blob: 6459395a0e40681ef6fcf109057fe70473e1480d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Nathan Scott7b718762005-11-02 14:58:39 +11002 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110034#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110042#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_rw.h"
48#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71
72#ifdef DEBUG
73/*
74 * Make sure that the extents in the given memory buffer
75 * are valid.
76 */
77STATIC void
78xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110079 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
83{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110084 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 xfs_bmbt_irec_t irec;
86 xfs_bmbt_rec_t rec;
87 int i;
88
89 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110090 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
92 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
93 if (disk)
94 xfs_bmbt_disk_get_all(&rec, &irec);
95 else
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099 }
100}
101#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100102#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#endif /* DEBUG */
104
105/*
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
108 */
109#if defined(DEBUG)
110void
111xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
114{
115 int i;
116 int j;
117 xfs_dinode_t *dip;
118
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_fs_cmn_err(CE_ALERT, mp,
126 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
129 }
130 }
131}
132#endif
133
134/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135 * This routine is called to map an inode number within a file
136 * system to the buffer containing the on-disk version of the
137 * inode. It returns a pointer to the buffer containing the
138 * on-disk inode in the bpp parameter, and in the dip parameter
139 * it returns a pointer to the on-disk inode within that buffer.
140 *
141 * If a non-zero error is returned, then the contents of bpp and
142 * dipp are undefined.
143 *
144 * Use xfs_imap() to determine the size and location of the
145 * buffer to read from disk.
146 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000147STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148xfs_inotobp(
149 xfs_mount_t *mp,
150 xfs_trans_t *tp,
151 xfs_ino_t ino,
152 xfs_dinode_t **dipp,
153 xfs_buf_t **bpp,
154 int *offset)
155{
156 int di_ok;
157 xfs_imap_t imap;
158 xfs_buf_t *bp;
159 int error;
160 xfs_dinode_t *dip;
161
162 /*
163 * Call the space managment code to find the location of the
164 * inode on disk.
165 */
166 imap.im_blkno = 0;
167 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 if (error != 0) {
169 cmn_err(CE_WARN,
170 "xfs_inotobp: xfs_imap() returned an "
171 "error %d on %s. Returning error.", error, mp->m_fsname);
172 return error;
173 }
174
175 /*
176 * If the inode number maps to a block outside the bounds of the
177 * file system then return NULL rather than calling read_buf
178 * and panicing when we get an error from the driver.
179 */
180 if ((imap.im_blkno + imap.im_len) >
181 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100185 (unsigned long long)imap.im_blkno,
186 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187 return XFS_ERROR(EINVAL);
188 }
189
190 /*
191 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
192 * default to just a read_buf() call.
193 */
194 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
195 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196
197 if (error) {
198 cmn_err(CE_WARN,
199 "xfs_inotobp: xfs_trans_read_buf() returned an "
200 "error %d on %s. Returning error.", error, mp->m_fsname);
201 return error;
202 }
203 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 di_ok =
205 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
206 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
207 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
208 XFS_RANDOM_ITOBP_INOTOBP))) {
209 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
210 xfs_trans_brelse(tp, bp);
211 cmn_err(CE_WARN,
212 "xfs_inotobp: XFS_TEST_ERROR() returned an "
213 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
214 return XFS_ERROR(EFSCORRUPTED);
215 }
216
217 xfs_inobp_check(mp, bp);
218
219 /*
220 * Set *dipp to point to the on-disk inode in the buffer.
221 */
222 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *bpp = bp;
224 *offset = imap.im_boffset;
225 return 0;
226}
227
228
229/*
230 * This routine is called to map an inode to the buffer containing
231 * the on-disk version of the inode. It returns a pointer to the
232 * buffer containing the on-disk inode in the bpp parameter, and in
233 * the dip parameter it returns a pointer to the on-disk inode within
234 * that buffer.
235 *
236 * If a non-zero error is returned, then the contents of bpp and
237 * dipp are undefined.
238 *
239 * If the inode is new and has not yet been initialized, use xfs_imap()
240 * to determine the size and location of the buffer to read from disk.
241 * If the inode has already been mapped to its buffer and read in once,
242 * then use the mapping information stored in the inode rather than
243 * calling xfs_imap(). This allows us to avoid the overhead of looking
244 * at the inode btree for small block file systems (see xfs_dilocate()).
245 * We can tell whether the inode has been mapped in before by comparing
246 * its disk block address to 0. Only uninitialized inodes will have
247 * 0 for the disk block address.
248 */
249int
250xfs_itobp(
251 xfs_mount_t *mp,
252 xfs_trans_t *tp,
253 xfs_inode_t *ip,
254 xfs_dinode_t **dipp,
255 xfs_buf_t **bpp,
256 xfs_daddr_t bno)
257{
258 xfs_buf_t *bp;
259 int error;
260 xfs_imap_t imap;
261#ifdef __KERNEL__
262 int i;
263 int ni;
264#endif
265
266 if (ip->i_blkno == (xfs_daddr_t)0) {
267 /*
268 * Call the space management code to find the location of the
269 * inode on disk.
270 */
271 imap.im_blkno = bno;
272 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
273 if (error != 0) {
274 return error;
275 }
276
277 /*
278 * If the inode number maps to a block outside the bounds
279 * of the file system then return NULL rather than calling
280 * read_buf and panicing when we get an error from the
281 * driver.
282 */
283 if ((imap.im_blkno + imap.im_len) >
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285#ifdef DEBUG
286 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
287 "(imap.im_blkno (0x%llx) "
288 "+ imap.im_len (0x%llx)) > "
289 " XFS_FSB_TO_BB(mp, "
290 "mp->m_sb.sb_dblocks) (0x%llx)",
291 (unsigned long long) imap.im_blkno,
292 (unsigned long long) imap.im_len,
293 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294#endif /* DEBUG */
295 return XFS_ERROR(EINVAL);
296 }
297
298 /*
299 * Fill in the fields in the inode that will be used to
300 * map the inode to its buffer from now on.
301 */
302 ip->i_blkno = imap.im_blkno;
303 ip->i_len = imap.im_len;
304 ip->i_boffset = imap.im_boffset;
305 } else {
306 /*
307 * We've already mapped the inode once, so just use the
308 * mapping that we saved the first time.
309 */
310 imap.im_blkno = ip->i_blkno;
311 imap.im_len = ip->i_len;
312 imap.im_boffset = ip->i_boffset;
313 }
314 ASSERT(bno == 0 || bno == imap.im_blkno);
315
316 /*
317 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
318 * default to just a read_buf() call.
319 */
320 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
321 (int)imap.im_len, XFS_BUF_LOCK, &bp);
322
323 if (error) {
324#ifdef DEBUG
325 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
326 "xfs_trans_read_buf() returned error %d, "
327 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
328 error, (unsigned long long) imap.im_blkno,
329 (unsigned long long) imap.im_len);
330#endif /* DEBUG */
331 return error;
332 }
333#ifdef __KERNEL__
334 /*
335 * Validate the magic number and version of every inode in the buffer
336 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
337 */
338#ifdef DEBUG
339 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
340#else
341 ni = 1;
342#endif
343 for (i = 0; i < ni; i++) {
344 int di_ok;
345 xfs_dinode_t *dip;
346
347 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
348 (i << mp->m_sb.sb_inodelog));
349 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
350 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
351 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
352 XFS_RANDOM_ITOBP_INOTOBP))) {
353#ifdef DEBUG
354 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
355 mp->m_ddev_targp,
356 (unsigned long long)imap.im_blkno, i,
357 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
358#endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 }
365#endif /* __KERNEL__ */
366
367 xfs_inobp_check(mp, bp);
368
369 /*
370 * Mark the buffer as an inode buffer now that it looks good
371 */
372 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
373
374 /*
375 * Set *dipp to point to the on-disk inode in the buffer.
376 */
377 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
378 *bpp = bp;
379 return 0;
380}
381
382/*
383 * Move inode type and inode format specific information from the
384 * on-disk inode to the in-core inode. For fifos, devs, and sockets
385 * this means set if_rdev to the proper value. For files, directories,
386 * and symlinks this means to bring in the in-line data or extent
387 * pointers. For a file in B-tree format, only the root is immediately
388 * brought in-core. The rest will be in-lined in if_extents when it
389 * is first referenced (see xfs_iread_extents()).
390 */
391STATIC int
392xfs_iformat(
393 xfs_inode_t *ip,
394 xfs_dinode_t *dip)
395{
396 xfs_attr_shortform_t *atp;
397 int size;
398 int error;
399 xfs_fsize_t di_size;
400 ip->i_df.if_ext_max =
401 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
402 error = 0;
403
404 if (unlikely(
405 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
406 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
407 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100408 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
409 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410 (unsigned long long)ip->i_ino,
411 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
412 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
413 (unsigned long long)
414 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
416 ip->i_mount, dip);
417 return XFS_ERROR(EFSCORRUPTED);
418 }
419
420 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100421 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
422 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700423 (unsigned long long)ip->i_ino,
424 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
425 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
426 ip->i_mount, dip);
427 return XFS_ERROR(EFSCORRUPTED);
428 }
429
430 switch (ip->i_d.di_mode & S_IFMT) {
431 case S_IFIFO:
432 case S_IFCHR:
433 case S_IFBLK:
434 case S_IFSOCK:
435 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
436 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
437 ip->i_mount, dip);
438 return XFS_ERROR(EFSCORRUPTED);
439 }
440 ip->i_d.di_size = 0;
441 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
442 break;
443
444 case S_IFREG:
445 case S_IFLNK:
446 case S_IFDIR:
447 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
448 case XFS_DINODE_FMT_LOCAL:
449 /*
450 * no local regular files yet
451 */
452 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100453 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
454 "corrupt inode %Lu "
455 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 (unsigned long long) ip->i_ino);
457 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
458 XFS_ERRLEVEL_LOW,
459 ip->i_mount, dip);
460 return XFS_ERROR(EFSCORRUPTED);
461 }
462
463 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
464 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100465 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
466 "corrupt inode %Lu "
467 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 (unsigned long long) ip->i_ino,
469 (long long) di_size);
470 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
471 XFS_ERRLEVEL_LOW,
472 ip->i_mount, dip);
473 return XFS_ERROR(EFSCORRUPTED);
474 }
475
476 size = (int)di_size;
477 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
478 break;
479 case XFS_DINODE_FMT_EXTENTS:
480 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
481 break;
482 case XFS_DINODE_FMT_BTREE:
483 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
484 break;
485 default:
486 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
487 ip->i_mount);
488 return XFS_ERROR(EFSCORRUPTED);
489 }
490 break;
491
492 default:
493 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
494 return XFS_ERROR(EFSCORRUPTED);
495 }
496 if (error) {
497 return error;
498 }
499 if (!XFS_DFORK_Q(dip))
500 return 0;
501 ASSERT(ip->i_afp == NULL);
502 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
503 ip->i_afp->if_ext_max =
504 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
505 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
506 case XFS_DINODE_FMT_LOCAL:
507 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
508 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
509 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
510 break;
511 case XFS_DINODE_FMT_EXTENTS:
512 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
513 break;
514 case XFS_DINODE_FMT_BTREE:
515 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
516 break;
517 default:
518 error = XFS_ERROR(EFSCORRUPTED);
519 break;
520 }
521 if (error) {
522 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
523 ip->i_afp = NULL;
524 xfs_idestroy_fork(ip, XFS_DATA_FORK);
525 }
526 return error;
527}
528
529/*
530 * The file is in-lined in the on-disk inode.
531 * If it fits into if_inline_data, then copy
532 * it there, otherwise allocate a buffer for it
533 * and copy the data there. Either way, set
534 * if_data to point at the data.
535 * If we allocate a buffer for the data, make
536 * sure that its size is a multiple of 4 and
537 * record the real size in i_real_bytes.
538 */
539STATIC int
540xfs_iformat_local(
541 xfs_inode_t *ip,
542 xfs_dinode_t *dip,
543 int whichfork,
544 int size)
545{
546 xfs_ifork_t *ifp;
547 int real_size;
548
549 /*
550 * If the size is unreasonable, then something
551 * is wrong and we just bail out rather than crash in
552 * kmem_alloc() or memcpy() below.
553 */
554 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100555 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
556 "corrupt inode %Lu "
557 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700558 (unsigned long long) ip->i_ino, size,
559 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
560 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
561 ip->i_mount, dip);
562 return XFS_ERROR(EFSCORRUPTED);
563 }
564 ifp = XFS_IFORK_PTR(ip, whichfork);
565 real_size = 0;
566 if (size == 0)
567 ifp->if_u1.if_data = NULL;
568 else if (size <= sizeof(ifp->if_u2.if_inline_data))
569 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
570 else {
571 real_size = roundup(size, 4);
572 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 }
574 ifp->if_bytes = size;
575 ifp->if_real_bytes = real_size;
576 if (size)
577 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
578 ifp->if_flags &= ~XFS_IFEXTENTS;
579 ifp->if_flags |= XFS_IFINLINE;
580 return 0;
581}
582
583/*
584 * The file consists of a set of extents all
585 * of which fit into the on-disk inode.
586 * If there are few enough extents to fit into
587 * the if_inline_ext, then copy them there.
588 * Otherwise allocate a buffer for them and copy
589 * them into it. Either way, set if_extents
590 * to point at the extents.
591 */
592STATIC int
593xfs_iformat_extents(
594 xfs_inode_t *ip,
595 xfs_dinode_t *dip,
596 int whichfork)
597{
598 xfs_bmbt_rec_t *ep, *dp;
599 xfs_ifork_t *ifp;
600 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700601 int size;
602 int i;
603
604 ifp = XFS_IFORK_PTR(ip, whichfork);
605 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
606 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
607
608 /*
609 * If the number of extents is unreasonable, then something
610 * is wrong and we just bail out rather than crash in
611 * kmem_alloc() or memcpy() below.
