blob: f13c3db765f4505dba1381542ea23e3e1d187265 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090018#include <linux/slab.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020019#include <linux/sysfs.h>
20#include <linux/dcache.h>
21#include <linux/percpu.h>
22#include <linux/ptrace.h>
23#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020024#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020025#include <linux/hardirq.h>
26#include <linux/rculist.h>
27#include <linux/uaccess.h>
28#include <linux/syscalls.h>
29#include <linux/anon_inodes.h>
30#include <linux/kernel_stat.h>
31#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080032#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020033#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020034
35#include <asm/irq_regs.h>
36
37/*
38 * Each CPU has a list of per CPU events:
39 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080040static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020041
42int perf_max_events __read_mostly = 1;
43static int perf_reserved_percpu __read_mostly;
44static int perf_overcommit __read_mostly = 1;
45
46static atomic_t nr_events __read_mostly;
47static atomic_t nr_mmap_events __read_mostly;
48static atomic_t nr_comm_events __read_mostly;
49static atomic_t nr_task_events __read_mostly;
50
51/*
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
57 */
58int sysctl_perf_event_paranoid __read_mostly = 1;
59
Ingo Molnarcdd6c482009-09-21 12:02:48 +020060int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61
62/*
63 * max perf event sample rate
64 */
65int sysctl_perf_event_sample_rate __read_mostly = 100000;
66
67static atomic64_t perf_event_id;
68
69/*
70 * Lock for (sysadmin-configurable) event reservations:
71 */
72static DEFINE_SPINLOCK(perf_resource_lock);
73
74/*
75 * Architecture provided APIs - weak aliases:
76 */
77extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
78{
79 return NULL;
80}
81
82void __weak hw_perf_disable(void) { barrier(); }
83void __weak hw_perf_enable(void) { barrier(); }
84
Ingo Molnarcdd6c482009-09-21 12:02:48 +020085int __weak
86hw_perf_group_sched_in(struct perf_event *group_leader,
87 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +010088 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +020089{
90 return 0;
91}
92
93void __weak perf_event_print_debug(void) { }
94
95static DEFINE_PER_CPU(int, perf_disable_count);
96
Ingo Molnarcdd6c482009-09-21 12:02:48 +020097void perf_disable(void)
98{
Peter Zijlstra32975a42010-03-06 19:49:19 +010099 if (!__get_cpu_var(perf_disable_count)++)
100 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200101}
102
103void perf_enable(void)
104{
Peter Zijlstra32975a42010-03-06 19:49:19 +0100105 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200106 hw_perf_enable();
107}
108
109static void get_ctx(struct perf_event_context *ctx)
110{
111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
112}
113
114static void free_ctx(struct rcu_head *head)
115{
116 struct perf_event_context *ctx;
117
118 ctx = container_of(head, struct perf_event_context, rcu_head);
119 kfree(ctx);
120}
121
122static void put_ctx(struct perf_event_context *ctx)
123{
124 if (atomic_dec_and_test(&ctx->refcount)) {
125 if (ctx->parent_ctx)
126 put_ctx(ctx->parent_ctx);
127 if (ctx->task)
128 put_task_struct(ctx->task);
129 call_rcu(&ctx->rcu_head, free_ctx);
130 }
131}
132
133static void unclone_ctx(struct perf_event_context *ctx)
134{
135 if (ctx->parent_ctx) {
136 put_ctx(ctx->parent_ctx);
137 ctx->parent_ctx = NULL;
138 }
139}
140
141/*
142 * If we inherit events we want to return the parent event id
143 * to userspace.
144 */
145static u64 primary_event_id(struct perf_event *event)
146{
147 u64 id = event->id;
148
149 if (event->parent)
150 id = event->parent->id;
151
152 return id;
153}
154
155/*
156 * Get the perf_event_context for a task and lock it.
157 * This has to cope with with the fact that until it is locked,
158 * the context could get moved to another task.
159 */
160static struct perf_event_context *
161perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162{
163 struct perf_event_context *ctx;
164
165 rcu_read_lock();
166 retry:
167 ctx = rcu_dereference(task->perf_event_ctxp);
168 if (ctx) {
169 /*
170 * If this context is a clone of another, it might
171 * get swapped for another underneath us by
172 * perf_event_task_sched_out, though the
173 * rcu_read_lock() protects us from any context
174 * getting freed. Lock the context and check if it
175 * got swapped before we could get the lock, and retry
176 * if so. If we locked the right context, then it
177 * can't get swapped on us any more.
178 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100179 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200180 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200182 goto retry;
183 }
184
185 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100186 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200187 ctx = NULL;
188 }
189 }
190 rcu_read_unlock();
191 return ctx;
192}
193
194/*
195 * Get the context for a task and increment its pin_count so it
196 * can't get swapped to another task. This also increments its
197 * reference count so that the context can't get freed.
198 */
199static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200{
201 struct perf_event_context *ctx;
202 unsigned long flags;
203
204 ctx = perf_lock_task_context(task, &flags);
205 if (ctx) {
206 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100207 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200208 }
209 return ctx;
210}
211
212static void perf_unpin_context(struct perf_event_context *ctx)
213{
214 unsigned long flags;
215
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100216 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200217 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100218 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200219 put_ctx(ctx);
220}
221
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100222static inline u64 perf_clock(void)
223{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100224 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100225}
226
227/*
228 * Update the record of the current time in a context.
229 */
230static void update_context_time(struct perf_event_context *ctx)
231{
232 u64 now = perf_clock();
233
234 ctx->time += now - ctx->timestamp;
235 ctx->timestamp = now;
236}
237
238/*
239 * Update the total_time_enabled and total_time_running fields for a event.
240 */
241static void update_event_times(struct perf_event *event)
242{
243 struct perf_event_context *ctx = event->ctx;
244 u64 run_end;
245
246 if (event->state < PERF_EVENT_STATE_INACTIVE ||
247 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 return;
249
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100250 if (ctx->is_active)
251 run_end = ctx->time;
252 else
253 run_end = event->tstamp_stopped;
254
255 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100256
257 if (event->state == PERF_EVENT_STATE_INACTIVE)
258 run_end = event->tstamp_stopped;
259 else
260 run_end = ctx->time;
261
262 event->total_time_running = run_end - event->tstamp_running;
263}
264
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100265static struct list_head *
266ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
267{
268 if (event->attr.pinned)
269 return &ctx->pinned_groups;
270 else
271 return &ctx->flexible_groups;
272}
273
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200274/*
275 * Add a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
277 */
278static void
279list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280{
281 struct perf_event *group_leader = event->group_leader;
282
283 /*
284 * Depending on whether it is a standalone or sibling event,
285 * add it straight to the context's event list, or to the group
286 * leader's sibling list:
287 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100288 if (group_leader == event) {
289 struct list_head *list;
290
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100291 if (is_software_event(event))
292 event->group_flags |= PERF_GROUP_SOFTWARE;
293
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100294 list = ctx_group_list(event, ctx);
295 list_add_tail(&event->group_entry, list);
296 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100297 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
298 !is_software_event(event))
299 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
300
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200301 list_add_tail(&event->group_entry, &group_leader->sibling_list);
302 group_leader->nr_siblings++;
303 }
304
305 list_add_rcu(&event->event_entry, &ctx->event_list);
306 ctx->nr_events++;
307 if (event->attr.inherit_stat)
308 ctx->nr_stat++;
309}
310
311/*
312 * Remove a event from the lists for its context.
313 * Must be called with ctx->mutex and ctx->lock held.
314 */
315static void
316list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317{
318 struct perf_event *sibling, *tmp;
319
320 if (list_empty(&event->group_entry))
321 return;
322 ctx->nr_events--;
323 if (event->attr.inherit_stat)
324 ctx->nr_stat--;
325
326 list_del_init(&event->group_entry);
327 list_del_rcu(&event->event_entry);
328
329 if (event->group_leader != event)
330 event->group_leader->nr_siblings--;
331
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100332 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800333
334 /*
335 * If event was in error state, then keep it
336 * that way, otherwise bogus counts will be
337 * returned on read(). The only way to get out
338 * of error state is by explicit re-enabling
339 * of the event
340 */
341 if (event->state > PERF_EVENT_STATE_OFF)
342 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100343
Peter Zijlstra4fd38e42010-05-06 17:31:38 +0200344 if (event->state > PERF_EVENT_STATE_FREE)
345 return;
346
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200347 /*
348 * If this was a group event with sibling events then
349 * upgrade the siblings to singleton events by adding them
350 * to the context list directly:
351 */
352 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100353 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200354
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100355 list = ctx_group_list(event, ctx);
356 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200357 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100358
359 /* Inherit group flags from the previous leader */
360 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200361 }
362}
363
364static void
365event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
368{
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
371
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
376 }
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
380
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
386}
387
388static void
389group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392{
393 struct perf_event *event;
394
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
397
398 event_sched_out(group_event, cpuctx, ctx);
399
400 /*
401 * Schedule out siblings (if any):
402 */
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
405
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
408}
409
410/*
411 * Cross CPU call to remove a performance event
412 *
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
415 */
416static void __perf_event_remove_from_context(void *info)
417{
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
421
422 /*
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
426 */
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
429
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100430 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200431 /*
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
434 */
435 perf_disable();
436
437 event_sched_out(event, cpuctx, ctx);
438
439 list_del_event(event, ctx);
440
441 if (!ctx->task) {
442 /*
443 * Allow more per task events with respect to the
444 * reservation:
445 */
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
449 }
450
451 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100452 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200453}
454
455
456/*
457 * Remove the event from a task's (or a CPU's) list of events.
458 *
459 * Must be called with ctx->mutex held.
460 *
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
463 *
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
470 */
471static void perf_event_remove_from_context(struct perf_event *event)
472{
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
475
476 if (!task) {
477 /*
478 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200479 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200480 */
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
485 }
486
487retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
490
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100491 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200492 /*
493 * If the context is active we need to retry the smp call.
494 */
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100496 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200497 goto retry;
498 }
499
500 /*
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
504 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100505 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200506 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100507 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200508}
509
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200510/*
511 * Update total_time_enabled and total_time_running for all events in a group.
512 */
513static void update_group_times(struct perf_event *leader)
514{
515 struct perf_event *event;
516
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
520}
521
522/*
523 * Cross CPU call to disable a performance event
524 */
525static void __perf_event_disable(void *info)
526{
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
530
531 /*
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
534 */
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
537
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100538 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200539
540 /*
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
543 */
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
552 }
553
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100554 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200555}
556
557/*
558 * Disable a event.
559 *
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
569 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100570void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200571{
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
574
575 if (!task) {
576 /*
577 * Disable the event on the cpu that it's on
578 */
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
582 }
583
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
586
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100587 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200588 /*
589 * If the event is still active, we need to retry the cross-call.
