1516 schedstat_inc(this_sd, ttwu_move_balance);
1517 goto out_set_cpu;
1518 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 }
1520 }
1521
1522 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1523out_set_cpu:
1524 new_cpu = wake_idle(new_cpu, p);
1525 if (new_cpu != cpu) {
1526 set_task_cpu(p, new_cpu);
1527 task_rq_unlock(rq, &flags);
1528 /* might preempt at this point */
1529 rq = task_rq_lock(p, &flags);
1530 old_state = p->state;
1531 if (!(old_state & state))
1532 goto out;
1533 if (p->array)
1534 goto out_running;
1535
1536 this_cpu = smp_processor_id();
1537 cpu = task_cpu(p);
1538 }
1539
1540out_activate:
1541#endif /* CONFIG_SMP */
1542 if (old_state == TASK_UNINTERRUPTIBLE) {
1543 rq->nr_uninterruptible--;
1544 /*
1545 * Tasks on involuntary sleep don't earn
1546 * sleep_avg beyond just interactive state.
1547 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001548 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001549 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550
1551 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001552 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001553 * woken up with their sleep average not weighted in an
1554 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001555 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001556 if (old_state & TASK_NONINTERACTIVE)
1557 p->sleep_type = SLEEP_NONINTERACTIVE;
1558
1559
1560 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001561 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562 * Sync wakeups (i.e. those types of wakeups where the waker
1563 * has indicated that it will leave the CPU in short order)
1564 * don't trigger a preemption, if the woken up task will run on
1565 * this cpu. (in this case the 'I will reschedule' promise of
1566 * the waker guarantees that the freshly woken up task is going
1567 * to be considered on this CPU.)
1568 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001569 if (!sync || cpu != this_cpu) {
1570 if (TASK_PREEMPTS_CURR(p, rq))
1571 resched_task(rq->curr);
1572 }
1573 success = 1;
1574
1575out_running:
1576 p->state = TASK_RUNNING;
1577out:
1578 task_rq_unlock(rq, &flags);
1579
1580 return success;
1581}
1582
Ingo Molnar36c8b582006-07-03 00:25:41 -07001583int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584{
1585 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1586 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1587}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588EXPORT_SYMBOL(wake_up_process);
1589
Ingo Molnar36c8b582006-07-03 00:25:41 -07001590int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591{
1592 return try_to_wake_up(p, state, 0);
1593}
1594
Peter Williamsbc947632006-12-19 12:48:50 +10001595static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
1599 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001600void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601{
Nick Piggin476d1392005-06-25 14:57:29 -07001602 int cpu = get_cpu();
1603
1604#ifdef CONFIG_SMP
1605 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1606#endif
1607 set_task_cpu(p, cpu);
1608
Linus Torvalds1da177e2005-04-16 15:20:36 -07001609 /*
1610 * We mark the process as running here, but have not actually
1611 * inserted it onto the runqueue yet. This guarantees that
1612 * nobody will actually run it, and a signal or other external
1613 * event cannot wake it up and insert it on the runqueue either.
1614 */
1615 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001616
1617 /*
1618 * Make sure we do not leak PI boosting priority to the child:
1619 */
1620 p->prio = current->normal_prio;
1621
Linus Torvalds1da177e2005-04-16 15:20:36 -07001622 INIT_LIST_HEAD(&p->run_list);
1623 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001624#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1625 if (unlikely(sched_info_on()))
1626 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001628#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001629 p->oncpu = 0;
1630#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001632 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001633 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001634#endif
1635 /*
1636 * Share the timeslice between parent and child, thus the
1637 * total amount of pending timeslices in the system doesn't change,
1638 * resulting in more scheduling fairness.
1639 */
1640 local_irq_disable();
1641 p->time_slice = (current->time_slice + 1) >> 1;
1642 /*
1643 * The remainder of the first timeslice might be recovered by
1644 * the parent if the child exits early enough.
1645 */
1646 p->first_time_slice = 1;
1647 current->time_slice >>= 1;
1648 p->timestamp = sched_clock();
1649 if (unlikely(!current->time_slice)) {
1650 /*
1651 * This case is rare, it happens when the parent has only
1652 * a single jiffy left from its timeslice. Taking the
1653 * runqueue lock is not a problem.
1654 */
1655 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001656 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001657 }
1658 local_irq_enable();
1659 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660}
1661
1662/*
1663 * wake_up_new_task - wake up a newly created task for the first time.
1664 *
1665 * This function will do some initial scheduler statistics housekeeping
1666 * that must be done for every newly created context, then puts the task
1667 * on the runqueue and wakes it.
1668 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001669void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001671 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001672 unsigned long flags;
1673 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001674
1675 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001677 this_cpu = smp_processor_id();
1678 cpu = task_cpu(p);
1679
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680 /*
1681 * We decrease the sleep average of forking parents
1682 * and children as well, to keep max-interactive tasks
1683 * from forking tasks that are max-interactive. The parent
1684 * (current) is done further down, under its lock.
1685 */
1686 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1687 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1688
1689 p->prio = effective_prio(p);
1690
1691 if (likely(cpu == this_cpu)) {
1692 if (!(clone_flags & CLONE_VM)) {
1693 /*
1694 * The VM isn't cloned, so we're in a good position to
1695 * do child-runs-first in anticipation of an exec. This
1696 * usually avoids a lot of COW overhead.
1697 */
1698 if (unlikely(!current->array))
1699 __activate_task(p, rq);
1700 else {
1701 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001702 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703 list_add_tail(&p->run_list, &current->run_list);
1704 p->array = current->array;
1705 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001706 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 }
1708 set_need_resched();
1709 } else
1710 /* Run child last */
1711 __activate_task(p, rq);
1712 /*
1713 * We skip the following code due to cpu == this_cpu
1714 *
1715 * task_rq_unlock(rq, &flags);
1716 * this_rq = task_rq_lock(current, &flags);
1717 */
1718 this_rq = rq;
1719 } else {
1720 this_rq = cpu_rq(this_cpu);
1721
1722 /*
1723 * Not the local CPU - must adjust timestamp. This should
1724 * get optimised away in the !CONFIG_SMP case.
1725 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001726 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1727 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728 __activate_task(p, rq);
1729 if (TASK_PREEMPTS_CURR(p, rq))
1730 resched_task(rq->curr);
1731
1732 /*
1733 * Parent and child are on different CPUs, now get the
1734 * parent runqueue to update the parent's ->sleep_avg:
1735 */
1736 task_rq_unlock(rq, &flags);
1737 this_rq = task_rq_lock(current, &flags);
1738 }
1739 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1740 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1741 task_rq_unlock(this_rq, &flags);
1742}
1743
1744/*
1745 * Potentially available exiting-child timeslices are
1746 * retrieved here - this way the parent does not get
1747 * penalized for creating too many threads.
1748 *
1749 * (this cannot be used to 'generate' timeslices
1750 * artificially, because any timeslice recovered here
1751 * was given away by the parent in the first place.)
1752 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001753void fastcall sched_exit(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754{
1755 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001756 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757
1758 /*
1759 * If the child was a (relative-) CPU hog then decrease
1760 * the sleep_avg of the parent as well.
1761 */
1762 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001763 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764 p->parent->time_slice += p->time_slice;
1765 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1766 p->parent->time_slice = task_timeslice(p);
1767 }
1768 if (p->sleep_avg < p->parent->sleep_avg)
1769 p->parent->sleep_avg = p->parent->sleep_avg /
1770 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1771 (EXIT_WEIGHT + 1);
1772 task_rq_unlock(rq, &flags);
1773}
1774
1775/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001776 * prepare_task_switch - prepare to switch tasks
1777 * @rq: the runqueue preparing to switch
1778 * @next: the task we are going to switch to.
1779 *
1780 * This is called with the rq lock held and interrupts off. It must
1781 * be paired with a subsequent finish_task_switch after the context
1782 * switch.
1783 *
1784 * prepare_task_switch sets up locking and calls architecture specific
1785 * hooks.
1786 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001787static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001788{
1789 prepare_lock_switch(rq, next);
1790 prepare_arch_switch(next);
1791}
1792
1793/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001795 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 * @prev: the thread we just switched away from.
1797 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001798 * finish_task_switch must be called after the context switch, paired
1799 * with a prepare_task_switch call before the context switch.
1800 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1801 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 *
1803 * Note that we may have delayed dropping an mm in context_switch(). If
1804 * so, we finish that here outside of the runqueue lock. (Doing it
1805 * with the lock held can cause deadlocks; see schedule() for
1806 * details.)
1807 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001808static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809 __releases(rq->lock)
1810{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001812 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813
1814 rq->prev_mm = NULL;
1815
1816 /*
1817 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001818 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001819 * schedule one last time. The schedule call will never return, and
1820 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001821 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822 * still held, otherwise prev could be scheduled on another cpu, die
1823 * there before we look at prev->state, and then the reference would
1824 * be dropped twice.
1825 * Manfred Spraul <manfred@colorfullife.com>
1826 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001827 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001828 finish_arch_switch(prev);
1829 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 if (mm)
1831 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001832 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001833 /*
1834 * Remove function-return probe instances associated with this
1835 * task and put them back on the free list.
1836 */
1837 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001839 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840}
1841
1842/**
1843 * schedule_tail - first thing a freshly forked thread must call.
1844 * @prev: the thread we just switched away from.
1845 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001846asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847 __releases(rq->lock)
1848{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001849 struct rq *rq = this_rq();
1850
Nick Piggin4866cde2005-06-25 14:57:23 -07001851 finish_task_switch(rq, prev);
1852#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1853 /* In this case, finish_task_switch does not reenable preemption */
1854 preempt_enable();
1855#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001856 if (current->set_child_tid)
1857 put_user(current->pid, current->set_child_tid);
1858}
1859
1860/*
1861 * context_switch - switch to the new MM and the new
1862 * thread's register state.
1863 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001864static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001865context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001866 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867{
1868 struct mm_struct *mm = next->mm;
1869 struct mm_struct *oldmm = prev->active_mm;
1870
Zachary Amsden9226d122007-02-13 13:26:21 +01001871 /*
1872 * For paravirt, this is coupled with an exit in switch_to to
1873 * combine the page table reload and the switch backend into
1874 * one hypercall.
1875 */
1876 arch_enter_lazy_cpu_mode();
1877
Nick Pigginbeed33a2006-10-11 01:21:52 -07001878 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879 next->active_mm = oldmm;
1880 atomic_inc(&oldmm->mm_count);
1881 enter_lazy_tlb(oldmm, next);
1882 } else
1883 switch_mm(oldmm, mm, next);
1884
Nick Pigginbeed33a2006-10-11 01:21:52 -07001885 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 prev->active_mm = NULL;
1887 WARN_ON(rq->prev_mm);
1888 rq->prev_mm = oldmm;
1889 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001890 /*
1891 * Since the runqueue lock will be released by the next
1892 * task (which is an invalid locking op but in the case
1893 * of the scheduler it's an obvious special-case), so we
1894 * do an early lockdep release here:
1895 */
1896#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001898#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899
1900 /* Here we just switch the register state and the stack. */
1901 switch_to(prev, next, prev);
1902
1903 return prev;
1904}
1905
1906/*
1907 * nr_running, nr_uninterruptible and nr_context_switches:
1908 *
1909 * externally visible scheduler statistics: current number of runnable
1910 * threads, current number of uninterruptible-sleeping threads, total
1911 * number of context switches performed since bootup.
1912 */
1913unsigned long nr_running(void)
1914{
1915 unsigned long i, sum = 0;
1916
1917 for_each_online_cpu(i)
1918 sum += cpu_rq(i)->nr_running;
1919
1920 return sum;
1921}
1922
1923unsigned long nr_uninterruptible(void)
1924{
1925 unsigned long i, sum = 0;
1926
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001927 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928 sum += cpu_rq(i)->nr_uninterruptible;
1929
1930 /*
1931 * Since we read the counters lockless, it might be slightly
1932 * inaccurate. Do not allow it to go below zero though:
1933 */
1934 if (unlikely((long)sum < 0))
1935 sum = 0;
1936
1937 return sum;
1938}
1939
1940unsigned long long nr_context_switches(void)
1941{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001942 int i;
1943 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001944
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001945 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 sum += cpu_rq(i)->nr_switches;
1947
1948 return sum;
1949}
1950
1951unsigned long nr_iowait(void)
1952{
1953 unsigned long i, sum = 0;
1954
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001955 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001956 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1957
1958 return sum;
1959}
1960
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001961unsigned long nr_active(void)
1962{
1963 unsigned long i, running = 0, uninterruptible = 0;
1964
1965 for_each_online_cpu(i) {
1966 running += cpu_rq(i)->nr_running;
1967 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1968 }
1969
1970 if (unlikely((long)uninterruptible < 0))
1971 uninterruptible = 0;
1972
1973 return running + uninterruptible;
1974}
1975
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976#ifdef CONFIG_SMP
1977
1978/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07001979 * Is this task likely cache-hot:
1980 */
1981static inline int
1982task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1983{
1984 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1985}
1986
1987/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001988 * double_rq_lock - safely lock two runqueues
1989 *
1990 * Note this does not disable interrupts like task_rq_lock,
1991 * you need to do so manually before calling.
1992 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001993static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001994 __acquires(rq1->lock)
1995 __acquires(rq2->lock)
1996{
Kirill Korotaev054b9102006-12-10 02:20:11 -08001997 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001998 if (rq1 == rq2) {
1999 spin_lock(&rq1->lock);
2000 __acquire(rq2->lock); /* Fake it out ;) */
2001 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002002 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 spin_lock(&rq1->lock);
2004 spin_lock(&rq2->lock);
2005 } else {
2006 spin_lock(&rq2->lock);
2007 spin_lock(&rq1->lock);
2008 }
2009 }
2010}
2011
2012/*
2013 * double_rq_unlock - safely unlock two runqueues
2014 *
2015 * Note this does not restore interrupts like task_rq_unlock,
2016 * you need to do so manually after calling.
2017 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002018static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 __releases(rq1->lock)
2020 __releases(rq2->lock)
2021{
2022 spin_unlock(&rq1->lock);
2023 if (rq1 != rq2)
2024 spin_unlock(&rq2->lock);
2025 else
2026 __release(rq2->lock);
2027}
2028
2029/*
2030 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2031 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002032static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002033 __releases(this_rq->lock)
2034 __acquires(busiest->lock)
2035 __acquires(this_rq->lock)
2036{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002037 if (unlikely(!irqs_disabled())) {
2038 /* printk() doesn't work good under rq->lock */
2039 spin_unlock(&this_rq->lock);
2040 BUG_ON(1);
2041 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002042 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002043 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002044 spin_unlock(&this_rq->lock);
2045 spin_lock(&busiest->lock);
2046 spin_lock(&this_rq->lock);
2047 } else
2048 spin_lock(&busiest->lock);
2049 }
2050}
2051
2052/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002053 * If dest_cpu is allowed for this process, migrate the task to it.
2054 * This is accomplished by forcing the cpu_allowed mask to only
2055 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2056 * the cpu_allowed mask is restored.
2057 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002058static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002059{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002060 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002062 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063
2064 rq = task_rq_lock(p, &flags);
2065 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2066 || unlikely(cpu_is_offline(dest_cpu)))
2067 goto out;
2068
2069 /* force the process onto the specified CPU */
2070 if (migrate_task(p, dest_cpu, &req)) {
2071 /* Need to wait for migration thread (might exit: take ref). */
2072 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002073
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 get_task_struct(mt);
2075 task_rq_unlock(rq, &flags);
2076 wake_up_process(mt);
2077 put_task_struct(mt);
2078 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002079
Linus Torvalds1da177e2005-04-16 15:20:36 -07002080 return;
2081 }
2082out:
2083 task_rq_unlock(rq, &flags);
2084}
2085
2086/*
Nick Piggin476d1392005-06-25 14:57:29 -07002087 * sched_exec - execve() is a valuable balancing opportunity, because at
2088 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002089 */
2090void sched_exec(void)
2091{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002092 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002093 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002094 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002095 if (new_cpu != this_cpu)
2096 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097}
2098
2099/*
2100 * pull_task - move a task from a remote runqueue to the local runqueue.
2101 * Both runqueues must be locked.
2102 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002103static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2104 struct task_struct *p, struct rq *this_rq,
2105 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106{
2107 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002108 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002110 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002111 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002112 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2113 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114 /*
2115 * Note that idle threads have a prio of MAX_PRIO, for this test
2116 * to be always true for them.
2117 */
2118 if (TASK_PREEMPTS_CURR(p, this_rq))
2119 resched_task(this_rq->curr);
2120}
2121
2122/*
2123 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2124 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002125static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002126int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002127 struct sched_domain *sd, enum idle_type idle,
2128 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129{
2130 /*
2131 * We do not migrate tasks that are:
2132 * 1) running (obviously), or
2133 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2134 * 3) are cache-hot on their current CPU.
2135 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002136 if (!cpu_isset(this_cpu, p->cpus_allowed))
2137 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002138 *all_pinned = 0;
2139
2140 if (task_running(rq, p))
2141 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142
2143 /*
2144 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002145 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002146 * 2) too many balance attempts have failed.
2147 */
2148
Mike Galbraithb18ec802006-12-10 02:20:31 -08002149 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2150#ifdef CONFIG_SCHEDSTATS
2151 if (task_hot(p, rq->most_recent_timestamp, sd))
2152 schedstat_inc(sd, lb_hot_gained[idle]);
2153#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002155 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156
Mike Galbraithb18ec802006-12-10 02:20:31 -08002157 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002158 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159 return 1;
2160}
2161
Peter Williams615052d2006-06-27 02:54:37 -07002162#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002163
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002165 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2166 * load from busiest to this_rq, as part of a balancing operation within
2167 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168 *
2169 * Called with both runqueues locked.
2170 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002171static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002172 unsigned long max_nr_move, unsigned long max_load_move,
2173 struct sched_domain *sd, enum idle_type idle,
2174 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002176 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2177 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002178 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002180 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002181 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182
Peter Williams2dd73a42006-06-27 02:54:34 -07002183 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 goto out;
2185
Peter Williams2dd73a42006-06-27 02:54:34 -07002186 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002187 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002188 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002189 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002190 /*
2191 * Enable handling of the case where there is more than one task
2192 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002193 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002194 * and therefore it's safe to override the skip (based on load) of
2195 * any task we find with that prio.
2196 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002197 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002198
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 /*
2200 * We first consider expired tasks. Those will likely not be
2201 * executed in the near future, and they are most likely to
2202 * be cache-cold, thus switching CPUs has the least effect
2203 * on them.
2204 */
2205 if (busiest->expired->nr_active) {
2206 array = busiest->expired;
2207 dst_array = this_rq->expired;
2208 } else {
2209 array = busiest->active;
2210 dst_array = this_rq->active;
2211 }
2212
2213new_array:
2214 /* Start searching at priority 0: */
2215 idx = 0;
2216skip_bitmap:
2217 if (!idx)
2218 idx = sched_find_first_bit(array->bitmap);
2219 else
2220 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2221 if (idx >= MAX_PRIO) {
2222 if (array == busiest->expired && busiest->active->nr_active) {
2223 array = busiest->active;
2224 dst_array = this_rq->active;
2225 goto new_array;
2226 }
2227 goto out;
2228 }
2229
2230 head = array->queue + idx;
2231 curr = head->prev;
2232skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002233 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234
2235 curr = curr->prev;
2236
Peter Williams50ddd962006-06-27 02:54:36 -07002237 /*
2238 * To help distribute high priority tasks accross CPUs we don't
2239 * skip a task if it will be the highest priority task (i.e. smallest
2240 * prio value) on its new queue regardless of its load weight
2241 */
Peter Williams615052d2006-06-27 02:54:37 -07002242 skip_for_load = tmp->load_weight > rem_load_move;
2243 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002244 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002245 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002246 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002247
2248 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249 if (curr != head)
2250 goto skip_queue;
2251 idx++;
2252 goto skip_bitmap;
2253 }
2254
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2256 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002257 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258
Peter Williams2dd73a42006-06-27 02:54:34 -07002259 /*
2260 * We only want to steal up to the prescribed number of tasks
2261 * and the prescribed amount of weighted load.