612 */
613 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100614 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
615 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700616 (unsigned long long) ip->i_ino, nex);
617 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
618 ip->i_mount, dip);
619 return XFS_ERROR(EFSCORRUPTED);
620 }
621
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100622 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 if (nex == 0)
624 ifp->if_u1.if_extents = NULL;
625 else if (nex <= XFS_INLINE_EXTS)
626 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100627 else
628 xfs_iext_add(ifp, 0, nex);
629
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631 if (size) {
632 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100633 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
634 for (i = 0; i < nex; i++, dp++) {
635 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
637 ARCH_CONVERT);
638 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
639 ARCH_CONVERT);
640 }
641 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
642 whichfork);
643 if (whichfork != XFS_DATA_FORK ||
644 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
645 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100646 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
648 XFS_ERRLEVEL_LOW,
649 ip->i_mount);
650 return XFS_ERROR(EFSCORRUPTED);
651 }
652 }
653 ifp->if_flags |= XFS_IFEXTENTS;
654 return 0;
655}
656
657/*
658 * The file has too many extents to fit into
659 * the inode, so they are in B-tree format.
660 * Allocate a buffer for the root of the B-tree
661 * and copy the root into it. The i_extents
662 * field will remain NULL until all of the
663 * extents are read in (when they are needed).
664 */
665STATIC int
666xfs_iformat_btree(
667 xfs_inode_t *ip,
668 xfs_dinode_t *dip,
669 int whichfork)
670{
671 xfs_bmdr_block_t *dfp;
672 xfs_ifork_t *ifp;
673 /* REFERENCED */
674 int nrecs;
675 int size;
676
677 ifp = XFS_IFORK_PTR(ip, whichfork);
678 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
679 size = XFS_BMAP_BROOT_SPACE(dfp);
680 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
681
682 /*
683 * blow out if -- fork has less extents than can fit in
684 * fork (fork shouldn't be a btree format), root btree
685 * block has more records than can fit into the fork,
686 * or the number of extents is greater than the number of
687 * blocks.
688 */
689 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
690 || XFS_BMDR_SPACE_CALC(nrecs) >
691 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
692 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100693 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
694 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695 (unsigned long long) ip->i_ino);
696 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
697 ip->i_mount);
698 return XFS_ERROR(EFSCORRUPTED);
699 }
700
701 ifp->if_broot_bytes = size;
702 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
703 ASSERT(ifp->if_broot != NULL);
704 /*
705 * Copy and convert from the on-disk structure
706 * to the in-memory structure.
707 */
708 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
709 ifp->if_broot, size);
710 ifp->if_flags &= ~XFS_IFEXTENTS;
711 ifp->if_flags |= XFS_IFBROOT;
712
713 return 0;
714}
715
716/*
717 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
718 * and native format
719 *
720 * buf = on-disk representation
721 * dip = native representation
722 * dir = direction - +ve -> disk to native
723 * -ve -> native to disk
724 */
725void
726xfs_xlate_dinode_core(
727 xfs_caddr_t buf,
728 xfs_dinode_core_t *dip,
729 int dir)
730{
731 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
732 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
733 xfs_arch_t arch = ARCH_CONVERT;
734
735 ASSERT(dir);
736
737 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
738 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
739 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
740 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
741 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
742 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
743 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
744 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
745 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
746
747 if (dir > 0) {
748 memcpy(mem_core->di_pad, buf_core->di_pad,
749 sizeof(buf_core->di_pad));
750 } else {
751 memcpy(buf_core->di_pad, mem_core->di_pad,
752 sizeof(buf_core->di_pad));
753 }
754
755 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
756
757 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
758 dir, arch);
759 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
760 dir, arch);
761 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
762 dir, arch);
763 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
764 dir, arch);
765 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
766 dir, arch);
767 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
768 dir, arch);
769 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
770 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
771 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
772 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
773 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
774 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
775 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
776 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
777 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
778 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
779 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
780}
781
782STATIC uint
783_xfs_dic2xflags(
784 xfs_dinode_core_t *dic,
785 __uint16_t di_flags)
786{
787 uint flags = 0;
788
789 if (di_flags & XFS_DIFLAG_ANY) {
790 if (di_flags & XFS_DIFLAG_REALTIME)
791 flags |= XFS_XFLAG_REALTIME;
792 if (di_flags & XFS_DIFLAG_PREALLOC)
793 flags |= XFS_XFLAG_PREALLOC;
794 if (di_flags & XFS_DIFLAG_IMMUTABLE)
795 flags |= XFS_XFLAG_IMMUTABLE;
796 if (di_flags & XFS_DIFLAG_APPEND)
797 flags |= XFS_XFLAG_APPEND;
798 if (di_flags & XFS_DIFLAG_SYNC)
799 flags |= XFS_XFLAG_SYNC;
800 if (di_flags & XFS_DIFLAG_NOATIME)
801 flags |= XFS_XFLAG_NOATIME;
802 if (di_flags & XFS_DIFLAG_NODUMP)
803 flags |= XFS_XFLAG_NODUMP;
804 if (di_flags & XFS_DIFLAG_RTINHERIT)
805 flags |= XFS_XFLAG_RTINHERIT;
806 if (di_flags & XFS_DIFLAG_PROJINHERIT)
807 flags |= XFS_XFLAG_PROJINHERIT;
808 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
809 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100810 if (di_flags & XFS_DIFLAG_EXTSIZE)
811 flags |= XFS_XFLAG_EXTSIZE;
812 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
813 flags |= XFS_XFLAG_EXTSZINHERIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814 }
815
816 return flags;
817}
818
819uint
820xfs_ip2xflags(
821 xfs_inode_t *ip)
822{
823 xfs_dinode_core_t *dic = &ip->i_d;
824
825 return _xfs_dic2xflags(dic, dic->di_flags) |
826 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
827}
828
829uint
830xfs_dic2xflags(
831 xfs_dinode_core_t *dic)
832{
833 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
834 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
835}
836
837/*
838 * Given a mount structure and an inode number, return a pointer
839 * to a newly allocated in-core inode coresponding to the given
840 * inode number.
841 *
842 * Initialize the inode's attributes and extent pointers if it
843 * already has them (it will not if the inode has no links).
844 */
845int
846xfs_iread(
847 xfs_mount_t *mp,
848 xfs_trans_t *tp,
849 xfs_ino_t ino,
850 xfs_inode_t **ipp,
851 xfs_daddr_t bno)
852{
853 xfs_buf_t *bp;
854 xfs_dinode_t *dip;
855 xfs_inode_t *ip;
856 int error;
857
858 ASSERT(xfs_inode_zone != NULL);
859
860 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
861 ip->i_ino = ino;
862 ip->i_mount = mp;
863
864 /*
865 * Get pointer's to the on-disk inode and the buffer containing it.
866 * If the inode number refers to a block outside the file system
867 * then xfs_itobp() will return NULL. In this case we should
868 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
869 * know that this is a new incore inode.
870 */
871 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
872
873 if (error != 0) {
874 kmem_zone_free(xfs_inode_zone, ip);
875 return error;
876 }
877
878 /*
879 * Initialize inode's trace buffers.
880 * Do this before xfs_iformat in case it adds entries.
881 */
882#ifdef XFS_BMAP_TRACE
883 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
884#endif
885#ifdef XFS_BMBT_TRACE
886 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
887#endif
888#ifdef XFS_RW_TRACE
889 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
890#endif
891#ifdef XFS_ILOCK_TRACE
892 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
893#endif
894#ifdef XFS_DIR2_TRACE
895 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
896#endif
897
898 /*
899 * If we got something that isn't an inode it means someone
900 * (nfs or dmi) has a stale handle.
901 */
902 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
903 kmem_zone_free(xfs_inode_zone, ip);
904 xfs_trans_brelse(tp, bp);
905#ifdef DEBUG
906 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
907 "dip->di_core.di_magic (0x%x) != "
908 "XFS_DINODE_MAGIC (0x%x)",
909 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
910 XFS_DINODE_MAGIC);
911#endif /* DEBUG */
912 return XFS_ERROR(EINVAL);
913 }
914
915 /*
916 * If the on-disk inode is already linked to a directory
917 * entry, copy all of the inode into the in-core inode.
918 * xfs_iformat() handles copying in the inode format
919 * specific information.
920 * Otherwise, just get the truly permanent information.
921 */
922 if (dip->di_core.di_mode) {
923 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
924 &(ip->i_d), 1);
925 error = xfs_iformat(ip, dip);
926 if (error) {
927 kmem_zone_free(xfs_inode_zone, ip);
928 xfs_trans_brelse(tp, bp);
929#ifdef DEBUG
930 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
931 "xfs_iformat() returned error %d",
932 error);
933#endif /* DEBUG */
934 return error;
935 }
936 } else {
937 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
938 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
939 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
940 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
941 /*
942 * Make sure to pull in the mode here as well in
943 * case the inode is released without being used.
944 * This ensures that xfs_inactive() will see that
945 * the inode is already free and not try to mess
946 * with the uninitialized part of it.
947 */
948 ip->i_d.di_mode = 0;
949 /*
950 * Initialize the per-fork minima and maxima for a new
951 * inode here. xfs_iformat will do it for old inodes.
952 */
953 ip->i_df.if_ext_max =
954 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
955 }
956
957 INIT_LIST_HEAD(&ip->i_reclaim);
958
959 /*
960 * The inode format changed when we moved the link count and
961 * made it 32 bits long. If this is an old format inode,
962 * convert it in memory to look like a new one. If it gets
963 * flushed to disk we will convert back before flushing or
964 * logging it. We zero out the new projid field and the old link
965 * count field. We'll handle clearing the pad field (the remains
966 * of the old uuid field) when we actually convert the inode to
967 * the new format. We don't change the version number so that we
968 * can distinguish this from a real new format inode.
969 */
970 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
971 ip->i_d.di_nlink = ip->i_d.di_onlink;
972 ip->i_d.di_onlink = 0;
973 ip->i_d.di_projid = 0;
974 }
975
976 ip->i_delayed_blks = 0;
977
978 /*
979 * Mark the buffer containing the inode as something to keep
980 * around for a while. This helps to keep recently accessed
981 * meta-data in-core longer.
982 */
983 XFS_BUF_SET_REF(bp, XFS_INO_REF);
984
985 /*
986 * Use xfs_trans_brelse() to release the buffer containing the
987 * on-disk inode, because it was acquired with xfs_trans_read_buf()
988 * in xfs_itobp() above. If tp is NULL, this is just a normal
989 * brelse(). If we're within a transaction, then xfs_trans_brelse()
990 * will only release the buffer if it is not dirty within the
991 * transaction. It will be OK to release the buffer in this case,
992 * because inodes on disk are never destroyed and we will be
993 * locking the new in-core inode before putting it in the hash
994 * table where other processes can find it. Thus we don't have
995 * to worry about the inode being changed just because we released
996 * the buffer.
997 */
998 xfs_trans_brelse(tp, bp);
999 *ipp = ip;
1000 return 0;
1001}
1002
1003/*
1004 * Read in extents from a btree-format inode.
1005 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1006 */
1007int
1008xfs_iread_extents(
1009 xfs_trans_t *tp,
1010 xfs_inode_t *ip,
1011 int whichfork)
1012{
1013 int error;
1014 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001015 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016 size_t size;
1017
1018 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1019 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1020 ip->i_mount);
1021 return XFS_ERROR(EFSCORRUPTED);
1022 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001023 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1024 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001026
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 /*
1028 * We know that the size is valid (it's checked in iformat_btree)
1029 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001031 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001033 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 error = xfs_bmap_read_extents(tp, ip, whichfork);
1035 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001036 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 ifp->if_flags &= ~XFS_IFEXTENTS;
1038 return error;
1039 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001040 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041 return 0;
1042}
1043
1044/*
1045 * Allocate an inode on disk and return a copy of its in-core version.
1046 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1047 * appropriately within the inode. The uid and gid for the inode are
1048 * set according to the contents of the given cred structure.
1049 *
1050 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1051 * has a free inode available, call xfs_iget()
1052 * to obtain the in-core version of the allocated inode. Finally,
1053 * fill in the inode and log its initial contents. In this case,
1054 * ialloc_context would be set to NULL and call_again set to false.
1055 *
1056 * If xfs_dialloc() does not have an available inode,
1057 * it will replenish its supply by doing an allocation. Since we can
1058 * only do one allocation within a transaction without deadlocks, we
1059 * must commit the current transaction before returning the inode itself.
1060 * In this case, therefore, we will set call_again to true and return.
1061 * The caller should then commit the current transaction, start a new
1062 * transaction, and call xfs_ialloc() again to actually get the inode.
1063 *
1064 * To ensure that some other process does not grab the inode that
1065 * was allocated during the first call to xfs_ialloc(), this routine
1066 * also returns the [locked] bp pointing to the head of the freelist
1067 * as ialloc_context. The caller should hold this buffer across
1068 * the commit and pass it back into this routine on the second call.
1069 */
1070int
1071xfs_ialloc(
1072 xfs_trans_t *tp,
1073 xfs_inode_t *pip,
1074 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001075 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 xfs_dev_t rdev,
1077 cred_t *cr,
1078 xfs_prid_t prid,
1079 int okalloc,
1080 xfs_buf_t **ialloc_context,
1081 boolean_t *call_again,
1082 xfs_inode_t **ipp)
1083{
1084 xfs_ino_t ino;
1085 xfs_inode_t *ip;
1086 vnode_t *vp;
1087 uint flags;
1088 int error;
1089
1090 /*
1091 * Call the space management code to pick
1092 * the on-disk inode to be allocated.
1093 */
1094 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1095 ialloc_context, call_again, &ino);
1096 if (error != 0) {
1097 return error;
1098 }
1099 if (*call_again || ino == NULLFSINO) {
1100 *ipp = NULL;
1101 return 0;
1102 }
1103 ASSERT(*ialloc_context == NULL);
1104
1105 /*
1106 * Get the in-core inode with the lock held exclusively.
1107 * This is because we're setting fields here we need
1108 * to prevent others from looking at until we're done.
1109 */
1110 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1111 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1112 if (error != 0) {
1113 return error;
1114 }
1115 ASSERT(ip != NULL);
1116
1117 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001118 ip->i_d.di_mode = (__uint16_t)mode;
1119 ip->i_d.di_onlink = 0;
1120 ip->i_d.di_nlink = nlink;
1121 ASSERT(ip->i_d.di_nlink == nlink);
1122 ip->i_d.di_uid = current_fsuid(cr);
1123 ip->i_d.di_gid = current_fsgid(cr);
1124 ip->i_d.di_projid = prid;
1125 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1126
1127 /*
1128 * If the superblock version is up to where we support new format
1129 * inodes and this is currently an old format inode, then change
1130 * the inode version number now. This way we only do the conversion
1131 * here rather than here and in the flush/logging code.