590 */
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100592 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200593 goto retry;
594 }
595
596 /*
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
599 */
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
603 }
604
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100605 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200606}
607
608static int
609event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100611 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612{
613 if (event->state <= PERF_EVENT_STATE_OFF)
614 return 0;
615
616 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100617 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200618 /*
619 * The new state must be visible before we turn it on in the hardware:
620 */
621 smp_wmb();
622
623 if (event->pmu->enable(event)) {
624 event->state = PERF_EVENT_STATE_INACTIVE;
625 event->oncpu = -1;
626 return -EAGAIN;
627 }
628
629 event->tstamp_running += ctx->time - event->tstamp_stopped;
630
631 if (!is_software_event(event))
632 cpuctx->active_oncpu++;
633 ctx->nr_active++;
634
635 if (event->attr.exclusive)
636 cpuctx->exclusive = 1;
637
638 return 0;
639}
640
641static int
642group_sched_in(struct perf_event *group_event,
643 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100644 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200645{
646 struct perf_event *event, *partial_group;
647 int ret;
648
649 if (group_event->state == PERF_EVENT_STATE_OFF)
650 return 0;
651
Peter Zijlstra6e377382010-02-11 13:21:58 +0100652 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200653 if (ret)
654 return ret < 0 ? ret : 0;
655
Peter Zijlstra6e377382010-02-11 13:21:58 +0100656 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200657 return -EAGAIN;
658
659 /*
660 * Schedule in siblings as one group (if any):
661 */
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100663 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200664 partial_group = event;
665 goto group_error;
666 }
667 }
668
669 return 0;
670
671group_error:
672 /*
673 * Groups can be scheduled in as one unit only, so undo any
674 * partial group before returning:
675 */
676 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
677 if (event == partial_group)
678 break;
679 event_sched_out(event, cpuctx, ctx);
680 }
681 event_sched_out(group_event, cpuctx, ctx);
682
683 return -EAGAIN;
684}
685
686/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200687 * Work out whether we can put this event group on the CPU now.
688 */
689static int group_can_go_on(struct perf_event *event,
690 struct perf_cpu_context *cpuctx,
691 int can_add_hw)
692{
693 /*
694 * Groups consisting entirely of software events can always go on.
695 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100696 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200697 return 1;
698 /*
699 * If an exclusive group is already on, no other hardware
700 * events can go on.
701 */
702 if (cpuctx->exclusive)
703 return 0;
704 /*
705 * If this group is exclusive and there are already
706 * events on the CPU, it can't go on.
707 */
708 if (event->attr.exclusive && cpuctx->active_oncpu)
709 return 0;
710 /*
711 * Otherwise, try to add it if all previous groups were able
712 * to go on.
713 */
714 return can_add_hw;
715}
716
717static void add_event_to_ctx(struct perf_event *event,
718 struct perf_event_context *ctx)
719{
720 list_add_event(event, ctx);
721 event->tstamp_enabled = ctx->time;
722 event->tstamp_running = ctx->time;
723 event->tstamp_stopped = ctx->time;
724}
725
726/*
727 * Cross CPU call to install and enable a performance event
728 *
729 * Must be called with ctx->mutex held
730 */
731static void __perf_install_in_context(void *info)
732{
733 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
734 struct perf_event *event = info;
735 struct perf_event_context *ctx = event->ctx;
736 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200737 int err;
738
739 /*
740 * If this is a task context, we need to check whether it is
741 * the current task context of this cpu. If not it has been
742 * scheduled out before the smp call arrived.
743 * Or possibly this is the right context but it isn't
744 * on this cpu because it had no events.
745 */
746 if (ctx->task && cpuctx->task_ctx != ctx) {
747 if (cpuctx->task_ctx || ctx->task != current)
748 return;
749 cpuctx->task_ctx = ctx;
750 }
751
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100752 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200753 ctx->is_active = 1;
754 update_context_time(ctx);
755
756 /*
757 * Protect the list operation against NMI by disabling the
758 * events on a global level. NOP for non NMI based events.
759 */
760 perf_disable();
761
762 add_event_to_ctx(event, ctx);
763
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100764 if (event->cpu != -1 && event->cpu != smp_processor_id())
765 goto unlock;
766
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200767 /*
768 * Don't put the event on if it is disabled or if
769 * it is in a group and the group isn't on.
770 */
771 if (event->state != PERF_EVENT_STATE_INACTIVE ||
772 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773 goto unlock;
774
775 /*
776 * An exclusive event can't go on if there are already active
777 * hardware events, and no hardware event can go on if there
778 * is already an exclusive event on.
779 */
780 if (!group_can_go_on(event, cpuctx, 1))
781 err = -EEXIST;
782 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100783 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200784
785 if (err) {
786 /*
787 * This event couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the event group is pinned then put it in error state.
790 */
791 if (leader != event)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_EVENT_STATE_ERROR;
796 }
797 }
798
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
801
802 unlock:
803 perf_enable();
804
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100805 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200806}
807
808/*
809 * Attach a performance event to a context
810 *
811 * First we add the event to the list with the hardware enable bit
812 * in event->hw_config cleared.
813 *
814 * If the event is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
817 *
818 * Must be called with ctx->mutex held.
819 */
820static void
821perf_install_in_context(struct perf_event_context *ctx,
822 struct perf_event *event,
823 int cpu)
824{
825 struct task_struct *task = ctx->task;
826
827 if (!task) {
828 /*
829 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200830 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200831 */
832 smp_call_function_single(cpu, __perf_install_in_context,
833 event, 1);
834 return;
835 }
836
837retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 event);
840
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100841 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200842 /*
843 * we need to retry the smp call.
844 */
845 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100846 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200847 goto retry;
848 }
849
850 /*
851 * The lock prevents that this context is scheduled in so we
852 * can add the event safely, if it the call above did not
853 * succeed.
854 */
855 if (list_empty(&event->group_entry))
856 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100857 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200858}
859
860/*
861 * Put a event into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868static void __perf_event_mark_enabled(struct perf_event *event,
869 struct perf_event_context *ctx)
870{
871 struct perf_event *sub;
872
873 event->state = PERF_EVENT_STATE_INACTIVE;
874 event->tstamp_enabled = ctx->time - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry)
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879}
880
881/*
882 * Cross CPU call to enable a performance event
883 */
884static void __perf_event_enable(void *info)
885{
886 struct perf_event *event = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_event_context *ctx = event->ctx;
889 struct perf_event *leader = event->group_leader;
890 int err;
891
892 /*
893 * If this is a per-task event, need to check whether this
894 * event's task is the current task on this cpu.
895 */
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
900 }
901
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100902 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200903 ctx->is_active = 1;
904 update_context_time(ctx);
905
906 if (event->state >= PERF_EVENT_STATE_INACTIVE)
907 goto unlock;
908 __perf_event_mark_enabled(event, ctx);
909
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100910 if (event->cpu != -1 && event->cpu != smp_processor_id())
911 goto unlock;
912
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200913 /*
914 * If the event is in a group and isn't the group leader,
915 * then don't put it on unless the group is on.
916 */
917 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
918 goto unlock;
919
920 if (!group_can_go_on(event, cpuctx, 1)) {
921 err = -EEXIST;
922 } else {
923 perf_disable();
924 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100925 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200926 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100927 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200928 perf_enable();
929 }
930
931 if (err) {
932 /*
933 * If this event can't go on and it's part of a
934 * group, then the whole group has to come off.
935 */
936 if (leader != event)
937 group_sched_out(leader, cpuctx, ctx);
938 if (leader->attr.pinned) {
939 update_group_times(leader);
940 leader->state = PERF_EVENT_STATE_ERROR;
941 }
942 }
943
944 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100945 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200946}
947
948/*
949 * Enable a event.
950 *
951 * If event->ctx is a cloned context, callers must make sure that
952 * every task struct that event->ctx->task could possibly point to
953 * remains valid. This condition is satisfied when called through
954 * perf_event_for_each_child or perf_event_for_each as described
955 * for perf_event_disable.
956 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100957void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200958{
959 struct perf_event_context *ctx = event->ctx;
960 struct task_struct *task = ctx->task;
961
962 if (!task) {
963 /*
964 * Enable the event on the cpu that it's on
965 */
966 smp_call_function_single(event->cpu, __perf_event_enable,
967 event, 1);
968 return;
969 }
970
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100971 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200972 if (event->state >= PERF_EVENT_STATE_INACTIVE)
973 goto out;
974
975 /*
976 * If the event is in error state, clear that first.
977 * That way, if we see the event in error state below, we
978 * know that it has gone back into error state, as distinct
979 * from the task having been scheduled away before the
980 * cross-call arrived.
981 */
982 if (event->state == PERF_EVENT_STATE_ERROR)
983 event->state = PERF_EVENT_STATE_OFF;
984
985 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100986 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200987 task_oncpu_function_call(task, __perf_event_enable, event);
988
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100989 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200990
991 /*
992 * If the context is active and the event is still off,
993 * we need to retry the cross-call.
994 */
995 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
996 goto retry;
997
998 /*
999 * Since we have the lock this context can't be scheduled
1000 * in, so we can change the state safely.
1001 */
1002 if (event->state == PERF_EVENT_STATE_OFF)
1003 __perf_event_mark_enabled(event, ctx);
1004
1005 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001006 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001007}
1008
1009static int perf_event_refresh(struct perf_event *event, int refresh)
1010{
1011 /*
1012 * not supported on inherited events
1013 */
1014 if (event->attr.inherit)
1015 return -EINVAL;
1016
1017 atomic_add(refresh, &event->event_limit);
1018 perf_event_enable(event);
1019
1020 return 0;
1021}
1022
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001023enum event_type_t {
1024 EVENT_FLEXIBLE = 0x1,
1025 EVENT_PINNED = 0x2,
1026 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1027};
1028
1029static void ctx_sched_out(struct perf_event_context *ctx,
1030 struct perf_cpu_context *cpuctx,
1031 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001032{
1033 struct perf_event *event;
1034
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001035 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001036 ctx->is_active = 0;
1037 if (likely(!ctx->nr_events))
1038 goto out;
1039 update_context_time(ctx);
1040
1041 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001042 if (!ctx->nr_active)
1043 goto out_enable;
1044
1045 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001046 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1047 group_sched_out(event, cpuctx, ctx);
1048
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001049 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001050 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001051 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001052
1053 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001054 perf_enable();
1055 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001056 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001057}
1058
1059/*
1060 * Test whether two contexts are equivalent, i.e. whether they
1061 * have both been cloned from the same version of the same context
1062 * and they both have the same number of enabled events.
1063 * If the number of enabled events is the same, then the set
1064 * of enabled events should be the same, because these are both
1065 * inherited contexts, therefore we can't access individual events
1066 * in them directly with an fd; we can only enable/disable all
1067 * events via prctl, or enable/disable all events in a family
1068 * via ioctl, which will have the same effect on both contexts.
1069 */
1070static int context_equiv(struct perf_event_context *ctx1,
1071 struct perf_event_context *ctx2)
1072{
1073 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1074 && ctx1->parent_gen == ctx2->parent_gen
1075 && !ctx1->pin_count && !ctx2->pin_count;
1076}
1077
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001078static void __perf_event_sync_stat(struct perf_event *event,
1079 struct perf_event *next_event)
1080{
1081 u64 value;
1082
1083 if (!event->attr.inherit_stat)
1084 return;
1085
1086 /*
1087 * Update the event value, we cannot use perf_event_read()
1088 * because we're in the middle of a context switch and have IRQs
1089 * disabled, which upsets smp_call_function_single(), however
1090 * we know the event must be on the current CPU, therefore we
1091 * don't need to use it.