2262 */
2263 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002264 if (idx < this_best_prio)
2265 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002266 if (curr != head)
2267 goto skip_queue;
2268 idx++;
2269 goto skip_bitmap;
2270 }
2271out:
2272 /*
2273 * Right now, this is the only place pull_task() is called,
2274 * so we can safely collect pull_task() stats here rather than
2275 * inside pull_task().
2276 */
2277 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002278
2279 if (all_pinned)
2280 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 return pulled;
2282}
2283
2284/*
2285 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002286 * domain. It calculates and returns the amount of weighted load which
2287 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288 */
2289static struct sched_group *
2290find_busiest_group(struct sched_domain *sd, int this_cpu,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002291 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002292 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293{
2294 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2295 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002296 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002297 unsigned long busiest_load_per_task, busiest_nr_running;
2298 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002299 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002300#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2301 int power_savings_balance = 1;
2302 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2303 unsigned long min_nr_running = ULONG_MAX;
2304 struct sched_group *group_min = NULL, *group_leader = NULL;
2305#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306
2307 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002308 busiest_load_per_task = busiest_nr_running = 0;
2309 this_load_per_task = this_nr_running = 0;
Nick Piggin78979862005-06-25 14:57:13 -07002310 if (idle == NOT_IDLE)
2311 load_idx = sd->busy_idx;
2312 else if (idle == NEWLY_IDLE)
2313 load_idx = sd->newidle_idx;
2314 else
2315 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002316
2317 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002318 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 int local_group;
2320 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002321 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002322 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323
2324 local_group = cpu_isset(this_cpu, group->cpumask);
2325
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002326 if (local_group)
2327 balance_cpu = first_cpu(group->cpumask);
2328
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002330 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002331
2332 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002333 struct rq *rq;
2334
2335 if (!cpu_isset(i, *cpus))
2336 continue;
2337
2338 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002339
Nick Piggin5969fe02005-09-10 00:26:19 -07002340 if (*sd_idle && !idle_cpu(i))
2341 *sd_idle = 0;
2342
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002344 if (local_group) {
2345 if (idle_cpu(i) && !first_idle_cpu) {
2346 first_idle_cpu = 1;
2347 balance_cpu = i;
2348 }
2349
Nick Piggina2000572006-02-10 01:51:02 -08002350 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002351 } else
Nick Piggina2000572006-02-10 01:51:02 -08002352 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353
2354 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002355 sum_nr_running += rq->nr_running;
2356 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 }
2358
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002359 /*
2360 * First idle cpu or the first cpu(busiest) in this sched group
2361 * is eligible for doing load balancing at this and above
2362 * domains.
2363 */
2364 if (local_group && balance_cpu != this_cpu && balance) {
2365 *balance = 0;
2366 goto ret;
2367 }
2368
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369 total_load += avg_load;
2370 total_pwr += group->cpu_power;
2371
2372 /* Adjust by relative CPU power of the group */
2373 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2374
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002375 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2376
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 if (local_group) {
2378 this_load = avg_load;
2379 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002380 this_nr_running = sum_nr_running;
2381 this_load_per_task = sum_weighted_load;
2382 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002383 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 max_load = avg_load;
2385 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002386 busiest_nr_running = sum_nr_running;
2387 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002388 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002389
2390#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2391 /*
2392 * Busy processors will not participate in power savings
2393 * balance.
2394 */
2395 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2396 goto group_next;
2397
2398 /*
2399 * If the local group is idle or completely loaded
2400 * no need to do power savings balance at this domain
2401 */
2402 if (local_group && (this_nr_running >= group_capacity ||
2403 !this_nr_running))
2404 power_savings_balance = 0;
2405
2406 /*
2407 * If a group is already running at full capacity or idle,
2408 * don't include that group in power savings calculations
2409 */
2410 if (!power_savings_balance || sum_nr_running >= group_capacity
2411 || !sum_nr_running)
2412 goto group_next;
2413
2414 /*
2415 * Calculate the group which has the least non-idle load.
2416 * This is the group from where we need to pick up the load
2417 * for saving power
2418 */
2419 if ((sum_nr_running < min_nr_running) ||
2420 (sum_nr_running == min_nr_running &&
2421 first_cpu(group->cpumask) <
2422 first_cpu(group_min->cpumask))) {
2423 group_min = group;
2424 min_nr_running = sum_nr_running;
2425 min_load_per_task = sum_weighted_load /
2426 sum_nr_running;
2427 }
2428
2429 /*
2430 * Calculate the group which is almost near its
2431 * capacity but still has some space to pick up some load
2432 * from other group and save more power
2433 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002434 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002435 if (sum_nr_running > leader_nr_running ||
2436 (sum_nr_running == leader_nr_running &&
2437 first_cpu(group->cpumask) >
2438 first_cpu(group_leader->cpumask))) {
2439 group_leader = group;
2440 leader_nr_running = sum_nr_running;
2441 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002442 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002443group_next:
2444#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002445 group = group->next;
2446 } while (group != sd->groups);
2447
Peter Williams2dd73a42006-06-27 02:54:34 -07002448 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449 goto out_balanced;
2450
2451 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2452
2453 if (this_load >= avg_load ||
2454 100*max_load <= sd->imbalance_pct*this_load)
2455 goto out_balanced;
2456
Peter Williams2dd73a42006-06-27 02:54:34 -07002457 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 /*
2459 * We're trying to get all the cpus to the average_load, so we don't
2460 * want to push ourselves above the average load, nor do we wish to
2461 * reduce the max loaded cpu below the average load, as either of these
2462 * actions would just result in more rebalancing later, and ping-pong
2463 * tasks around. Thus we look for the minimum possible imbalance.
2464 * Negative imbalances (*we* are more loaded than anyone else) will
2465 * be counted as no imbalance for these purposes -- we can't fix that
2466 * by pulling tasks to us. Be careful of negative numbers as they'll
2467 * appear as very large values with unsigned longs.
2468 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002469 if (max_load <= busiest_load_per_task)
2470 goto out_balanced;
2471
2472 /*
2473 * In the presence of smp nice balancing, certain scenarios can have
2474 * max load less than avg load(as we skip the groups at or below
2475 * its cpu_power, while calculating max_load..)
2476 */
2477 if (max_load < avg_load) {
2478 *imbalance = 0;
2479 goto small_imbalance;
2480 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002481
2482 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002483 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002484
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485 /* How much load to actually move to equalise the imbalance */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002486 *imbalance = min(max_pull * busiest->cpu_power,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002487 (avg_load - this_load) * this->cpu_power)
2488 / SCHED_LOAD_SCALE;
2489
Peter Williams2dd73a42006-06-27 02:54:34 -07002490 /*
2491 * if *imbalance is less than the average load per runnable task
2492 * there is no gaurantee that any tasks will be moved so we'll have
2493 * a think about bumping its value to force at least one task to be
2494 * moved
2495 */
2496 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002497 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002498 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002499
Peter Williams2dd73a42006-06-27 02:54:34 -07002500small_imbalance:
2501 pwr_move = pwr_now = 0;
2502 imbn = 2;
2503 if (this_nr_running) {
2504 this_load_per_task /= this_nr_running;
2505 if (busiest_load_per_task > this_load_per_task)
2506 imbn = 1;
2507 } else
2508 this_load_per_task = SCHED_LOAD_SCALE;
2509
2510 if (max_load - this_load >= busiest_load_per_task * imbn) {
2511 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512 return busiest;
2513 }
2514
2515 /*
2516 * OK, we don't have enough imbalance to justify moving tasks,
2517 * however we may be able to increase total CPU power used by
2518 * moving them.
2519 */
2520
Peter Williams2dd73a42006-06-27 02:54:34 -07002521 pwr_now += busiest->cpu_power *
2522 min(busiest_load_per_task, max_load);
2523 pwr_now += this->cpu_power *
2524 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002525 pwr_now /= SCHED_LOAD_SCALE;
2526
2527 /* Amount of load we'd subtract */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002528 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2529 busiest->cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 if (max_load > tmp)
Peter Williams2dd73a42006-06-27 02:54:34 -07002531 pwr_move += busiest->cpu_power *
2532 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533
2534 /* Amount of load we'd add */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002535 if (max_load * busiest->cpu_power <
2536 busiest_load_per_task * SCHED_LOAD_SCALE)
2537 tmp = max_load * busiest->cpu_power / this->cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538 else
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002539 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2540 this->cpu_power;
2541 pwr_move += this->cpu_power *
2542 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002543 pwr_move /= SCHED_LOAD_SCALE;
2544
2545 /* Move if we gain throughput */
2546 if (pwr_move <= pwr_now)
2547 goto out_balanced;
2548
Peter Williams2dd73a42006-06-27 02:54:34 -07002549 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550 }
2551
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552 return busiest;
2553
2554out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002555#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2556 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2557 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002559 if (this == group_leader && group_leader != group_min) {
2560 *imbalance = min_load_per_task;
2561 return group_min;
2562 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002563#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002564ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565 *imbalance = 0;
2566 return NULL;
2567}
2568
2569/*
2570 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2571 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002572static struct rq *
Ingo Molnar48f24c42006-07-03 00:25:40 -07002573find_busiest_queue(struct sched_group *group, enum idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002574 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002576 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002577 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578 int i;
2579
2580 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002581
2582 if (!cpu_isset(i, *cpus))
2583 continue;
2584
Ingo Molnar48f24c42006-07-03 00:25:40 -07002585 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002586
Ingo Molnar48f24c42006-07-03 00:25:40 -07002587 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002588 continue;
2589
Ingo Molnar48f24c42006-07-03 00:25:40 -07002590 if (rq->raw_weighted_load > max_load) {
2591 max_load = rq->raw_weighted_load;
2592 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593 }
2594 }
2595
2596 return busiest;
2597}
2598
2599/*
Nick Piggin77391d72005-06-25 14:57:30 -07002600 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2601 * so long as it is large enough.
2602 */
2603#define MAX_PINNED_INTERVAL 512
2604
Ingo Molnar48f24c42006-07-03 00:25:40 -07002605static inline unsigned long minus_1_or_zero(unsigned long n)
2606{
2607 return n > 0 ? n - 1 : 0;
2608}
2609
Nick Piggin77391d72005-06-25 14:57:30 -07002610/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2612 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002614static int load_balance(int this_cpu, struct rq *this_rq,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002615 struct sched_domain *sd, enum idle_type idle,
2616 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002617{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002618 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002619 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002620 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002621 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002622 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002623 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002624
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002625 /*
2626 * When power savings policy is enabled for the parent domain, idle
2627 * sibling can pick up load irrespective of busy siblings. In this case,
2628 * let the state of idle sibling percolate up as IDLE, instead of
2629 * portraying it as NOT_IDLE.
2630 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002631 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002632 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002633 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002634
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 schedstat_inc(sd, lb_cnt[idle]);
2636
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002637redo:
2638 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002639 &cpus, balance);
2640
Chen, Kenneth W06066712006-12-10 02:20:35 -08002641 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002642 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002643
Linus Torvalds1da177e2005-04-16 15:20:36 -07002644 if (!group) {
2645 schedstat_inc(sd, lb_nobusyg[idle]);
2646 goto out_balanced;
2647 }
2648
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002649 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650 if (!busiest) {
2651 schedstat_inc(sd, lb_nobusyq[idle]);
2652 goto out_balanced;
2653 }
2654
Nick Piggindb935db2005-06-25 14:57:11 -07002655 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002656
2657 schedstat_add(sd, lb_imbalance[idle], imbalance);
2658
2659 nr_moved = 0;
2660 if (busiest->nr_running > 1) {
2661 /*
2662 * Attempt to move tasks. If find_busiest_group has found
2663 * an imbalance but busiest->nr_running <= 1, the group is
2664 * still unbalanced. nr_moved simply stays zero, so it is
2665 * correctly treated as an imbalance.
2666 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002667 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002668 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002670 minus_1_or_zero(busiest->nr_running),
2671 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002672 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002673 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002674
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002675 /*
2676 * some other cpu did the load balance for us.
2677 */
2678 if (nr_moved && this_cpu != smp_processor_id())
2679 resched_cpu(this_cpu);
2680
Nick Piggin81026792005-06-25 14:57:07 -07002681 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002682 if (unlikely(all_pinned)) {
2683 cpu_clear(cpu_of(busiest), cpus);
2684 if (!cpus_empty(cpus))
2685 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002686 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002687 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688 }
Nick Piggin81026792005-06-25 14:57:07 -07002689
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690 if (!nr_moved) {
2691 schedstat_inc(sd, lb_failed[idle]);
2692 sd->nr_balance_failed++;
2693
2694 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002696 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002697
2698 /* don't kick the migration_thread, if the curr
2699 * task on busiest cpu can't be moved to this_cpu
2700 */
2701 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002702 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002703 all_pinned = 1;
2704 goto out_one_pinned;
2705 }
2706
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707 if (!busiest->active_balance) {
2708 busiest->active_balance = 1;
2709 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002710 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002712 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002713 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714 wake_up_process(busiest->migration_thread);
2715
2716 /*
2717 * We've kicked active balancing, reset the failure
2718 * counter.
2719 */
Nick Piggin39507452005-06-25 14:57:09 -07002720 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 }
Nick Piggin81026792005-06-25 14:57:07 -07002722 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 sd->nr_balance_failed = 0;
2724
Nick Piggin81026792005-06-25 14:57:07 -07002725 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 /* We were unbalanced, so reset the balancing interval */
2727 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002728 } else {
2729 /*
2730 * If we've begun active balancing, start to back off. This
2731 * case may not be covered by the all_pinned logic if there
2732 * is only 1 task on the busy runqueue (because we don't call
2733 * move_tasks).
2734 */
2735 if (sd->balance_interval < sd->max_interval)
2736 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002737 }
2738
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002739 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002741 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 return nr_moved;
2743
2744out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002745 schedstat_inc(sd, lb_balanced[idle]);
2746
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002747 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002748
2749out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002751 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2752 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002753 sd->balance_interval *= 2;
2754
Ingo Molnar48f24c42006-07-03 00:25:40 -07002755 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002756 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002757 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758 return 0;
2759}
2760
2761/*
2762 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2763 * tasks if there is an imbalance.
2764 *
2765 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2766 * this_rq is locked.
2767 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002768static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002769load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770{
2771 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002772 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002773 unsigned long imbalance;
2774 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002775 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002776 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002777
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002778 /*
2779 * When power savings policy is enabled for the parent domain, idle
2780 * sibling can pick up load irrespective of busy siblings. In this case,
2781 * let the state of idle sibling percolate up as IDLE, instead of
2782 * portraying it as NOT_IDLE.
2783 */
2784 if (sd->flags & SD_SHARE_CPUPOWER &&
2785 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002786 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787
2788 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002789redo:
2790 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002791 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002792 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002794 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002795 }
2796
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002797 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2798 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002799 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002801 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802 }
2803
Nick Piggindb935db2005-06-25 14:57:11 -07002804 BUG_ON(busiest == this_rq);
2805
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002807
2808 nr_moved = 0;
2809 if (busiest->nr_running > 1) {
2810 /* Attempt to move tasks */
2811 double_lock_balance(this_rq, busiest);
2812 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002813 minus_1_or_zero(busiest->nr_running),
Nick Piggin81026792005-06-25 14:57:07 -07002814 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002815 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002816
2817 if (!nr_moved) {
2818 cpu_clear(cpu_of(busiest), cpus);
2819 if (!cpus_empty(cpus))
2820 goto redo;
2821 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002822 }
2823
Nick Piggin5969fe02005-09-10 00:26:19 -07002824 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002825 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002826 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2827 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002828 return -1;
2829 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002830 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002833
2834out_balanced:
2835 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002836 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002838 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002839 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002840
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002841 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002842}
2843
2844/*
2845 * idle_balance is called by schedule() if this_cpu is about to become
2846 * idle. Attempts to pull tasks from other CPUs.
2847 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002848static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849{
2850 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002851 int pulled_task = 0;
2852 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853
2854 for_each_domain(this_cpu, sd) {
2855 if (sd->flags & SD_BALANCE_NEWIDLE) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002856 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002857 pulled_task = load_balance_newidle(this_cpu,
2858 this_rq, sd);
2859 if (time_after(next_balance,
2860 sd->last_balance + sd->balance_interval))
2861 next_balance = sd->last_balance
2862 + sd->balance_interval;
2863 if (pulled_task)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865 }
2866 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002867 if (!pulled_task)
2868 /*
2869 * We are going idle. next_balance may be set based on
2870 * a busy processor. So reset next_balance.
2871 */
2872 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002873}
2874
2875/*
2876 * active_load_balance is run by migration threads. It pushes running tasks
2877 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2878 * running on each physical CPU where possible, and avoids physical /
2879 * logical imbalances.
2880 *
2881 * Called with busiest_rq locked.
2882 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002883static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002884{
Nick Piggin39507452005-06-25 14:57:09 -07002885 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002886 struct sched_domain *sd;
2887 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002888
Ingo Molnar48f24c42006-07-03 00:25:40 -07002889 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002890 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002891 return;
2892
2893 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002894
2895 /*
Nick Piggin39507452005-06-25 14:57:09 -07002896 * This condition is "impossible", if it occurs
2897 * we need to fix it. Originally reported by
2898 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899 */
Nick Piggin39507452005-06-25 14:57:09 -07002900 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901
Nick Piggin39507452005-06-25 14:57:09 -07002902 /* move a task from busiest_rq to target_rq */
2903 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002904
Nick Piggin39507452005-06-25 14:57:09 -07002905 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002906 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002907 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002908 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002909 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911
Ingo Molnar48f24c42006-07-03 00:25:40 -07002912 if (likely(sd)) {
2913 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002914
Ingo Molnar48f24c42006-07-03 00:25:40 -07002915 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2916 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2917 NULL))
2918 schedstat_inc(sd, alb_pushed);
2919 else
2920 schedstat_inc(sd, alb_failed);
2921 }
Nick Piggin39507452005-06-25 14:57:09 -07002922 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923}
2924
Christoph Lameter7835b982006-12-10 02:20:22 -08002925static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002926{
Christoph Lameter7835b982006-12-10 02:20:22 -08002927 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08002928 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002929
Peter Williams2dd73a42006-06-27 02:54:34 -07002930 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002931
2932 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08002933 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002934 unsigned long old_load, new_load;
2935
Nick Pigginff916912007-02-12 00:53:51 -08002936 /* scale is effectively 1 << i now, and >> i divides by scale */
2937
Nick Piggin78979862005-06-25 14:57:13 -07002938 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002939 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002940 /*
2941 * Round up the averaging division if load is increasing. This
2942 * prevents us from getting stuck on 9 if the load is 10, for
2943 * example.