1132 */
1133 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1134 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1135 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1136 /*
1137 * We've already zeroed the old link count, the projid field,
1138 * and the pad field.
1139 */
1140 }
1141
1142 /*
1143 * Project ids won't be stored on disk if we are using a version 1 inode.
1144 */
1145 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1146 xfs_bump_ino_vers2(tp, ip);
1147
1148 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1149 ip->i_d.di_gid = pip->i_d.di_gid;
1150 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1151 ip->i_d.di_mode |= S_ISGID;
1152 }
1153 }
1154
1155 /*
1156 * If the group ID of the new file does not match the effective group
1157 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1158 * (and only if the irix_sgid_inherit compatibility variable is set).
1159 */
1160 if ((irix_sgid_inherit) &&
1161 (ip->i_d.di_mode & S_ISGID) &&
1162 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1163 ip->i_d.di_mode &= ~S_ISGID;
1164 }
1165
1166 ip->i_d.di_size = 0;
1167 ip->i_d.di_nextents = 0;
1168 ASSERT(ip->i_d.di_nblocks == 0);
1169 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1170 /*
1171 * di_gen will have been taken care of in xfs_iread.
1172 */
1173 ip->i_d.di_extsize = 0;
1174 ip->i_d.di_dmevmask = 0;
1175 ip->i_d.di_dmstate = 0;
1176 ip->i_d.di_flags = 0;
1177 flags = XFS_ILOG_CORE;
1178 switch (mode & S_IFMT) {
1179 case S_IFIFO:
1180 case S_IFCHR:
1181 case S_IFBLK:
1182 case S_IFSOCK:
1183 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1184 ip->i_df.if_u2.if_rdev = rdev;
1185 ip->i_df.if_flags = 0;
1186 flags |= XFS_ILOG_DEV;
1187 break;
1188 case S_IFREG:
1189 case S_IFDIR:
1190 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001191 uint di_flags = 0;
1192
1193 if ((mode & S_IFMT) == S_IFDIR) {
1194 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1195 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001196 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1197 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1198 ip->i_d.di_extsize = pip->i_d.di_extsize;
1199 }
1200 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001201 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1202 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1204 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001205 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1206 di_flags |= XFS_DIFLAG_EXTSIZE;
1207 ip->i_d.di_extsize = pip->i_d.di_extsize;
1208 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 }
1210 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1211 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001212 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001213 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1214 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001215 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1217 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001218 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1220 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001221 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1222 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1223 di_flags |= XFS_DIFLAG_PROJINHERIT;
1224 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001225 }
1226 /* FALLTHROUGH */
1227 case S_IFLNK:
1228 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1229 ip->i_df.if_flags = XFS_IFEXTENTS;
1230 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1231 ip->i_df.if_u1.if_extents = NULL;
1232 break;
1233 default:
1234 ASSERT(0);
1235 }
1236 /*
1237 * Attribute fork settings for new inode.
1238 */
1239 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1240 ip->i_d.di_anextents = 0;
1241
1242 /*
1243 * Log the new values stuffed into the inode.
1244 */
1245 xfs_trans_log_inode(tp, ip, flags);
1246
Christoph Hellwig0432dab2005-09-02 16:46:51 +10001247 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1249
1250 *ipp = ip;
1251 return 0;
1252}
1253
1254/*
1255 * Check to make sure that there are no blocks allocated to the
1256 * file beyond the size of the file. We don't check this for
1257 * files with fixed size extents or real time extents, but we
1258 * at least do it for regular files.
1259 */
1260#ifdef DEBUG
1261void
1262xfs_isize_check(
1263 xfs_mount_t *mp,
1264 xfs_inode_t *ip,
1265 xfs_fsize_t isize)
1266{
1267 xfs_fileoff_t map_first;
1268 int nimaps;
1269 xfs_bmbt_irec_t imaps[2];
1270
1271 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1272 return;
1273
Nathan Scottdd9f4382006-01-11 15:28:28 +11001274 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 return;
1276
1277 nimaps = 2;
1278 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1279 /*
1280 * The filesystem could be shutting down, so bmapi may return
1281 * an error.
1282 */
1283 if (xfs_bmapi(NULL, ip, map_first,
1284 (XFS_B_TO_FSB(mp,
1285 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1286 map_first),
1287 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1288 NULL))
1289 return;
1290 ASSERT(nimaps == 1);
1291 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1292}
1293#endif /* DEBUG */
1294
1295/*
1296 * Calculate the last possible buffered byte in a file. This must
1297 * include data that was buffered beyond the EOF by the write code.
1298 * This also needs to deal with overflowing the xfs_fsize_t type
1299 * which can happen for sizes near the limit.
1300 *
1301 * We also need to take into account any blocks beyond the EOF. It
1302 * may be the case that they were buffered by a write which failed.
1303 * In that case the pages will still be in memory, but the inode size
1304 * will never have been updated.
1305 */
1306xfs_fsize_t
1307xfs_file_last_byte(
1308 xfs_inode_t *ip)
1309{
1310 xfs_mount_t *mp;
1311 xfs_fsize_t last_byte;
1312 xfs_fileoff_t last_block;
1313 xfs_fileoff_t size_last_block;
1314 int error;
1315
1316 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1317
1318 mp = ip->i_mount;
1319 /*
1320 * Only check for blocks beyond the EOF if the extents have
1321 * been read in. This eliminates the need for the inode lock,
1322 * and it also saves us from looking when it really isn't
1323 * necessary.
1324 */
1325 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1326 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1327 XFS_DATA_FORK);
1328 if (error) {
1329 last_block = 0;
1330 }
1331 } else {
1332 last_block = 0;
1333 }
1334 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1335 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1336
1337 last_byte = XFS_FSB_TO_B(mp, last_block);
1338 if (last_byte < 0) {
1339 return XFS_MAXIOFFSET(mp);
1340 }
1341 last_byte += (1 << mp->m_writeio_log);
1342 if (last_byte < 0) {
1343 return XFS_MAXIOFFSET(mp);
1344 }
1345 return last_byte;
1346}
1347
1348#if defined(XFS_RW_TRACE)
1349STATIC void
1350xfs_itrunc_trace(
1351 int tag,
1352 xfs_inode_t *ip,
1353 int flag,
1354 xfs_fsize_t new_size,
1355 xfs_off_t toss_start,
1356 xfs_off_t toss_finish)
1357{
1358 if (ip->i_rwtrace == NULL) {
1359 return;
1360 }
1361
1362 ktrace_enter(ip->i_rwtrace,
1363 (void*)((long)tag),
1364 (void*)ip,
1365 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1366 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1367 (void*)((long)flag),
1368 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1369 (void*)(unsigned long)(new_size & 0xffffffff),
1370 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(toss_start & 0xffffffff),
1372 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1373 (void*)(unsigned long)(toss_finish & 0xffffffff),
1374 (void*)(unsigned long)current_cpu(),
1375 (void*)0,
1376 (void*)0,
1377 (void*)0,
1378 (void*)0);
1379}
1380#else
1381#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1382#endif
1383
1384/*
1385 * Start the truncation of the file to new_size. The new size
1386 * must be smaller than the current size. This routine will
1387 * clear the buffer and page caches of file data in the removed
1388 * range, and xfs_itruncate_finish() will remove the underlying
1389 * disk blocks.
1390 *
1391 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1392 * must NOT have the inode lock held at all. This is because we're
1393 * calling into the buffer/page cache code and we can't hold the
1394 * inode lock when we do so.
1395 *
1396 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1397 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1398 * in the case that the caller is locking things out of order and
1399 * may not be able to call xfs_itruncate_finish() with the inode lock
1400 * held without dropping the I/O lock. If the caller must drop the
1401 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1402 * must be called again with all the same restrictions as the initial
1403 * call.
1404 */
1405void
1406xfs_itruncate_start(
1407 xfs_inode_t *ip,
1408 uint flags,
1409 xfs_fsize_t new_size)
1410{
1411 xfs_fsize_t last_byte;
1412 xfs_off_t toss_start;
1413 xfs_mount_t *mp;
1414 vnode_t *vp;
1415
1416 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1417 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1418 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1419 (flags == XFS_ITRUNC_MAYBE));
1420
1421 mp = ip->i_mount;
1422 vp = XFS_ITOV(ip);
1423 /*
1424 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1425 * overlapping the region being removed. We have to use
1426 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1427 * caller may not be able to finish the truncate without
1428 * dropping the inode's I/O lock. Make sure
1429 * to catch any pages brought in by buffers overlapping
1430 * the EOF by searching out beyond the isize by our
1431 * block size. We round new_size up to a block boundary
1432 * so that we don't toss things on the same block as
1433 * new_size but before it.
1434 *
1435 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1436 * call remapf() over the same region if the file is mapped.
1437 * This frees up mapped file references to the pages in the
1438 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1439 * that we get the latest mapped changes flushed out.
1440 */
1441 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1442 toss_start = XFS_FSB_TO_B(mp, toss_start);
1443 if (toss_start < 0) {
1444 /*
1445 * The place to start tossing is beyond our maximum
1446 * file size, so there is no way that the data extended
1447 * out there.
1448 */
1449 return;
1450 }
1451 last_byte = xfs_file_last_byte(ip);
1452 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1453 last_byte);
1454 if (last_byte > toss_start) {
1455 if (flags & XFS_ITRUNC_DEFINITE) {
1456 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1457 } else {
1458 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1459 }
1460 }
1461
1462#ifdef DEBUG
1463 if (new_size == 0) {
1464 ASSERT(VN_CACHED(vp) == 0);
1465 }
1466#endif
1467}
1468
1469/*
1470 * Shrink the file to the given new_size. The new
1471 * size must be smaller than the current size.
1472 * This will free up the underlying blocks
1473 * in the removed range after a call to xfs_itruncate_start()
1474 * or xfs_atruncate_start().
1475 *
1476 * The transaction passed to this routine must have made
1477 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1478 * This routine may commit the given transaction and
1479 * start new ones, so make sure everything involved in
1480 * the transaction is tidy before calling here.
1481 * Some transaction will be returned to the caller to be
1482 * committed. The incoming transaction must already include
1483 * the inode, and both inode locks must be held exclusively.
1484 * The inode must also be "held" within the transaction. On
1485 * return the inode will be "held" within the returned transaction.
1486 * This routine does NOT require any disk space to be reserved
1487 * for it within the transaction.
1488 *
1489 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1490 * and it indicates the fork which is to be truncated. For the
1491 * attribute fork we only support truncation to size 0.
1492 *
1493 * We use the sync parameter to indicate whether or not the first
1494 * transaction we perform might have to be synchronous. For the attr fork,
1495 * it needs to be so if the unlink of the inode is not yet known to be
1496 * permanent in the log. This keeps us from freeing and reusing the
1497 * blocks of the attribute fork before the unlink of the inode becomes
1498 * permanent.
1499 *
1500 * For the data fork, we normally have to run synchronously if we're
1501 * being called out of the inactive path or we're being called
1502 * out of the create path where we're truncating an existing file.
1503 * Either way, the truncate needs to be sync so blocks don't reappear
1504 * in the file with altered data in case of a crash. wsync filesystems
1505 * can run the first case async because anything that shrinks the inode
1506 * has to run sync so by the time we're called here from inactive, the
1507 * inode size is permanently set to 0.
1508 *
1509 * Calls from the truncate path always need to be sync unless we're
1510 * in a wsync filesystem and the file has already been unlinked.
1511 *
1512 * The caller is responsible for correctly setting the sync parameter.
1513 * It gets too hard for us to guess here which path we're being called
1514 * out of just based on inode state.
1515 */
1516int
1517xfs_itruncate_finish(
1518 xfs_trans_t **tp,
1519 xfs_inode_t *ip,
1520 xfs_fsize_t new_size,
1521 int fork,
1522 int sync)
1523{
1524 xfs_fsblock_t first_block;
1525 xfs_fileoff_t first_unmap_block;
1526 xfs_fileoff_t last_block;
1527 xfs_filblks_t unmap_len=0;
1528 xfs_mount_t *mp;
1529 xfs_trans_t *ntp;
1530 int done;
1531 int committed;
1532 xfs_bmap_free_t free_list;
1533 int error;
1534
1535 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1536 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1537 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1538 ASSERT(*tp != NULL);
1539 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1540 ASSERT(ip->i_transp == *tp);
1541 ASSERT(ip->i_itemp != NULL);
1542 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1543
1544
1545 ntp = *tp;
1546 mp = (ntp)->t_mountp;
1547 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1548
1549 /*
1550 * We only support truncating the entire attribute fork.
1551 */
1552 if (fork == XFS_ATTR_FORK) {
1553 new_size = 0LL;
1554 }
1555 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1556 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1557 /*
1558 * The first thing we do is set the size to new_size permanently
1559 * on disk. This way we don't have to worry about anyone ever
1560 * being able to look at the data being freed even in the face
1561 * of a crash. What we're getting around here is the case where
1562 * we free a block, it is allocated to another file, it is written
1563 * to, and then we crash. If the new data gets written to the
1564 * file but the log buffers containing the free and reallocation
1565 * don't, then we'd end up with garbage in the blocks being freed.
1566 * As long as we make the new_size permanent before actually
1567 * freeing any blocks it doesn't matter if they get writtten to.
1568 *
1569 * The callers must signal into us whether or not the size
1570 * setting here must be synchronous. There are a few cases
1571 * where it doesn't have to be synchronous. Those cases
1572 * occur if the file is unlinked and we know the unlink is
1573 * permanent or if the blocks being truncated are guaranteed
1574 * to be beyond the inode eof (regardless of the link count)
1575 * and the eof value is permanent. Both of these cases occur
1576 * only on wsync-mounted filesystems. In those cases, we're
1577 * guaranteed that no user will ever see the data in the blocks
1578 * that are being truncated so the truncate can run async.
1579 * In the free beyond eof case, the file may wind up with
1580 * more blocks allocated to it than it needs if we crash
1581 * and that won't get fixed until the next time the file
1582 * is re-opened and closed but that's ok as that shouldn't
1583 * be too many blocks.
1584 *
1585 * However, we can't just make all wsync xactions run async
1586 * because there's one call out of the create path that needs
1587 * to run sync where it's truncating an existing file to size
1588 * 0 whose size is > 0.