1092 */
1093 switch (event->state) {
1094 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001095 event->pmu->read(event);
1096 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001097
1098 case PERF_EVENT_STATE_INACTIVE:
1099 update_event_times(event);
1100 break;
1101
1102 default:
1103 break;
1104 }
1105
1106 /*
1107 * In order to keep per-task stats reliable we need to flip the event
1108 * values when we flip the contexts.
1109 */
1110 value = atomic64_read(&next_event->count);
1111 value = atomic64_xchg(&event->count, value);
1112 atomic64_set(&next_event->count, value);
1113
1114 swap(event->total_time_enabled, next_event->total_time_enabled);
1115 swap(event->total_time_running, next_event->total_time_running);
1116
1117 /*
1118 * Since we swizzled the values, update the user visible data too.
1119 */
1120 perf_event_update_userpage(event);
1121 perf_event_update_userpage(next_event);
1122}
1123
1124#define list_next_entry(pos, member) \
1125 list_entry(pos->member.next, typeof(*pos), member)
1126
1127static void perf_event_sync_stat(struct perf_event_context *ctx,
1128 struct perf_event_context *next_ctx)
1129{
1130 struct perf_event *event, *next_event;
1131
1132 if (!ctx->nr_stat)
1133 return;
1134
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001135 update_context_time(ctx);
1136
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001137 event = list_first_entry(&ctx->event_list,
1138 struct perf_event, event_entry);
1139
1140 next_event = list_first_entry(&next_ctx->event_list,
1141 struct perf_event, event_entry);
1142
1143 while (&event->event_entry != &ctx->event_list &&
1144 &next_event->event_entry != &next_ctx->event_list) {
1145
1146 __perf_event_sync_stat(event, next_event);
1147
1148 event = list_next_entry(event, event_entry);
1149 next_event = list_next_entry(next_event, event_entry);
1150 }
1151}
1152
1153/*
1154 * Called from scheduler to remove the events of the current task,
1155 * with interrupts disabled.
1156 *
1157 * We stop each event and update the event value in event->count.
1158 *
1159 * This does not protect us against NMI, but disable()
1160 * sets the disabled bit in the control field of event _before_
1161 * accessing the event control register. If a NMI hits, then it will
1162 * not restart the event.
1163 */
1164void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001165 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001167 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001168 struct perf_event_context *ctx = task->perf_event_ctxp;
1169 struct perf_event_context *next_ctx;
1170 struct perf_event_context *parent;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001171 int do_switch = 1;
1172
Frederic Weisbeckere49a5bd2010-03-22 19:40:03 +01001173 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001174
1175 if (likely(!ctx || !cpuctx->task_ctx))
1176 return;
1177
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001178 rcu_read_lock();
1179 parent = rcu_dereference(ctx->parent_ctx);
1180 next_ctx = next->perf_event_ctxp;
1181 if (parent && next_ctx &&
1182 rcu_dereference(next_ctx->parent_ctx) == parent) {
1183 /*
1184 * Looks like the two contexts are clones, so we might be
1185 * able to optimize the context switch. We lock both
1186 * contexts and check that they are clones under the
1187 * lock (including re-checking that neither has been
1188 * uncloned in the meantime). It doesn't matter which
1189 * order we take the locks because no other cpu could
1190 * be trying to lock both of these tasks.
1191 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001192 raw_spin_lock(&ctx->lock);
1193 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001194 if (context_equiv(ctx, next_ctx)) {
1195 /*
1196 * XXX do we need a memory barrier of sorts
1197 * wrt to rcu_dereference() of perf_event_ctxp
1198 */
1199 task->perf_event_ctxp = next_ctx;
1200 next->perf_event_ctxp = ctx;
1201 ctx->task = next;
1202 next_ctx->task = task;
1203 do_switch = 0;
1204
1205 perf_event_sync_stat(ctx, next_ctx);
1206 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001207 raw_spin_unlock(&next_ctx->lock);
1208 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001209 }
1210 rcu_read_unlock();
1211
1212 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001213 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001214 cpuctx->task_ctx = NULL;
1215 }
1216}
1217
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001218static void task_ctx_sched_out(struct perf_event_context *ctx,
1219 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001220{
1221 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1222
1223 if (!cpuctx->task_ctx)
1224 return;
1225
1226 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1227 return;
1228
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001229 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001230 cpuctx->task_ctx = NULL;
1231}
1232
1233/*
1234 * Called with IRQs disabled
1235 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001236static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001237{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001238 task_ctx_sched_out(ctx, EVENT_ALL);
1239}
1240
1241/*
1242 * Called with IRQs disabled
1243 */
1244static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1245 enum event_type_t event_type)
1246{
1247 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001248}
1249
1250static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001251ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001252 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001253{
1254 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001255
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001256 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1257 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001258 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001259 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001260 continue;
1261
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001262 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001263 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001264
1265 /*
1266 * If this pinned group hasn't been scheduled,
1267 * put it in error state.
1268 */
1269 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1270 update_group_times(event);
1271 event->state = PERF_EVENT_STATE_ERROR;
1272 }
1273 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001274}
1275
1276static void
1277ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001278 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001279{
1280 struct perf_event *event;
1281 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001282
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001283 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1284 /* Ignore events in OFF or ERROR state */
1285 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001286 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001287 /*
1288 * Listen to the 'cpu' scheduling filter constraint
1289 * of events:
1290 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001291 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001295 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001297 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001298}
1299
1300static void
1301ctx_sched_in(struct perf_event_context *ctx,
1302 struct perf_cpu_context *cpuctx,
1303 enum event_type_t event_type)
1304{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001305 raw_spin_lock(&ctx->lock);
1306 ctx->is_active = 1;
1307 if (likely(!ctx->nr_events))
1308 goto out;
1309
1310 ctx->timestamp = perf_clock();
1311
1312 perf_disable();
1313
1314 /*
1315 * First go through the list and put on any pinned groups
1316 * in order to give them the best chance of going on.
1317 */
1318 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001319 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001320
1321 /* Then walk through the lower prio flexible groups */
1322 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001323 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001324
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001325 perf_enable();
1326 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001327 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001328}
1329
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001330static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1331 enum event_type_t event_type)
1332{
1333 struct perf_event_context *ctx = &cpuctx->ctx;
1334
1335 ctx_sched_in(ctx, cpuctx, event_type);
1336}
1337
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001338static void task_ctx_sched_in(struct task_struct *task,
1339 enum event_type_t event_type)
1340{
1341 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1342 struct perf_event_context *ctx = task->perf_event_ctxp;
1343
1344 if (likely(!ctx))
1345 return;
1346 if (cpuctx->task_ctx == ctx)
1347 return;
1348 ctx_sched_in(ctx, cpuctx, event_type);
1349 cpuctx->task_ctx = ctx;
1350}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001351/*
1352 * Called from scheduler to add the events of the current task
1353 * with interrupts disabled.
1354 *
1355 * We restore the event value and then enable it.
1356 *
1357 * This does not protect us against NMI, but enable()
1358 * sets the enabled bit in the control field of event _before_
1359 * accessing the event control register. If a NMI hits, then it will
1360 * keep the event running.
1361 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001362void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001363{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001364 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1365 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001366
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001367 if (likely(!ctx))
1368 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001369
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001370 if (cpuctx->task_ctx == ctx)
1371 return;
1372
1373 /*
1374 * We want to keep the following priority order:
1375 * cpu pinned (that don't need to move), task pinned,
1376 * cpu flexible, task flexible.
1377 */
1378 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1379
1380 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1381 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1382 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1383
1384 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001385}
1386
1387#define MAX_INTERRUPTS (~0ULL)
1388
1389static void perf_log_throttle(struct perf_event *event, int enable);
1390
Peter Zijlstraabd50712010-01-26 18:50:16 +01001391static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1392{
1393 u64 frequency = event->attr.sample_freq;
1394 u64 sec = NSEC_PER_SEC;
1395 u64 divisor, dividend;
1396
1397 int count_fls, nsec_fls, frequency_fls, sec_fls;
1398
1399 count_fls = fls64(count);
1400 nsec_fls = fls64(nsec);
1401 frequency_fls = fls64(frequency);
1402 sec_fls = 30;
1403
1404 /*
1405 * We got @count in @nsec, with a target of sample_freq HZ
1406 * the target period becomes:
1407 *
1408 * @count * 10^9
1409 * period = -------------------
1410 * @nsec * sample_freq
1411 *
1412 */
1413
1414 /*
1415 * Reduce accuracy by one bit such that @a and @b converge
1416 * to a similar magnitude.
1417 */
1418#define REDUCE_FLS(a, b) \
1419do { \
1420 if (a##_fls > b##_fls) { \
1421 a >>= 1; \
1422 a##_fls--; \
1423 } else { \
1424 b >>= 1; \
1425 b##_fls--; \
1426 } \
1427} while (0)
1428
1429 /*
1430 * Reduce accuracy until either term fits in a u64, then proceed with
1431 * the other, so that finally we can do a u64/u64 division.