2944 */
2945 if (new_load > old_load)
2946 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08002947 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07002948 }
Christoph Lameter7835b982006-12-10 02:20:22 -08002949}
2950
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002951#ifdef CONFIG_NO_HZ
2952static struct {
2953 atomic_t load_balancer;
2954 cpumask_t cpu_mask;
2955} nohz ____cacheline_aligned = {
2956 .load_balancer = ATOMIC_INIT(-1),
2957 .cpu_mask = CPU_MASK_NONE,
2958};
2959
Christoph Lameter7835b982006-12-10 02:20:22 -08002960/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002961 * This routine will try to nominate the ilb (idle load balancing)
2962 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2963 * load balancing on behalf of all those cpus. If all the cpus in the system
2964 * go into this tickless mode, then there will be no ilb owner (as there is
2965 * no need for one) and all the cpus will sleep till the next wakeup event
2966 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002967 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002968 * For the ilb owner, tick is not stopped. And this tick will be used
2969 * for idle load balancing. ilb owner will still be part of
2970 * nohz.cpu_mask..
2971 *
2972 * While stopping the tick, this cpu will become the ilb owner if there
2973 * is no other owner. And will be the owner till that cpu becomes busy
2974 * or if all cpus in the system stop their ticks at which point
2975 * there is no need for ilb owner.
2976 *
2977 * When the ilb owner becomes busy, it nominates another owner, during the
2978 * next busy scheduler_tick()
2979 */
2980int select_nohz_load_balancer(int stop_tick)
2981{
2982 int cpu = smp_processor_id();
2983
2984 if (stop_tick) {
2985 cpu_set(cpu, nohz.cpu_mask);
2986 cpu_rq(cpu)->in_nohz_recently = 1;
2987
2988 /*
2989 * If we are going offline and still the leader, give up!
2990 */
2991 if (cpu_is_offline(cpu) &&
2992 atomic_read(&nohz.load_balancer) == cpu) {
2993 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2994 BUG();
2995 return 0;
2996 }
2997
2998 /* time for ilb owner also to sleep */
2999 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3000 if (atomic_read(&nohz.load_balancer) == cpu)
3001 atomic_set(&nohz.load_balancer, -1);
3002 return 0;
3003 }
3004
3005 if (atomic_read(&nohz.load_balancer) == -1) {
3006 /* make me the ilb owner */
3007 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3008 return 1;
3009 } else if (atomic_read(&nohz.load_balancer) == cpu)
3010 return 1;
3011 } else {
3012 if (!cpu_isset(cpu, nohz.cpu_mask))
3013 return 0;
3014
3015 cpu_clear(cpu, nohz.cpu_mask);
3016
3017 if (atomic_read(&nohz.load_balancer) == cpu)
3018 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3019 BUG();
3020 }
3021 return 0;
3022}
3023#endif
3024
3025static DEFINE_SPINLOCK(balancing);
3026
3027/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003028 * It checks each scheduling domain to see if it is due to be balanced,
3029 * and initiates a balancing operation if so.
3030 *
3031 * Balancing parameters are set up in arch_init_sched_domains.
3032 */
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003033static inline void rebalance_domains(int cpu, enum idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003034{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003035 int balance = 1;
3036 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003037 unsigned long interval;
3038 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003039 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003040 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003041
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003042 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003043 if (!(sd->flags & SD_LOAD_BALANCE))
3044 continue;
3045
3046 interval = sd->balance_interval;
3047 if (idle != SCHED_IDLE)
3048 interval *= sd->busy_factor;
3049
3050 /* scale ms to jiffies */
3051 interval = msecs_to_jiffies(interval);
3052 if (unlikely(!interval))
3053 interval = 1;
3054
Christoph Lameter08c183f2006-12-10 02:20:29 -08003055 if (sd->flags & SD_SERIALIZE) {
3056 if (!spin_trylock(&balancing))
3057 goto out;
3058 }
3059
Christoph Lameterc9819f42006-12-10 02:20:25 -08003060 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003061 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003062 /*
3063 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003064 * longer idle, or one of our SMT siblings is
3065 * not idle.
3066 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067 idle = NOT_IDLE;
3068 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003069 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003071 if (sd->flags & SD_SERIALIZE)
3072 spin_unlock(&balancing);
3073out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003074 if (time_after(next_balance, sd->last_balance + interval))
3075 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003076
3077 /*
3078 * Stop the load balance at this level. There is another
3079 * CPU in our sched group which is doing load balancing more
3080 * actively.
3081 */
3082 if (!balance)
3083 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003084 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003085 rq->next_balance = next_balance;
3086}
3087
3088/*
3089 * run_rebalance_domains is triggered when needed from the scheduler tick.
3090 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3091 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3092 */
3093static void run_rebalance_domains(struct softirq_action *h)
3094{
3095 int local_cpu = smp_processor_id();
3096 struct rq *local_rq = cpu_rq(local_cpu);
3097 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3098
3099 rebalance_domains(local_cpu, idle);
3100
3101#ifdef CONFIG_NO_HZ
3102 /*
3103 * If this cpu is the owner for idle load balancing, then do the
3104 * balancing on behalf of the other idle cpus whose ticks are
3105 * stopped.
3106 */
3107 if (local_rq->idle_at_tick &&
3108 atomic_read(&nohz.load_balancer) == local_cpu) {
3109 cpumask_t cpus = nohz.cpu_mask;
3110 struct rq *rq;
3111 int balance_cpu;
3112
3113 cpu_clear(local_cpu, cpus);
3114 for_each_cpu_mask(balance_cpu, cpus) {
3115 /*
3116 * If this cpu gets work to do, stop the load balancing
3117 * work being done for other cpus. Next load
3118 * balancing owner will pick it up.
3119 */
3120 if (need_resched())
3121 break;
3122
3123 rebalance_domains(balance_cpu, SCHED_IDLE);
3124
3125 rq = cpu_rq(balance_cpu);
3126 if (time_after(local_rq->next_balance, rq->next_balance))
3127 local_rq->next_balance = rq->next_balance;
3128 }
3129 }
3130#endif
3131}
3132
3133/*
3134 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3135 *
3136 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3137 * idle load balancing owner or decide to stop the periodic load balancing,
3138 * if the whole system is idle.
3139 */
3140static inline void trigger_load_balance(int cpu)
3141{
3142 struct rq *rq = cpu_rq(cpu);
3143#ifdef CONFIG_NO_HZ
3144 /*
3145 * If we were in the nohz mode recently and busy at the current
3146 * scheduler tick, then check if we need to nominate new idle
3147 * load balancer.
3148 */
3149 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3150 rq->in_nohz_recently = 0;
3151
3152 if (atomic_read(&nohz.load_balancer) == cpu) {
3153 cpu_clear(cpu, nohz.cpu_mask);
3154 atomic_set(&nohz.load_balancer, -1);
3155 }
3156
3157 if (atomic_read(&nohz.load_balancer) == -1) {
3158 /*
3159 * simple selection for now: Nominate the
3160 * first cpu in the nohz list to be the next
3161 * ilb owner.
3162 *
3163 * TBD: Traverse the sched domains and nominate
3164 * the nearest cpu in the nohz.cpu_mask.
3165 */
3166 int ilb = first_cpu(nohz.cpu_mask);
3167
3168 if (ilb != NR_CPUS)
3169 resched_cpu(ilb);
3170 }
3171 }
3172
3173 /*
3174 * If this cpu is idle and doing idle load balancing for all the
3175 * cpus with ticks stopped, is it time for that to stop?
3176 */
3177 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3178 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3179 resched_cpu(cpu);
3180 return;
3181 }
3182
3183 /*
3184 * If this cpu is idle and the idle load balancing is done by
3185 * someone else, then no need raise the SCHED_SOFTIRQ
3186 */
3187 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3188 cpu_isset(cpu, nohz.cpu_mask))
3189 return;
3190#endif
3191 if (time_after_eq(jiffies, rq->next_balance))
3192 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003193}
3194#else
3195/*
3196 * on UP we do not need to balance between CPUs:
3197 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003198static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003199{
3200}
3201#endif
3202
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203DEFINE_PER_CPU(struct kernel_stat, kstat);
3204
3205EXPORT_PER_CPU_SYMBOL(kstat);
3206
3207/*
3208 * This is called on clock ticks and on context switches.
3209 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3210 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07003211static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07003212update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003213{
Mike Galbraithb18ec802006-12-10 02:20:31 -08003214 p->sched_time += now - p->last_ran;
3215 p->last_ran = rq->most_recent_timestamp = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003216}
3217
3218/*
3219 * Return current->sched_time plus any more ns on the sched_clock
3220 * that have not yet been banked.
3221 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003222unsigned long long current_sched_time(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003223{
3224 unsigned long long ns;
3225 unsigned long flags;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003226
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227 local_irq_save(flags);
Mike Galbraithb18ec802006-12-10 02:20:31 -08003228 ns = p->sched_time + sched_clock() - p->last_ran;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229 local_irq_restore(flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003230
Linus Torvalds1da177e2005-04-16 15:20:36 -07003231 return ns;
3232}
3233
3234/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003235 * We place interactive tasks back into the active array, if possible.
3236 *
3237 * To guarantee that this does not starve expired tasks we ignore the
3238 * interactivity of a task if the first expired task had to wait more
3239 * than a 'reasonable' amount of time. This deadline timeout is
3240 * load-dependent, as the frequency of array switched decreases with
3241 * increasing number of running tasks. We also ignore the interactivity
3242 * if a better static_prio task has expired:
3243 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003244static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003245{
3246 if (rq->curr->static_prio > rq->best_expired_prio)
3247 return 1;
3248 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3249 return 0;
3250 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3251 return 1;
3252 return 0;
3253}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003254
3255/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003256 * Account user cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in user space since the last update
3260 */
3261void account_user_time(struct task_struct *p, cputime_t cputime)
3262{
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t tmp;
3265
3266 p->utime = cputime_add(p->utime, cputime);
3267
3268 /* Add user time to cpustat. */
3269 tmp = cputime_to_cputime64(cputime);
3270 if (TASK_NICE(p) > 0)
3271 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3272 else
3273 cpustat->user = cputime64_add(cpustat->user, tmp);
3274}
3275
3276/*
3277 * Account system cpu time to a process.
3278 * @p: the process that the cpu time gets accounted to
3279 * @hardirq_offset: the offset to subtract from hardirq_count()
3280 * @cputime: the cpu time spent in kernel space since the last update
3281 */
3282void account_system_time(struct task_struct *p, int hardirq_offset,
3283 cputime_t cputime)
3284{
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003286 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003287 cputime64_t tmp;
3288
3289 p->stime = cputime_add(p->stime, cputime);
3290
3291 /* Add system time to cpustat. */
3292 tmp = cputime_to_cputime64(cputime);
3293 if (hardirq_count() - hardirq_offset)
3294 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3295 else if (softirq_count())
3296 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3297 else if (p != rq->idle)
3298 cpustat->system = cputime64_add(cpustat->system, tmp);
3299 else if (atomic_read(&rq->nr_iowait) > 0)
3300 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3301 else
3302 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3303 /* Account for system time used */
3304 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003305}
3306
3307/*
3308 * Account for involuntary wait time.
3309 * @p: the process from which the cpu time has been stolen
3310 * @steal: the cpu time spent in involuntary wait
3311 */
3312void account_steal_time(struct task_struct *p, cputime_t steal)
3313{
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003316 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003317
3318 if (p == rq->idle) {
3319 p->stime = cputime_add(p->stime, steal);
3320 if (atomic_read(&rq->nr_iowait) > 0)
3321 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3322 else
3323 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3324 } else
3325 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3326}
3327
Christoph Lameter7835b982006-12-10 02:20:22 -08003328static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003329{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003330 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003331 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003332 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003333 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003334 }
3335 spin_lock(&rq->lock);
3336 /*
3337 * The task was running during this tick - update the
3338 * time slice counter. Note: we do not update a thread's
3339 * priority until it either goes to sleep or uses up its
3340 * timeslice. This makes it possible for interactive tasks
3341 * to use up their timeslices at their highest priority levels.
3342 */
3343 if (rt_task(p)) {
3344 /*
3345 * RR tasks need a special form of timeslice management.
3346 * FIFO tasks have no timeslices.
3347 */
3348 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3349 p->time_slice = task_timeslice(p);
3350 p->first_time_slice = 0;
3351 set_tsk_need_resched(p);
3352
3353 /* put it at the end of the queue: */
3354 requeue_task(p, rq->active);
3355 }
3356 goto out_unlock;
3357 }
3358 if (!--p->time_slice) {
3359 dequeue_task(p, rq->active);
3360 set_tsk_need_resched(p);
3361 p->prio = effective_prio(p);
3362 p->time_slice = task_timeslice(p);
3363 p->first_time_slice = 0;
3364
3365 if (!rq->expired_timestamp)
3366 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003367 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003368 enqueue_task(p, rq->expired);
3369 if (p->static_prio < rq->best_expired_prio)
3370 rq->best_expired_prio = p->static_prio;
3371 } else
3372 enqueue_task(p, rq->active);
3373 } else {
3374 /*
3375 * Prevent a too long timeslice allowing a task to monopolize
3376 * the CPU. We do this by splitting up the timeslice into
3377 * smaller pieces.
3378 *
3379 * Note: this does not mean the task's timeslices expire or
3380 * get lost in any way, they just might be preempted by
3381 * another task of equal priority. (one with higher
3382 * priority would have preempted this task already.) We
3383 * requeue this task to the end of the list on this priority
3384 * level, which is in essence a round-robin of tasks with
3385 * equal priority.
3386 *
3387 * This only applies to tasks in the interactive
3388 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3389 */
3390 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3391 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3392 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3393 (p->array == rq->active)) {
3394
3395 requeue_task(p, rq->active);
3396 set_tsk_need_resched(p);
3397 }
3398 }
3399out_unlock:
3400 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003401}
3402
3403/*
3404 * This function gets called by the timer code, with HZ frequency.
3405 * We call it with interrupts disabled.
3406 *
3407 * It also gets called by the fork code, when changing the parent's
3408 * timeslices.
3409 */
3410void scheduler_tick(void)
3411{
3412 unsigned long long now = sched_clock();
3413 struct task_struct *p = current;
3414 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003415 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003416 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003417
3418 update_cpu_clock(p, rq, now);
3419
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003420 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003421 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003422#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003423 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003424 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003425 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003426#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003427}
3428
Linus Torvalds1da177e2005-04-16 15:20:36 -07003429#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3430
3431void fastcall add_preempt_count(int val)
3432{
3433 /*
3434 * Underflow?
3435 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003436 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3437 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003438 preempt_count() += val;
3439 /*
3440 * Spinlock count overflowing soon?
3441 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003442 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3443 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003444}
3445EXPORT_SYMBOL(add_preempt_count);
3446
3447void fastcall sub_preempt_count(int val)
3448{
3449 /*
3450 * Underflow?
3451 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003452 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3453 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003454 /*
3455 * Is the spinlock portion underflowing?
3456 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003457 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3458 !(preempt_count() & PREEMPT_MASK)))
3459 return;
3460
Linus Torvalds1da177e2005-04-16 15:20:36 -07003461 preempt_count() -= val;
3462}
3463EXPORT_SYMBOL(sub_preempt_count);
3464
3465#endif
3466
Con Kolivas3dee3862006-03-31 02:31:23 -08003467static inline int interactive_sleep(enum sleep_type sleep_type)
3468{
3469 return (sleep_type == SLEEP_INTERACTIVE ||
3470 sleep_type == SLEEP_INTERRUPTED);
3471}
3472
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473/*
3474 * schedule() is the main scheduler function.
3475 */
3476asmlinkage void __sched schedule(void)
3477{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003478 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003479 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480 struct list_head *queue;
3481 unsigned long long now;
3482 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003483 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003484 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003485 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003486
3487 /*
3488 * Test if we are atomic. Since do_exit() needs to call into
3489 * schedule() atomically, we ignore that path for now.
3490 * Otherwise, whine if we are scheduling when we should not be.
3491 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003492 if (unlikely(in_atomic() && !current->exit_state)) {
3493 printk(KERN_ERR "BUG: scheduling while atomic: "
3494 "%s/0x%08x/%d\n",
3495 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003496 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003497 if (irqs_disabled())
3498 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003499 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 }
3501 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3502
3503need_resched:
3504 preempt_disable();
3505 prev = current;
3506 release_kernel_lock(prev);
3507need_resched_nonpreemptible:
3508 rq = this_rq();
3509
3510 /*
3511 * The idle thread is not allowed to schedule!
3512 * Remove this check after it has been exercised a bit.
3513 */
3514 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3515 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3516 dump_stack();
3517 }
3518
3519 schedstat_inc(rq, sched_cnt);
3520 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003521 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003523 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524 run_time = 0;
3525 } else
3526 run_time = NS_MAX_SLEEP_AVG;
3527
3528 /*
3529 * Tasks charged proportionately less run_time at high sleep_avg to
3530 * delay them losing their interactive status
3531 */
3532 run_time /= (CURRENT_BONUS(prev) ? : 1);
3533
3534 spin_lock_irq(&rq->lock);
3535
Linus Torvalds1da177e2005-04-16 15:20:36 -07003536 switch_count = &prev->nivcsw;
3537 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3538 switch_count = &prev->nvcsw;
3539 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3540 unlikely(signal_pending(prev))))
3541 prev->state = TASK_RUNNING;
3542 else {
3543 if (prev->state == TASK_UNINTERRUPTIBLE)
3544 rq->nr_uninterruptible++;
3545 deactivate_task(prev, rq);
3546 }
3547 }
3548
3549 cpu = smp_processor_id();
3550 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 idle_balance(cpu, rq);
3552 if (!rq->nr_running) {
3553 next = rq->idle;
3554 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555 goto switch_tasks;
3556 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557 }
3558
3559 array = rq->active;
3560 if (unlikely(!array->nr_active)) {
3561 /*
3562 * Switch the active and expired arrays.
3563 */
3564 schedstat_inc(rq, sched_switch);
3565 rq->active = rq->expired;
3566 rq->expired = array;
3567 array = rq->active;
3568 rq->expired_timestamp = 0;
3569 rq->best_expired_prio = MAX_PRIO;
3570 }
3571
3572 idx = sched_find_first_bit(array->bitmap);
3573 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003574 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575
Con Kolivas3dee3862006-03-31 02:31:23 -08003576 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003577 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003578 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579 delta = 0;
3580
Con Kolivas3dee3862006-03-31 02:31:23 -08003581 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3583
3584 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003585 new_prio = recalc_task_prio(next, next->timestamp + delta);
3586
3587 if (unlikely(next->prio != new_prio)) {
3588 dequeue_task(next, array);
3589 next->prio = new_prio;
3590 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003591 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003592 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003593 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594switch_tasks:
3595 if (next == rq->idle)
3596 schedstat_inc(rq, sched_goidle);
3597 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003598 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599 clear_tsk_need_resched(prev);
3600 rcu_qsctr_inc(task_cpu(prev));
3601
3602 update_cpu_clock(prev, rq, now);
3603
3604 prev->sleep_avg -= run_time;
3605 if ((long)prev->sleep_avg <= 0)
3606 prev->sleep_avg = 0;
3607 prev->timestamp = prev->last_ran = now;
3608
3609 sched_info_switch(prev, next);
3610 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003611 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003612 rq->nr_switches++;
3613 rq->curr = next;
3614 ++*switch_count;
3615
Nick Piggin4866cde2005-06-25 14:57:23 -07003616 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617 prev = context_switch(rq, prev, next);
3618 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003619 /*
3620 * this_rq must be evaluated again because prev may have moved
3621 * CPUs since it called schedule(), thus the 'rq' on its stack
3622 * frame will be invalid.