1589 *
1590 * It's probably possible to come up with a test in this
1591 * routine that would correctly distinguish all the above
1592 * cases from the values of the function parameters and the
1593 * inode state but for sanity's sake, I've decided to let the
1594 * layers above just tell us. It's simpler to correctly figure
1595 * out in the layer above exactly under what conditions we
1596 * can run async and I think it's easier for others read and
1597 * follow the logic in case something has to be changed.
1598 * cscope is your friend -- rcc.
1599 *
1600 * The attribute fork is much simpler.
1601 *
1602 * For the attribute fork we allow the caller to tell us whether
1603 * the unlink of the inode that led to this call is yet permanent
1604 * in the on disk log. If it is not and we will be freeing extents
1605 * in this inode then we make the first transaction synchronous
1606 * to make sure that the unlink is permanent by the time we free
1607 * the blocks.
1608 */
1609 if (fork == XFS_DATA_FORK) {
1610 if (ip->i_d.di_nextents > 0) {
1611 ip->i_d.di_size = new_size;
1612 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1613 }
1614 } else if (sync) {
1615 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1616 if (ip->i_d.di_anextents > 0)
1617 xfs_trans_set_sync(ntp);
1618 }
1619 ASSERT(fork == XFS_DATA_FORK ||
1620 (fork == XFS_ATTR_FORK &&
1621 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1622 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1623
1624 /*
1625 * Since it is possible for space to become allocated beyond
1626 * the end of the file (in a crash where the space is allocated
1627 * but the inode size is not yet updated), simply remove any
1628 * blocks which show up between the new EOF and the maximum
1629 * possible file size. If the first block to be removed is
1630 * beyond the maximum file size (ie it is the same as last_block),
1631 * then there is nothing to do.
1632 */
1633 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1634 ASSERT(first_unmap_block <= last_block);
1635 done = 0;
1636 if (last_block == first_unmap_block) {
1637 done = 1;
1638 } else {
1639 unmap_len = last_block - first_unmap_block + 1;
1640 }
1641 while (!done) {
1642 /*
1643 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1644 * will tell us whether it freed the entire range or
1645 * not. If this is a synchronous mount (wsync),
1646 * then we can tell bunmapi to keep all the
1647 * transactions asynchronous since the unlink
1648 * transaction that made this inode inactive has
1649 * already hit the disk. There's no danger of
1650 * the freed blocks being reused, there being a
1651 * crash, and the reused blocks suddenly reappearing
1652 * in this file with garbage in them once recovery
1653 * runs.
1654 */
1655 XFS_BMAP_INIT(&free_list, &first_block);
1656 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1657 unmap_len,
1658 XFS_BMAPI_AFLAG(fork) |
1659 (sync ? 0 : XFS_BMAPI_ASYNC),
1660 XFS_ITRUNC_MAX_EXTENTS,
1661 &first_block, &free_list, &done);
1662 if (error) {
1663 /*
1664 * If the bunmapi call encounters an error,
1665 * return to the caller where the transaction
1666 * can be properly aborted. We just need to
1667 * make sure we're not holding any resources
1668 * that we were not when we came in.
1669 */
1670 xfs_bmap_cancel(&free_list);
1671 return error;
1672 }
1673
1674 /*
1675 * Duplicate the transaction that has the permanent
1676 * reservation and commit the old transaction.
1677 */
1678 error = xfs_bmap_finish(tp, &free_list, first_block,
1679 &committed);
1680 ntp = *tp;
1681 if (error) {
1682 /*
1683 * If the bmap finish call encounters an error,
1684 * return to the caller where the transaction
1685 * can be properly aborted. We just need to
1686 * make sure we're not holding any resources
1687 * that we were not when we came in.
1688 *
1689 * Aborting from this point might lose some
1690 * blocks in the file system, but oh well.
1691 */
1692 xfs_bmap_cancel(&free_list);
1693 if (committed) {
1694 /*
1695 * If the passed in transaction committed
1696 * in xfs_bmap_finish(), then we want to
1697 * add the inode to this one before returning.
1698 * This keeps things simple for the higher
1699 * level code, because it always knows that
1700 * the inode is locked and held in the
1701 * transaction that returns to it whether
1702 * errors occur or not. We don't mark the
1703 * inode dirty so that this transaction can
1704 * be easily aborted if possible.
1705 */
1706 xfs_trans_ijoin(ntp, ip,
1707 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1708 xfs_trans_ihold(ntp, ip);
1709 }
1710 return error;
1711 }
1712
1713 if (committed) {
1714 /*
1715 * The first xact was committed,
1716 * so add the inode to the new one.
1717 * Mark it dirty so it will be logged
1718 * and moved forward in the log as
1719 * part of every commit.
1720 */
1721 xfs_trans_ijoin(ntp, ip,
1722 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1723 xfs_trans_ihold(ntp, ip);
1724 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1725 }
1726 ntp = xfs_trans_dup(ntp);
1727 (void) xfs_trans_commit(*tp, 0, NULL);
1728 *tp = ntp;
1729 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1730 XFS_TRANS_PERM_LOG_RES,
1731 XFS_ITRUNCATE_LOG_COUNT);
1732 /*
1733 * Add the inode being truncated to the next chained
1734 * transaction.
1735 */
1736 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1737 xfs_trans_ihold(ntp, ip);
1738 if (error)
1739 return (error);
1740 }
1741 /*
1742 * Only update the size in the case of the data fork, but
1743 * always re-log the inode so that our permanent transaction
1744 * can keep on rolling it forward in the log.
1745 */
1746 if (fork == XFS_DATA_FORK) {
1747 xfs_isize_check(mp, ip, new_size);
1748 ip->i_d.di_size = new_size;
1749 }
1750 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1751 ASSERT((new_size != 0) ||
1752 (fork == XFS_ATTR_FORK) ||
1753 (ip->i_delayed_blks == 0));
1754 ASSERT((new_size != 0) ||
1755 (fork == XFS_ATTR_FORK) ||
1756 (ip->i_d.di_nextents == 0));
1757 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1758 return 0;
1759}
1760
1761
1762/*
1763 * xfs_igrow_start
1764 *
1765 * Do the first part of growing a file: zero any data in the last
1766 * block that is beyond the old EOF. We need to do this before
1767 * the inode is joined to the transaction to modify the i_size.
1768 * That way we can drop the inode lock and call into the buffer
1769 * cache to get the buffer mapping the EOF.
1770 */
1771int
1772xfs_igrow_start(
1773 xfs_inode_t *ip,
1774 xfs_fsize_t new_size,
1775 cred_t *credp)
1776{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 int error;
1778
1779 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1780 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1781 ASSERT(new_size > ip->i_d.di_size);
1782
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 /*
1784 * Zero any pages that may have been created by
1785 * xfs_write_file() beyond the end of the file
1786 * and any blocks between the old and new file sizes.
1787 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001788 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1789 ip->i_d.di_size, new_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 return error;
1791}
1792
1793/*
1794 * xfs_igrow_finish
1795 *
1796 * This routine is called to extend the size of a file.
1797 * The inode must have both the iolock and the ilock locked
1798 * for update and it must be a part of the current transaction.
1799 * The xfs_igrow_start() function must have been called previously.
1800 * If the change_flag is not zero, the inode change timestamp will
1801 * be updated.
1802 */
1803void
1804xfs_igrow_finish(
1805 xfs_trans_t *tp,
1806 xfs_inode_t *ip,
1807 xfs_fsize_t new_size,
1808 int change_flag)
1809{
1810 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1811 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1812 ASSERT(ip->i_transp == tp);
1813 ASSERT(new_size > ip->i_d.di_size);
1814
1815 /*
1816 * Update the file size. Update the inode change timestamp
1817 * if change_flag set.
1818 */
1819 ip->i_d.di_size = new_size;
1820 if (change_flag)
1821 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1822 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1823
1824}
1825
1826
1827/*
1828 * This is called when the inode's link count goes to 0.
1829 * We place the on-disk inode on a list in the AGI. It
1830 * will be pulled from this list when the inode is freed.
1831 */
1832int
1833xfs_iunlink(
1834 xfs_trans_t *tp,
1835 xfs_inode_t *ip)
1836{
1837 xfs_mount_t *mp;
1838 xfs_agi_t *agi;
1839 xfs_dinode_t *dip;
1840 xfs_buf_t *agibp;
1841 xfs_buf_t *ibp;
1842 xfs_agnumber_t agno;
1843 xfs_daddr_t agdaddr;
1844 xfs_agino_t agino;
1845 short bucket_index;
1846 int offset;
1847 int error;
1848 int agi_ok;
1849
1850 ASSERT(ip->i_d.di_nlink == 0);
1851 ASSERT(ip->i_d.di_mode != 0);
1852 ASSERT(ip->i_transp == tp);
1853
1854 mp = tp->t_mountp;
1855
1856 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1857 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1858
1859 /*
1860 * Get the agi buffer first. It ensures lock ordering
1861 * on the list.
1862 */
1863 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1864 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1865 if (error) {
1866 return error;
1867 }
1868 /*
1869 * Validate the magic number of the agi block.
1870 */
1871 agi = XFS_BUF_TO_AGI(agibp);
1872 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001873 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1874 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1876 XFS_RANDOM_IUNLINK))) {
1877 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1878 xfs_trans_brelse(tp, agibp);
1879 return XFS_ERROR(EFSCORRUPTED);
1880 }
1881 /*
1882 * Get the index into the agi hash table for the
1883 * list this inode will go on.
1884 */
1885 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1886 ASSERT(agino != 0);
1887 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1888 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001889 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890
Christoph Hellwig16259e72005-11-02 15:11:25 +11001891 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001892 /*
1893 * There is already another inode in the bucket we need
1894 * to add ourselves to. Add us at the front of the list.
1895 * Here we put the head pointer into our next pointer,
1896 * and then we fall through to point the head at us.
1897 */
1898 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1899 if (error) {
1900 return error;
1901 }
1902 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1903 ASSERT(dip->di_next_unlinked);
1904 /* both on-disk, don't endian flip twice */
1905 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1906 offset = ip->i_boffset +
1907 offsetof(xfs_dinode_t, di_next_unlinked);
1908 xfs_trans_inode_buf(tp, ibp);
1909 xfs_trans_log_buf(tp, ibp, offset,
1910 (offset + sizeof(xfs_agino_t) - 1));
1911 xfs_inobp_check(mp, ibp);
1912 }
1913
1914 /*
1915 * Point the bucket head pointer at the inode being inserted.
1916 */
1917 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001918 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 offset = offsetof(xfs_agi_t, agi_unlinked) +
1920 (sizeof(xfs_agino_t) * bucket_index);
1921 xfs_trans_log_buf(tp, agibp, offset,
1922 (offset + sizeof(xfs_agino_t) - 1));
1923 return 0;
1924}
1925
1926/*
1927 * Pull the on-disk inode from the AGI unlinked list.
1928 */
1929STATIC int
1930xfs_iunlink_remove(
1931 xfs_trans_t *tp,
1932 xfs_inode_t *ip)
1933{
1934 xfs_ino_t next_ino;
1935 xfs_mount_t *mp;
1936 xfs_agi_t *agi;
1937 xfs_dinode_t *dip;
1938 xfs_buf_t *agibp;
1939 xfs_buf_t *ibp;
1940 xfs_agnumber_t agno;
1941 xfs_daddr_t agdaddr;
1942 xfs_agino_t agino;
1943 xfs_agino_t next_agino;
1944 xfs_buf_t *last_ibp;
1945 xfs_dinode_t *last_dip;
1946 short bucket_index;
1947 int offset, last_offset;
1948 int error;
1949 int agi_ok;
1950
1951 /*
1952 * First pull the on-disk inode from the AGI unlinked list.
1953 */
1954 mp = tp->t_mountp;
1955
1956 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1957 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1958
1959 /*
1960 * Get the agi buffer first. It ensures lock ordering
1961 * on the list.
1962 */
1963 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1964 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1965 if (error) {
1966 cmn_err(CE_WARN,
1967 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1968 error, mp->m_fsname);
1969 return error;
1970 }
1971 /*
1972 * Validate the magic number of the agi block.
1973 */
1974 agi = XFS_BUF_TO_AGI(agibp);
1975 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001976 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1977 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1979 XFS_RANDOM_IUNLINK_REMOVE))) {
1980 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1981 mp, agi);
1982 xfs_trans_brelse(tp, agibp);
1983 cmn_err(CE_WARN,
1984 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1985 mp->m_fsname);
1986 return XFS_ERROR(EFSCORRUPTED);
1987 }
1988 /*
1989 * Get the index into the agi hash table for the
1990 * list this inode will go on.
1991 */
1992 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1993 ASSERT(agino != 0);
1994 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11001995 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001996 ASSERT(agi->agi_unlinked[bucket_index]);
1997
Christoph Hellwig16259e72005-11-02 15:11:25 +11001998 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 /*
2000 * We're at the head of the list. Get the inode's
2001 * on-disk buffer to see if there is anyone after us
2002 * on the list. Only modify our next pointer if it
2003 * is not already NULLAGINO. This saves us the overhead
2004 * of dealing with the buffer when there is no need to
2005 * change it.
2006 */
2007 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2008 if (error) {
2009 cmn_err(CE_WARN,
2010 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2011 error, mp->m_fsname);
2012 return error;
2013 }
2014 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2015 ASSERT(next_agino != 0);
2016 if (next_agino != NULLAGINO) {
2017 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2018 offset = ip->i_boffset +
2019 offsetof(xfs_dinode_t, di_next_unlinked);
2020 xfs_trans_inode_buf(tp, ibp);
2021 xfs_trans_log_buf(tp, ibp, offset,
2022 (offset + sizeof(xfs_agino_t) - 1));
2023 xfs_inobp_check(mp, ibp);
2024 } else {
2025 xfs_trans_brelse(tp, ibp);
2026 }
2027 /*
2028 * Point the bucket head pointer at the next inode.
2029 */
2030 ASSERT(next_agino != 0);
2031 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002032 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002033 offset = offsetof(xfs_agi_t, agi_unlinked) +
2034 (sizeof(xfs_agino_t) * bucket_index);
2035 xfs_trans_log_buf(tp, agibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2037 } else {
2038 /*
2039 * We need to search the list for the inode being freed.