1432 */
1433 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1434 REDUCE_FLS(nsec, frequency);
1435 REDUCE_FLS(sec, count);
1436 }
1437
1438 if (count_fls + sec_fls > 64) {
1439 divisor = nsec * frequency;
1440
1441 while (count_fls + sec_fls > 64) {
1442 REDUCE_FLS(count, sec);
1443 divisor >>= 1;
1444 }
1445
1446 dividend = count * sec;
1447 } else {
1448 dividend = count * sec;
1449
1450 while (nsec_fls + frequency_fls > 64) {
1451 REDUCE_FLS(nsec, frequency);
1452 dividend >>= 1;
1453 }
1454
1455 divisor = nsec * frequency;
1456 }
1457
1458 return div64_u64(dividend, divisor);
1459}
1460
Stephane Eraniand76a0812010-02-08 17:06:01 +02001461static void perf_event_stop(struct perf_event *event)
1462{
1463 if (!event->pmu->stop)
1464 return event->pmu->disable(event);
1465
1466 return event->pmu->stop(event);
1467}
1468
1469static int perf_event_start(struct perf_event *event)
1470{
1471 if (!event->pmu->start)
1472 return event->pmu->enable(event);
1473
1474 return event->pmu->start(event);
1475}
1476
Peter Zijlstraabd50712010-01-26 18:50:16 +01001477static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001478{
1479 struct hw_perf_event *hwc = &event->hw;
1480 u64 period, sample_period;
1481 s64 delta;
1482
Peter Zijlstraabd50712010-01-26 18:50:16 +01001483 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001484
1485 delta = (s64)(period - hwc->sample_period);
1486 delta = (delta + 7) / 8; /* low pass filter */
1487
1488 sample_period = hwc->sample_period + delta;
1489
1490 if (!sample_period)
1491 sample_period = 1;
1492
1493 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001494
1495 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1496 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001497 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001498 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001499 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001500 perf_enable();
1501 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001502}
1503
1504static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1505{
1506 struct perf_event *event;
1507 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001508 u64 interrupts, now;
1509 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001510
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001511 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001512 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001513 if (event->state != PERF_EVENT_STATE_ACTIVE)
1514 continue;
1515
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001516 if (event->cpu != -1 && event->cpu != smp_processor_id())
1517 continue;
1518
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001519 hwc = &event->hw;
1520
1521 interrupts = hwc->interrupts;
1522 hwc->interrupts = 0;
1523
1524 /*
1525 * unthrottle events on the tick
1526 */
1527 if (interrupts == MAX_INTERRUPTS) {
1528 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001529 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001530 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001531 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 }
1533
1534 if (!event->attr.freq || !event->attr.sample_freq)
1535 continue;
1536
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001537 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001538 event->pmu->read(event);
1539 now = atomic64_read(&event->count);
1540 delta = now - hwc->freq_count_stamp;
1541 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001542
Peter Zijlstraabd50712010-01-26 18:50:16 +01001543 if (delta > 0)
1544 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001545 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001546 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001547 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001548}
1549
1550/*
1551 * Round-robin a context's events:
1552 */
1553static void rotate_ctx(struct perf_event_context *ctx)
1554{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001555 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001556
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001557 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001558 list_rotate_left(&ctx->flexible_groups);
1559
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001560 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561}
1562
Peter Zijlstra49f47432009-12-27 11:51:52 +01001563void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001564{
1565 struct perf_cpu_context *cpuctx;
1566 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001567 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001568
1569 if (!atomic_read(&nr_events))
1570 return;
1571
Peter Zijlstra49f47432009-12-27 11:51:52 +01001572 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001573 if (cpuctx->ctx.nr_events &&
1574 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1575 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001576
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001577 ctx = curr->perf_event_ctxp;
1578 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1579 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001580
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001581 perf_ctx_adjust_freq(&cpuctx->ctx);
1582 if (ctx)
1583 perf_ctx_adjust_freq(ctx);
1584
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001585 if (!rotate)
1586 return;
1587
1588 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001589 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001590 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001591 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001592
1593 rotate_ctx(&cpuctx->ctx);
1594 if (ctx)
1595 rotate_ctx(ctx);
1596
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001597 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001598 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001599 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001600 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001601}
1602
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001603static int event_enable_on_exec(struct perf_event *event,
1604 struct perf_event_context *ctx)
1605{
1606 if (!event->attr.enable_on_exec)
1607 return 0;
1608
1609 event->attr.enable_on_exec = 0;
1610 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1611 return 0;
1612
1613 __perf_event_mark_enabled(event, ctx);
1614
1615 return 1;
1616}
1617
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001618/*
1619 * Enable all of a task's events that have been marked enable-on-exec.
1620 * This expects task == current.
1621 */
1622static void perf_event_enable_on_exec(struct task_struct *task)
1623{
1624 struct perf_event_context *ctx;
1625 struct perf_event *event;
1626 unsigned long flags;
1627 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001628 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001629
1630 local_irq_save(flags);
1631 ctx = task->perf_event_ctxp;
1632 if (!ctx || !ctx->nr_events)
1633 goto out;
1634
1635 __perf_event_task_sched_out(ctx);
1636
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001637 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001638
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001639 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1640 ret = event_enable_on_exec(event, ctx);
1641 if (ret)
1642 enabled = 1;
1643 }
1644
1645 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1646 ret = event_enable_on_exec(event, ctx);
1647 if (ret)
1648 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001649 }
1650
1651 /*
1652 * Unclone this context if we enabled any event.
1653 */
1654 if (enabled)
1655 unclone_ctx(ctx);
1656
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001657 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001658
Peter Zijlstra49f47432009-12-27 11:51:52 +01001659 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001660 out:
1661 local_irq_restore(flags);
1662}
1663
1664/*
1665 * Cross CPU call to read the hardware event
1666 */
1667static void __perf_event_read(void *info)
1668{
1669 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1670 struct perf_event *event = info;
1671 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001672
1673 /*
1674 * If this is a task context, we need to check whether it is
1675 * the current task context of this cpu. If not it has been
1676 * scheduled out before the smp call arrived. In that case
1677 * event->count would have been updated to a recent sample
1678 * when the event was scheduled out.
1679 */
1680 if (ctx->task && cpuctx->task_ctx != ctx)
1681 return;
1682
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001683 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001684 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001685 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001686 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001687
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001688 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001689}
1690
1691static u64 perf_event_read(struct perf_event *event)
1692{
1693 /*
1694 * If event is enabled and currently active on a CPU, update the
1695 * value in the event structure:
1696 */
1697 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1698 smp_call_function_single(event->oncpu,
1699 __perf_event_read, event, 1);
1700 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001701 struct perf_event_context *ctx = event->ctx;
1702 unsigned long flags;
1703
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001704 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001705 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001706 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001707 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001708 }
1709
1710 return atomic64_read(&event->count);
1711}
1712
1713/*
1714 * Initialize the perf_event context in a task_struct:
1715 */
1716static void
1717__perf_event_init_context(struct perf_event_context *ctx,
1718 struct task_struct *task)
1719{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001720 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001721 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001722 INIT_LIST_HEAD(&ctx->pinned_groups);
1723 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001724 INIT_LIST_HEAD(&ctx->event_list);
1725 atomic_set(&ctx->refcount, 1);
1726 ctx->task = task;
1727}
1728
1729static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1730{
1731 struct perf_event_context *ctx;
1732 struct perf_cpu_context *cpuctx;
1733 struct task_struct *task;
1734 unsigned long flags;
1735 int err;
1736
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001737 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001738 /* Must be root to operate on a CPU event: */
1739 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1740 return ERR_PTR(-EACCES);
1741
Paul Mackerras0f624e72009-12-15 19:40:32 +11001742 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001743 return ERR_PTR(-EINVAL);
1744
1745 /*
1746 * We could be clever and allow to attach a event to an
1747 * offline CPU and activate it when the CPU comes up, but
1748 * that's for later.
1749 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001750 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 return ERR_PTR(-ENODEV);
1752
1753 cpuctx = &per_cpu(perf_cpu_context, cpu);
1754 ctx = &cpuctx->ctx;
1755 get_ctx(ctx);
1756
1757 return ctx;
1758 }
1759
1760 rcu_read_lock();
1761 if (!pid)
1762 task = current;
1763 else
1764 task = find_task_by_vpid(pid);
1765 if (task)
1766 get_task_struct(task);
1767 rcu_read_unlock();
1768
1769 if (!task)
1770 return ERR_PTR(-ESRCH);
1771
1772 /*
1773 * Can't attach events to a dying task.
1774 */
1775 err = -ESRCH;
1776 if (task->flags & PF_EXITING)
1777 goto errout;
1778
1779 /* Reuse ptrace permission checks for now. */
1780 err = -EACCES;
1781 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1782 goto errout;
1783
1784 retry:
1785 ctx = perf_lock_task_context(task, &flags);
1786 if (ctx) {
1787 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001788 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001789 }
1790
1791 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001792 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001793 err = -ENOMEM;
1794 if (!ctx)
1795 goto errout;
1796 __perf_event_init_context(ctx, task);
1797 get_ctx(ctx);
1798 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1799 /*
1800 * We raced with some other task; use
1801 * the context they set.
1802 */
1803 kfree(ctx);
1804 goto retry;
1805 }
1806 get_task_struct(task);
1807 }
1808
1809 put_task_struct(task);
1810 return ctx;
1811
1812 errout:
1813 put_task_struct(task);
1814 return ERR_PTR(err);
1815}
1816
Li Zefan6fb29152009-10-15 11:21:42 +08001817static void perf_event_free_filter(struct perf_event *event);
1818
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001819static void free_event_rcu(struct rcu_head *head)
1820{
1821 struct perf_event *event;
1822
1823 event = container_of(head, struct perf_event, rcu_head);
1824 if (event->ns)
1825 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001826 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001827 kfree(event);
1828}
1829
1830static void perf_pending_sync(struct perf_event *event);
1831
1832static void free_event(struct perf_event *event)
1833{
1834 perf_pending_sync(event);
1835
1836 if (!event->parent) {
1837 atomic_dec(&nr_events);
1838 if (event->attr.mmap)
1839 atomic_dec(&nr_mmap_events);
1840 if (event->attr.comm)
1841 atomic_dec(&nr_comm_events);
1842 if (event->attr.task)
1843 atomic_dec(&nr_task_events);
1844 }
1845
1846 if (event->output) {
1847 fput(event->output->filp);
1848 event->output = NULL;
1849 }
1850
1851 if (event->destroy)
1852 event->destroy(event);
1853
1854 put_ctx(event->ctx);
1855 call_rcu(&event->rcu_head, free_event_rcu);
1856}
1857
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001858int perf_event_release_kernel(struct perf_event *event)
1859{
1860 struct perf_event_context *ctx = event->ctx;
1861
Peter Zijlstra4fd38e42010-05-06 17:31:38 +02001862 event->state = PERF_EVENT_STATE_FREE;
1863
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001864 WARN_ON_ONCE(ctx->parent_ctx);
1865 mutex_lock(&ctx->mutex);
1866 perf_event_remove_from_context(event);
1867 mutex_unlock(&ctx->mutex);
1868
1869 mutex_lock(&event->owner->perf_event_mutex);
1870 list_del_init(&event->owner_entry);
1871 mutex_unlock(&event->owner->perf_event_mutex);
1872 put_task_struct(event->owner);
1873
1874 free_event(event);
1875
1876 return 0;
1877}
1878EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1879
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001880/*
1881 * Called when the last reference to the file is gone.
1882 */
1883static int perf_release(struct inode *inode, struct file *file)
1884{
1885 struct perf_event *event = file->private_data;
1886
1887 file->private_data = NULL;
1888
1889 return perf_event_release_kernel(event);
1890}
1891
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001892static int perf_event_read_size(struct perf_event *event)
1893{
1894 int entry = sizeof(u64); /* value */
1895 int size = 0;
1896 int nr = 1;
1897
1898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899 size += sizeof(u64);
1900
1901 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902 size += sizeof(u64);
1903
1904 if (event->attr.read_format & PERF_FORMAT_ID)
1905 entry += sizeof(u64);
1906
1907 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1908 nr += event->group_leader->nr_siblings;
1909 size += sizeof(u64);
1910 }
1911
1912 size += entry * nr;
1913
1914 return size;
1915}
1916
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001917u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001918{
1919 struct perf_event *child;
1920 u64 total = 0;
1921
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001922 *enabled = 0;
1923 *running = 0;
1924
Peter Zijlstra6f105812009-11-20 22:19:56 +01001925 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001926 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001927 *enabled += event->total_time_enabled +
1928 atomic64_read(&event->child_total_time_enabled);
1929 *running += event->total_time_running +
1930 atomic64_read(&event->child_total_time_running);
1931
1932 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001933 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001934 *enabled += child->total_time_enabled;
1935 *running += child->total_time_running;
1936 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001937 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001938
1939 return total;
1940}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001941EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001942
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001943static int perf_event_read_group(struct perf_event *event,
1944 u64 read_format, char __user *buf)
1945{
1946 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001947 int n = 0, size = 0, ret = -EFAULT;
1948 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001949 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001950 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001951
Peter Zijlstra6f105812009-11-20 22:19:56 +01001952 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001953 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001954
1955 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001956 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1957 values[n++] = enabled;
1958 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1959 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001960 values[n++] = count;
1961 if (read_format & PERF_FORMAT_ID)
1962 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001963
1964 size = n * sizeof(u64);
1965
1966 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001967 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001968
Peter Zijlstra6f105812009-11-20 22:19:56 +01001969 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001970
1971 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001972 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001973
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001974 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001975 if (read_format & PERF_FORMAT_ID)
1976 values[n++] = primary_event_id(sub);
1977
1978 size = n * sizeof(u64);
1979
Stephane Eranian184d3da2009-11-23 21:40:49 -08001980 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001981 ret = -EFAULT;
1982 goto unlock;
1983 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001984
1985 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001986 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001987unlock:
1988 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001989
Peter Zijlstraabf48682009-11-20 22:19:49 +01001990 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001991}
1992
1993static int perf_event_read_one(struct perf_event *event,
1994 u64 read_format, char __user *buf)
1995{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001996 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001997 u64 values[4];
1998 int n = 0;
1999
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002000 values[n++] = perf_event_read_value(event, &enabled, &running);
2001 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2002 values[n++] = enabled;
2003 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2004 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002005 if (read_format & PERF_FORMAT_ID)
2006 values[n++] = primary_event_id(event);
2007
2008 if (copy_to_user(buf, values, n * sizeof(u64)))
2009 return -EFAULT;
2010
2011 return n * sizeof(u64);
2012}
2013
2014/*
2015 * Read the performance event - simple non blocking version for now
2016 */
2017static ssize_t
2018perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2019{
2020 u64 read_format = event->attr.read_format;
2021 int ret;
2022
2023 /*
2024 * Return end-of-file for a read on a event that is in
2025 * error state (i.e. because it was pinned but it couldn't be
2026 * scheduled on to the CPU at some point).