3623 */
3624 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003625 } else
3626 spin_unlock_irq(&rq->lock);
3627
3628 prev = current;
3629 if (unlikely(reacquire_kernel_lock(prev) < 0))
3630 goto need_resched_nonpreemptible;
3631 preempt_enable_no_resched();
3632 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3633 goto need_resched;
3634}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003635EXPORT_SYMBOL(schedule);
3636
3637#ifdef CONFIG_PREEMPT
3638/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003639 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003640 * off of preempt_enable. Kernel preemptions off return from interrupt
3641 * occur there and call schedule directly.
3642 */
3643asmlinkage void __sched preempt_schedule(void)
3644{
3645 struct thread_info *ti = current_thread_info();
3646#ifdef CONFIG_PREEMPT_BKL
3647 struct task_struct *task = current;
3648 int saved_lock_depth;
3649#endif
3650 /*
3651 * If there is a non-zero preempt_count or interrupts are disabled,
3652 * we do not want to preempt the current task. Just return..
3653 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003654 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003655 return;
3656
3657need_resched:
3658 add_preempt_count(PREEMPT_ACTIVE);
3659 /*
3660 * We keep the big kernel semaphore locked, but we
3661 * clear ->lock_depth so that schedule() doesnt
3662 * auto-release the semaphore:
3663 */
3664#ifdef CONFIG_PREEMPT_BKL
3665 saved_lock_depth = task->lock_depth;
3666 task->lock_depth = -1;
3667#endif
3668 schedule();
3669#ifdef CONFIG_PREEMPT_BKL
3670 task->lock_depth = saved_lock_depth;
3671#endif
3672 sub_preempt_count(PREEMPT_ACTIVE);
3673
3674 /* we could miss a preemption opportunity between schedule and now */
3675 barrier();
3676 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3677 goto need_resched;
3678}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679EXPORT_SYMBOL(preempt_schedule);
3680
3681/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003682 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003683 * off of irq context.
3684 * Note, that this is called and return with irqs disabled. This will
3685 * protect us against recursive calling from irq.
3686 */
3687asmlinkage void __sched preempt_schedule_irq(void)
3688{
3689 struct thread_info *ti = current_thread_info();
3690#ifdef CONFIG_PREEMPT_BKL
3691 struct task_struct *task = current;
3692 int saved_lock_depth;
3693#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003694 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695 BUG_ON(ti->preempt_count || !irqs_disabled());
3696
3697need_resched:
3698 add_preempt_count(PREEMPT_ACTIVE);
3699 /*
3700 * We keep the big kernel semaphore locked, but we
3701 * clear ->lock_depth so that schedule() doesnt
3702 * auto-release the semaphore:
3703 */
3704#ifdef CONFIG_PREEMPT_BKL
3705 saved_lock_depth = task->lock_depth;
3706 task->lock_depth = -1;
3707#endif
3708 local_irq_enable();
3709 schedule();
3710 local_irq_disable();
3711#ifdef CONFIG_PREEMPT_BKL
3712 task->lock_depth = saved_lock_depth;
3713#endif
3714 sub_preempt_count(PREEMPT_ACTIVE);
3715
3716 /* we could miss a preemption opportunity between schedule and now */
3717 barrier();
3718 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3719 goto need_resched;
3720}
3721
3722#endif /* CONFIG_PREEMPT */
3723
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003724int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3725 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003726{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003727 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003729EXPORT_SYMBOL(default_wake_function);
3730
3731/*
3732 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3733 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3734 * number) then we wake all the non-exclusive tasks and one exclusive task.
3735 *
3736 * There are circumstances in which we can try to wake a task which has already
3737 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3738 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3739 */
3740static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3741 int nr_exclusive, int sync, void *key)
3742{
3743 struct list_head *tmp, *next;
3744
3745 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003746 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3747 unsigned flags = curr->flags;
3748
Linus Torvalds1da177e2005-04-16 15:20:36 -07003749 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003750 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003751 break;
3752 }
3753}
3754
3755/**
3756 * __wake_up - wake up threads blocked on a waitqueue.
3757 * @q: the waitqueue
3758 * @mode: which threads
3759 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003760 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003761 */
3762void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003763 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003764{
3765 unsigned long flags;
3766
3767 spin_lock_irqsave(&q->lock, flags);
3768 __wake_up_common(q, mode, nr_exclusive, 0, key);
3769 spin_unlock_irqrestore(&q->lock, flags);
3770}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003771EXPORT_SYMBOL(__wake_up);
3772
3773/*
3774 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3775 */
3776void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3777{
3778 __wake_up_common(q, mode, 1, 0, NULL);
3779}
3780
3781/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003782 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003783 * @q: the waitqueue
3784 * @mode: which threads
3785 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3786 *
3787 * The sync wakeup differs that the waker knows that it will schedule
3788 * away soon, so while the target thread will be woken up, it will not
3789 * be migrated to another CPU - ie. the two threads are 'synchronized'
3790 * with each other. This can prevent needless bouncing between CPUs.
3791 *
3792 * On UP it can prevent extra preemption.
3793 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003794void fastcall
3795__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003796{
3797 unsigned long flags;
3798 int sync = 1;
3799
3800 if (unlikely(!q))
3801 return;
3802
3803 if (unlikely(!nr_exclusive))
3804 sync = 0;
3805
3806 spin_lock_irqsave(&q->lock, flags);
3807 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3808 spin_unlock_irqrestore(&q->lock, flags);
3809}
3810EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3811
3812void fastcall complete(struct completion *x)
3813{
3814 unsigned long flags;
3815
3816 spin_lock_irqsave(&x->wait.lock, flags);
3817 x->done++;
3818 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3819 1, 0, NULL);
3820 spin_unlock_irqrestore(&x->wait.lock, flags);
3821}
3822EXPORT_SYMBOL(complete);
3823
3824void fastcall complete_all(struct completion *x)
3825{
3826 unsigned long flags;
3827
3828 spin_lock_irqsave(&x->wait.lock, flags);
3829 x->done += UINT_MAX/2;
3830 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3831 0, 0, NULL);
3832 spin_unlock_irqrestore(&x->wait.lock, flags);
3833}
3834EXPORT_SYMBOL(complete_all);
3835
3836void fastcall __sched wait_for_completion(struct completion *x)
3837{
3838 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003839
Linus Torvalds1da177e2005-04-16 15:20:36 -07003840 spin_lock_irq(&x->wait.lock);
3841 if (!x->done) {
3842 DECLARE_WAITQUEUE(wait, current);
3843
3844 wait.flags |= WQ_FLAG_EXCLUSIVE;
3845 __add_wait_queue_tail(&x->wait, &wait);
3846 do {
3847 __set_current_state(TASK_UNINTERRUPTIBLE);
3848 spin_unlock_irq(&x->wait.lock);
3849 schedule();
3850 spin_lock_irq(&x->wait.lock);
3851 } while (!x->done);
3852 __remove_wait_queue(&x->wait, &wait);
3853 }
3854 x->done--;
3855 spin_unlock_irq(&x->wait.lock);
3856}
3857EXPORT_SYMBOL(wait_for_completion);
3858
3859unsigned long fastcall __sched
3860wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3861{
3862 might_sleep();
3863
3864 spin_lock_irq(&x->wait.lock);
3865 if (!x->done) {
3866 DECLARE_WAITQUEUE(wait, current);
3867
3868 wait.flags |= WQ_FLAG_EXCLUSIVE;
3869 __add_wait_queue_tail(&x->wait, &wait);
3870 do {
3871 __set_current_state(TASK_UNINTERRUPTIBLE);
3872 spin_unlock_irq(&x->wait.lock);
3873 timeout = schedule_timeout(timeout);
3874 spin_lock_irq(&x->wait.lock);
3875 if (!timeout) {
3876 __remove_wait_queue(&x->wait, &wait);
3877 goto out;
3878 }
3879 } while (!x->done);
3880 __remove_wait_queue(&x->wait, &wait);
3881 }
3882 x->done--;
3883out:
3884 spin_unlock_irq(&x->wait.lock);
3885 return timeout;
3886}
3887EXPORT_SYMBOL(wait_for_completion_timeout);
3888
3889int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3890{
3891 int ret = 0;
3892
3893 might_sleep();
3894
3895 spin_lock_irq(&x->wait.lock);
3896 if (!x->done) {
3897 DECLARE_WAITQUEUE(wait, current);
3898
3899 wait.flags |= WQ_FLAG_EXCLUSIVE;
3900 __add_wait_queue_tail(&x->wait, &wait);
3901 do {
3902 if (signal_pending(current)) {
3903 ret = -ERESTARTSYS;
3904 __remove_wait_queue(&x->wait, &wait);
3905 goto out;
3906 }
3907 __set_current_state(TASK_INTERRUPTIBLE);
3908 spin_unlock_irq(&x->wait.lock);
3909 schedule();
3910 spin_lock_irq(&x->wait.lock);
3911 } while (!x->done);
3912 __remove_wait_queue(&x->wait, &wait);
3913 }
3914 x->done--;
3915out:
3916 spin_unlock_irq(&x->wait.lock);
3917
3918 return ret;
3919}
3920EXPORT_SYMBOL(wait_for_completion_interruptible);
3921
3922unsigned long fastcall __sched
3923wait_for_completion_interruptible_timeout(struct completion *x,
3924 unsigned long timeout)
3925{
3926 might_sleep();
3927
3928 spin_lock_irq(&x->wait.lock);
3929 if (!x->done) {
3930 DECLARE_WAITQUEUE(wait, current);
3931
3932 wait.flags |= WQ_FLAG_EXCLUSIVE;
3933 __add_wait_queue_tail(&x->wait, &wait);
3934 do {
3935 if (signal_pending(current)) {
3936 timeout = -ERESTARTSYS;
3937 __remove_wait_queue(&x->wait, &wait);
3938 goto out;
3939 }
3940 __set_current_state(TASK_INTERRUPTIBLE);
3941 spin_unlock_irq(&x->wait.lock);
3942 timeout = schedule_timeout(timeout);
3943 spin_lock_irq(&x->wait.lock);
3944 if (!timeout) {
3945 __remove_wait_queue(&x->wait, &wait);
3946 goto out;
3947 }
3948 } while (!x->done);
3949 __remove_wait_queue(&x->wait, &wait);
3950 }
3951 x->done--;
3952out:
3953 spin_unlock_irq(&x->wait.lock);
3954 return timeout;
3955}
3956EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3957
3958
3959#define SLEEP_ON_VAR \
3960 unsigned long flags; \
3961 wait_queue_t wait; \
3962 init_waitqueue_entry(&wait, current);
3963
3964#define SLEEP_ON_HEAD \
3965 spin_lock_irqsave(&q->lock,flags); \
3966 __add_wait_queue(q, &wait); \
3967 spin_unlock(&q->lock);
3968
3969#define SLEEP_ON_TAIL \
3970 spin_lock_irq(&q->lock); \
3971 __remove_wait_queue(q, &wait); \
3972 spin_unlock_irqrestore(&q->lock, flags);
3973
3974void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3975{
3976 SLEEP_ON_VAR
3977
3978 current->state = TASK_INTERRUPTIBLE;
3979
3980 SLEEP_ON_HEAD
3981 schedule();
3982 SLEEP_ON_TAIL
3983}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003984EXPORT_SYMBOL(interruptible_sleep_on);
3985
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003986long fastcall __sched
3987interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003988{
3989 SLEEP_ON_VAR
3990
3991 current->state = TASK_INTERRUPTIBLE;
3992
3993 SLEEP_ON_HEAD
3994 timeout = schedule_timeout(timeout);
3995 SLEEP_ON_TAIL
3996
3997 return timeout;
3998}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003999EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4000
4001void fastcall __sched sleep_on(wait_queue_head_t *q)
4002{
4003 SLEEP_ON_VAR
4004
4005 current->state = TASK_UNINTERRUPTIBLE;
4006
4007 SLEEP_ON_HEAD
4008 schedule();
4009 SLEEP_ON_TAIL
4010}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004011EXPORT_SYMBOL(sleep_on);
4012
4013long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4014{
4015 SLEEP_ON_VAR
4016
4017 current->state = TASK_UNINTERRUPTIBLE;
4018
4019 SLEEP_ON_HEAD
4020 timeout = schedule_timeout(timeout);
4021 SLEEP_ON_TAIL
4022
4023 return timeout;
4024}
4025
4026EXPORT_SYMBOL(sleep_on_timeout);
4027
Ingo Molnarb29739f2006-06-27 02:54:51 -07004028#ifdef CONFIG_RT_MUTEXES
4029
4030/*
4031 * rt_mutex_setprio - set the current priority of a task
4032 * @p: task
4033 * @prio: prio value (kernel-internal form)
4034 *
4035 * This function changes the 'effective' priority of a task. It does
4036 * not touch ->normal_prio like __setscheduler().
4037 *
4038 * Used by the rt_mutex code to implement priority inheritance logic.
4039 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004040void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07004041{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004042 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004043 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004044 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004045 int oldprio;
4046
4047 BUG_ON(prio < 0 || prio > MAX_PRIO);
4048
4049 rq = task_rq_lock(p, &flags);
4050
4051 oldprio = p->prio;
4052 array = p->array;
4053 if (array)
4054 dequeue_task(p, array);
4055 p->prio = prio;
4056
4057 if (array) {
4058 /*
4059 * If changing to an RT priority then queue it
4060 * in the active array!
4061 */
4062 if (rt_task(p))
4063 array = rq->active;
4064 enqueue_task(p, array);
4065 /*
4066 * Reschedule if we are currently running on this runqueue and
4067 * our priority decreased, or if we are not currently running on
4068 * this runqueue and our priority is higher than the current's
4069 */
4070 if (task_running(rq, p)) {
4071 if (p->prio > oldprio)
4072 resched_task(rq->curr);
4073 } else if (TASK_PREEMPTS_CURR(p, rq))
4074 resched_task(rq->curr);
4075 }
4076 task_rq_unlock(rq, &flags);
4077}
4078
4079#endif
4080
Ingo Molnar36c8b582006-07-03 00:25:41 -07004081void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004082{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004083 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004084 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004085 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004086 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004087
4088 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4089 return;
4090 /*
4091 * We have to be careful, if called from sys_setpriority(),
4092 * the task might be in the middle of scheduling on another CPU.
4093 */
4094 rq = task_rq_lock(p, &flags);
4095 /*
4096 * The RT priorities are set via sched_setscheduler(), but we still
4097 * allow the 'normal' nice value to be set - but as expected
4098 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004099 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004101 if (has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004102 p->static_prio = NICE_TO_PRIO(nice);
4103 goto out_unlock;
4104 }
4105 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004106 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004107 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004108 dec_raw_weighted_load(rq, p);
4109 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004110
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004112 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004113 old_prio = p->prio;
4114 p->prio = effective_prio(p);
4115 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116
4117 if (array) {
4118 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004119 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120 /*
4121 * If the task increased its priority or is running and
4122 * lowered its priority, then reschedule its CPU:
4123 */
4124 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4125 resched_task(rq->curr);
4126 }
4127out_unlock:
4128 task_rq_unlock(rq, &flags);
4129}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130EXPORT_SYMBOL(set_user_nice);
4131
Matt Mackalle43379f2005-05-01 08:59:00 -07004132/*
4133 * can_nice - check if a task can reduce its nice value
4134 * @p: task
4135 * @nice: nice value
4136 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004137int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004138{
Matt Mackall024f4742005-08-18 11:24:19 -07004139 /* convert nice value [19,-20] to rlimit style value [1,40] */
4140 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004141
Matt Mackalle43379f2005-05-01 08:59:00 -07004142 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4143 capable(CAP_SYS_NICE));
4144}
4145
Linus Torvalds1da177e2005-04-16 15:20:36 -07004146#ifdef __ARCH_WANT_SYS_NICE
4147
4148/*
4149 * sys_nice - change the priority of the current process.
4150 * @increment: priority increment
4151 *
4152 * sys_setpriority is a more generic, but much slower function that
4153 * does similar things.
4154 */
4155asmlinkage long sys_nice(int increment)
4156{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004157 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158
4159 /*
4160 * Setpriority might change our priority at the same moment.
4161 * We don't have to worry. Conceptually one call occurs first
4162 * and we have a single winner.
4163 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004164 if (increment < -40)
4165 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004166 if (increment > 40)
4167 increment = 40;
4168
4169 nice = PRIO_TO_NICE(current->static_prio) + increment;
4170 if (nice < -20)
4171 nice = -20;
4172 if (nice > 19)
4173 nice = 19;
4174
Matt Mackalle43379f2005-05-01 08:59:00 -07004175 if (increment < 0 && !can_nice(current, nice))
4176 return -EPERM;
4177
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178 retval = security_task_setnice(current, nice);
4179 if (retval)
4180 return retval;
4181
4182 set_user_nice(current, nice);
4183 return 0;
4184}
4185
4186#endif
4187
4188/**
4189 * task_prio - return the priority value of a given task.
4190 * @p: the task in question.
4191 *
4192 * This is the priority value as seen by users in /proc.
4193 * RT tasks are offset by -200. Normal tasks are centered
4194 * around 0, value goes from -16 to +15.
4195 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004196int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004197{
4198 return p->prio - MAX_RT_PRIO;
4199}
4200
4201/**
4202 * task_nice - return the nice value of a given task.
4203 * @p: the task in question.
4204 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004205int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004206{
4207 return TASK_NICE(p);
4208}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004209EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004210
4211/**
4212 * idle_cpu - is a given cpu idle currently?
4213 * @cpu: the processor in question.
4214 */
4215int idle_cpu(int cpu)
4216{
4217 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4218}
4219
Linus Torvalds1da177e2005-04-16 15:20:36 -07004220/**
4221 * idle_task - return the idle task for a given cpu.
4222 * @cpu: the processor in question.
4223 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004224struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004225{
4226 return cpu_rq(cpu)->idle;
4227}
4228
4229/**
4230 * find_process_by_pid - find a process with a matching PID value.
4231 * @pid: the pid in question.
4232 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004233static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004234{
4235 return pid ? find_task_by_pid(pid) : current;
4236}
4237
4238/* Actually do priority change: must hold rq lock. */
4239static void __setscheduler(struct task_struct *p, int policy, int prio)
4240{
4241 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004242
Linus Torvalds1da177e2005-04-16 15:20:36 -07004243 p->policy = policy;
4244 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004245 p->normal_prio = normal_prio(p);
4246 /* we are holding p->pi_lock already */
4247 p->prio = rt_mutex_getprio(p);
4248 /*
4249 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4250 */
4251 if (policy == SCHED_BATCH)
4252 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004253 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004254}
4255
4256/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004257 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004258 * @p: the task in question.
4259 * @policy: new policy.