2040 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002041 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002042 last_ibp = NULL;
2043 while (next_agino != agino) {
2044 /*
2045 * If the last inode wasn't the one pointing to
2046 * us, then release its buffer since we're not
2047 * going to do anything with it.
2048 */
2049 if (last_ibp != NULL) {
2050 xfs_trans_brelse(tp, last_ibp);
2051 }
2052 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2053 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2054 &last_ibp, &last_offset);
2055 if (error) {
2056 cmn_err(CE_WARN,
2057 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2058 error, mp->m_fsname);
2059 return error;
2060 }
2061 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2062 ASSERT(next_agino != NULLAGINO);
2063 ASSERT(next_agino != 0);
2064 }
2065 /*
2066 * Now last_ibp points to the buffer previous to us on
2067 * the unlinked list. Pull us from the list.
2068 */
2069 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2070 if (error) {
2071 cmn_err(CE_WARN,
2072 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2073 error, mp->m_fsname);
2074 return error;
2075 }
2076 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2077 ASSERT(next_agino != 0);
2078 ASSERT(next_agino != agino);
2079 if (next_agino != NULLAGINO) {
2080 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2081 offset = ip->i_boffset +
2082 offsetof(xfs_dinode_t, di_next_unlinked);
2083 xfs_trans_inode_buf(tp, ibp);
2084 xfs_trans_log_buf(tp, ibp, offset,
2085 (offset + sizeof(xfs_agino_t) - 1));
2086 xfs_inobp_check(mp, ibp);
2087 } else {
2088 xfs_trans_brelse(tp, ibp);
2089 }
2090 /*
2091 * Point the previous inode on the list to the next inode.
2092 */
2093 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2094 ASSERT(next_agino != 0);
2095 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2096 xfs_trans_inode_buf(tp, last_ibp);
2097 xfs_trans_log_buf(tp, last_ibp, offset,
2098 (offset + sizeof(xfs_agino_t) - 1));
2099 xfs_inobp_check(mp, last_ibp);
2100 }
2101 return 0;
2102}
2103
2104static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2105{
2106 return (((ip->i_itemp == NULL) ||
2107 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2108 (ip->i_update_core == 0));
2109}
2110
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002111STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112xfs_ifree_cluster(
2113 xfs_inode_t *free_ip,
2114 xfs_trans_t *tp,
2115 xfs_ino_t inum)
2116{
2117 xfs_mount_t *mp = free_ip->i_mount;
2118 int blks_per_cluster;
2119 int nbufs;
2120 int ninodes;
2121 int i, j, found, pre_flushed;
2122 xfs_daddr_t blkno;
2123 xfs_buf_t *bp;
2124 xfs_ihash_t *ih;
2125 xfs_inode_t *ip, **ip_found;
2126 xfs_inode_log_item_t *iip;
2127 xfs_log_item_t *lip;
2128 SPLDECL(s);
2129
2130 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2131 blks_per_cluster = 1;
2132 ninodes = mp->m_sb.sb_inopblock;
2133 nbufs = XFS_IALLOC_BLOCKS(mp);
2134 } else {
2135 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2136 mp->m_sb.sb_blocksize;
2137 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2138 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2139 }
2140
2141 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2142
2143 for (j = 0; j < nbufs; j++, inum += ninodes) {
2144 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2145 XFS_INO_TO_AGBNO(mp, inum));
2146
2147
2148 /*
2149 * Look for each inode in memory and attempt to lock it,
2150 * we can be racing with flush and tail pushing here.
2151 * any inode we get the locks on, add to an array of
2152 * inode items to process later.
2153 *
2154 * The get the buffer lock, we could beat a flush
2155 * or tail pushing thread to the lock here, in which
2156 * case they will go looking for the inode buffer
2157 * and fail, we need some other form of interlock
2158 * here.
2159 */
2160 found = 0;
2161 for (i = 0; i < ninodes; i++) {
2162 ih = XFS_IHASH(mp, inum + i);
2163 read_lock(&ih->ih_lock);
2164 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2165 if (ip->i_ino == inum + i)
2166 break;
2167 }
2168
2169 /* Inode not in memory or we found it already,
2170 * nothing to do
2171 */
2172 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2173 read_unlock(&ih->ih_lock);
2174 continue;
2175 }
2176
2177 if (xfs_inode_clean(ip)) {
2178 read_unlock(&ih->ih_lock);
2179 continue;
2180 }
2181
2182 /* If we can get the locks then add it to the
2183 * list, otherwise by the time we get the bp lock
2184 * below it will already be attached to the
2185 * inode buffer.
2186 */
2187
2188 /* This inode will already be locked - by us, lets
2189 * keep it that way.
2190 */
2191
2192 if (ip == free_ip) {
2193 if (xfs_iflock_nowait(ip)) {
2194 ip->i_flags |= XFS_ISTALE;
2195
2196 if (xfs_inode_clean(ip)) {
2197 xfs_ifunlock(ip);
2198 } else {
2199 ip_found[found++] = ip;
2200 }
2201 }
2202 read_unlock(&ih->ih_lock);
2203 continue;
2204 }
2205
2206 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2207 if (xfs_iflock_nowait(ip)) {
2208 ip->i_flags |= XFS_ISTALE;
2209
2210 if (xfs_inode_clean(ip)) {
2211 xfs_ifunlock(ip);
2212 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2213 } else {
2214 ip_found[found++] = ip;
2215 }
2216 } else {
2217 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2218 }
2219 }
2220
2221 read_unlock(&ih->ih_lock);
2222 }
2223
2224 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2225 mp->m_bsize * blks_per_cluster,
2226 XFS_BUF_LOCK);
2227
2228 pre_flushed = 0;
2229 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2230 while (lip) {
2231 if (lip->li_type == XFS_LI_INODE) {
2232 iip = (xfs_inode_log_item_t *)lip;
2233 ASSERT(iip->ili_logged == 1);
2234 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2235 AIL_LOCK(mp,s);
2236 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2237 AIL_UNLOCK(mp, s);
2238 iip->ili_inode->i_flags |= XFS_ISTALE;
2239 pre_flushed++;
2240 }
2241 lip = lip->li_bio_list;
2242 }
2243
2244 for (i = 0; i < found; i++) {
2245 ip = ip_found[i];
2246 iip = ip->i_itemp;
2247
2248 if (!iip) {
2249 ip->i_update_core = 0;
2250 xfs_ifunlock(ip);
2251 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2252 continue;
2253 }
2254
2255 iip->ili_last_fields = iip->ili_format.ilf_fields;
2256 iip->ili_format.ilf_fields = 0;
2257 iip->ili_logged = 1;
2258 AIL_LOCK(mp,s);
2259 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2260 AIL_UNLOCK(mp, s);
2261
2262 xfs_buf_attach_iodone(bp,
2263 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2264 xfs_istale_done, (xfs_log_item_t *)iip);
2265 if (ip != free_ip) {
2266 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2267 }
2268 }
2269
2270 if (found || pre_flushed)
2271 xfs_trans_stale_inode_buf(tp, bp);
2272 xfs_trans_binval(tp, bp);
2273 }
2274
2275 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2276}
2277
2278/*
2279 * This is called to return an inode to the inode free list.
2280 * The inode should already be truncated to 0 length and have
2281 * no pages associated with it. This routine also assumes that
2282 * the inode is already a part of the transaction.
2283 *
2284 * The on-disk copy of the inode will have been added to the list
2285 * of unlinked inodes in the AGI. We need to remove the inode from
2286 * that list atomically with respect to freeing it here.
2287 */
2288int
2289xfs_ifree(
2290 xfs_trans_t *tp,
2291 xfs_inode_t *ip,
2292 xfs_bmap_free_t *flist)
2293{
2294 int error;
2295 int delete;
2296 xfs_ino_t first_ino;
2297
2298 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2299 ASSERT(ip->i_transp == tp);
2300 ASSERT(ip->i_d.di_nlink == 0);
2301 ASSERT(ip->i_d.di_nextents == 0);
2302 ASSERT(ip->i_d.di_anextents == 0);
2303 ASSERT((ip->i_d.di_size == 0) ||
2304 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2305 ASSERT(ip->i_d.di_nblocks == 0);
2306
2307 /*
2308 * Pull the on-disk inode from the AGI unlinked list.
2309 */
2310 error = xfs_iunlink_remove(tp, ip);
2311 if (error != 0) {
2312 return error;
2313 }
2314
2315 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2316 if (error != 0) {
2317 return error;
2318 }
2319 ip->i_d.di_mode = 0; /* mark incore inode as free */
2320 ip->i_d.di_flags = 0;
2321 ip->i_d.di_dmevmask = 0;
2322 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2323 ip->i_df.if_ext_max =
2324 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2325 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2326 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2327 /*
2328 * Bump the generation count so no one will be confused
2329 * by reincarnations of this inode.
2330 */
2331 ip->i_d.di_gen++;
2332 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2333
2334 if (delete) {
2335 xfs_ifree_cluster(ip, tp, first_ino);
2336 }
2337
2338 return 0;
2339}
2340
2341/*
2342 * Reallocate the space for if_broot based on the number of records
2343 * being added or deleted as indicated in rec_diff. Move the records
2344 * and pointers in if_broot to fit the new size. When shrinking this
2345 * will eliminate holes between the records and pointers created by
2346 * the caller. When growing this will create holes to be filled in
2347 * by the caller.
2348 *
2349 * The caller must not request to add more records than would fit in
2350 * the on-disk inode root. If the if_broot is currently NULL, then
2351 * if we adding records one will be allocated. The caller must also
2352 * not request that the number of records go below zero, although
2353 * it can go to zero.
2354 *
2355 * ip -- the inode whose if_broot area is changing
2356 * ext_diff -- the change in the number of records, positive or negative,
2357 * requested for the if_broot array.
2358 */
2359void
2360xfs_iroot_realloc(
2361 xfs_inode_t *ip,
2362 int rec_diff,
2363 int whichfork)
2364{
2365 int cur_max;
2366 xfs_ifork_t *ifp;
2367 xfs_bmbt_block_t *new_broot;
2368 int new_max;
2369 size_t new_size;
2370 char *np;
2371 char *op;
2372
2373 /*
2374 * Handle the degenerate case quietly.
2375 */
2376 if (rec_diff == 0) {
2377 return;
2378 }
2379
2380 ifp = XFS_IFORK_PTR(ip, whichfork);
2381 if (rec_diff > 0) {
2382 /*
2383 * If there wasn't any memory allocated before, just
2384 * allocate it now and get out.
2385 */
2386 if (ifp->if_broot_bytes == 0) {
2387 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2388 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2389 KM_SLEEP);
2390 ifp->if_broot_bytes = (int)new_size;
2391 return;
2392 }
2393
2394 /*
2395 * If there is already an existing if_broot, then we need
2396 * to realloc() it and shift the pointers to their new
2397 * location. The records don't change location because
2398 * they are kept butted up against the btree block header.
2399 */
2400 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2401 new_max = cur_max + rec_diff;
2402 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2403 ifp->if_broot = (xfs_bmbt_block_t *)
2404 kmem_realloc(ifp->if_broot,
2405 new_size,
2406 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2407 KM_SLEEP);
2408 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2409 ifp->if_broot_bytes);
2410 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2411 (int)new_size);
2412 ifp->if_broot_bytes = (int)new_size;
2413 ASSERT(ifp->if_broot_bytes <=
2414 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2415 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2416 return;
2417 }
2418
2419 /*
2420 * rec_diff is less than 0. In this case, we are shrinking the
2421 * if_broot buffer. It must already exist. If we go to zero
2422 * records, just get rid of the root and clear the status bit.
2423 */
2424 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2425 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2426 new_max = cur_max + rec_diff;
2427 ASSERT(new_max >= 0);
2428 if (new_max > 0)
2429 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2430 else
2431 new_size = 0;
2432 if (new_size > 0) {
2433 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2434 /*
2435 * First copy over the btree block header.
2436 */
2437 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2438 } else {
2439 new_broot = NULL;
2440 ifp->if_flags &= ~XFS_IFBROOT;
2441 }
2442
2443 /*
2444 * Only copy the records and pointers if there are any.
2445 */
2446 if (new_max > 0) {
2447 /*
2448 * First copy the records.
2449 */
2450 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2451 ifp->if_broot_bytes);
2452 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2453 (int)new_size);
2454 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2455
2456 /*
2457 * Then copy the pointers.
2458 */
2459 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2460 ifp->if_broot_bytes);
2461 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2462 (int)new_size);
2463 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2464 }
2465 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2466 ifp->if_broot = new_broot;
2467 ifp->if_broot_bytes = (int)new_size;
2468 ASSERT(ifp->if_broot_bytes <=
2469 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2470 return;
2471}
2472
2473
2474/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 * This is called when the amount of space needed for if_data
2476 * is increased or decreased. The change in size is indicated by
2477 * the number of bytes that need to be added or deleted in the
2478 * byte_diff parameter.
2479 *
2480 * If the amount of space needed has decreased below the size of the
2481 * inline buffer, then switch to using the inline buffer. Otherwise,
2482 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2483 * to what is needed.
2484 *
2485 * ip -- the inode whose if_data area is changing
2486 * byte_diff -- the change in the number of bytes, positive or negative,
2487 * requested for the if_data array.
2488 */
2489void
2490xfs_idata_realloc(
2491 xfs_inode_t *ip,
2492 int byte_diff,
2493 int whichfork)
2494{
2495 xfs_ifork_t *ifp;
2496 int new_size;
2497 int real_size;
2498
2499 if (byte_diff == 0) {
2500 return;
2501 }
2502
2503 ifp = XFS_IFORK_PTR(ip, whichfork);
2504 new_size = (int)ifp->if_bytes + byte_diff;
2505 ASSERT(new_size >= 0);
2506
2507 if (new_size == 0) {
2508 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2509 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2510 }
2511 ifp->if_u1.if_data = NULL;
2512 real_size = 0;
2513 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2514 /*
2515 * If the valid extents/data can fit in if_inline_ext/data,
2516 * copy them from the malloc'd vector and free it.
2517 */
2518 if (ifp->if_u1.if_data == NULL) {
2519 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2520 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2521 ASSERT(ifp->if_real_bytes != 0);
2522 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2523 new_size);
2524 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2525 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2526 }
2527 real_size = 0;
2528 } else {
2529 /*
2530 * Stuck with malloc/realloc.