2027 */
2028 if (event->state == PERF_EVENT_STATE_ERROR)
2029 return 0;
2030
2031 if (count < perf_event_read_size(event))
2032 return -ENOSPC;
2033
2034 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002035 if (read_format & PERF_FORMAT_GROUP)
2036 ret = perf_event_read_group(event, read_format, buf);
2037 else
2038 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002039
2040 return ret;
2041}
2042
2043static ssize_t
2044perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2045{
2046 struct perf_event *event = file->private_data;
2047
2048 return perf_read_hw(event, buf, count);
2049}
2050
2051static unsigned int perf_poll(struct file *file, poll_table *wait)
2052{
2053 struct perf_event *event = file->private_data;
2054 struct perf_mmap_data *data;
2055 unsigned int events = POLL_HUP;
2056
2057 rcu_read_lock();
2058 data = rcu_dereference(event->data);
2059 if (data)
2060 events = atomic_xchg(&data->poll, 0);
2061 rcu_read_unlock();
2062
2063 poll_wait(file, &event->waitq, wait);
2064
2065 return events;
2066}
2067
2068static void perf_event_reset(struct perf_event *event)
2069{
2070 (void)perf_event_read(event);
2071 atomic64_set(&event->count, 0);
2072 perf_event_update_userpage(event);
2073}
2074
2075/*
2076 * Holding the top-level event's child_mutex means that any
2077 * descendant process that has inherited this event will block
2078 * in sync_child_event if it goes to exit, thus satisfying the
2079 * task existence requirements of perf_event_enable/disable.
2080 */
2081static void perf_event_for_each_child(struct perf_event *event,
2082 void (*func)(struct perf_event *))
2083{
2084 struct perf_event *child;
2085
2086 WARN_ON_ONCE(event->ctx->parent_ctx);
2087 mutex_lock(&event->child_mutex);
2088 func(event);
2089 list_for_each_entry(child, &event->child_list, child_list)
2090 func(child);
2091 mutex_unlock(&event->child_mutex);
2092}
2093
2094static void perf_event_for_each(struct perf_event *event,
2095 void (*func)(struct perf_event *))
2096{
2097 struct perf_event_context *ctx = event->ctx;
2098 struct perf_event *sibling;
2099
2100 WARN_ON_ONCE(ctx->parent_ctx);
2101 mutex_lock(&ctx->mutex);
2102 event = event->group_leader;
2103
2104 perf_event_for_each_child(event, func);
2105 func(event);
2106 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2107 perf_event_for_each_child(event, func);
2108 mutex_unlock(&ctx->mutex);
2109}
2110
2111static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112{
2113 struct perf_event_context *ctx = event->ctx;
2114 unsigned long size;
2115 int ret = 0;
2116 u64 value;
2117
2118 if (!event->attr.sample_period)
2119 return -EINVAL;
2120
2121 size = copy_from_user(&value, arg, sizeof(value));
2122 if (size != sizeof(value))
2123 return -EFAULT;
2124
2125 if (!value)
2126 return -EINVAL;
2127
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002128 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002129 if (event->attr.freq) {
2130 if (value > sysctl_perf_event_sample_rate) {
2131 ret = -EINVAL;
2132 goto unlock;
2133 }
2134
2135 event->attr.sample_freq = value;
2136 } else {
2137 event->attr.sample_period = value;
2138 event->hw.sample_period = value;
2139 }
2140unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002141 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002142
2143 return ret;
2144}
2145
Li Zefan6fb29152009-10-15 11:21:42 +08002146static int perf_event_set_output(struct perf_event *event, int output_fd);
2147static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002148
2149static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2150{
2151 struct perf_event *event = file->private_data;
2152 void (*func)(struct perf_event *);
2153 u32 flags = arg;
2154
2155 switch (cmd) {
2156 case PERF_EVENT_IOC_ENABLE:
2157 func = perf_event_enable;
2158 break;
2159 case PERF_EVENT_IOC_DISABLE:
2160 func = perf_event_disable;
2161 break;
2162 case PERF_EVENT_IOC_RESET:
2163 func = perf_event_reset;
2164 break;
2165
2166 case PERF_EVENT_IOC_REFRESH:
2167 return perf_event_refresh(event, arg);
2168
2169 case PERF_EVENT_IOC_PERIOD:
2170 return perf_event_period(event, (u64 __user *)arg);
2171
2172 case PERF_EVENT_IOC_SET_OUTPUT:
2173 return perf_event_set_output(event, arg);
2174
Li Zefan6fb29152009-10-15 11:21:42 +08002175 case PERF_EVENT_IOC_SET_FILTER:
2176 return perf_event_set_filter(event, (void __user *)arg);
2177
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002178 default:
2179 return -ENOTTY;
2180 }
2181
2182 if (flags & PERF_IOC_FLAG_GROUP)
2183 perf_event_for_each(event, func);
2184 else
2185 perf_event_for_each_child(event, func);
2186
2187 return 0;
2188}
2189
2190int perf_event_task_enable(void)
2191{
2192 struct perf_event *event;
2193
2194 mutex_lock(&current->perf_event_mutex);
2195 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2196 perf_event_for_each_child(event, perf_event_enable);
2197 mutex_unlock(&current->perf_event_mutex);
2198
2199 return 0;
2200}
2201
2202int perf_event_task_disable(void)
2203{
2204 struct perf_event *event;
2205
2206 mutex_lock(&current->perf_event_mutex);
2207 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2208 perf_event_for_each_child(event, perf_event_disable);
2209 mutex_unlock(&current->perf_event_mutex);
2210
2211 return 0;
2212}
2213
2214#ifndef PERF_EVENT_INDEX_OFFSET
2215# define PERF_EVENT_INDEX_OFFSET 0
2216#endif
2217
2218static int perf_event_index(struct perf_event *event)
2219{
2220 if (event->state != PERF_EVENT_STATE_ACTIVE)
2221 return 0;
2222
2223 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224}
2225
2226/*
2227 * Callers need to ensure there can be no nesting of this function, otherwise
2228 * the seqlock logic goes bad. We can not serialize this because the arch
2229 * code calls this from NMI context.
2230 */
2231void perf_event_update_userpage(struct perf_event *event)
2232{
2233 struct perf_event_mmap_page *userpg;
2234 struct perf_mmap_data *data;
2235
2236 rcu_read_lock();
2237 data = rcu_dereference(event->data);
2238 if (!data)
2239 goto unlock;
2240
2241 userpg = data->user_page;
2242
2243 /*
2244 * Disable preemption so as to not let the corresponding user-space
2245 * spin too long if we get preempted.
2246 */
2247 preempt_disable();
2248 ++userpg->lock;
2249 barrier();
2250 userpg->index = perf_event_index(event);
2251 userpg->offset = atomic64_read(&event->count);
2252 if (event->state == PERF_EVENT_STATE_ACTIVE)
2253 userpg->offset -= atomic64_read(&event->hw.prev_count);
2254
2255 userpg->time_enabled = event->total_time_enabled +
2256 atomic64_read(&event->child_total_time_enabled);
2257
2258 userpg->time_running = event->total_time_running +
2259 atomic64_read(&event->child_total_time_running);
2260
2261 barrier();
2262 ++userpg->lock;
2263 preempt_enable();
2264unlock:
2265 rcu_read_unlock();
2266}
2267
Peter Zijlstra906010b2009-09-21 16:08:49 +02002268static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002269{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002270 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002271}
2272
Peter Zijlstra906010b2009-09-21 16:08:49 +02002273#ifndef CONFIG_PERF_USE_VMALLOC
2274
2275/*
2276 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2277 */
2278
2279static struct page *
2280perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2281{
2282 if (pgoff > data->nr_pages)
2283 return NULL;
2284
2285 if (pgoff == 0)
2286 return virt_to_page(data->user_page);
2287
2288 return virt_to_page(data->data_pages[pgoff - 1]);
2289}
2290
2291static struct perf_mmap_data *
2292perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002293{
2294 struct perf_mmap_data *data;
2295 unsigned long size;
2296 int i;
2297
2298 WARN_ON(atomic_read(&event->mmap_count));
2299
2300 size = sizeof(struct perf_mmap_data);
2301 size += nr_pages * sizeof(void *);
2302
2303 data = kzalloc(size, GFP_KERNEL);
2304 if (!data)
2305 goto fail;
2306
2307 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2308 if (!data->user_page)
2309 goto fail_user_page;
2310
2311 for (i = 0; i < nr_pages; i++) {
2312 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2313 if (!data->data_pages[i])
2314 goto fail_data_pages;
2315 }
2316
Peter Zijlstra906010b2009-09-21 16:08:49 +02002317 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002318 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002319
Peter Zijlstra906010b2009-09-21 16:08:49 +02002320 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002321
2322fail_data_pages:
2323 for (i--; i >= 0; i--)
2324 free_page((unsigned long)data->data_pages[i]);
2325
2326 free_page((unsigned long)data->user_page);
2327
2328fail_user_page:
2329 kfree(data);
2330
2331fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002332 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002333}
2334
2335static void perf_mmap_free_page(unsigned long addr)
2336{
2337 struct page *page = virt_to_page((void *)addr);
2338
2339 page->mapping = NULL;
2340 __free_page(page);
2341}
2342
Peter Zijlstra906010b2009-09-21 16:08:49 +02002343static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002344{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002345 int i;
2346
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002347 perf_mmap_free_page((unsigned long)data->user_page);
2348 for (i = 0; i < data->nr_pages; i++)
2349 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002350 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002351}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002352
Peter Zijlstra906010b2009-09-21 16:08:49 +02002353#else
2354
2355/*
2356 * Back perf_mmap() with vmalloc memory.