4260 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004261 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004262 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004263 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004264int sched_setscheduler(struct task_struct *p, int policy,
4265 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004266{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004267 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004268 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004270 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004271
Steven Rostedt66e53932006-06-27 02:54:44 -07004272 /* may grab non-irq protected spin_locks */
4273 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274recheck:
4275 /* double check policy once rq lock held */
4276 if (policy < 0)
4277 policy = oldpolicy = p->policy;
4278 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004279 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4280 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004281 /*
4282 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004283 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4284 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004285 */
4286 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004287 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004288 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004289 return -EINVAL;
Oleg Nesterov57a6f512006-09-29 02:00:49 -07004290 if (is_rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004291 return -EINVAL;
4292
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004293 /*
4294 * Allow unprivileged RT tasks to decrease priority:
4295 */
4296 if (!capable(CAP_SYS_NICE)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004297 if (is_rt_policy(policy)) {
4298 unsigned long rlim_rtprio;
4299 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004300
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004301 if (!lock_task_sighand(p, &flags))
4302 return -ESRCH;
4303 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4304 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004305
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004306 /* can't set/change the rt policy */
4307 if (policy != p->policy && !rlim_rtprio)
4308 return -EPERM;
4309
4310 /* can't increase priority */
4311 if (param->sched_priority > p->rt_priority &&
4312 param->sched_priority > rlim_rtprio)
4313 return -EPERM;
4314 }
4315
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004316 /* can't change other user's priorities */
4317 if ((current->euid != p->euid) &&
4318 (current->euid != p->uid))
4319 return -EPERM;
4320 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321
4322 retval = security_task_setscheduler(p, policy, param);
4323 if (retval)
4324 return retval;
4325 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004326 * make sure no PI-waiters arrive (or leave) while we are
4327 * changing the priority of the task:
4328 */
4329 spin_lock_irqsave(&p->pi_lock, flags);
4330 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004331 * To be able to change p->policy safely, the apropriate
4332 * runqueue lock must be held.
4333 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004334 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004335 /* recheck policy now with rq lock held */
4336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4337 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004338 __task_rq_unlock(rq);
4339 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004340 goto recheck;
4341 }
4342 array = p->array;
4343 if (array)
4344 deactivate_task(p, rq);
4345 oldprio = p->prio;
4346 __setscheduler(p, policy, param->sched_priority);
4347 if (array) {
4348 __activate_task(p, rq);
4349 /*
4350 * Reschedule if we are currently running on this runqueue and
4351 * our priority decreased, or if we are not currently running on
4352 * this runqueue and our priority is higher than the current's
4353 */
4354 if (task_running(rq, p)) {
4355 if (p->prio > oldprio)
4356 resched_task(rq->curr);
4357 } else if (TASK_PREEMPTS_CURR(p, rq))
4358 resched_task(rq->curr);
4359 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004360 __task_rq_unlock(rq);
4361 spin_unlock_irqrestore(&p->pi_lock, flags);
4362
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004363 rt_mutex_adjust_pi(p);
4364
Linus Torvalds1da177e2005-04-16 15:20:36 -07004365 return 0;
4366}
4367EXPORT_SYMBOL_GPL(sched_setscheduler);
4368
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004369static int
4370do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004371{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004372 struct sched_param lparam;
4373 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004374 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004375
4376 if (!param || pid < 0)
4377 return -EINVAL;
4378 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4379 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004380
4381 rcu_read_lock();
4382 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004383 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004384 if (p != NULL)
4385 retval = sched_setscheduler(p, policy, &lparam);
4386 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004387
Linus Torvalds1da177e2005-04-16 15:20:36 -07004388 return retval;
4389}
4390
4391/**
4392 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4393 * @pid: the pid in question.
4394 * @policy: new policy.
4395 * @param: structure containing the new RT priority.
4396 */
4397asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4398 struct sched_param __user *param)
4399{
Jason Baronc21761f2006-01-18 17:43:03 -08004400 /* negative values for policy are not valid */
4401 if (policy < 0)
4402 return -EINVAL;
4403
Linus Torvalds1da177e2005-04-16 15:20:36 -07004404 return do_sched_setscheduler(pid, policy, param);
4405}
4406
4407/**
4408 * sys_sched_setparam - set/change the RT priority of a thread
4409 * @pid: the pid in question.
4410 * @param: structure containing the new RT priority.
4411 */
4412asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4413{
4414 return do_sched_setscheduler(pid, -1, param);
4415}
4416
4417/**
4418 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4419 * @pid: the pid in question.
4420 */
4421asmlinkage long sys_sched_getscheduler(pid_t pid)
4422{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004423 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004424 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004425
4426 if (pid < 0)
4427 goto out_nounlock;
4428
4429 retval = -ESRCH;
4430 read_lock(&tasklist_lock);
4431 p = find_process_by_pid(pid);
4432 if (p) {
4433 retval = security_task_getscheduler(p);
4434 if (!retval)
4435 retval = p->policy;
4436 }
4437 read_unlock(&tasklist_lock);
4438
4439out_nounlock:
4440 return retval;
4441}
4442
4443/**
4444 * sys_sched_getscheduler - get the RT priority of a thread
4445 * @pid: the pid in question.
4446 * @param: structure containing the RT priority.
4447 */
4448asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4449{
4450 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004451 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004452 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004453
4454 if (!param || pid < 0)
4455 goto out_nounlock;
4456
4457 read_lock(&tasklist_lock);
4458 p = find_process_by_pid(pid);
4459 retval = -ESRCH;
4460 if (!p)
4461 goto out_unlock;
4462
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
4467 lp.sched_priority = p->rt_priority;
4468 read_unlock(&tasklist_lock);
4469
4470 /*
4471 * This one might sleep, we cannot do it with a spinlock held ...
4472 */
4473 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4474
4475out_nounlock:
4476 return retval;
4477
4478out_unlock:
4479 read_unlock(&tasklist_lock);
4480 return retval;
4481}
4482
4483long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4484{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004485 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004486 struct task_struct *p;
4487 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004488
4489 lock_cpu_hotplug();
4490 read_lock(&tasklist_lock);
4491
4492 p = find_process_by_pid(pid);
4493 if (!p) {
4494 read_unlock(&tasklist_lock);
4495 unlock_cpu_hotplug();
4496 return -ESRCH;
4497 }
4498
4499 /*
4500 * It is not safe to call set_cpus_allowed with the
4501 * tasklist_lock held. We will bump the task_struct's
4502 * usage count and then drop tasklist_lock.
4503 */
4504 get_task_struct(p);
4505 read_unlock(&tasklist_lock);
4506
4507 retval = -EPERM;
4508 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4509 !capable(CAP_SYS_NICE))
4510 goto out_unlock;
4511
David Quigleye7834f82006-06-23 02:03:59 -07004512 retval = security_task_setscheduler(p, 0, NULL);
4513 if (retval)
4514 goto out_unlock;
4515
Linus Torvalds1da177e2005-04-16 15:20:36 -07004516 cpus_allowed = cpuset_cpus_allowed(p);
4517 cpus_and(new_mask, new_mask, cpus_allowed);
4518 retval = set_cpus_allowed(p, new_mask);
4519
4520out_unlock:
4521 put_task_struct(p);
4522 unlock_cpu_hotplug();
4523 return retval;
4524}
4525
4526static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4527 cpumask_t *new_mask)
4528{
4529 if (len < sizeof(cpumask_t)) {
4530 memset(new_mask, 0, sizeof(cpumask_t));
4531 } else if (len > sizeof(cpumask_t)) {
4532 len = sizeof(cpumask_t);
4533 }
4534 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4535}
4536
4537/**
4538 * sys_sched_setaffinity - set the cpu affinity of a process
4539 * @pid: pid of the process
4540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4541 * @user_mask_ptr: user-space pointer to the new cpu mask
4542 */
4543asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4544 unsigned long __user *user_mask_ptr)
4545{
4546 cpumask_t new_mask;
4547 int retval;
4548
4549 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4550 if (retval)
4551 return retval;
4552
4553 return sched_setaffinity(pid, new_mask);
4554}
4555
4556/*
4557 * Represents all cpu's present in the system
4558 * In systems capable of hotplug, this map could dynamically grow
4559 * as new cpu's are detected in the system via any platform specific
4560 * method, such as ACPI for e.g.
4561 */
4562
Andi Kleen4cef0c62006-01-11 22:44:57 +01004563cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004564EXPORT_SYMBOL(cpu_present_map);
4565
4566#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004567cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004568EXPORT_SYMBOL(cpu_online_map);
4569
Andi Kleen4cef0c62006-01-11 22:44:57 +01004570cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004571EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004572#endif
4573
4574long sched_getaffinity(pid_t pid, cpumask_t *mask)
4575{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004576 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004577 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004578
4579 lock_cpu_hotplug();
4580 read_lock(&tasklist_lock);
4581
4582 retval = -ESRCH;
4583 p = find_process_by_pid(pid);
4584 if (!p)
4585 goto out_unlock;
4586
David Quigleye7834f82006-06-23 02:03:59 -07004587 retval = security_task_getscheduler(p);
4588 if (retval)
4589 goto out_unlock;
4590
Jack Steiner2f7016d2006-02-01 03:05:18 -08004591 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004592
4593out_unlock:
4594 read_unlock(&tasklist_lock);
4595 unlock_cpu_hotplug();
4596 if (retval)
4597 return retval;
4598
4599 return 0;
4600}
4601
4602/**
4603 * sys_sched_getaffinity - get the cpu affinity of a process
4604 * @pid: pid of the process
4605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4606 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4607 */
4608asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4609 unsigned long __user *user_mask_ptr)
4610{
4611 int ret;
4612 cpumask_t mask;
4613
4614 if (len < sizeof(cpumask_t))
4615 return -EINVAL;
4616
4617 ret = sched_getaffinity(pid, &mask);
4618 if (ret < 0)
4619 return ret;
4620
4621 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4622 return -EFAULT;
4623
4624 return sizeof(cpumask_t);
4625}
4626
4627/**
4628 * sys_sched_yield - yield the current processor to other threads.
4629 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004630 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631 * to the expired array. If there are no other threads running on this
4632 * CPU then this function will return.
4633 */
4634asmlinkage long sys_sched_yield(void)
4635{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004636 struct rq *rq = this_rq_lock();
4637 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004638
4639 schedstat_inc(rq, yld_cnt);
4640 /*
4641 * We implement yielding by moving the task into the expired
4642 * queue.
4643 *
4644 * (special rule: RT tasks will just roundrobin in the active
4645 * array.)
4646 */
4647 if (rt_task(current))
4648 target = rq->active;
4649
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004650 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004651 schedstat_inc(rq, yld_act_empty);
4652 if (!rq->expired->nr_active)
4653 schedstat_inc(rq, yld_both_empty);
4654 } else if (!rq->expired->nr_active)
4655 schedstat_inc(rq, yld_exp_empty);
4656
4657 if (array != target) {
4658 dequeue_task(current, array);
4659 enqueue_task(current, target);
4660 } else
4661 /*
4662 * requeue_task is cheaper so perform that if possible.
4663 */
4664 requeue_task(current, array);
4665
4666 /*
4667 * Since we are going to call schedule() anyway, there's
4668 * no need to preempt or enable interrupts:
4669 */
4670 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004671 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004672 _raw_spin_unlock(&rq->lock);
4673 preempt_enable_no_resched();
4674
4675 schedule();
4676
4677 return 0;
4678}
4679
Andrew Mortone7b38402006-06-30 01:56:00 -07004680static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004681{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004682#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4683 __might_sleep(__FILE__, __LINE__);
4684#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004685 /*
4686 * The BKS might be reacquired before we have dropped
4687 * PREEMPT_ACTIVE, which could trigger a second
4688 * cond_resched() call.
4689 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004690 do {
4691 add_preempt_count(PREEMPT_ACTIVE);
4692 schedule();
4693 sub_preempt_count(PREEMPT_ACTIVE);
4694 } while (need_resched());
4695}
4696
4697int __sched cond_resched(void)
4698{
Ingo Molnar94142322006-12-29 16:48:13 -08004699 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4700 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004701 __cond_resched();
4702 return 1;
4703 }
4704 return 0;
4705}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004706EXPORT_SYMBOL(cond_resched);
4707
4708/*
4709 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4710 * call schedule, and on return reacquire the lock.
4711 *
4712 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4713 * operations here to prevent schedule() from being called twice (once via
4714 * spin_unlock(), once by hand).
4715 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004716int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004717{
Jan Kara6df3cec2005-06-13 15:52:32 -07004718 int ret = 0;
4719
Linus Torvalds1da177e2005-04-16 15:20:36 -07004720 if (need_lockbreak(lock)) {
4721 spin_unlock(lock);
4722 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004723 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004724 spin_lock(lock);
4725 }
Ingo Molnar94142322006-12-29 16:48:13 -08004726 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004727 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004728 _raw_spin_unlock(lock);
4729 preempt_enable_no_resched();
4730 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004731 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004732 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004733 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004734 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004735}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004736EXPORT_SYMBOL(cond_resched_lock);
4737
4738int __sched cond_resched_softirq(void)
4739{
4740 BUG_ON(!in_softirq());
4741
Ingo Molnar94142322006-12-29 16:48:13 -08004742 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnarde30a2b2006-07-03 00:24:42 -07004743 raw_local_irq_disable();
4744 _local_bh_enable();
4745 raw_local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004746 __cond_resched();
4747 local_bh_disable();
4748 return 1;
4749 }
4750 return 0;
4751}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004752EXPORT_SYMBOL(cond_resched_softirq);
4753
Linus Torvalds1da177e2005-04-16 15:20:36 -07004754/**
4755 * yield - yield the current processor to other threads.
4756 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004757 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004758 * thread runnable and calls sys_sched_yield().
4759 */
4760void __sched yield(void)
4761{
4762 set_current_state(TASK_RUNNING);
4763 sys_sched_yield();
4764}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004765EXPORT_SYMBOL(yield);
4766
4767/*
4768 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4769 * that process accounting knows that this is a task in IO wait state.
4770 *
4771 * But don't do that if it is a deliberate, throttling IO wait (this task
4772 * has set its backing_dev_info: the queue against which it should throttle)
4773 */
4774void __sched io_schedule(void)
4775{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004776 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004777
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004778 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779 atomic_inc(&rq->nr_iowait);
4780 schedule();
4781 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004782 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004783}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004784EXPORT_SYMBOL(io_schedule);
4785
4786long __sched io_schedule_timeout(long timeout)
4787{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004788 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004789 long ret;
4790
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004791 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004792 atomic_inc(&rq->nr_iowait);
4793 ret = schedule_timeout(timeout);
4794 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004795 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004796 return ret;
4797}
4798
4799/**
4800 * sys_sched_get_priority_max - return maximum RT priority.
4801 * @policy: scheduling class.
4802 *
4803 * this syscall returns the maximum rt_priority that can be used
4804 * by a given scheduling class.
4805 */
4806asmlinkage long sys_sched_get_priority_max(int policy)
4807{
4808 int ret = -EINVAL;
4809
4810 switch (policy) {
4811 case SCHED_FIFO:
4812 case SCHED_RR:
4813 ret = MAX_USER_RT_PRIO-1;
4814 break;
4815 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004816 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004817 ret = 0;
4818 break;
4819 }
4820 return ret;
4821}
4822
4823/**
4824 * sys_sched_get_priority_min - return minimum RT priority.
4825 * @policy: scheduling class.
4826 *
4827 * this syscall returns the minimum rt_priority that can be used
4828 * by a given scheduling class.
4829 */
4830asmlinkage long sys_sched_get_priority_min(int policy)
4831{
4832 int ret = -EINVAL;
4833
4834 switch (policy) {
4835 case SCHED_FIFO:
4836 case SCHED_RR:
4837 ret = 1;
4838 break;
4839 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004840 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004841 ret = 0;
4842 }
4843 return ret;
4844}
4845
4846/**
4847 * sys_sched_rr_get_interval - return the default timeslice of a process.
4848 * @pid: pid of the process.
4849 * @interval: userspace pointer to the timeslice value.
4850 *
4851 * this syscall writes the default timeslice value of a given process
4852 * into the user-space timespec buffer. A value of '0' means infinity.
4853 */
4854asmlinkage
4855long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4856{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004857 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004858 int retval = -EINVAL;
4859 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004860
4861 if (pid < 0)
4862 goto out_nounlock;
4863
4864 retval = -ESRCH;
4865 read_lock(&tasklist_lock);
4866 p = find_process_by_pid(pid);
4867 if (!p)
4868 goto out_unlock;
4869
4870 retval = security_task_getscheduler(p);
4871 if (retval)
4872 goto out_unlock;
4873
Peter Williamsb78709c2006-06-26 16:58:00 +10004874 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004875 0 : task_timeslice(p), &t);
4876 read_unlock(&tasklist_lock);
4877 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4878out_nounlock:
4879 return retval;
4880out_unlock:
4881 read_unlock(&tasklist_lock);
4882 return retval;
4883}
4884
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004885static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004886
4887static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004888{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004889 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004890 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004891
Linus Torvalds1da177e2005-04-16 15:20:36 -07004892 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004893 printk("%-13.13s %c", p->comm,
4894 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004895#if (BITS_PER_LONG == 32)
4896 if (state == TASK_RUNNING)
4897 printk(" running ");
4898 else
4899 printk(" %08lX ", thread_saved_pc(p));
4900#else
4901 if (state == TASK_RUNNING)
4902 printk(" running task ");
4903 else
4904 printk(" %016lx ", thread_saved_pc(p));
4905#endif
4906#ifdef CONFIG_DEBUG_STACK_USAGE
4907 {
Al Viro10ebffd2005-11-13 16:06:56 -08004908 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004909 while (!*n)
4910 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004911 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004912 }
4913#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004914 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004915 if (!p->mm)
4916 printk(" (L-TLB)\n");
4917 else
4918 printk(" (NOTLB)\n");
4919
4920 if (state != TASK_RUNNING)
4921 show_stack(p, NULL);
4922}
4923
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004924void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004926 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004927
4928#if (BITS_PER_LONG == 32)
4929 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004930 " free sibling\n");
4931 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004932#else
4933 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004934 " free sibling\n");
4935 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004936#endif
4937 read_lock(&tasklist_lock);
4938 do_each_thread(g, p) {
4939 /*
4940 * reset the NMI-timeout, listing all files on a slow
4941 * console might take alot of time:
4942 */
4943 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004944 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004945 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004946 } while_each_thread(g, p);
4947
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004948 touch_all_softlockup_watchdogs();
4949
Linus Torvalds1da177e2005-04-16 15:20:36 -07004950 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004951 /*
4952 * Only show locks if all tasks are dumped:
4953 */
4954 if (state_filter == -1)
4955 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004956}
4957
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004958/**
4959 * init_idle - set up an idle thread for a given CPU
4960 * @idle: task in question
4961 * @cpu: cpu the idle task belongs to
4962 *
4963 * NOTE: this function does not set the idle thread's NEED_RESCHED
4964 * flag, to make booting more robust.
4965 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004966void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004967{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004968 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004969 unsigned long flags;
4970
Ingo Molnar81c29a82006-03-07 21:55:27 -08004971 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004972 idle->sleep_avg = 0;
4973 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004974 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004975 idle->state = TASK_RUNNING;
4976 idle->cpus_allowed = cpumask_of_cpu(cpu);
4977 set_task_cpu(idle, cpu);
4978
4979 spin_lock_irqsave(&rq->lock, flags);
4980 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004981#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4982 idle->oncpu = 1;
4983#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004984 spin_unlock_irqrestore(&rq->lock, flags);
4985
4986 /* Set the preempt count _outside_ the spinlocks! */
4987#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004988 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004989#else
Al Viroa1261f52005-11-13 16:06:55 -08004990 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004991#endif
4992}
4993
4994/*
4995 * In a system that switches off the HZ timer nohz_cpu_mask
4996 * indicates which cpus entered this state. This is used
4997 * in the rcu update to wait only for active cpus. For system
4998 * which do not switch off the HZ timer nohz_cpu_mask should
4999 * always be CPU_MASK_NONE.
5000 */
5001cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5002
5003#ifdef CONFIG_SMP
5004/*
5005 * This is how migration works:
5006 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07005007 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07005008 * runqueue and wake up that CPU's migration thread.