2531 * For inline data, the underlying buffer must be
2532 * a multiple of 4 bytes in size so that it can be
2533 * logged and stay on word boundaries. We enforce
2534 * that here.
2535 */
2536 real_size = roundup(new_size, 4);
2537 if (ifp->if_u1.if_data == NULL) {
2538 ASSERT(ifp->if_real_bytes == 0);
2539 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2540 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2541 /*
2542 * Only do the realloc if the underlying size
2543 * is really changing.
2544 */
2545 if (ifp->if_real_bytes != real_size) {
2546 ifp->if_u1.if_data =
2547 kmem_realloc(ifp->if_u1.if_data,
2548 real_size,
2549 ifp->if_real_bytes,
2550 KM_SLEEP);
2551 }
2552 } else {
2553 ASSERT(ifp->if_real_bytes == 0);
2554 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2555 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2556 ifp->if_bytes);
2557 }
2558 }
2559 ifp->if_real_bytes = real_size;
2560 ifp->if_bytes = new_size;
2561 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2562}
2563
2564
2565
2566
2567/*
2568 * Map inode to disk block and offset.
2569 *
2570 * mp -- the mount point structure for the current file system
2571 * tp -- the current transaction
2572 * ino -- the inode number of the inode to be located
2573 * imap -- this structure is filled in with the information necessary
2574 * to retrieve the given inode from disk
2575 * flags -- flags to pass to xfs_dilocate indicating whether or not
2576 * lookups in the inode btree were OK or not
2577 */
2578int
2579xfs_imap(
2580 xfs_mount_t *mp,
2581 xfs_trans_t *tp,
2582 xfs_ino_t ino,
2583 xfs_imap_t *imap,
2584 uint flags)
2585{
2586 xfs_fsblock_t fsbno;
2587 int len;
2588 int off;
2589 int error;
2590
2591 fsbno = imap->im_blkno ?
2592 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2593 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2594 if (error != 0) {
2595 return error;
2596 }
2597 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2598 imap->im_len = XFS_FSB_TO_BB(mp, len);
2599 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2600 imap->im_ioffset = (ushort)off;
2601 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2602 return 0;
2603}
2604
2605void
2606xfs_idestroy_fork(
2607 xfs_inode_t *ip,
2608 int whichfork)
2609{
2610 xfs_ifork_t *ifp;
2611
2612 ifp = XFS_IFORK_PTR(ip, whichfork);
2613 if (ifp->if_broot != NULL) {
2614 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2615 ifp->if_broot = NULL;
2616 }
2617
2618 /*
2619 * If the format is local, then we can't have an extents
2620 * array so just look for an inline data array. If we're
2621 * not local then we may or may not have an extents list,
2622 * so check and free it up if we do.
2623 */
2624 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2625 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2626 (ifp->if_u1.if_data != NULL)) {
2627 ASSERT(ifp->if_real_bytes != 0);
2628 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2629 ifp->if_u1.if_data = NULL;
2630 ifp->if_real_bytes = 0;
2631 }
2632 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2633 (ifp->if_u1.if_extents != NULL) &&
2634 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2635 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002636 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637 }
2638 ASSERT(ifp->if_u1.if_extents == NULL ||
2639 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2640 ASSERT(ifp->if_real_bytes == 0);
2641 if (whichfork == XFS_ATTR_FORK) {
2642 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2643 ip->i_afp = NULL;
2644 }
2645}
2646
2647/*
2648 * This is called free all the memory associated with an inode.
2649 * It must free the inode itself and any buffers allocated for
2650 * if_extents/if_data and if_broot. It must also free the lock
2651 * associated with the inode.
2652 */
2653void
2654xfs_idestroy(
2655 xfs_inode_t *ip)
2656{
2657
2658 switch (ip->i_d.di_mode & S_IFMT) {
2659 case S_IFREG:
2660 case S_IFDIR:
2661 case S_IFLNK:
2662 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2663 break;
2664 }
2665 if (ip->i_afp)
2666 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2667 mrfree(&ip->i_lock);
2668 mrfree(&ip->i_iolock);
2669 freesema(&ip->i_flock);
2670#ifdef XFS_BMAP_TRACE
2671 ktrace_free(ip->i_xtrace);
2672#endif
2673#ifdef XFS_BMBT_TRACE
2674 ktrace_free(ip->i_btrace);
2675#endif
2676#ifdef XFS_RW_TRACE
2677 ktrace_free(ip->i_rwtrace);
2678#endif
2679#ifdef XFS_ILOCK_TRACE
2680 ktrace_free(ip->i_lock_trace);
2681#endif
2682#ifdef XFS_DIR2_TRACE
2683 ktrace_free(ip->i_dir_trace);
2684#endif
2685 if (ip->i_itemp) {
2686 /* XXXdpd should be able to assert this but shutdown
2687 * is leaving the AIL behind. */
2688 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2689 XFS_FORCED_SHUTDOWN(ip->i_mount));
2690 xfs_inode_item_destroy(ip);
2691 }
2692 kmem_zone_free(xfs_inode_zone, ip);
2693}
2694
2695
2696/*
2697 * Increment the pin count of the given buffer.
2698 * This value is protected by ipinlock spinlock in the mount structure.
2699 */
2700void
2701xfs_ipin(
2702 xfs_inode_t *ip)
2703{
2704 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2705
2706 atomic_inc(&ip->i_pincount);
2707}
2708
2709/*
2710 * Decrement the pin count of the given inode, and wake up
2711 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2712 * inode must have been previoulsy pinned with a call to xfs_ipin().
2713 */
2714void
2715xfs_iunpin(
2716 xfs_inode_t *ip)
2717{
2718 ASSERT(atomic_read(&ip->i_pincount) > 0);
2719
2720 if (atomic_dec_and_test(&ip->i_pincount)) {
2721 vnode_t *vp = XFS_ITOV_NULL(ip);
2722
2723 /* make sync come back and flush this inode */
2724 if (vp) {
2725 struct inode *inode = LINVFS_GET_IP(vp);
2726
2727 if (!(inode->i_state & I_NEW))
2728 mark_inode_dirty_sync(inode);
2729 }
2730
2731 wake_up(&ip->i_ipin_wait);
2732 }
2733}
2734
2735/*
2736 * This is called to wait for the given inode to be unpinned.
2737 * It will sleep until this happens. The caller must have the
2738 * inode locked in at least shared mode so that the buffer cannot
2739 * be subsequently pinned once someone is waiting for it to be
2740 * unpinned.
2741 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002742STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743xfs_iunpin_wait(
2744 xfs_inode_t *ip)
2745{
2746 xfs_inode_log_item_t *iip;
2747 xfs_lsn_t lsn;
2748
2749 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2750
2751 if (atomic_read(&ip->i_pincount) == 0) {
2752 return;
2753 }
2754
2755 iip = ip->i_itemp;
2756 if (iip && iip->ili_last_lsn) {
2757 lsn = iip->ili_last_lsn;
2758 } else {
2759 lsn = (xfs_lsn_t)0;
2760 }
2761
2762 /*
2763 * Give the log a push so we don't wait here too long.
2764 */
2765 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2766
2767 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2768}
2769
2770
2771/*
2772 * xfs_iextents_copy()
2773 *
2774 * This is called to copy the REAL extents (as opposed to the delayed
2775 * allocation extents) from the inode into the given buffer. It
2776 * returns the number of bytes copied into the buffer.
2777 *
2778 * If there are no delayed allocation extents, then we can just
2779 * memcpy() the extents into the buffer. Otherwise, we need to
2780 * examine each extent in turn and skip those which are delayed.
2781 */
2782int
2783xfs_iextents_copy(
2784 xfs_inode_t *ip,
2785 xfs_bmbt_rec_t *buffer,
2786 int whichfork)
2787{
2788 int copied;
2789 xfs_bmbt_rec_t *dest_ep;
2790 xfs_bmbt_rec_t *ep;
2791#ifdef XFS_BMAP_TRACE
2792 static char fname[] = "xfs_iextents_copy";
2793#endif
2794 int i;
2795 xfs_ifork_t *ifp;
2796 int nrecs;
2797 xfs_fsblock_t start_block;
2798
2799 ifp = XFS_IFORK_PTR(ip, whichfork);
2800 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2801 ASSERT(ifp->if_bytes > 0);
2802
2803 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2804 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2805 ASSERT(nrecs > 0);
2806
2807 /*
2808 * There are some delayed allocation extents in the
2809 * inode, so copy the extents one at a time and skip
2810 * the delayed ones. There must be at least one
2811 * non-delayed extent.
2812 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813 dest_ep = buffer;
2814 copied = 0;
2815 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002816 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817 start_block = xfs_bmbt_get_startblock(ep);
2818 if (ISNULLSTARTBLOCK(start_block)) {
2819 /*
2820 * It's a delayed allocation extent, so skip it.
2821 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 continue;
2823 }
2824
2825 /* Translate to on disk format */
2826 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2827 (__uint64_t*)&dest_ep->l0);
2828 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2829 (__uint64_t*)&dest_ep->l1);
2830 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831 copied++;
2832 }
2833 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002834 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835
2836 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2837}
2838
2839/*
2840 * Each of the following cases stores data into the same region
2841 * of the on-disk inode, so only one of them can be valid at
2842 * any given time. While it is possible to have conflicting formats
2843 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2844 * in EXTENTS format, this can only happen when the fork has
2845 * changed formats after being modified but before being flushed.
2846 * In these cases, the format always takes precedence, because the
2847 * format indicates the current state of the fork.
2848 */
2849/*ARGSUSED*/
2850STATIC int
2851xfs_iflush_fork(
2852 xfs_inode_t *ip,
2853 xfs_dinode_t *dip,
2854 xfs_inode_log_item_t *iip,
2855 int whichfork,
2856 xfs_buf_t *bp)
2857{
2858 char *cp;
2859 xfs_ifork_t *ifp;
2860 xfs_mount_t *mp;
2861#ifdef XFS_TRANS_DEBUG
2862 int first;
2863#endif
2864 static const short brootflag[2] =
2865 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2866 static const short dataflag[2] =
2867 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2868 static const short extflag[2] =
2869 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2870
2871 if (iip == NULL)
2872 return 0;
2873 ifp = XFS_IFORK_PTR(ip, whichfork);
2874 /*
2875 * This can happen if we gave up in iformat in an error path,
2876 * for the attribute fork.
2877 */
2878 if (ifp == NULL) {
2879 ASSERT(whichfork == XFS_ATTR_FORK);
2880 return 0;
2881 }
2882 cp = XFS_DFORK_PTR(dip, whichfork);
2883 mp = ip->i_mount;
2884 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2885 case XFS_DINODE_FMT_LOCAL:
2886 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2887 (ifp->if_bytes > 0)) {
2888 ASSERT(ifp->if_u1.if_data != NULL);
2889 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2890 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2891 }
2892 if (whichfork == XFS_DATA_FORK) {
2893 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2894 XFS_ERROR_REPORT("xfs_iflush_fork",
2895 XFS_ERRLEVEL_LOW, mp);
2896 return XFS_ERROR(EFSCORRUPTED);
2897 }
2898 }
2899 break;
2900
2901 case XFS_DINODE_FMT_EXTENTS:
2902 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2903 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002904 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2905 (ifp->if_bytes == 0));
2906 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2907 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2909 (ifp->if_bytes > 0)) {
2910 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2911 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2912 whichfork);
2913 }
2914 break;
2915
2916 case XFS_DINODE_FMT_BTREE:
2917 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2918 (ifp->if_broot_bytes > 0)) {
2919 ASSERT(ifp->if_broot != NULL);
2920 ASSERT(ifp->if_broot_bytes <=
2921 (XFS_IFORK_SIZE(ip, whichfork) +
2922 XFS_BROOT_SIZE_ADJ));
2923 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2924 (xfs_bmdr_block_t *)cp,
2925 XFS_DFORK_SIZE(dip, mp, whichfork));
2926 }
2927 break;
2928
2929 case XFS_DINODE_FMT_DEV:
2930 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2931 ASSERT(whichfork == XFS_DATA_FORK);
2932 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2933 }
2934 break;
2935
2936 case XFS_DINODE_FMT_UUID:
2937 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2938 ASSERT(whichfork == XFS_DATA_FORK);
2939 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2940 sizeof(uuid_t));
2941 }
2942 break;
2943
2944 default:
2945 ASSERT(0);
2946 break;
2947 }
2948
2949 return 0;
2950}
2951
2952/*
2953 * xfs_iflush() will write a modified inode's changes out to the
2954 * inode's on disk home. The caller must have the inode lock held
2955 * in at least shared mode and the inode flush semaphore must be
2956 * held as well. The inode lock will still be held upon return from
2957 * the call and the caller is free to unlock it.
2958 * The inode flush lock will be unlocked when the inode reaches the disk.
2959 * The flags indicate how the inode's buffer should be written out.
2960 */
2961int
2962xfs_iflush(
2963 xfs_inode_t *ip,
2964 uint flags)
2965{
2966 xfs_inode_log_item_t *iip;
2967 xfs_buf_t *bp;
2968 xfs_dinode_t *dip;
2969 xfs_mount_t *mp;
2970 int error;
2971 /* REFERENCED */
2972 xfs_chash_t *ch;
2973 xfs_inode_t *iq;
2974 int clcount; /* count of inodes clustered */
2975 int bufwasdelwri;
2976 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2977 SPLDECL(s);
2978
2979 XFS_STATS_INC(xs_iflush_count);
2980
2981 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2982 ASSERT(valusema(&ip->i_flock) <= 0);
2983 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2984 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2985
2986 iip = ip->i_itemp;
2987 mp = ip->i_mount;
2988
2989 /*
2990 * If the inode isn't dirty, then just release the inode
2991 * flush lock and do nothing.
2992 */
2993 if ((ip->i_update_core == 0) &&
2994 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
2995 ASSERT((iip != NULL) ?
2996 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
2997 xfs_ifunlock(ip);
2998 return 0;
2999 }
3000
3001 /*
3002 * We can't flush the inode until it is unpinned, so
3003 * wait for it. We know noone new can pin it, because
3004 * we are holding the inode lock shared and you need
3005 * to hold it exclusively to pin the inode.
3006 */
3007 xfs_iunpin_wait(ip);
3008
3009 /*
3010 * This may have been unpinned because the filesystem is shutting
3011 * down forcibly. If that's the case we must not write this inode
3012 * to disk, because the log record didn't make it to disk!