2357 *
2358 * Required for architectures that have d-cache aliasing issues.
2359 */
2360
2361static struct page *
2362perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2363{
2364 if (pgoff > (1UL << data->data_order))
2365 return NULL;
2366
2367 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2368}
2369
2370static void perf_mmap_unmark_page(void *addr)
2371{
2372 struct page *page = vmalloc_to_page(addr);
2373
2374 page->mapping = NULL;
2375}
2376
2377static void perf_mmap_data_free_work(struct work_struct *work)
2378{
2379 struct perf_mmap_data *data;
2380 void *base;
2381 int i, nr;
2382
2383 data = container_of(work, struct perf_mmap_data, work);
2384 nr = 1 << data->data_order;
2385
2386 base = data->user_page;
2387 for (i = 0; i < nr + 1; i++)
2388 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2389
2390 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002391 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002392}
2393
2394static void perf_mmap_data_free(struct perf_mmap_data *data)
2395{
2396 schedule_work(&data->work);
2397}
2398
2399static struct perf_mmap_data *
2400perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2401{
2402 struct perf_mmap_data *data;
2403 unsigned long size;
2404 void *all_buf;
2405
2406 WARN_ON(atomic_read(&event->mmap_count));
2407
2408 size = sizeof(struct perf_mmap_data);
2409 size += sizeof(void *);
2410
2411 data = kzalloc(size, GFP_KERNEL);
2412 if (!data)
2413 goto fail;
2414
2415 INIT_WORK(&data->work, perf_mmap_data_free_work);
2416
2417 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2418 if (!all_buf)
2419 goto fail_all_buf;
2420
2421 data->user_page = all_buf;
2422 data->data_pages[0] = all_buf + PAGE_SIZE;
2423 data->data_order = ilog2(nr_pages);
2424 data->nr_pages = 1;
2425
2426 return data;
2427
2428fail_all_buf:
2429 kfree(data);
2430
2431fail:
2432 return NULL;
2433}
2434
2435#endif
2436
2437static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2438{
2439 struct perf_event *event = vma->vm_file->private_data;
2440 struct perf_mmap_data *data;
2441 int ret = VM_FAULT_SIGBUS;
2442
2443 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2444 if (vmf->pgoff == 0)
2445 ret = 0;
2446 return ret;
2447 }
2448
2449 rcu_read_lock();
2450 data = rcu_dereference(event->data);
2451 if (!data)
2452 goto unlock;
2453
2454 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2455 goto unlock;
2456
2457 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2458 if (!vmf->page)
2459 goto unlock;
2460
2461 get_page(vmf->page);
2462 vmf->page->mapping = vma->vm_file->f_mapping;
2463 vmf->page->index = vmf->pgoff;
2464
2465 ret = 0;
2466unlock:
2467 rcu_read_unlock();
2468
2469 return ret;
2470}
2471
2472static void
2473perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2474{
2475 long max_size = perf_data_size(data);
2476
2477 atomic_set(&data->lock, -1);
2478
2479 if (event->attr.watermark) {
2480 data->watermark = min_t(long, max_size,
2481 event->attr.wakeup_watermark);
2482 }
2483
2484 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002485 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002486
2487
2488 rcu_assign_pointer(event->data, data);
2489}
2490
2491static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2492{
2493 struct perf_mmap_data *data;
2494
2495 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2496 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002497}
2498
Peter Zijlstra906010b2009-09-21 16:08:49 +02002499static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002500{
2501 struct perf_mmap_data *data = event->data;
2502
2503 WARN_ON(atomic_read(&event->mmap_count));
2504
2505 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002506 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002507}
2508
2509static void perf_mmap_open(struct vm_area_struct *vma)
2510{
2511 struct perf_event *event = vma->vm_file->private_data;
2512
2513 atomic_inc(&event->mmap_count);
2514}
2515
2516static void perf_mmap_close(struct vm_area_struct *vma)
2517{
2518 struct perf_event *event = vma->vm_file->private_data;
2519
2520 WARN_ON_ONCE(event->ctx->parent_ctx);
2521 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002522 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002523 struct user_struct *user = current_user();
2524
Peter Zijlstra906010b2009-09-21 16:08:49 +02002525 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002526 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002527 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002528 mutex_unlock(&event->mmap_mutex);
2529 }
2530}
2531
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002532static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002533 .open = perf_mmap_open,
2534 .close = perf_mmap_close,
2535 .fault = perf_mmap_fault,
2536 .page_mkwrite = perf_mmap_fault,
2537};
2538
2539static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2540{
2541 struct perf_event *event = file->private_data;
2542 unsigned long user_locked, user_lock_limit;
2543 struct user_struct *user = current_user();
2544 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002545 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002546 unsigned long vma_size;
2547 unsigned long nr_pages;
2548 long user_extra, extra;
2549 int ret = 0;
2550
2551 if (!(vma->vm_flags & VM_SHARED))
2552 return -EINVAL;
2553
2554 vma_size = vma->vm_end - vma->vm_start;
2555 nr_pages = (vma_size / PAGE_SIZE) - 1;
2556
2557 /*
2558 * If we have data pages ensure they're a power-of-two number, so we
2559 * can do bitmasks instead of modulo.
2560 */
2561 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562 return -EINVAL;
2563
2564 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565 return -EINVAL;
2566
2567 if (vma->vm_pgoff != 0)
2568 return -EINVAL;
2569
2570 WARN_ON_ONCE(event->ctx->parent_ctx);
2571 mutex_lock(&event->mmap_mutex);
2572 if (event->output) {
2573 ret = -EINVAL;
2574 goto unlock;
2575 }
2576
2577 if (atomic_inc_not_zero(&event->mmap_count)) {
2578 if (nr_pages != event->data->nr_pages)
2579 ret = -EINVAL;
2580 goto unlock;
2581 }
2582
2583 user_extra = nr_pages + 1;
2584 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2585
2586 /*
2587 * Increase the limit linearly with more CPUs:
2588 */
2589 user_lock_limit *= num_online_cpus();
2590
2591 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592
2593 extra = 0;
2594 if (user_locked > user_lock_limit)
2595 extra = user_locked - user_lock_limit;
2596
Jiri Slaby78d7d402010-03-05 13:42:54 -08002597 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002598 lock_limit >>= PAGE_SHIFT;
2599 locked = vma->vm_mm->locked_vm + extra;
2600
2601 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2602 !capable(CAP_IPC_LOCK)) {
2603 ret = -EPERM;
2604 goto unlock;
2605 }
2606
2607 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002608
2609 data = perf_mmap_data_alloc(event, nr_pages);
2610 ret = -ENOMEM;
2611 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002612 goto unlock;
2613
Peter Zijlstra906010b2009-09-21 16:08:49 +02002614 ret = 0;
2615 perf_mmap_data_init(event, data);
2616
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002617 atomic_set(&event->mmap_count, 1);
2618 atomic_long_add(user_extra, &user->locked_vm);
2619 vma->vm_mm->locked_vm += extra;
2620 event->data->nr_locked = extra;
2621 if (vma->vm_flags & VM_WRITE)
2622 event->data->writable = 1;
2623
2624unlock:
2625 mutex_unlock(&event->mmap_mutex);
2626
2627 vma->vm_flags |= VM_RESERVED;
2628 vma->vm_ops = &perf_mmap_vmops;
2629
2630 return ret;
2631}
2632
2633static int perf_fasync(int fd, struct file *filp, int on)
2634{
2635 struct inode *inode = filp->f_path.dentry->d_inode;
2636 struct perf_event *event = filp->private_data;
2637 int retval;
2638
2639 mutex_lock(&inode->i_mutex);
2640 retval = fasync_helper(fd, filp, on, &event->fasync);
2641 mutex_unlock(&inode->i_mutex);
2642
2643 if (retval < 0)
2644 return retval;
2645
2646 return 0;
2647}
2648
2649static const struct file_operations perf_fops = {
2650 .release = perf_release,
2651 .read = perf_read,
2652 .poll = perf_poll,
2653 .unlocked_ioctl = perf_ioctl,
2654 .compat_ioctl = perf_ioctl,
2655 .mmap = perf_mmap,
2656 .fasync = perf_fasync,
2657};
2658
2659/*
2660 * Perf event wakeup
2661 *
2662 * If there's data, ensure we set the poll() state and publish everything
2663 * to user-space before waking everybody up.
2664 */
2665
2666void perf_event_wakeup(struct perf_event *event)
2667{
2668 wake_up_all(&event->waitq);
2669
2670 if (event->pending_kill) {
2671 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2672 event->pending_kill = 0;
2673 }
2674}
2675
2676/*
2677 * Pending wakeups
2678 *
2679 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2680 *
2681 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2682 * single linked list and use cmpxchg() to add entries lockless.
2683 */
2684
2685static void perf_pending_event(struct perf_pending_entry *entry)
2686{
2687 struct perf_event *event = container_of(entry,
2688 struct perf_event, pending);
2689
2690 if (event->pending_disable) {
2691 event->pending_disable = 0;
2692 __perf_event_disable(event);
2693 }
2694
2695 if (event->pending_wakeup) {
2696 event->pending_wakeup = 0;
2697 perf_event_wakeup(event);
2698 }
2699}
2700
2701#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2702
2703static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2704 PENDING_TAIL,
2705};
2706
2707static void perf_pending_queue(struct perf_pending_entry *entry,
2708 void (*func)(struct perf_pending_entry *))
2709{
2710 struct perf_pending_entry **head;
2711
2712 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2713 return;
2714
2715 entry->func = func;
2716
2717 head = &get_cpu_var(perf_pending_head);
2718
2719 do {
2720 entry->next = *head;
2721 } while (cmpxchg(head, entry->next, entry) != entry->next);
2722
2723 set_perf_event_pending();
2724
2725 put_cpu_var(perf_pending_head);
2726}
2727
2728static int __perf_pending_run(void)
2729{
2730 struct perf_pending_entry *list;
2731 int nr = 0;
2732
2733 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2734 while (list != PENDING_TAIL) {
2735 void (*func)(struct perf_pending_entry *);
2736 struct perf_pending_entry *entry = list;
2737
2738 list = list->next;
2739
2740 func = entry->func;
2741 entry->next = NULL;
2742 /*
2743 * Ensure we observe the unqueue before we issue the wakeup,
2744 * so that we won't be waiting forever.
2745 * -- see perf_not_pending().
2746 */
2747 smp_wmb();
2748
2749 func(entry);
2750 nr++;
2751 }
2752
2753 return nr;
2754}
2755
2756static inline int perf_not_pending(struct perf_event *event)
2757{
2758 /*
2759 * If we flush on whatever cpu we run, there is a chance we don't
2760 * need to wait.