5009 * 2) we down() the locked semaphore => thread blocks.
5010 * 3) migration thread wakes up (implicitly it forces the migrated
5011 * thread off the CPU)
5012 * 4) it gets the migration request and checks whether the migrated
5013 * task is still in the wrong runqueue.
5014 * 5) if it's in the wrong runqueue then the migration thread removes
5015 * it and puts it into the right queue.
5016 * 6) migration thread up()s the semaphore.
5017 * 7) we wake up and the migration is done.
5018 */
5019
5020/*
5021 * Change a given task's CPU affinity. Migrate the thread to a
5022 * proper CPU and schedule it away if the CPU it's executing on
5023 * is removed from the allowed bitmask.
5024 *
5025 * NOTE: the caller must have a valid reference to the task, the
5026 * task must not exit() & deallocate itself prematurely. The
5027 * call is not atomic; no spinlocks may be held.
5028 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005029int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005030{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005031 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005032 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005033 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005034 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005035
5036 rq = task_rq_lock(p, &flags);
5037 if (!cpus_intersects(new_mask, cpu_online_map)) {
5038 ret = -EINVAL;
5039 goto out;
5040 }
5041
5042 p->cpus_allowed = new_mask;
5043 /* Can the task run on the task's current CPU? If so, we're done */
5044 if (cpu_isset(task_cpu(p), new_mask))
5045 goto out;
5046
5047 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5048 /* Need help from migration thread: drop lock and wait. */
5049 task_rq_unlock(rq, &flags);
5050 wake_up_process(rq->migration_thread);
5051 wait_for_completion(&req.done);
5052 tlb_migrate_finish(p->mm);
5053 return 0;
5054 }
5055out:
5056 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005057
Linus Torvalds1da177e2005-04-16 15:20:36 -07005058 return ret;
5059}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005060EXPORT_SYMBOL_GPL(set_cpus_allowed);
5061
5062/*
5063 * Move (not current) task off this cpu, onto dest cpu. We're doing
5064 * this because either it can't run here any more (set_cpus_allowed()
5065 * away from this CPU, or CPU going down), or because we're
5066 * attempting to rebalance this task on exec (sched_exec).
5067 *
5068 * So we race with normal scheduler movements, but that's OK, as long
5069 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005070 *
5071 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005073static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005074{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005075 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005076 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005077
5078 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005079 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005080
5081 rq_src = cpu_rq(src_cpu);
5082 rq_dest = cpu_rq(dest_cpu);
5083
5084 double_rq_lock(rq_src, rq_dest);
5085 /* Already moved. */
5086 if (task_cpu(p) != src_cpu)
5087 goto out;
5088 /* Affinity changed (again). */
5089 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5090 goto out;
5091
5092 set_task_cpu(p, dest_cpu);
5093 if (p->array) {
5094 /*
5095 * Sync timestamp with rq_dest's before activating.
5096 * The same thing could be achieved by doing this step
5097 * afterwards, and pretending it was a local activate.
5098 * This way is cleaner and logically correct.
5099 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005100 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5101 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005103 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005104 if (TASK_PREEMPTS_CURR(p, rq_dest))
5105 resched_task(rq_dest->curr);
5106 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005107 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005108out:
5109 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005110 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005111}
5112
5113/*
5114 * migration_thread - this is a highprio system thread that performs
5115 * thread migration by bumping thread off CPU then 'pushing' onto
5116 * another runqueue.
5117 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005118static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005119{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005120 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005121 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005122
5123 rq = cpu_rq(cpu);
5124 BUG_ON(rq->migration_thread != current);
5125
5126 set_current_state(TASK_INTERRUPTIBLE);
5127 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005128 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005129 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005130
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005131 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005132
5133 spin_lock_irq(&rq->lock);
5134
5135 if (cpu_is_offline(cpu)) {
5136 spin_unlock_irq(&rq->lock);
5137 goto wait_to_die;
5138 }
5139
5140 if (rq->active_balance) {
5141 active_load_balance(rq, cpu);
5142 rq->active_balance = 0;
5143 }
5144
5145 head = &rq->migration_queue;
5146
5147 if (list_empty(head)) {
5148 spin_unlock_irq(&rq->lock);
5149 schedule();
5150 set_current_state(TASK_INTERRUPTIBLE);
5151 continue;
5152 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005153 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005154 list_del_init(head->next);
5155
Nick Piggin674311d2005-06-25 14:57:27 -07005156 spin_unlock(&rq->lock);
5157 __migrate_task(req->task, cpu, req->dest_cpu);
5158 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005159
5160 complete(&req->done);
5161 }
5162 __set_current_state(TASK_RUNNING);
5163 return 0;
5164
5165wait_to_die:
5166 /* Wait for kthread_stop */
5167 set_current_state(TASK_INTERRUPTIBLE);
5168 while (!kthread_should_stop()) {
5169 schedule();
5170 set_current_state(TASK_INTERRUPTIBLE);
5171 }
5172 __set_current_state(TASK_RUNNING);
5173 return 0;
5174}
5175
5176#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005177/*
5178 * Figure out where task on dead CPU should go, use force if neccessary.
5179 * NOTE: interrupts should be disabled by the caller
5180 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005181static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005182{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005183 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005184 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005185 struct rq *rq;
5186 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187
Kirill Korotaevefc30812006-06-27 02:54:32 -07005188restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005189 /* On same node? */
5190 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005191 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005192 dest_cpu = any_online_cpu(mask);
5193
5194 /* On any allowed CPU? */
5195 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005196 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005197
5198 /* No more Mr. Nice Guy. */
5199 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005200 rq = task_rq_lock(p, &flags);
5201 cpus_setall(p->cpus_allowed);
5202 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005203 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005204
5205 /*
5206 * Don't tell them about moving exiting tasks or
5207 * kernel threads (both mm NULL), since they never
5208 * leave kernel.
5209 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005210 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005211 printk(KERN_INFO "process %d (%s) no "
5212 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005213 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005214 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005215 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005216 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005217}
5218
5219/*
5220 * While a dead CPU has no uninterruptible tasks queued at this point,
5221 * it might still have a nonzero ->nr_uninterruptible counter, because
5222 * for performance reasons the counter is not stricly tracking tasks to
5223 * their home CPUs. So we just add the counter to another CPU's counter,
5224 * to keep the global sum constant after CPU-down:
5225 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005226static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005227{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005228 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005229 unsigned long flags;
5230
5231 local_irq_save(flags);
5232 double_rq_lock(rq_src, rq_dest);
5233 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5234 rq_src->nr_uninterruptible = 0;
5235 double_rq_unlock(rq_src, rq_dest);
5236 local_irq_restore(flags);
5237}
5238
5239/* Run through task list and migrate tasks from the dead cpu. */
5240static void migrate_live_tasks(int src_cpu)
5241{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005242 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005243
5244 write_lock_irq(&tasklist_lock);
5245
Ingo Molnar48f24c42006-07-03 00:25:40 -07005246 do_each_thread(t, p) {
5247 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248 continue;
5249
Ingo Molnar48f24c42006-07-03 00:25:40 -07005250 if (task_cpu(p) == src_cpu)
5251 move_task_off_dead_cpu(src_cpu, p);
5252 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005253
5254 write_unlock_irq(&tasklist_lock);
5255}
5256
5257/* Schedules idle task to be the next runnable task on current CPU.
5258 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005259 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005260 */
5261void sched_idle_next(void)
5262{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005263 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005264 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005265 struct task_struct *p = rq->idle;
5266 unsigned long flags;
5267
5268 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005269 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005270
Ingo Molnar48f24c42006-07-03 00:25:40 -07005271 /*
5272 * Strictly not necessary since rest of the CPUs are stopped by now
5273 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005274 */
5275 spin_lock_irqsave(&rq->lock, flags);
5276
5277 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005278
5279 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005280 __activate_idle_task(p, rq);
5281
5282 spin_unlock_irqrestore(&rq->lock, flags);
5283}
5284
Ingo Molnar48f24c42006-07-03 00:25:40 -07005285/*
5286 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005287 * offline.
5288 */
5289void idle_task_exit(void)
5290{
5291 struct mm_struct *mm = current->active_mm;
5292
5293 BUG_ON(cpu_online(smp_processor_id()));
5294
5295 if (mm != &init_mm)
5296 switch_mm(mm, &init_mm, current);
5297 mmdrop(mm);
5298}
5299
Kirill Korotaev054b9102006-12-10 02:20:11 -08005300/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005301static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005302{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005303 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005304
5305 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005306 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307
5308 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005309 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005310
Ingo Molnar48f24c42006-07-03 00:25:40 -07005311 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005312
5313 /*
5314 * Drop lock around migration; if someone else moves it,
5315 * that's OK. No task can be added to this CPU, so iteration is
5316 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005317 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005318 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005319 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005320 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005321 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005322
Ingo Molnar48f24c42006-07-03 00:25:40 -07005323 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005324}
5325
5326/* release_task() removes task from tasklist, so we won't find dead tasks. */
5327static void migrate_dead_tasks(unsigned int dead_cpu)
5328{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005329 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005330 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005331
5332 for (arr = 0; arr < 2; arr++) {
5333 for (i = 0; i < MAX_PRIO; i++) {
5334 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005335
Linus Torvalds1da177e2005-04-16 15:20:36 -07005336 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005337 migrate_dead(dead_cpu, list_entry(list->next,
5338 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005339 }
5340 }
5341}
5342#endif /* CONFIG_HOTPLUG_CPU */
5343
5344/*
5345 * migration_call - callback that gets triggered when a CPU is added.
5346 * Here we can start up the necessary migration thread for the new CPU.
5347 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005348static int __cpuinit
5349migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005350{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005351 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005352 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005353 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005354 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005355
5356 switch (action) {
5357 case CPU_UP_PREPARE:
5358 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5359 if (IS_ERR(p))
5360 return NOTIFY_BAD;
5361 p->flags |= PF_NOFREEZE;
5362 kthread_bind(p, cpu);
5363 /* Must be high prio: stop_machine expects to yield to it. */
5364 rq = task_rq_lock(p, &flags);
5365 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5366 task_rq_unlock(rq, &flags);
5367 cpu_rq(cpu)->migration_thread = p;
5368 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005369
Linus Torvalds1da177e2005-04-16 15:20:36 -07005370 case CPU_ONLINE:
5371 /* Strictly unneccessary, as first user will wake it. */
5372 wake_up_process(cpu_rq(cpu)->migration_thread);
5373 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005374
Linus Torvalds1da177e2005-04-16 15:20:36 -07005375#ifdef CONFIG_HOTPLUG_CPU
5376 case CPU_UP_CANCELED:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005377 if (!cpu_rq(cpu)->migration_thread)
5378 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005379 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005380 kthread_bind(cpu_rq(cpu)->migration_thread,
5381 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005382 kthread_stop(cpu_rq(cpu)->migration_thread);
5383 cpu_rq(cpu)->migration_thread = NULL;
5384 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005385
Linus Torvalds1da177e2005-04-16 15:20:36 -07005386 case CPU_DEAD:
5387 migrate_live_tasks(cpu);
5388 rq = cpu_rq(cpu);
5389 kthread_stop(rq->migration_thread);
5390 rq->migration_thread = NULL;
5391 /* Idle task back to normal (off runqueue, low prio) */
5392 rq = task_rq_lock(rq->idle, &flags);
5393 deactivate_task(rq->idle, rq);
5394 rq->idle->static_prio = MAX_PRIO;
5395 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5396 migrate_dead_tasks(cpu);
5397 task_rq_unlock(rq, &flags);
5398 migrate_nr_uninterruptible(rq);
5399 BUG_ON(rq->nr_running != 0);
5400
5401 /* No need to migrate the tasks: it was best-effort if
5402 * they didn't do lock_cpu_hotplug(). Just wake up
5403 * the requestors. */
5404 spin_lock_irq(&rq->lock);
5405 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005406 struct migration_req *req;
5407
Linus Torvalds1da177e2005-04-16 15:20:36 -07005408 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005409 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005410 list_del_init(&req->list);
5411 complete(&req->done);
5412 }
5413 spin_unlock_irq(&rq->lock);
5414 break;
5415#endif
5416 }
5417 return NOTIFY_OK;
5418}
5419
5420/* Register at highest priority so that task migration (migrate_all_tasks)
5421 * happens before everything else.
5422 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005423static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005424 .notifier_call = migration_call,
5425 .priority = 10
5426};
5427
5428int __init migration_init(void)
5429{
5430 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005431 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005432
5433 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005434 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5435 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005436 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5437 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005438
Linus Torvalds1da177e2005-04-16 15:20:36 -07005439 return 0;
5440}
5441#endif
5442
5443#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005444
5445/* Number of possible processor ids */
5446int nr_cpu_ids __read_mostly = NR_CPUS;
5447EXPORT_SYMBOL(nr_cpu_ids);
5448
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005449#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005450#ifdef SCHED_DOMAIN_DEBUG
5451static void sched_domain_debug(struct sched_domain *sd, int cpu)
5452{
5453 int level = 0;
5454
Nick Piggin41c7ce92005-06-25 14:57:24 -07005455 if (!sd) {
5456 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5457 return;
5458 }
5459
Linus Torvalds1da177e2005-04-16 15:20:36 -07005460 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5461
5462 do {
5463 int i;
5464 char str[NR_CPUS];
5465 struct sched_group *group = sd->groups;
5466 cpumask_t groupmask;
5467
5468 cpumask_scnprintf(str, NR_CPUS, sd->span);
5469 cpus_clear(groupmask);
5470
5471 printk(KERN_DEBUG);
5472 for (i = 0; i < level + 1; i++)
5473 printk(" ");
5474 printk("domain %d: ", level);
5475
5476 if (!(sd->flags & SD_LOAD_BALANCE)) {
5477 printk("does not load-balance\n");
5478 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005479 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5480 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005481 break;
5482 }
5483
5484 printk("span %s\n", str);
5485
5486 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005487 printk(KERN_ERR "ERROR: domain->span does not contain "
5488 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005489 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005490 printk(KERN_ERR "ERROR: domain->groups does not contain"
5491 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005492
5493 printk(KERN_DEBUG);
5494 for (i = 0; i < level + 2; i++)
5495 printk(" ");
5496 printk("groups:");
5497 do {
5498 if (!group) {
5499 printk("\n");
5500 printk(KERN_ERR "ERROR: group is NULL\n");
5501 break;
5502 }
5503
5504 if (!group->cpu_power) {
5505 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005506 printk(KERN_ERR "ERROR: domain->cpu_power not "
5507 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005508 }
5509
5510 if (!cpus_weight(group->cpumask)) {
5511 printk("\n");
5512 printk(KERN_ERR "ERROR: empty group\n");
5513 }
5514
5515 if (cpus_intersects(groupmask, group->cpumask)) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: repeated CPUs\n");
5518 }
5519
5520 cpus_or(groupmask, groupmask, group->cpumask);
5521
5522 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5523 printk(" %s", str);
5524
5525 group = group->next;
5526 } while (group != sd->groups);
5527 printk("\n");
5528
5529 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005530 printk(KERN_ERR "ERROR: groups don't span "
5531 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005532
5533 level++;
5534 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005535 if (!sd)
5536 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005537
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005538 if (!cpus_subset(groupmask, sd->span))
5539 printk(KERN_ERR "ERROR: parent span is not a superset "
5540 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005541
5542 } while (sd);
5543}
5544#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005545# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005546#endif
5547
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005548static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005549{
5550 if (cpus_weight(sd->span) == 1)
5551 return 1;
5552
5553 /* Following flags need at least 2 groups */
5554 if (sd->flags & (SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUPOWER |
5559 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005560 if (sd->groups != sd->groups->next)
5561 return 0;
5562 }
5563
5564 /* Following flags don't use groups */
5565 if (sd->flags & (SD_WAKE_IDLE |
5566 SD_WAKE_AFFINE |
5567 SD_WAKE_BALANCE))
5568 return 0;
5569
5570 return 1;
5571}
5572
Ingo Molnar48f24c42006-07-03 00:25:40 -07005573static int
5574sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005575{
5576 unsigned long cflags = sd->flags, pflags = parent->flags;
5577
5578 if (sd_degenerate(parent))
5579 return 1;
5580
5581 if (!cpus_equal(sd->span, parent->span))
5582 return 0;
5583
5584 /* Does parent contain flags not in child? */
5585 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5586 if (cflags & SD_WAKE_AFFINE)
5587 pflags &= ~SD_WAKE_BALANCE;
5588 /* Flags needing groups don't count if only 1 group in parent */
5589 if (parent->groups == parent->groups->next) {
5590 pflags &= ~(SD_LOAD_BALANCE |
5591 SD_BALANCE_NEWIDLE |
5592 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005593 SD_BALANCE_EXEC |
5594 SD_SHARE_CPUPOWER |
5595 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005596 }
5597 if (~cflags & pflags)
5598 return 0;
5599
5600 return 1;
5601}
5602
Linus Torvalds1da177e2005-04-16 15:20:36 -07005603/*
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5606 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005607static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005608{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005609 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005610 struct sched_domain *tmp;
5611
5612 /* Remove the sched domains which do not contribute to scheduling. */
5613 for (tmp = sd; tmp; tmp = tmp->parent) {
5614 struct sched_domain *parent = tmp->parent;
5615 if (!parent)
5616 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005617 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005618 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005619 if (parent->parent)
5620 parent->parent->child = tmp;
5621 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005622 }
5623
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005624 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005625 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005626 if (sd)
5627 sd->child = NULL;
5628 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005629
5630 sched_domain_debug(sd, cpu);
5631
Nick Piggin674311d2005-06-25 14:57:27 -07005632 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005633}
5634
5635/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005636static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005637
5638/* Setup the mask of cpus configured for isolated domains */
5639static int __init isolated_cpu_setup(char *str)
5640{
5641 int ints[NR_CPUS], i;
5642
5643 str = get_options(str, ARRAY_SIZE(ints), ints);
5644 cpus_clear(cpu_isolated_map);
5645 for (i = 1; i <= ints[0]; i++)
5646 if (ints[i] < NR_CPUS)
5647 cpu_set(ints[i], cpu_isolated_map);
5648 return 1;
5649}
5650
5651__setup ("isolcpus=", isolated_cpu_setup);
5652
5653/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005654 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5655 * to a function which identifies what group(along with sched group) a CPU
5656 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5657 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005658 *
5659 * init_sched_build_groups will build a circular linked list of the groups
5660 * covered by the given span, and will set each group's ->cpumask correctly,
5661 * and ->cpu_power to 0.
5662 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005663static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005664init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5665 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5666 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005667{
5668 struct sched_group *first = NULL, *last = NULL;
5669 cpumask_t covered = CPU_MASK_NONE;
5670 int i;
5671
5672 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005673 struct sched_group *sg;
5674 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005675 int j;
5676
5677 if (cpu_isset(i, covered))
5678 continue;
5679
5680 sg->cpumask = CPU_MASK_NONE;
5681 sg->cpu_power = 0;
5682
5683 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005684 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005685 continue;
5686
5687 cpu_set(j, covered);
5688 cpu_set(j, sg->cpumask);
5689 }
5690 if (!first)
5691 first = sg;
5692 if (last)
5693 last->next = sg;
5694 last = sg;
5695 }
5696 last->next = first;
5697}
5698
John Hawkes9c1cfda2005-09-06 15:18:14 -07005699#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005700
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005701/*
5702 * Self-tuning task migration cost measurement between source and target CPUs.