3013 */
3014 if (XFS_FORCED_SHUTDOWN(mp)) {
3015 ip->i_update_core = 0;
3016 if (iip)
3017 iip->ili_format.ilf_fields = 0;
3018 xfs_ifunlock(ip);
3019 return XFS_ERROR(EIO);
3020 }
3021
3022 /*
3023 * Get the buffer containing the on-disk inode.
3024 */
3025 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3026 if (error != 0) {
3027 xfs_ifunlock(ip);
3028 return error;
3029 }
3030
3031 /*
3032 * Decide how buffer will be flushed out. This is done before
3033 * the call to xfs_iflush_int because this field is zeroed by it.
3034 */
3035 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3036 /*
3037 * Flush out the inode buffer according to the directions
3038 * of the caller. In the cases where the caller has given
3039 * us a choice choose the non-delwri case. This is because
3040 * the inode is in the AIL and we need to get it out soon.
3041 */
3042 switch (flags) {
3043 case XFS_IFLUSH_SYNC:
3044 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3045 flags = 0;
3046 break;
3047 case XFS_IFLUSH_ASYNC:
3048 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3049 flags = INT_ASYNC;
3050 break;
3051 case XFS_IFLUSH_DELWRI:
3052 flags = INT_DELWRI;
3053 break;
3054 default:
3055 ASSERT(0);
3056 flags = 0;
3057 break;
3058 }
3059 } else {
3060 switch (flags) {
3061 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3062 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3063 case XFS_IFLUSH_DELWRI:
3064 flags = INT_DELWRI;
3065 break;
3066 case XFS_IFLUSH_ASYNC:
3067 flags = INT_ASYNC;
3068 break;
3069 case XFS_IFLUSH_SYNC:
3070 flags = 0;
3071 break;
3072 default:
3073 ASSERT(0);
3074 flags = 0;
3075 break;
3076 }
3077 }
3078
3079 /*
3080 * First flush out the inode that xfs_iflush was called with.
3081 */
3082 error = xfs_iflush_int(ip, bp);
3083 if (error) {
3084 goto corrupt_out;
3085 }
3086
3087 /*
3088 * inode clustering:
3089 * see if other inodes can be gathered into this write
3090 */
3091
3092 ip->i_chash->chl_buf = bp;
3093
3094 ch = XFS_CHASH(mp, ip->i_blkno);
3095 s = mutex_spinlock(&ch->ch_lock);
3096
3097 clcount = 0;
3098 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3099 /*
3100 * Do an un-protected check to see if the inode is dirty and
3101 * is a candidate for flushing. These checks will be repeated
3102 * later after the appropriate locks are acquired.
3103 */
3104 iip = iq->i_itemp;
3105 if ((iq->i_update_core == 0) &&
3106 ((iip == NULL) ||
3107 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3108 xfs_ipincount(iq) == 0) {
3109 continue;
3110 }
3111
3112 /*
3113 * Try to get locks. If any are unavailable,
3114 * then this inode cannot be flushed and is skipped.
3115 */
3116
3117 /* get inode locks (just i_lock) */
3118 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3119 /* get inode flush lock */
3120 if (xfs_iflock_nowait(iq)) {
3121 /* check if pinned */
3122 if (xfs_ipincount(iq) == 0) {
3123 /* arriving here means that
3124 * this inode can be flushed.
3125 * first re-check that it's
3126 * dirty
3127 */
3128 iip = iq->i_itemp;
3129 if ((iq->i_update_core != 0)||
3130 ((iip != NULL) &&
3131 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3132 clcount++;
3133 error = xfs_iflush_int(iq, bp);
3134 if (error) {
3135 xfs_iunlock(iq,
3136 XFS_ILOCK_SHARED);
3137 goto cluster_corrupt_out;
3138 }
3139 } else {
3140 xfs_ifunlock(iq);
3141 }
3142 } else {
3143 xfs_ifunlock(iq);
3144 }
3145 }
3146 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3147 }
3148 }
3149 mutex_spinunlock(&ch->ch_lock, s);
3150
3151 if (clcount) {
3152 XFS_STATS_INC(xs_icluster_flushcnt);
3153 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3154 }
3155
3156 /*
3157 * If the buffer is pinned then push on the log so we won't
3158 * get stuck waiting in the write for too long.
3159 */
3160 if (XFS_BUF_ISPINNED(bp)){
3161 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3162 }
3163
3164 if (flags & INT_DELWRI) {
3165 xfs_bdwrite(mp, bp);
3166 } else if (flags & INT_ASYNC) {
3167 xfs_bawrite(mp, bp);
3168 } else {
3169 error = xfs_bwrite(mp, bp);
3170 }
3171 return error;
3172
3173corrupt_out:
3174 xfs_buf_relse(bp);
3175 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3176 xfs_iflush_abort(ip);
3177 /*
3178 * Unlocks the flush lock
3179 */
3180 return XFS_ERROR(EFSCORRUPTED);
3181
3182cluster_corrupt_out:
3183 /* Corruption detected in the clustering loop. Invalidate the
3184 * inode buffer and shut down the filesystem.
3185 */
3186 mutex_spinunlock(&ch->ch_lock, s);
3187
3188 /*
3189 * Clean up the buffer. If it was B_DELWRI, just release it --
3190 * brelse can handle it with no problems. If not, shut down the
3191 * filesystem before releasing the buffer.
3192 */
3193 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3194 xfs_buf_relse(bp);
3195 }
3196
3197 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3198
3199 if(!bufwasdelwri) {
3200 /*
3201 * Just like incore_relse: if we have b_iodone functions,
3202 * mark the buffer as an error and call them. Otherwise
3203 * mark it as stale and brelse.
3204 */
3205 if (XFS_BUF_IODONE_FUNC(bp)) {
3206 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3207 XFS_BUF_UNDONE(bp);
3208 XFS_BUF_STALE(bp);
3209 XFS_BUF_SHUT(bp);
3210 XFS_BUF_ERROR(bp,EIO);
3211 xfs_biodone(bp);
3212 } else {
3213 XFS_BUF_STALE(bp);
3214 xfs_buf_relse(bp);
3215 }
3216 }
3217
3218 xfs_iflush_abort(iq);
3219 /*
3220 * Unlocks the flush lock
3221 */
3222 return XFS_ERROR(EFSCORRUPTED);
3223}
3224
3225
3226STATIC int
3227xfs_iflush_int(
3228 xfs_inode_t *ip,
3229 xfs_buf_t *bp)
3230{
3231 xfs_inode_log_item_t *iip;
3232 xfs_dinode_t *dip;
3233 xfs_mount_t *mp;
3234#ifdef XFS_TRANS_DEBUG
3235 int first;
3236#endif
3237 SPLDECL(s);
3238
3239 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3240 ASSERT(valusema(&ip->i_flock) <= 0);
3241 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3242 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3243
3244 iip = ip->i_itemp;
3245 mp = ip->i_mount;
3246
3247
3248 /*
3249 * If the inode isn't dirty, then just release the inode
3250 * flush lock and do nothing.
3251 */
3252 if ((ip->i_update_core == 0) &&
3253 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3254 xfs_ifunlock(ip);
3255 return 0;
3256 }
3257
3258 /* set *dip = inode's place in the buffer */
3259 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3260
3261 /*
3262 * Clear i_update_core before copying out the data.
3263 * This is for coordination with our timestamp updates
3264 * that don't hold the inode lock. They will always
3265 * update the timestamps BEFORE setting i_update_core,
3266 * so if we clear i_update_core after they set it we
3267 * are guaranteed to see their updates to the timestamps.
3268 * I believe that this depends on strongly ordered memory
3269 * semantics, but we have that. We use the SYNCHRONIZE
3270 * macro to make sure that the compiler does not reorder
3271 * the i_update_core access below the data copy below.
3272 */
3273 ip->i_update_core = 0;
3274 SYNCHRONIZE();
3275
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003276 /*
3277 * Make sure to get the latest atime from the Linux inode.
3278 */
3279 xfs_synchronize_atime(ip);
3280
Linus Torvalds1da177e2005-04-16 15:20:36 -07003281 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3282 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3283 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3284 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3285 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3286 goto corrupt_out;
3287 }
3288 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3289 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3290 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3291 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3292 ip->i_ino, ip, ip->i_d.di_magic);
3293 goto corrupt_out;
3294 }
3295 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3296 if (XFS_TEST_ERROR(
3297 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3298 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3299 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3300 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3301 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3302 ip->i_ino, ip);
3303 goto corrupt_out;
3304 }
3305 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3306 if (XFS_TEST_ERROR(
3307 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3308 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3309 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3310 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3311 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3312 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3313 ip->i_ino, ip);
3314 goto corrupt_out;
3315 }
3316 }
3317 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3318 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3319 XFS_RANDOM_IFLUSH_5)) {
3320 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3321 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3322 ip->i_ino,
3323 ip->i_d.di_nextents + ip->i_d.di_anextents,
3324 ip->i_d.di_nblocks,
3325 ip);
3326 goto corrupt_out;
3327 }
3328 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3329 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3330 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3331 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3332 ip->i_ino, ip->i_d.di_forkoff, ip);
3333 goto corrupt_out;
3334 }
3335 /*
3336 * bump the flush iteration count, used to detect flushes which
3337 * postdate a log record during recovery.
3338 */
3339
3340 ip->i_d.di_flushiter++;
3341
3342 /*
3343 * Copy the dirty parts of the inode into the on-disk
3344 * inode. We always copy out the core of the inode,
3345 * because if the inode is dirty at all the core must
3346 * be.
3347 */
3348 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3349
3350 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3351 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3352 ip->i_d.di_flushiter = 0;
3353
3354 /*
3355 * If this is really an old format inode and the superblock version
3356 * has not been updated to support only new format inodes, then
3357 * convert back to the old inode format. If the superblock version
3358 * has been updated, then make the conversion permanent.
3359 */
3360 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3361 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3362 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3363 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3364 /*
3365 * Convert it back.
3366 */
3367 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3368 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3369 } else {
3370 /*
3371 * The superblock version has already been bumped,
3372 * so just make the conversion to the new inode
3373 * format permanent.
3374 */
3375 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3376 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3377 ip->i_d.di_onlink = 0;
3378 dip->di_core.di_onlink = 0;
3379 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3380 memset(&(dip->di_core.di_pad[0]), 0,
3381 sizeof(dip->di_core.di_pad));
3382 ASSERT(ip->i_d.di_projid == 0);
3383 }
3384 }
3385
3386 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3387 goto corrupt_out;
3388 }
3389
3390 if (XFS_IFORK_Q(ip)) {
3391 /*
3392 * The only error from xfs_iflush_fork is on the data fork.
3393 */
3394 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3395 }
3396 xfs_inobp_check(mp, bp);
3397
3398 /*
3399 * We've recorded everything logged in the inode, so we'd
3400 * like to clear the ilf_fields bits so we don't log and
3401 * flush things unnecessarily. However, we can't stop
3402 * logging all this information until the data we've copied
3403 * into the disk buffer is written to disk. If we did we might
3404 * overwrite the copy of the inode in the log with all the
3405 * data after re-logging only part of it, and in the face of
3406 * a crash we wouldn't have all the data we need to recover.
3407 *
3408 * What we do is move the bits to the ili_last_fields field.
3409 * When logging the inode, these bits are moved back to the
3410 * ilf_fields field. In the xfs_iflush_done() routine we
3411 * clear ili_last_fields, since we know that the information
3412 * those bits represent is permanently on disk. As long as
3413 * the flush completes before the inode is logged again, then
3414 * both ilf_fields and ili_last_fields will be cleared.
3415 *
3416 * We can play with the ilf_fields bits here, because the inode
3417 * lock must be held exclusively in order to set bits there
3418 * and the flush lock protects the ili_last_fields bits.
3419 * Set ili_logged so the flush done
3420 * routine can tell whether or not to look in the AIL.
3421 * Also, store the current LSN of the inode so that we can tell
3422 * whether the item has moved in the AIL from xfs_iflush_done().
3423 * In order to read the lsn we need the AIL lock, because
3424 * it is a 64 bit value that cannot be read atomically.
3425 */
3426 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3427 iip->ili_last_fields = iip->ili_format.ilf_fields;
3428 iip->ili_format.ilf_fields = 0;
3429 iip->ili_logged = 1;
3430
3431 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3432 AIL_LOCK(mp,s);
3433 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3434 AIL_UNLOCK(mp, s);
3435
3436 /*
3437 * Attach the function xfs_iflush_done to the inode's
3438 * buffer. This will remove the inode from the AIL
3439 * and unlock the inode's flush lock when the inode is
3440 * completely written to disk.
3441 */
3442 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3443 xfs_iflush_done, (xfs_log_item_t *)iip);
3444
3445 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3446 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3447 } else {
3448 /*
3449 * We're flushing an inode which is not in the AIL and has
3450 * not been logged but has i_update_core set. For this
3451 * case we can use a B_DELWRI flush and immediately drop
3452 * the inode flush lock because we can avoid the whole
3453 * AIL state thing. It's OK to drop the flush lock now,
3454 * because we've already locked the buffer and to do anything
3455 * you really need both.
3456 */
3457 if (iip != NULL) {
3458 ASSERT(iip->ili_logged == 0);
3459 ASSERT(iip->ili_last_fields == 0);
3460 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3461 }
3462 xfs_ifunlock(ip);
3463 }
3464
3465 return 0;
3466
3467corrupt_out:
3468 return XFS_ERROR(EFSCORRUPTED);
3469}
3470
3471
3472/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003473 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003474 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003475void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003477 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003478{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 xfs_inode_t *ip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480 vnode_t *vp;
3481
Christoph Hellwigefa80272005-06-21 15:37:17 +10003482 again:
3483 XFS_MOUNT_ILOCK(mp);
3484 ip = mp->m_inodes;
3485 if (ip == NULL)
3486 goto out;
3487
3488 do {
3489 /* Make sure we skip markers inserted by sync */
3490 if (ip->i_mount == NULL) {
3491 ip = ip->i_mnext;
3492 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003494
Christoph Hellwigefa80272005-06-21 15:37:17 +10003495 vp = XFS_ITOV_NULL(ip);
3496 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003497 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003498 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3499 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501
Christoph Hellwigefa80272005-06-21 15:37:17 +10003502 ASSERT(vn_count(vp) == 0);
3503
3504 ip = ip->i_mnext;
3505 } while (ip != mp->m_inodes);
3506 out:
3507 XFS_MOUNT_IUNLOCK(mp);
3508}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003509
3510/*
3511 * xfs_iaccess: check accessibility of inode for mode.