2761 */
2762 get_cpu();
2763 __perf_pending_run();
2764 put_cpu();
2765
2766 /*
2767 * Ensure we see the proper queue state before going to sleep
2768 * so that we do not miss the wakeup. -- see perf_pending_handle()
2769 */
2770 smp_rmb();
2771 return event->pending.next == NULL;
2772}
2773
2774static void perf_pending_sync(struct perf_event *event)
2775{
2776 wait_event(event->waitq, perf_not_pending(event));
2777}
2778
2779void perf_event_do_pending(void)
2780{
2781 __perf_pending_run();
2782}
2783
2784/*
2785 * Callchain support -- arch specific
2786 */
2787
2788__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2789{
2790 return NULL;
2791}
2792
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002793__weak
2794void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2795{
2796}
Frederic Weisbecker26d80aa2010-04-03 12:22:05 +02002797
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002798
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002799/*
2800 * Output
2801 */
2802static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2803 unsigned long offset, unsigned long head)
2804{
2805 unsigned long mask;
2806
2807 if (!data->writable)
2808 return true;
2809
Peter Zijlstra906010b2009-09-21 16:08:49 +02002810 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002811
2812 offset = (offset - tail) & mask;
2813 head = (head - tail) & mask;
2814
2815 if ((int)(head - offset) < 0)
2816 return false;
2817
2818 return true;
2819}
2820
2821static void perf_output_wakeup(struct perf_output_handle *handle)
2822{
2823 atomic_set(&handle->data->poll, POLL_IN);
2824
2825 if (handle->nmi) {
2826 handle->event->pending_wakeup = 1;
2827 perf_pending_queue(&handle->event->pending,
2828 perf_pending_event);
2829 } else
2830 perf_event_wakeup(handle->event);
2831}
2832
2833/*
2834 * Curious locking construct.
2835 *
2836 * We need to ensure a later event_id doesn't publish a head when a former
2837 * event_id isn't done writing. However since we need to deal with NMIs we
2838 * cannot fully serialize things.
2839 *
2840 * What we do is serialize between CPUs so we only have to deal with NMI
2841 * nesting on a single CPU.
2842 *
2843 * We only publish the head (and generate a wakeup) when the outer-most
2844 * event_id completes.
2845 */
2846static void perf_output_lock(struct perf_output_handle *handle)
2847{
2848 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002849 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002850
2851 handle->locked = 0;
2852
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002853 for (;;) {
2854 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2855 if (cur == -1) {
2856 handle->locked = 1;
2857 break;
2858 }
2859 if (cur == cpu)
2860 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002861
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002862 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002863 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002864}
2865
2866static void perf_output_unlock(struct perf_output_handle *handle)
2867{
2868 struct perf_mmap_data *data = handle->data;
2869 unsigned long head;
2870 int cpu;
2871
2872 data->done_head = data->head;
2873
2874 if (!handle->locked)
2875 goto out;
2876
2877again:
2878 /*
2879 * The xchg implies a full barrier that ensures all writes are done
2880 * before we publish the new head, matched by a rmb() in userspace when
2881 * reading this position.
2882 */
2883 while ((head = atomic_long_xchg(&data->done_head, 0)))
2884 data->user_page->data_head = head;
2885
2886 /*
2887 * NMI can happen here, which means we can miss a done_head update.
2888 */
2889
2890 cpu = atomic_xchg(&data->lock, -1);
2891 WARN_ON_ONCE(cpu != smp_processor_id());
2892
2893 /*
2894 * Therefore we have to validate we did not indeed do so.
2895 */
2896 if (unlikely(atomic_long_read(&data->done_head))) {
2897 /*
2898 * Since we had it locked, we can lock it again.
2899 */
2900 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2901 cpu_relax();
2902
2903 goto again;
2904 }
2905
2906 if (atomic_xchg(&data->wakeup, 0))
2907 perf_output_wakeup(handle);
2908out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002909 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002910}
2911
2912void perf_output_copy(struct perf_output_handle *handle,
2913 const void *buf, unsigned int len)
2914{
2915 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002916 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002917 unsigned int size;
2918 void **pages;
2919
2920 offset = handle->offset;
2921 pages_mask = handle->data->nr_pages - 1;
2922 pages = handle->data->data_pages;
2923
2924 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002925 unsigned long page_offset;
2926 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002927 int nr;
2928
2929 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002930 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2931 page_offset = offset & (page_size - 1);
2932 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002933
2934 memcpy(pages[nr] + page_offset, buf, size);
2935
2936 len -= size;
2937 buf += size;
2938 offset += size;
2939 } while (len);
2940
2941 handle->offset = offset;
2942
2943 /*
2944 * Check we didn't copy past our reservation window, taking the
2945 * possible unsigned int wrap into account.
2946 */
2947 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2948}
2949
2950int perf_output_begin(struct perf_output_handle *handle,
2951 struct perf_event *event, unsigned int size,
2952 int nmi, int sample)
2953{
2954 struct perf_event *output_event;
2955 struct perf_mmap_data *data;
2956 unsigned long tail, offset, head;
2957 int have_lost;
2958 struct {
2959 struct perf_event_header header;
2960 u64 id;
2961 u64 lost;
2962 } lost_event;
2963
2964 rcu_read_lock();
2965 /*
2966 * For inherited events we send all the output towards the parent.
2967 */
2968 if (event->parent)
2969 event = event->parent;
2970
2971 output_event = rcu_dereference(event->output);
2972 if (output_event)
2973 event = output_event;
2974
2975 data = rcu_dereference(event->data);
2976 if (!data)
2977 goto out;
2978
2979 handle->data = data;
2980 handle->event = event;
2981 handle->nmi = nmi;
2982 handle->sample = sample;
2983
2984 if (!data->nr_pages)
2985 goto fail;
2986
2987 have_lost = atomic_read(&data->lost);
2988 if (have_lost)
2989 size += sizeof(lost_event);
2990
2991 perf_output_lock(handle);
2992
2993 do {
2994 /*
2995 * Userspace could choose to issue a mb() before updating the
2996 * tail pointer. So that all reads will be completed before the
2997 * write is issued.
2998 */
2999 tail = ACCESS_ONCE(data->user_page->data_tail);
3000 smp_rmb();
3001 offset = head = atomic_long_read(&data->head);
3002 head += size;
3003 if (unlikely(!perf_output_space(data, tail, offset, head)))
3004 goto fail;
3005 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3006
3007 handle->offset = offset;
3008 handle->head = head;
3009
3010 if (head - tail > data->watermark)
3011 atomic_set(&data->wakeup, 1);
3012
3013 if (have_lost) {
3014 lost_event.header.type = PERF_RECORD_LOST;
3015 lost_event.header.misc = 0;
3016 lost_event.header.size = sizeof(lost_event);
3017 lost_event.id = event->id;
3018 lost_event.lost = atomic_xchg(&data->lost, 0);
3019
3020 perf_output_put(handle, lost_event);
3021 }
3022
3023 return 0;
3024
3025fail:
3026 atomic_inc(&data->lost);
3027 perf_output_unlock(handle);
3028out:
3029 rcu_read_unlock();
3030
3031 return -ENOSPC;
3032}
3033
3034void perf_output_end(struct perf_output_handle *handle)
3035{
3036 struct perf_event *event = handle->event;
3037 struct perf_mmap_data *data = handle->data;
3038
3039 int wakeup_events = event->attr.wakeup_events;
3040
3041 if (handle->sample && wakeup_events) {
3042 int events = atomic_inc_return(&data->events);
3043 if (events >= wakeup_events) {
3044 atomic_sub(wakeup_events, &data->events);
3045 atomic_set(&data->wakeup, 1);
3046 }
3047 }
3048
3049 perf_output_unlock(handle);
3050 rcu_read_unlock();
3051}
3052
3053static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3054{
3055 /*
3056 * only top level events have the pid namespace they were created in
3057 */
3058 if (event->parent)
3059 event = event->parent;
3060
3061 return task_tgid_nr_ns(p, event->ns);
3062}
3063
3064static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3065{
3066 /*
3067 * only top level events have the pid namespace they were created in
3068 */
3069 if (event->parent)
3070 event = event->parent;
3071
3072 return task_pid_nr_ns(p, event->ns);
3073}
3074
3075static void perf_output_read_one(struct perf_output_handle *handle,
3076 struct perf_event *event)
3077{
3078 u64 read_format = event->attr.read_format;
3079 u64 values[4];
3080 int n = 0;
3081
3082 values[n++] = atomic64_read(&event->count);
3083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3084 values[n++] = event->total_time_enabled +
3085 atomic64_read(&event->child_total_time_enabled);
3086 }
3087 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3088 values[n++] = event->total_time_running +
3089 atomic64_read(&event->child_total_time_running);
3090 }
3091 if (read_format & PERF_FORMAT_ID)
3092 values[n++] = primary_event_id(event);
3093
3094 perf_output_copy(handle, values, n * sizeof(u64));
3095}
3096
3097/*
3098 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3099 */
3100static void perf_output_read_group(struct perf_output_handle *handle,
3101 struct perf_event *event)
3102{
3103 struct perf_event *leader = event->group_leader, *sub;
3104 u64 read_format = event->attr.read_format;
3105 u64 values[5];
3106 int n = 0;
3107
3108 values[n++] = 1 + leader->nr_siblings;
3109
3110 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3111 values[n++] = leader->total_time_enabled;
3112
3113 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3114 values[n++] = leader->total_time_running;
3115
3116 if (leader != event)
3117 leader->pmu->read(leader);
3118
3119 values[n++] = atomic64_read(&leader->count);
3120 if (read_format & PERF_FORMAT_ID)
3121 values[n++] = primary_event_id(leader);
3122
3123 perf_output_copy(handle, values, n * sizeof(u64));
3124
3125 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3126 n = 0;
3127
3128 if (sub != event)
3129 sub->pmu->read(sub);
3130
3131 values[n++] = atomic64_read(&sub->count);
3132 if (read_format & PERF_FORMAT_ID)
3133 values[n++] = primary_event_id(sub);
3134
3135 perf_output_copy(handle, values, n * sizeof(u64));
3136 }
3137}
3138
3139static void perf_output_read(struct perf_output_handle *handle,
3140 struct perf_event *event)
3141{
3142 if (event->attr.read_format & PERF_FORMAT_GROUP)
3143 perf_output_read_group(handle, event);
3144 else
3145 perf_output_read_one(handle, event);
3146}
3147
3148void perf_output_sample(struct perf_output_handle *handle,
3149 struct perf_event_header *header,
3150 struct perf_sample_data *data,
3151 struct perf_event *event)
3152{
3153 u64 sample_type = data->type;
3154
3155 perf_output_put(handle, *header);
3156
3157 if (sample_type & PERF_SAMPLE_IP)
3158 perf_output_put(handle, data->ip);
3159
3160 if (sample_type & PERF_SAMPLE_TID)
3161 perf_output_put(handle, data->tid_entry);
3162
3163 if (sample_type & PERF_SAMPLE_TIME)
3164 perf_output_put(handle, data->time);
3165
3166 if (sample_type & PERF_SAMPLE_ADDR)
3167 perf_output_put(handle, data->addr);
3168
3169 if (sample_type & PERF_SAMPLE_ID)
3170 perf_output_put(handle, data->id);
3171
3172 if (sample_type & PERF_SAMPLE_STREAM_ID)
3173 perf_output_put(handle, data->stream_id);
3174
3175 if (sample_type & PERF_SAMPLE_CPU)
3176 perf_output_put(handle, data->cpu_entry);
3177
3178 if (sample_type & PERF_SAMPLE_PERIOD)
3179 perf_output_put(handle, data->period);