5703 *
5704 * This is done by measuring the cost of manipulating buffers of varying
5705 * sizes. For a given buffer-size here are the steps that are taken:
5706 *
5707 * 1) the source CPU reads+dirties a shared buffer
5708 * 2) the target CPU reads+dirties the same shared buffer
5709 *
5710 * We measure how long they take, in the following 4 scenarios:
5711 *
5712 * - source: CPU1, target: CPU2 | cost1
5713 * - source: CPU2, target: CPU1 | cost2
5714 * - source: CPU1, target: CPU1 | cost3
5715 * - source: CPU2, target: CPU2 | cost4
5716 *
5717 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5718 * the cost of migration.
5719 *
5720 * We then start off from a small buffer-size and iterate up to larger
5721 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5722 * doing a maximum search for the cost. (The maximum cost for a migration
5723 * normally occurs when the working set size is around the effective cache
5724 * size.)
5725 */
5726#define SEARCH_SCOPE 2
5727#define MIN_CACHE_SIZE (64*1024U)
5728#define DEFAULT_CACHE_SIZE (5*1024*1024U)
Ingo Molnar70b4d632006-01-30 20:24:38 +01005729#define ITERATIONS 1
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005730#define SIZE_THRESH 130
5731#define COST_THRESH 130
5732
5733/*
5734 * The migration cost is a function of 'domain distance'. Domain
5735 * distance is the number of steps a CPU has to iterate down its
5736 * domain tree to share a domain with the other CPU. The farther
5737 * two CPUs are from each other, the larger the distance gets.
5738 *
5739 * Note that we use the distance only to cache measurement results,
5740 * the distance value is not used numerically otherwise. When two
5741 * CPUs have the same distance it is assumed that the migration
5742 * cost is the same. (this is a simplification but quite practical)
5743 */
5744#define MAX_DOMAIN_DISTANCE 32
5745
5746static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
Ingo Molnar4bbf39c2006-02-17 13:52:44 -08005747 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5748/*
5749 * Architectures may override the migration cost and thus avoid
5750 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5751 * virtualized hardware:
5752 */
5753#ifdef CONFIG_DEFAULT_MIGRATION_COST
5754 CONFIG_DEFAULT_MIGRATION_COST
5755#else
5756 -1LL
5757#endif
5758};
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005759
5760/*
5761 * Allow override of migration cost - in units of microseconds.
5762 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5763 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5764 */
5765static int __init migration_cost_setup(char *str)
5766{
5767 int ints[MAX_DOMAIN_DISTANCE+1], i;
5768
5769 str = get_options(str, ARRAY_SIZE(ints), ints);
5770
5771 printk("#ints: %d\n", ints[0]);
5772 for (i = 1; i <= ints[0]; i++) {
5773 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5774 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5775 }
5776 return 1;
5777}
5778
5779__setup ("migration_cost=", migration_cost_setup);
5780
5781/*
5782 * Global multiplier (divisor) for migration-cutoff values,
5783 * in percentiles. E.g. use a value of 150 to get 1.5 times
5784 * longer cache-hot cutoff times.
5785 *
5786 * (We scale it from 100 to 128 to long long handling easier.)
5787 */
5788
5789#define MIGRATION_FACTOR_SCALE 128
5790
5791static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5792
5793static int __init setup_migration_factor(char *str)
5794{
5795 get_option(&str, &migration_factor);
5796 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5797 return 1;
5798}
5799
5800__setup("migration_factor=", setup_migration_factor);
5801
5802/*
5803 * Estimated distance of two CPUs, measured via the number of domains
5804 * we have to pass for the two CPUs to be in the same span:
5805 */
5806static unsigned long domain_distance(int cpu1, int cpu2)
5807{
5808 unsigned long distance = 0;
5809 struct sched_domain *sd;
5810
5811 for_each_domain(cpu1, sd) {
5812 WARN_ON(!cpu_isset(cpu1, sd->span));
5813 if (cpu_isset(cpu2, sd->span))
5814 return distance;
5815 distance++;
5816 }
5817 if (distance >= MAX_DOMAIN_DISTANCE) {
5818 WARN_ON(1);
5819 distance = MAX_DOMAIN_DISTANCE-1;
5820 }
5821
5822 return distance;
5823}
5824
5825static unsigned int migration_debug;
5826
5827static int __init setup_migration_debug(char *str)
5828{
5829 get_option(&str, &migration_debug);
5830 return 1;
5831}
5832
5833__setup("migration_debug=", setup_migration_debug);
5834
5835/*
5836 * Maximum cache-size that the scheduler should try to measure.
5837 * Architectures with larger caches should tune this up during
5838 * bootup. Gets used in the domain-setup code (i.e. during SMP
5839 * bootup).
5840 */
5841unsigned int max_cache_size;
5842
5843static int __init setup_max_cache_size(char *str)
5844{
5845 get_option(&str, &max_cache_size);
5846 return 1;
5847}
5848
5849__setup("max_cache_size=", setup_max_cache_size);
5850
5851/*
5852 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5853 * is the operation that is timed, so we try to generate unpredictable
5854 * cachemisses that still end up filling the L2 cache:
5855 */
5856static void touch_cache(void *__cache, unsigned long __size)
5857{
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005858 unsigned long size = __size / sizeof(long);
5859 unsigned long chunk1 = size / 3;
5860 unsigned long chunk2 = 2 * size / 3;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005861 unsigned long *cache = __cache;
5862 int i;
5863
5864 for (i = 0; i < size/6; i += 8) {
5865 switch (i % 6) {
5866 case 0: cache[i]++;
5867 case 1: cache[size-1-i]++;
5868 case 2: cache[chunk1-i]++;
5869 case 3: cache[chunk1+i]++;
5870 case 4: cache[chunk2-i]++;
5871 case 5: cache[chunk2+i]++;
5872 }
5873 }
5874}
5875
5876/*
5877 * Measure the cache-cost of one task migration. Returns in units of nsec.
5878 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005879static unsigned long long
5880measure_one(void *cache, unsigned long size, int source, int target)
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005881{
5882 cpumask_t mask, saved_mask;
5883 unsigned long long t0, t1, t2, t3, cost;
5884
5885 saved_mask = current->cpus_allowed;
5886
5887 /*
5888 * Flush source caches to RAM and invalidate them:
5889 */
5890 sched_cacheflush();
5891
5892 /*
5893 * Migrate to the source CPU:
5894 */
5895 mask = cpumask_of_cpu(source);
5896 set_cpus_allowed(current, mask);
5897 WARN_ON(smp_processor_id() != source);
5898
5899 /*
5900 * Dirty the working set:
5901 */
5902 t0 = sched_clock();
5903 touch_cache(cache, size);
5904 t1 = sched_clock();
5905
5906 /*
5907 * Migrate to the target CPU, dirty the L2 cache and access
5908 * the shared buffer. (which represents the working set
5909 * of a migrated task.)
5910 */
5911 mask = cpumask_of_cpu(target);
5912 set_cpus_allowed(current, mask);
5913 WARN_ON(smp_processor_id() != target);
5914
5915 t2 = sched_clock();
5916 touch_cache(cache, size);
5917 t3 = sched_clock();
5918
5919 cost = t1-t0 + t3-t2;
5920
5921 if (migration_debug >= 2)
5922 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5923 source, target, t1-t0, t1-t0, t3-t2, cost);
5924 /*
5925 * Flush target caches to RAM and invalidate them:
5926 */
5927 sched_cacheflush();
5928
5929 set_cpus_allowed(current, saved_mask);
5930
5931 return cost;
5932}
5933
5934/*
5935 * Measure a series of task migrations and return the average
5936 * result. Since this code runs early during bootup the system
5937 * is 'undisturbed' and the average latency makes sense.
5938 *
5939 * The algorithm in essence auto-detects the relevant cache-size,
5940 * so it will properly detect different cachesizes for different
5941 * cache-hierarchies, depending on how the CPUs are connected.
5942 *
5943 * Architectures can prime the upper limit of the search range via
5944 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5945 */
5946static unsigned long long
5947measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5948{
5949 unsigned long long cost1, cost2;
5950 int i;
5951
5952 /*
5953 * Measure the migration cost of 'size' bytes, over an
5954 * average of 10 runs:
5955 *
5956 * (We perturb the cache size by a small (0..4k)
5957 * value to compensate size/alignment related artifacts.
5958 * We also subtract the cost of the operation done on
5959 * the same CPU.)
5960 */
5961 cost1 = 0;
5962
5963 /*
5964 * dry run, to make sure we start off cache-cold on cpu1,
5965 * and to get any vmalloc pagefaults in advance:
5966 */
5967 measure_one(cache, size, cpu1, cpu2);
5968 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005969 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005970
5971 measure_one(cache, size, cpu2, cpu1);
5972 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005973 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005974
5975 /*
5976 * (We measure the non-migrating [cached] cost on both
5977 * cpu1 and cpu2, to handle CPUs with different speeds)
5978 */
5979 cost2 = 0;
5980
5981 measure_one(cache, size, cpu1, cpu1);
5982 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005983 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005984
5985 measure_one(cache, size, cpu2, cpu2);
5986 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005987 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005988
5989 /*
5990 * Get the per-iteration migration cost:
5991 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005992 do_div(cost1, 2 * ITERATIONS);
5993 do_div(cost2, 2 * ITERATIONS);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005994
5995 return cost1 - cost2;
5996}
5997
5998static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5999{
6000 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6001 unsigned int max_size, size, size_found = 0;
6002 long long cost = 0, prev_cost;
6003 void *cache;
6004
6005 /*
6006 * Search from max_cache_size*5 down to 64K - the real relevant
6007 * cachesize has to lie somewhere inbetween.
6008 */
6009 if (max_cache_size) {
6010 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6011 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6012 } else {
6013 /*
6014 * Since we have no estimation about the relevant
6015 * search range
6016 */
6017 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6018 size = MIN_CACHE_SIZE;
6019 }
6020
6021 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6022 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6023 return 0;
6024 }
6025
6026 /*
6027 * Allocate the working set:
6028 */
6029 cache = vmalloc(max_size);
6030 if (!cache) {
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006031 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
Andreas Mohr2ed6e342006-07-10 04:43:52 -07006032 return 1000000; /* return 1 msec on very small boxen */
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006033 }
6034
6035 while (size <= max_size) {
6036 prev_cost = cost;
6037 cost = measure_cost(cpu1, cpu2, cache, size);
6038
6039 /*
6040 * Update the max:
6041 */
6042 if (cost > 0) {
6043 if (max_cost < cost) {
6044 max_cost = cost;
6045 size_found = size;
6046 }
6047 }
6048 /*
6049 * Calculate average fluctuation, we use this to prevent
6050 * noise from triggering an early break out of the loop:
6051 */
6052 fluct = abs(cost - prev_cost);
6053 avg_fluct = (avg_fluct + fluct)/2;
6054
6055 if (migration_debug)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006056 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6057 "(%8Ld %8Ld)\n",
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006058 cpu1, cpu2, size,
6059 (long)cost / 1000000,
6060 ((long)cost / 100000) % 10,
6061 (long)max_cost / 1000000,
6062 ((long)max_cost / 100000) % 10,
6063 domain_distance(cpu1, cpu2),
6064 cost, avg_fluct);
6065
6066 /*
6067 * If we iterated at least 20% past the previous maximum,
6068 * and the cost has dropped by more than 20% already,
6069 * (taking fluctuations into account) then we assume to
6070 * have found the maximum and break out of the loop early:
6071 */
6072 if (size_found && (size*100 > size_found*SIZE_THRESH))
6073 if (cost+avg_fluct <= 0 ||
6074 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6075
6076 if (migration_debug)
6077 printk("-> found max.\n");
6078 break;
6079 }
6080 /*
Ingo Molnar70b4d632006-01-30 20:24:38 +01006081 * Increase the cachesize in 10% steps:
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006082 */
Ingo Molnar70b4d632006-01-30 20:24:38 +01006083 size = size * 10 / 9;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006084 }
6085
6086 if (migration_debug)
6087 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6088 cpu1, cpu2, size_found, max_cost);
6089
6090 vfree(cache);
6091
6092 /*
6093 * A task is considered 'cache cold' if at least 2 times
6094 * the worst-case cost of migration has passed.
6095 *
6096 * (this limit is only listened to if the load-balancing
6097 * situation is 'nice' - if there is a large imbalance we
6098 * ignore it for the sake of CPU utilization and
6099 * processing fairness.)
6100 */
6101 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6102}
6103
6104static void calibrate_migration_costs(const cpumask_t *cpu_map)
6105{
6106 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6107 unsigned long j0, j1, distance, max_distance = 0;
6108 struct sched_domain *sd;
6109
6110 j0 = jiffies;
6111
6112 /*
6113 * First pass - calculate the cacheflush times:
6114 */
6115 for_each_cpu_mask(cpu1, *cpu_map) {
6116 for_each_cpu_mask(cpu2, *cpu_map) {
6117 if (cpu1 == cpu2)
6118 continue;
6119 distance = domain_distance(cpu1, cpu2);
6120 max_distance = max(max_distance, distance);
6121 /*
6122 * No result cached yet?
6123 */
6124 if (migration_cost[distance] == -1LL)
6125 migration_cost[distance] =
6126 measure_migration_cost(cpu1, cpu2);
6127 }
6128 }
6129 /*
6130 * Second pass - update the sched domain hierarchy with
6131 * the new cache-hot-time estimations:
6132 */
6133 for_each_cpu_mask(cpu, *cpu_map) {
6134 distance = 0;
6135 for_each_domain(cpu, sd) {
6136 sd->cache_hot_time = migration_cost[distance];
6137 distance++;
6138 }
6139 }
6140 /*
6141 * Print the matrix:
6142 */
6143 if (migration_debug)
6144 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6145 max_cache_size,
6146#ifdef CONFIG_X86
6147 cpu_khz/1000
6148#else
6149 -1
6150#endif
6151 );
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006152 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6153 printk("migration_cost=");
6154 for (distance = 0; distance <= max_distance; distance++) {
6155 if (distance)
6156 printk(",");
6157 printk("%ld", (long)migration_cost[distance] / 1000);
Chuck Ebbertbd576c92006-02-04 23:27:42 -08006158 }
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006159 printk("\n");
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006160 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006161 j1 = jiffies;
6162 if (migration_debug)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006163 printk("migration: %ld seconds\n", (j1-j0) / HZ);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006164
6165 /*
6166 * Move back to the original CPU. NUMA-Q gets confused
6167 * if we migrate to another quad during bootup.
6168 */
6169 if (raw_smp_processor_id() != orig_cpu) {
6170 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6171 saved_mask = current->cpus_allowed;
6172
6173 set_cpus_allowed(current, mask);
6174 set_cpus_allowed(current, saved_mask);
6175 }
6176}
6177
John Hawkes9c1cfda2005-09-06 15:18:14 -07006178#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006179
John Hawkes9c1cfda2005-09-06 15:18:14 -07006180/**
6181 * find_next_best_node - find the next node to include in a sched_domain
6182 * @node: node whose sched_domain we're building
6183 * @used_nodes: nodes already in the sched_domain
6184 *
6185 * Find the next node to include in a given scheduling domain. Simply
6186 * finds the closest node not already in the @used_nodes map.
6187 *
6188 * Should use nodemask_t.
6189 */
6190static int find_next_best_node(int node, unsigned long *used_nodes)
6191{
6192 int i, n, val, min_val, best_node = 0;
6193
6194 min_val = INT_MAX;
6195
6196 for (i = 0; i < MAX_NUMNODES; i++) {
6197 /* Start at @node */
6198 n = (node + i) % MAX_NUMNODES;
6199
6200 if (!nr_cpus_node(n))
6201 continue;
6202
6203 /* Skip already used nodes */
6204 if (test_bit(n, used_nodes))
6205 continue;
6206
6207 /* Simple min distance search */
6208 val = node_distance(node, n);
6209
6210 if (val < min_val) {
6211 min_val = val;
6212 best_node = n;
6213 }
6214 }
6215
6216 set_bit(best_node, used_nodes);
6217 return best_node;
6218}
6219
6220/**
6221 * sched_domain_node_span - get a cpumask for a node's sched_domain
6222 * @node: node whose cpumask we're constructing
6223 * @size: number of nodes to include in this span
6224 *
6225 * Given a node, construct a good cpumask for its sched_domain to span. It
6226 * should be one that prevents unnecessary balancing, but also spreads tasks
6227 * out optimally.
6228 */
6229static cpumask_t sched_domain_node_span(int node)
6230{
John Hawkes9c1cfda2005-09-06 15:18:14 -07006231 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006232 cpumask_t span, nodemask;
6233 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006234
6235 cpus_clear(span);
6236 bitmap_zero(used_nodes, MAX_NUMNODES);
6237
6238 nodemask = node_to_cpumask(node);
6239 cpus_or(span, span, nodemask);
6240 set_bit(node, used_nodes);
6241
6242 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6243 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006244
John Hawkes9c1cfda2005-09-06 15:18:14 -07006245 nodemask = node_to_cpumask(next_node);
6246 cpus_or(span, span, nodemask);
6247 }
6248
6249 return span;
6250}
6251#endif
6252
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006253int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006254
John Hawkes9c1cfda2005-09-06 15:18:14 -07006255/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07006256 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07006257 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006258#ifdef CONFIG_SCHED_SMT
6259static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006260static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006261
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006262static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6263 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006264{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006265 if (sg)
6266 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006267 return cpu;
6268}
6269#endif
6270
Ingo Molnar48f24c42006-07-03 00:25:40 -07006271/*
6272 * multi-core sched-domains:
6273 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006274#ifdef CONFIG_SCHED_MC
6275static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006276static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006277#endif
6278
6279#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006280static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6281 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006282{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006283 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006284 cpumask_t mask = cpu_sibling_map[cpu];
6285 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006286 group = first_cpu(mask);
6287 if (sg)
6288 *sg = &per_cpu(sched_group_core, group);
6289 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006290}
6291#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006292static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6293 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006294{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006295 if (sg)
6296 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006297 return cpu;
6298}
6299#endif
6300
Linus Torvalds1da177e2005-04-16 15:20:36 -07006301static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006302static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006303
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006304static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6305 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006306{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006307 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006308#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006309 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006310 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006311 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006312#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006313 cpumask_t mask = cpu_sibling_map[cpu];
6314 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006315 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006316#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006317 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006318#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006319 if (sg)
6320 *sg = &per_cpu(sched_group_phys, group);
6321 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006322}
6323
6324#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07006325/*
6326 * The init_sched_build_groups can't handle what we want to do with node
6327 * groups, so roll our own. Now each node has its own list of groups which
6328 * gets dynamically allocated.
6329 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006330static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07006331static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07006332
6333static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006334static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006335
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006336static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6337 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006338{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006339 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6340 int group;
6341
6342 cpus_and(nodemask, nodemask, *cpu_map);
6343 group = first_cpu(nodemask);
6344
6345 if (sg)
6346 *sg = &per_cpu(sched_group_allnodes, group);
6347 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006348}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006349
Siddha, Suresh B08069032006-03-27 01:15:23 -08006350static void init_numa_sched_groups_power(struct sched_group *group_head)
6351{
6352 struct sched_group *sg = group_head;
6353 int j;
6354
6355 if (!sg)
6356 return;
6357next_sg:
6358 for_each_cpu_mask(j, sg->cpumask) {
6359 struct sched_domain *sd;
6360
6361 sd = &per_cpu(phys_domains, j);
6362 if (j != first_cpu(sd->groups->cpumask)) {
6363 /*
6364 * Only add "power" once for each
6365 * physical package.