3512 */
3513int
3514xfs_iaccess(
3515 xfs_inode_t *ip,
3516 mode_t mode,
3517 cred_t *cr)
3518{
3519 int error;
3520 mode_t orgmode = mode;
3521 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3522
3523 if (mode & S_IWUSR) {
3524 umode_t imode = inode->i_mode;
3525
3526 if (IS_RDONLY(inode) &&
3527 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3528 return XFS_ERROR(EROFS);
3529
3530 if (IS_IMMUTABLE(inode))
3531 return XFS_ERROR(EACCES);
3532 }
3533
3534 /*
3535 * If there's an Access Control List it's used instead of
3536 * the mode bits.
3537 */
3538 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3539 return error ? XFS_ERROR(error) : 0;
3540
3541 if (current_fsuid(cr) != ip->i_d.di_uid) {
3542 mode >>= 3;
3543 if (!in_group_p((gid_t)ip->i_d.di_gid))
3544 mode >>= 3;
3545 }
3546
3547 /*
3548 * If the DACs are ok we don't need any capability check.
3549 */
3550 if ((ip->i_d.di_mode & mode) == mode)
3551 return 0;
3552 /*
3553 * Read/write DACs are always overridable.
3554 * Executable DACs are overridable if at least one exec bit is set.
3555 */
3556 if (!(orgmode & S_IXUSR) ||
3557 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3558 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3559 return 0;
3560
3561 if ((orgmode == S_IRUSR) ||
3562 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3563 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3564 return 0;
3565#ifdef NOISE
3566 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3567#endif /* NOISE */
3568 return XFS_ERROR(EACCES);
3569 }
3570 return XFS_ERROR(EACCES);
3571}
3572
3573/*
3574 * xfs_iroundup: round up argument to next power of two
3575 */
3576uint
3577xfs_iroundup(
3578 uint v)
3579{
3580 int i;
3581 uint m;
3582
3583 if ((v & (v - 1)) == 0)
3584 return v;
3585 ASSERT((v & 0x80000000) == 0);
3586 if ((v & (v + 1)) == 0)
3587 return v + 1;
3588 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3589 if (v & m)
3590 continue;
3591 v |= m;
3592 if ((v & (v + 1)) == 0)
3593 return v + 1;
3594 }
3595 ASSERT(0);
3596 return( 0 );
3597}
3598
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599#ifdef XFS_ILOCK_TRACE
3600ktrace_t *xfs_ilock_trace_buf;
3601
3602void
3603xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3604{
3605 ktrace_enter(ip->i_lock_trace,
3606 (void *)ip,
3607 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3608 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3609 (void *)ra, /* caller of ilock */
3610 (void *)(unsigned long)current_cpu(),
3611 (void *)(unsigned long)current_pid(),
3612 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3613}
3614#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003615
3616/*
3617 * Return a pointer to the extent record at file index idx.
3618 */
3619xfs_bmbt_rec_t *
3620xfs_iext_get_ext(
3621 xfs_ifork_t *ifp, /* inode fork pointer */
3622 xfs_extnum_t idx) /* index of target extent */
3623{
3624 ASSERT(idx >= 0);
3625 if (ifp->if_bytes) {
3626 return &ifp->if_u1.if_extents[idx];
3627 } else {
3628 return NULL;
3629 }
3630}
3631
3632/*
3633 * Insert new item(s) into the extent records for incore inode
3634 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3635 */
3636void
3637xfs_iext_insert(
3638 xfs_ifork_t *ifp, /* inode fork pointer */
3639 xfs_extnum_t idx, /* starting index of new items */
3640 xfs_extnum_t count, /* number of inserted items */
3641 xfs_bmbt_irec_t *new) /* items to insert */
3642{
3643 xfs_bmbt_rec_t *ep; /* extent record pointer */
3644 xfs_extnum_t i; /* extent record index */
3645
3646 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3647 xfs_iext_add(ifp, idx, count);
3648 for (i = idx; i < idx + count; i++, new++) {
3649 ep = xfs_iext_get_ext(ifp, i);
3650 xfs_bmbt_set_all(ep, new);
3651 }
3652}
3653
3654/*
3655 * This is called when the amount of space required for incore file
3656 * extents needs to be increased. The ext_diff parameter stores the
3657 * number of new extents being added and the idx parameter contains
3658 * the extent index where the new extents will be added. If the new
3659 * extents are being appended, then we just need to (re)allocate and
3660 * initialize the space. Otherwise, if the new extents are being
3661 * inserted into the middle of the existing entries, a bit more work
3662 * is required to make room for the new extents to be inserted. The
3663 * caller is responsible for filling in the new extent entries upon
3664 * return.
3665 */
3666void
3667xfs_iext_add(
3668 xfs_ifork_t *ifp, /* inode fork pointer */
3669 xfs_extnum_t idx, /* index to begin adding exts */
3670 int ext_diff) /* nubmer of extents to add */
3671{
3672 int byte_diff; /* new bytes being added */
3673 int new_size; /* size of extents after adding */
3674 xfs_extnum_t nextents; /* number of extents in file */
3675
3676 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3677 ASSERT((idx >= 0) && (idx <= nextents));
3678 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3679 new_size = ifp->if_bytes + byte_diff;
3680 /*
3681 * If the new number of extents (nextents + ext_diff)
3682 * fits inside the inode, then continue to use the inline
3683 * extent buffer.
3684 */
3685 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3686 if (idx < nextents) {
3687 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3688 &ifp->if_u2.if_inline_ext[idx],
3689 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3690 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3691 }
3692 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3693 ifp->if_real_bytes = 0;
3694 }
3695 /*
3696 * Otherwise use a linear (direct) extent list.
3697 * If the extents are currently inside the inode,
3698 * xfs_iext_realloc_direct will switch us from
3699 * inline to direct extent allocation mode.
3700 */
3701 else {
3702 xfs_iext_realloc_direct(ifp, new_size);
3703 if (idx < nextents) {
3704 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3705 &ifp->if_u1.if_extents[idx],
3706 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3707 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3708 }
3709 }
3710 ifp->if_bytes = new_size;
3711}
3712
3713/*
3714 * This is called when the amount of space required for incore file
3715 * extents needs to be decreased. The ext_diff parameter stores the
3716 * number of extents to be removed and the idx parameter contains
3717 * the extent index where the extents will be removed from.
3718 */
3719void
3720xfs_iext_remove(
3721 xfs_ifork_t *ifp, /* inode fork pointer */
3722 xfs_extnum_t idx, /* index to begin removing exts */
3723 int ext_diff) /* number of extents to remove */
3724{
3725 xfs_extnum_t nextents; /* number of extents in file */
3726 int new_size; /* size of extents after removal */
3727
3728 ASSERT(ext_diff > 0);
3729 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3730 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3731
3732 if (new_size == 0) {
3733 xfs_iext_destroy(ifp);
3734 } else if (ifp->if_real_bytes) {
3735 xfs_iext_remove_direct(ifp, idx, ext_diff);
3736 } else {
3737 xfs_iext_remove_inline(ifp, idx, ext_diff);
3738 }
3739 ifp->if_bytes = new_size;
3740}
3741
3742/*
3743 * This removes ext_diff extents from the inline buffer, beginning
3744 * at extent index idx.
3745 */
3746void
3747xfs_iext_remove_inline(
3748 xfs_ifork_t *ifp, /* inode fork pointer */
3749 xfs_extnum_t idx, /* index to begin removing exts */
3750 int ext_diff) /* number of extents to remove */
3751{
3752 int nextents; /* number of extents in file */
3753
3754 ASSERT(idx < XFS_INLINE_EXTS);
3755 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3756 ASSERT(((nextents - ext_diff) > 0) &&
3757 (nextents - ext_diff) < XFS_INLINE_EXTS);
3758
3759 if (idx + ext_diff < nextents) {
3760 memmove(&ifp->if_u2.if_inline_ext[idx],
3761 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3762 (nextents - (idx + ext_diff)) *
3763 sizeof(xfs_bmbt_rec_t));
3764 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3765 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3766 } else {
3767 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3768 ext_diff * sizeof(xfs_bmbt_rec_t));
3769 }
3770}
3771
3772/*
3773 * This removes ext_diff extents from a linear (direct) extent list,
3774 * beginning at extent index idx. If the extents are being removed
3775 * from the end of the list (ie. truncate) then we just need to re-
3776 * allocate the list to remove the extra space. Otherwise, if the
3777 * extents are being removed from the middle of the existing extent
3778 * entries, then we first need to move the extent records beginning
3779 * at idx + ext_diff up in the list to overwrite the records being
3780 * removed, then remove the extra space via kmem_realloc.
3781 */
3782void
3783xfs_iext_remove_direct(
3784 xfs_ifork_t *ifp, /* inode fork pointer */
3785 xfs_extnum_t idx, /* index to begin removing exts */
3786 int ext_diff) /* number of extents to remove */
3787{
3788 xfs_extnum_t nextents; /* number of extents in file */
3789 int new_size; /* size of extents after removal */
3790
3791 new_size = ifp->if_bytes -
3792 (ext_diff * sizeof(xfs_bmbt_rec_t));
3793 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3794
3795 if (new_size == 0) {
3796 xfs_iext_destroy(ifp);
3797 return;
3798 }
3799 /* Move extents up in the list (if needed) */
3800 if (idx + ext_diff < nextents) {
3801 memmove(&ifp->if_u1.if_extents[idx],
3802 &ifp->if_u1.if_extents[idx + ext_diff],
3803 (nextents - (idx + ext_diff)) *
3804 sizeof(xfs_bmbt_rec_t));
3805 }
3806 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3807 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3808 /*
3809 * Reallocate the direct extent list. If the extents
3810 * will fit inside the inode then xfs_iext_realloc_direct
3811 * will switch from direct to inline extent allocation
3812 * mode for us.
3813 */
3814 xfs_iext_realloc_direct(ifp, new_size);
3815 ifp->if_bytes = new_size;
3816}
3817
3818/*
3819 * Create, destroy, or resize a linear (direct) block of extents.
3820 */
3821void
3822xfs_iext_realloc_direct(
3823 xfs_ifork_t *ifp, /* inode fork pointer */
3824 int new_size) /* new size of extents */
3825{
3826 int rnew_size; /* real new size of extents */
3827
3828 rnew_size = new_size;
3829
3830 /* Free extent records */
3831 if (new_size == 0) {
3832 xfs_iext_destroy(ifp);
3833 }
3834 /* Resize direct extent list and zero any new bytes */
3835 else if (ifp->if_real_bytes) {
3836 /* Check if extents will fit inside the inode */
3837 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3838 xfs_iext_direct_to_inline(ifp, new_size /
3839 (uint)sizeof(xfs_bmbt_rec_t));
3840 ifp->if_bytes = new_size;
3841 return;
3842 }
3843 if ((new_size & (new_size - 1)) != 0) {
3844 rnew_size = xfs_iroundup(new_size);
3845 }
3846 if (rnew_size != ifp->if_real_bytes) {
3847 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
3848 kmem_realloc(ifp->if_u1.if_extents,
3849 rnew_size,
3850 ifp->if_real_bytes,
3851 KM_SLEEP);
3852 }
3853 if (rnew_size > ifp->if_real_bytes) {
3854 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3855 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3856 rnew_size - ifp->if_real_bytes);
3857 }
3858 }
3859 /*
3860 * Switch from the inline extent buffer to a direct
3861 * extent list. Be sure to include the inline extent
3862 * bytes in new_size.
3863 */
3864 else {
3865 new_size += ifp->if_bytes;
3866 if ((new_size & (new_size - 1)) != 0) {
3867 rnew_size = xfs_iroundup(new_size);
3868 }
3869 xfs_iext_inline_to_direct(ifp, rnew_size);
3870 }
3871 ifp->if_real_bytes = rnew_size;
3872 ifp->if_bytes = new_size;
3873}
3874
3875/*
3876 * Switch from linear (direct) extent records to inline buffer.
3877 */
3878void
3879xfs_iext_direct_to_inline(
3880 xfs_ifork_t *ifp, /* inode fork pointer */
3881 xfs_extnum_t nextents) /* number of extents in file */
3882{
3883 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3884 ASSERT(nextents <= XFS_INLINE_EXTS);
3885 /*
3886 * The inline buffer was zeroed when we switched
3887 * from inline to direct extent allocation mode,
3888 * so we don't need to clear it here.
3889 */
3890 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3891 nextents * sizeof(xfs_bmbt_rec_t));
3892 kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
3893 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3894 ifp->if_real_bytes = 0;
3895}
3896
3897/*
3898 * Switch from inline buffer to linear (direct) extent records.
3899 * new_size should already be rounded up to the next power of 2
3900 * by the caller (when appropriate), so use new_size as it is.
3901 * However, since new_size may be rounded up, we can't update
3902 * if_bytes here. It is the caller's responsibility to update
3903 * if_bytes upon return.
3904 */
3905void
3906xfs_iext_inline_to_direct(
3907 xfs_ifork_t *ifp, /* inode fork pointer */
3908 int new_size) /* number of extents in file */
3909{
3910 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
3911 kmem_alloc(new_size, KM_SLEEP);
3912 memset(ifp->if_u1.if_extents, 0, new_size);
3913 if (ifp->if_bytes) {
3914 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3915 ifp->if_bytes);
3916 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3917 sizeof(xfs_bmbt_rec_t));
3918 }
3919 ifp->if_real_bytes = new_size;
3920}
3921
3922/*
3923 * Free incore file extents.
3924 */
3925void
3926xfs_iext_destroy(
3927 xfs_ifork_t *ifp) /* inode fork pointer */
3928{
3929 if (ifp->if_real_bytes) {
3930 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
3931 } else if (ifp->if_bytes) {
3932 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3933 sizeof(xfs_bmbt_rec_t));
3934 }
3935 ifp->if_u1.if_extents = NULL;
3936 ifp->if_real_bytes = 0;
3937 ifp->if_bytes = 0;
3938}