6366 */
6367 continue;
6368 }
6369
6370 sg->cpu_power += sd->groups->cpu_power;
6371 }
6372 sg = sg->next;
6373 if (sg != group_head)
6374 goto next_sg;
6375}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006376#endif
6377
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006378#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006379/* Free memory allocated for various sched_group structures */
6380static void free_sched_groups(const cpumask_t *cpu_map)
6381{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006382 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006383
6384 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006385 struct sched_group **sched_group_nodes
6386 = sched_group_nodes_bycpu[cpu];
6387
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006388 if (!sched_group_nodes)
6389 continue;
6390
6391 for (i = 0; i < MAX_NUMNODES; i++) {
6392 cpumask_t nodemask = node_to_cpumask(i);
6393 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6394
6395 cpus_and(nodemask, nodemask, *cpu_map);
6396 if (cpus_empty(nodemask))
6397 continue;
6398
6399 if (sg == NULL)
6400 continue;
6401 sg = sg->next;
6402next_sg:
6403 oldsg = sg;
6404 sg = sg->next;
6405 kfree(oldsg);
6406 if (oldsg != sched_group_nodes[i])
6407 goto next_sg;
6408 }
6409 kfree(sched_group_nodes);
6410 sched_group_nodes_bycpu[cpu] = NULL;
6411 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006412}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006413#else
6414static void free_sched_groups(const cpumask_t *cpu_map)
6415{
6416}
6417#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006418
Linus Torvalds1da177e2005-04-16 15:20:36 -07006419/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006420 * Initialize sched groups cpu_power.
6421 *
6422 * cpu_power indicates the capacity of sched group, which is used while
6423 * distributing the load between different sched groups in a sched domain.
6424 * Typically cpu_power for all the groups in a sched domain will be same unless
6425 * there are asymmetries in the topology. If there are asymmetries, group
6426 * having more cpu_power will pickup more load compared to the group having
6427 * less cpu_power.
6428 *
6429 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6430 * the maximum number of tasks a group can handle in the presence of other idle
6431 * or lightly loaded groups in the same sched domain.
6432 */
6433static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6434{
6435 struct sched_domain *child;
6436 struct sched_group *group;
6437
6438 WARN_ON(!sd || !sd->groups);
6439
6440 if (cpu != first_cpu(sd->groups->cpumask))
6441 return;
6442
6443 child = sd->child;
6444
6445 /*
6446 * For perf policy, if the groups in child domain share resources
6447 * (for example cores sharing some portions of the cache hierarchy
6448 * or SMT), then set this domain groups cpu_power such that each group
6449 * can handle only one task, when there are other idle groups in the
6450 * same sched domain.
6451 */
6452 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6453 (child->flags &
6454 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6455 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6456 return;
6457 }
6458
6459 sd->groups->cpu_power = 0;
6460
6461 /*
6462 * add cpu_power of each child group to this groups cpu_power
6463 */
6464 group = child->groups;
6465 do {
6466 sd->groups->cpu_power += group->cpu_power;
6467 group = group->next;
6468 } while (group != child->groups);
6469}
6470
6471/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006472 * Build sched domains for a given set of cpus and attach the sched domains
6473 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006474 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006475static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006476{
6477 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006478 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07006479#ifdef CONFIG_NUMA
6480 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006481 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006482
6483 /*
6484 * Allocate the per-node list of sched groups
6485 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006486 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006487 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006488 if (!sched_group_nodes) {
6489 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006490 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006491 }
6492 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6493#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006494
6495 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006496 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006497 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006498 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006499 struct sched_domain *sd = NULL, *p;
6500 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6501
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006502 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006503
6504#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07006505 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006506 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6507 sd = &per_cpu(allnodes_domains, i);
6508 *sd = SD_ALLNODES_INIT;
6509 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006510 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006511 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006512 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006513 } else
6514 p = NULL;
6515
Linus Torvalds1da177e2005-04-16 15:20:36 -07006516 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006517 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006518 sd->span = sched_domain_node_span(cpu_to_node(i));
6519 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006520 if (p)
6521 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006522 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006523#endif
6524
6525 p = sd;
6526 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006527 *sd = SD_CPU_INIT;
6528 sd->span = nodemask;
6529 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006530 if (p)
6531 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006532 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006533
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006534#ifdef CONFIG_SCHED_MC
6535 p = sd;
6536 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006537 *sd = SD_MC_INIT;
6538 sd->span = cpu_coregroup_map(i);
6539 cpus_and(sd->span, sd->span, *cpu_map);
6540 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006541 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006542 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006543#endif
6544
Linus Torvalds1da177e2005-04-16 15:20:36 -07006545#ifdef CONFIG_SCHED_SMT
6546 p = sd;
6547 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006548 *sd = SD_SIBLING_INIT;
6549 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006550 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006551 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006552 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006553 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006554#endif
6555 }
6556
6557#ifdef CONFIG_SCHED_SMT
6558 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006559 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006561 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006562 if (i != first_cpu(this_sibling_map))
6563 continue;
6564
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006565 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006566 }
6567#endif
6568
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006569#ifdef CONFIG_SCHED_MC
6570 /* Set up multi-core groups */
6571 for_each_cpu_mask(i, *cpu_map) {
6572 cpumask_t this_core_map = cpu_coregroup_map(i);
6573 cpus_and(this_core_map, this_core_map, *cpu_map);
6574 if (i != first_cpu(this_core_map))
6575 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006576 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006577 }
6578#endif
6579
6580
Linus Torvalds1da177e2005-04-16 15:20:36 -07006581 /* Set up physical groups */
6582 for (i = 0; i < MAX_NUMNODES; i++) {
6583 cpumask_t nodemask = node_to_cpumask(i);
6584
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006585 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006586 if (cpus_empty(nodemask))
6587 continue;
6588
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006589 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006590 }
6591
6592#ifdef CONFIG_NUMA
6593 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006594 if (sd_allnodes)
6595 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006596
6597 for (i = 0; i < MAX_NUMNODES; i++) {
6598 /* Set up node groups */
6599 struct sched_group *sg, *prev;
6600 cpumask_t nodemask = node_to_cpumask(i);
6601 cpumask_t domainspan;
6602 cpumask_t covered = CPU_MASK_NONE;
6603 int j;
6604
6605 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006606 if (cpus_empty(nodemask)) {
6607 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006608 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006609 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006610
6611 domainspan = sched_domain_node_span(i);
6612 cpus_and(domainspan, domainspan, *cpu_map);
6613
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006614 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006615 if (!sg) {
6616 printk(KERN_WARNING "Can not alloc domain group for "
6617 "node %d\n", i);
6618 goto error;
6619 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006620 sched_group_nodes[i] = sg;
6621 for_each_cpu_mask(j, nodemask) {
6622 struct sched_domain *sd;
6623 sd = &per_cpu(node_domains, j);
6624 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006625 }
6626 sg->cpu_power = 0;
6627 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006628 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006629 cpus_or(covered, covered, nodemask);
6630 prev = sg;
6631
6632 for (j = 0; j < MAX_NUMNODES; j++) {
6633 cpumask_t tmp, notcovered;
6634 int n = (i + j) % MAX_NUMNODES;
6635
6636 cpus_complement(notcovered, covered);
6637 cpus_and(tmp, notcovered, *cpu_map);
6638 cpus_and(tmp, tmp, domainspan);
6639 if (cpus_empty(tmp))
6640 break;
6641
6642 nodemask = node_to_cpumask(n);
6643 cpus_and(tmp, tmp, nodemask);
6644 if (cpus_empty(tmp))
6645 continue;
6646
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006647 sg = kmalloc_node(sizeof(struct sched_group),
6648 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006649 if (!sg) {
6650 printk(KERN_WARNING
6651 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006652 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006653 }
6654 sg->cpu_power = 0;
6655 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006656 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006657 cpus_or(covered, covered, tmp);
6658 prev->next = sg;
6659 prev = sg;
6660 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006661 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006662#endif
6663
6664 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006665#ifdef CONFIG_SCHED_SMT
6666 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006667 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006668 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006669 }
6670#endif
6671#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006672 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006673 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006674 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006675 }
6676#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006677
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006678 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006679 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006680 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006681 }
6682
John Hawkes9c1cfda2005-09-06 15:18:14 -07006683#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006684 for (i = 0; i < MAX_NUMNODES; i++)
6685 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006686
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006687 if (sd_allnodes) {
6688 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006689
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006690 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006691 init_numa_sched_groups_power(sg);
6692 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006693#endif
6694
Linus Torvalds1da177e2005-04-16 15:20:36 -07006695 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006696 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006697 struct sched_domain *sd;
6698#ifdef CONFIG_SCHED_SMT
6699 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006700#elif defined(CONFIG_SCHED_MC)
6701 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006702#else
6703 sd = &per_cpu(phys_domains, i);
6704#endif
6705 cpu_attach_domain(sd, i);
6706 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006707 /*
6708 * Tune cache-hot values:
6709 */
6710 calibrate_migration_costs(cpu_map);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006711
6712 return 0;
6713
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006714#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006715error:
6716 free_sched_groups(cpu_map);
6717 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006718#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006719}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006720/*
6721 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6722 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006723static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006724{
6725 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006726 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006727
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006728 /*
6729 * Setup mask for cpus without special case scheduling requirements.
6730 * For now this just excludes isolated cpus, but could be used to
6731 * exclude other special cases in the future.
6732 */
6733 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6734
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006735 err = build_sched_domains(&cpu_default_map);
6736
6737 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006738}
6739
6740static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006741{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006742 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006743}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006744
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006745/*
6746 * Detach sched domains from a group of cpus specified in cpu_map
6747 * These cpus will now be attached to the NULL domain
6748 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006749static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006750{
6751 int i;
6752
6753 for_each_cpu_mask(i, *cpu_map)
6754 cpu_attach_domain(NULL, i);
6755 synchronize_sched();
6756 arch_destroy_sched_domains(cpu_map);
6757}
6758
6759/*
6760 * Partition sched domains as specified by the cpumasks below.
6761 * This attaches all cpus from the cpumasks to the NULL domain,
6762 * waits for a RCU quiescent period, recalculates sched
6763 * domain information and then attaches them back to the
6764 * correct sched domains
6765 * Call with hotplug lock held
6766 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006767int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006768{
6769 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006770 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006771
6772 cpus_and(*partition1, *partition1, cpu_online_map);
6773 cpus_and(*partition2, *partition2, cpu_online_map);
6774 cpus_or(change_map, *partition1, *partition2);
6775
6776 /* Detach sched domains from all of the affected cpus */
6777 detach_destroy_domains(&change_map);
6778 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006779 err = build_sched_domains(partition1);
6780 if (!err && !cpus_empty(*partition2))
6781 err = build_sched_domains(partition2);
6782
6783 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006784}
6785
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006786#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6787int arch_reinit_sched_domains(void)
6788{
6789 int err;
6790
6791 lock_cpu_hotplug();
6792 detach_destroy_domains(&cpu_online_map);
6793 err = arch_init_sched_domains(&cpu_online_map);
6794 unlock_cpu_hotplug();
6795
6796 return err;
6797}
6798
6799static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6800{
6801 int ret;
6802
6803 if (buf[0] != '0' && buf[0] != '1')
6804 return -EINVAL;
6805
6806 if (smt)
6807 sched_smt_power_savings = (buf[0] == '1');
6808 else
6809 sched_mc_power_savings = (buf[0] == '1');
6810
6811 ret = arch_reinit_sched_domains();
6812
6813 return ret ? ret : count;
6814}
6815
6816int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6817{
6818 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006819
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006820#ifdef CONFIG_SCHED_SMT
6821 if (smt_capable())
6822 err = sysfs_create_file(&cls->kset.kobj,
6823 &attr_sched_smt_power_savings.attr);
6824#endif
6825#ifdef CONFIG_SCHED_MC
6826 if (!err && mc_capable())
6827 err = sysfs_create_file(&cls->kset.kobj,
6828 &attr_sched_mc_power_savings.attr);
6829#endif
6830 return err;
6831}
6832#endif
6833
6834#ifdef CONFIG_SCHED_MC
6835static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6836{
6837 return sprintf(page, "%u\n", sched_mc_power_savings);
6838}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006839static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6840 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006841{
6842 return sched_power_savings_store(buf, count, 0);
6843}
6844SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6845 sched_mc_power_savings_store);
6846#endif
6847
6848#ifdef CONFIG_SCHED_SMT
6849static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6850{
6851 return sprintf(page, "%u\n", sched_smt_power_savings);
6852}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006853static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6854 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006855{
6856 return sched_power_savings_store(buf, count, 1);
6857}
6858SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6859 sched_smt_power_savings_store);
6860#endif
6861
Linus Torvalds1da177e2005-04-16 15:20:36 -07006862/*
6863 * Force a reinitialization of the sched domains hierarchy. The domains
6864 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006865 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006866 * which will prevent rebalancing while the sched domains are recalculated.
6867 */
6868static int update_sched_domains(struct notifier_block *nfb,
6869 unsigned long action, void *hcpu)
6870{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006871 switch (action) {
6872 case CPU_UP_PREPARE:
6873 case CPU_DOWN_PREPARE:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006874 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006875 return NOTIFY_OK;
6876
6877 case CPU_UP_CANCELED:
6878 case CPU_DOWN_FAILED:
6879 case CPU_ONLINE:
6880 case CPU_DEAD:
6881 /*
6882 * Fall through and re-initialise the domains.
6883 */
6884 break;
6885 default:
6886 return NOTIFY_DONE;
6887 }
6888
6889 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006890 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006891
6892 return NOTIFY_OK;
6893}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006894
6895void __init sched_init_smp(void)
6896{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006897 cpumask_t non_isolated_cpus;
6898
Linus Torvalds1da177e2005-04-16 15:20:36 -07006899 lock_cpu_hotplug();
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006900 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006901 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006902 if (cpus_empty(non_isolated_cpus))
6903 cpu_set(smp_processor_id(), non_isolated_cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006904 unlock_cpu_hotplug();
6905 /* XXX: Theoretical race here - CPU may be hotplugged now */
6906 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006907
6908 /* Move init over to a non-isolated CPU */
6909 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6910 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006911}
6912#else
6913void __init sched_init_smp(void)
6914{
6915}
6916#endif /* CONFIG_SMP */
6917
6918int in_sched_functions(unsigned long addr)
6919{
6920 /* Linker adds these: start and end of __sched functions */
6921 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006922
Linus Torvalds1da177e2005-04-16 15:20:36 -07006923 return in_lock_functions(addr) ||
6924 (addr >= (unsigned long)__sched_text_start
6925 && addr < (unsigned long)__sched_text_end);
6926}
6927
6928void __init sched_init(void)
6929{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006930 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006931 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006932
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006933 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006934 struct prio_array *array;
6935 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006936
6937 rq = cpu_rq(i);
6938 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006939 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006940 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006941 rq->active = rq->arrays;
6942 rq->expired = rq->arrays + 1;
6943 rq->best_expired_prio = MAX_PRIO;
6944
6945#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006946 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006947 for (j = 1; j < 3; j++)
6948 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006949 rq->active_balance = 0;
6950 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006951 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006952 rq->migration_thread = NULL;
6953 INIT_LIST_HEAD(&rq->migration_queue);
6954#endif
6955 atomic_set(&rq->nr_iowait, 0);
6956
6957 for (j = 0; j < 2; j++) {
6958 array = rq->arrays + j;
6959 for (k = 0; k < MAX_PRIO; k++) {
6960 INIT_LIST_HEAD(array->queue + k);
6961 __clear_bit(k, array->bitmap);
6962 }
6963 // delimiter for bitsearch
6964 __set_bit(MAX_PRIO, array->bitmap);
6965 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006966 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006967 }
6968
Peter Williams2dd73a42006-06-27 02:54:34 -07006969 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006970
Christoph Lameterc9819f42006-12-10 02:20:25 -08006971#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006972 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006973 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6974#endif
6975
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006976#ifdef CONFIG_RT_MUTEXES
6977 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6978#endif
6979
Linus Torvalds1da177e2005-04-16 15:20:36 -07006980 /*
6981 * The boot idle thread does lazy MMU switching as well:
6982 */
6983 atomic_inc(&init_mm.mm_count);
6984 enter_lazy_tlb(&init_mm, current);
6985
6986 /*
6987 * Make us the idle thread. Technically, schedule() should not be
6988 * called from this thread, however somewhere below it might be,
6989 * but because we are the idle thread, we just pick up running again
6990 * when this runqueue becomes "idle".
6991 */
6992 init_idle(current, smp_processor_id());
6993}
6994
6995#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6996void __might_sleep(char *file, int line)
6997{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006998#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006999 static unsigned long prev_jiffy; /* ratelimiting */
7000
7001 if ((in_atomic() || irqs_disabled()) &&
7002 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7003 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7004 return;
7005 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08007006 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07007007 " context at %s:%d\n", file, line);
7008 printk("in_atomic():%d, irqs_disabled():%d\n",
7009 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08007010 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08007011 if (irqs_disabled())
7012 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007013 dump_stack();
7014 }
7015#endif
7016}
7017EXPORT_SYMBOL(__might_sleep);
7018#endif
7019
7020#ifdef CONFIG_MAGIC_SYSRQ
7021void normalize_rt_tasks(void)
7022{
Ingo Molnar70b97a72006-07-03 00:25:42 -07007023 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007024 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007025 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07007026 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007027
7028 read_lock_irq(&tasklist_lock);
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07007029 for_each_process(p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007030 if (!rt_task(p))
7031 continue;
7032
Ingo Molnarb29739f2006-06-27 02:54:51 -07007033 spin_lock_irqsave(&p->pi_lock, flags);
7034 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007035
7036 array = p->array;
7037 if (array)
7038 deactivate_task(p, task_rq(p));
7039 __setscheduler(p, SCHED_NORMAL, 0);
7040 if (array) {
7041 __activate_task(p, task_rq(p));
7042 resched_task(rq->curr);
7043 }
7044
Ingo Molnarb29739f2006-06-27 02:54:51 -07007045 __task_rq_unlock(rq);
7046 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007047 }
7048 read_unlock_irq(&tasklist_lock);
7049}
7050
7051#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07007052
7053#ifdef CONFIG_IA64
7054/*
7055 * These functions are only useful for the IA64 MCA handling.
7056 *
7057 * They can only be called when the whole system has been
7058 * stopped - every CPU needs to be quiescent, and no scheduling
7059 * activity can take place. Using them for anything else would
7060 * be a serious bug, and as a result, they aren't even visible
7061 * under any other configuration.
7062 */
7063
7064/**
7065 * curr_task - return the current task for a given cpu.
7066 * @cpu: the processor in question.
7067 *
7068 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7069 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07007070struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07007071{
7072 return cpu_curr(cpu);
7073}
7074
7075/**
7076 * set_curr_task - set the current task for a given cpu.
7077 * @cpu: the processor in question.
7078 * @p: the task pointer to set.
7079 *
7080 * Description: This function must only be used when non-maskable interrupts
7081 * are serviced on a separate stack. It allows the architecture to switch the
7082 * notion of the current task on a cpu in a non-blocking manner. This function
7083 * must be called with all CPU's synchronized, and interrupts disabled, the
7084 * and caller must save the original value of the current task (see
7085 * curr_task() above) and restore that value before reenabling interrupts and
7086 * re-starting the system.
7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7089 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07007090void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07007091{
7092 cpu_curr(cpu) = p;
7093}
7094
7095#endif