3180
3181 if (sample_type & PERF_SAMPLE_READ)
3182 perf_output_read(handle, event);
3183
3184 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3185 if (data->callchain) {
3186 int size = 1;
3187
3188 if (data->callchain)
3189 size += data->callchain->nr;
3190
3191 size *= sizeof(u64);
3192
3193 perf_output_copy(handle, data->callchain, size);
3194 } else {
3195 u64 nr = 0;
3196 perf_output_put(handle, nr);
3197 }
3198 }
3199
3200 if (sample_type & PERF_SAMPLE_RAW) {
3201 if (data->raw) {
3202 perf_output_put(handle, data->raw->size);
3203 perf_output_copy(handle, data->raw->data,
3204 data->raw->size);
3205 } else {
3206 struct {
3207 u32 size;
3208 u32 data;
3209 } raw = {
3210 .size = sizeof(u32),
3211 .data = 0,
3212 };
3213 perf_output_put(handle, raw);
3214 }
3215 }
3216}
3217
3218void perf_prepare_sample(struct perf_event_header *header,
3219 struct perf_sample_data *data,
3220 struct perf_event *event,
3221 struct pt_regs *regs)
3222{
3223 u64 sample_type = event->attr.sample_type;
3224
3225 data->type = sample_type;
3226
3227 header->type = PERF_RECORD_SAMPLE;
3228 header->size = sizeof(*header);
3229
3230 header->misc = 0;
3231 header->misc |= perf_misc_flags(regs);
3232
3233 if (sample_type & PERF_SAMPLE_IP) {
3234 data->ip = perf_instruction_pointer(regs);
3235
3236 header->size += sizeof(data->ip);
3237 }
3238
3239 if (sample_type & PERF_SAMPLE_TID) {
3240 /* namespace issues */
3241 data->tid_entry.pid = perf_event_pid(event, current);
3242 data->tid_entry.tid = perf_event_tid(event, current);
3243
3244 header->size += sizeof(data->tid_entry);
3245 }
3246
3247 if (sample_type & PERF_SAMPLE_TIME) {
3248 data->time = perf_clock();
3249
3250 header->size += sizeof(data->time);
3251 }
3252
3253 if (sample_type & PERF_SAMPLE_ADDR)
3254 header->size += sizeof(data->addr);
3255
3256 if (sample_type & PERF_SAMPLE_ID) {
3257 data->id = primary_event_id(event);
3258
3259 header->size += sizeof(data->id);
3260 }
3261
3262 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3263 data->stream_id = event->id;
3264
3265 header->size += sizeof(data->stream_id);
3266 }
3267
3268 if (sample_type & PERF_SAMPLE_CPU) {
3269 data->cpu_entry.cpu = raw_smp_processor_id();
3270 data->cpu_entry.reserved = 0;
3271
3272 header->size += sizeof(data->cpu_entry);
3273 }
3274
3275 if (sample_type & PERF_SAMPLE_PERIOD)
3276 header->size += sizeof(data->period);
3277
3278 if (sample_type & PERF_SAMPLE_READ)
3279 header->size += perf_event_read_size(event);
3280
3281 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3282 int size = 1;
3283
3284 data->callchain = perf_callchain(regs);
3285
3286 if (data->callchain)
3287 size += data->callchain->nr;
3288
3289 header->size += size * sizeof(u64);
3290 }
3291
3292 if (sample_type & PERF_SAMPLE_RAW) {
3293 int size = sizeof(u32);
3294
3295 if (data->raw)
3296 size += data->raw->size;
3297 else
3298 size += sizeof(u32);
3299
3300 WARN_ON_ONCE(size & (sizeof(u64)-1));
3301 header->size += size;
3302 }
3303}
3304
3305static void perf_event_output(struct perf_event *event, int nmi,
3306 struct perf_sample_data *data,
3307 struct pt_regs *regs)
3308{
3309 struct perf_output_handle handle;
3310 struct perf_event_header header;
3311
3312 perf_prepare_sample(&header, data, event, regs);
3313
3314 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3315 return;
3316
3317 perf_output_sample(&handle, &header, data, event);
3318
3319 perf_output_end(&handle);
3320}
3321
3322/*
3323 * read event_id
3324 */
3325
3326struct perf_read_event {
3327 struct perf_event_header header;
3328
3329 u32 pid;
3330 u32 tid;
3331};
3332
3333static void
3334perf_event_read_event(struct perf_event *event,
3335 struct task_struct *task)
3336{
3337 struct perf_output_handle handle;
3338 struct perf_read_event read_event = {
3339 .header = {
3340 .type = PERF_RECORD_READ,
3341 .misc = 0,
3342 .size = sizeof(read_event) + perf_event_read_size(event),
3343 },
3344 .pid = perf_event_pid(event, task),
3345 .tid = perf_event_tid(event, task),
3346 };
3347 int ret;
3348
3349 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3350 if (ret)
3351 return;
3352
3353 perf_output_put(&handle, read_event);
3354 perf_output_read(&handle, event);
3355
3356 perf_output_end(&handle);
3357}
3358
3359/*
3360 * task tracking -- fork/exit
3361 *
3362 * enabled by: attr.comm | attr.mmap | attr.task
3363 */
3364
3365struct perf_task_event {
3366 struct task_struct *task;
3367 struct perf_event_context *task_ctx;
3368
3369 struct {
3370 struct perf_event_header header;
3371
3372 u32 pid;
3373 u32 ppid;
3374 u32 tid;
3375 u32 ptid;
3376 u64 time;
3377 } event_id;
3378};
3379
3380static void perf_event_task_output(struct perf_event *event,
3381 struct perf_task_event *task_event)
3382{
3383 struct perf_output_handle handle;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003384 struct task_struct *task = task_event->task;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003385 unsigned long flags;
3386 int size, ret;
3387
3388 /*
3389 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3390 * in perf_output_lock() from interrupt context, it's game over.
3391 */
3392 local_irq_save(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003393
3394 size = task_event->event_id.header.size;
3395 ret = perf_output_begin(&handle, event, size, 0, 0);
3396
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003397 if (ret) {
3398 local_irq_restore(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003399 return;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003400 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003401
3402 task_event->event_id.pid = perf_event_pid(event, task);
3403 task_event->event_id.ppid = perf_event_pid(event, current);
3404
3405 task_event->event_id.tid = perf_event_tid(event, task);
3406 task_event->event_id.ptid = perf_event_tid(event, current);
3407
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003408 perf_output_put(&handle, task_event->event_id);
3409
3410 perf_output_end(&handle);
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003411 local_irq_restore(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003412}
3413
3414static int perf_event_task_match(struct perf_event *event)
3415{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003416 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003417 return 0;
3418
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003419 if (event->cpu != -1 && event->cpu != smp_processor_id())
3420 return 0;
3421
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003422 if (event->attr.comm || event->attr.mmap || event->attr.task)
3423 return 1;
3424
3425 return 0;
3426}
3427
3428static void perf_event_task_ctx(struct perf_event_context *ctx,
3429 struct perf_task_event *task_event)
3430{
3431 struct perf_event *event;
3432
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003433 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3434 if (perf_event_task_match(event))
3435 perf_event_task_output(event, task_event);
3436 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003437}
3438
3439static void perf_event_task_event(struct perf_task_event *task_event)
3440{
3441 struct perf_cpu_context *cpuctx;
3442 struct perf_event_context *ctx = task_event->task_ctx;
3443
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003444 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003445 cpuctx = &get_cpu_var(perf_cpu_context);
3446 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003447 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003448 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003449 if (ctx)
3450 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003451 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003452 rcu_read_unlock();
3453}
3454
3455static void perf_event_task(struct task_struct *task,
3456 struct perf_event_context *task_ctx,
3457 int new)
3458{
3459 struct perf_task_event task_event;
3460
3461 if (!atomic_read(&nr_comm_events) &&
3462 !atomic_read(&nr_mmap_events) &&
3463 !atomic_read(&nr_task_events))
3464 return;
3465
3466 task_event = (struct perf_task_event){
3467 .task = task,
3468 .task_ctx = task_ctx,
3469 .event_id = {
3470 .header = {
3471 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3472 .misc = 0,
3473 .size = sizeof(task_event.event_id),
3474 },
3475 /* .pid */
3476 /* .ppid */
3477 /* .tid */
3478 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003479 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003480 },
3481 };
3482
3483 perf_event_task_event(&task_event);
3484}
3485
3486void perf_event_fork(struct task_struct *task)
3487{
3488 perf_event_task(task, NULL, 1);
3489}
3490
3491/*
3492 * comm tracking
3493 */
3494
3495struct perf_comm_event {
3496 struct task_struct *task;
3497 char *comm;
3498 int comm_size;
3499
3500 struct {
3501 struct perf_event_header header;
3502
3503 u32 pid;
3504 u32 tid;
3505 } event_id;
3506};
3507
3508static void perf_event_comm_output(struct perf_event *event,
3509 struct perf_comm_event *comm_event)
3510{
3511 struct perf_output_handle handle;
3512 int size = comm_event->event_id.header.size;
3513 int ret = perf_output_begin(&handle, event, size, 0, 0);
3514
3515 if (ret)
3516 return;
3517
3518 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3519 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3520
3521 perf_output_put(&handle, comm_event->event_id);
3522 perf_output_copy(&handle, comm_event->comm,
3523 comm_event->comm_size);
3524 perf_output_end(&handle);
3525}
3526
3527static int perf_event_comm_match(struct perf_event *event)
3528{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003529 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003530 return 0;
3531
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003532 if (event->cpu != -1 && event->cpu != smp_processor_id())
3533 return 0;
3534
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003535 if (event->attr.comm)
3536 return 1;
3537
3538 return 0;
3539}
3540
3541static void perf_event_comm_ctx(struct perf_event_context *ctx,
3542 struct perf_comm_event *comm_event)
3543{
3544 struct perf_event *event;
3545
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003546 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3547 if (perf_event_comm_match(event))
3548 perf_event_comm_output(event, comm_event);
3549 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003550}
3551
3552static void perf_event_comm_event(struct perf_comm_event *comm_event)
3553{
3554 struct perf_cpu_context *cpuctx;
3555 struct perf_event_context *ctx;
3556 unsigned int size;
3557 char comm[TASK_COMM_LEN];
3558
3559 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003560 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003561 size = ALIGN(strlen(comm)+1, sizeof(u64));
3562
3563 comm_event->comm = comm;
3564 comm_event->comm_size = size;
3565
3566 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3567
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003568 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003569 cpuctx = &get_cpu_var(perf_cpu_context);
3570 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003571 ctx = rcu_dereference(current->perf_event_ctxp);
3572 if (ctx)
3573 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003574 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003575 rcu_read_unlock();
3576}
3577
3578void perf_event_comm(struct task_struct *task)
3579{
3580 struct perf_comm_event comm_event;
3581
3582 if (task->perf_event_ctxp)
3583 perf_event_enable_on_exec(task);
3584
3585 if (!atomic_read(&nr_comm_events))
3586 return;
3587
3588 comm_event = (struct perf_comm_event){
3589 .task = task,
3590 /* .comm */
3591 /* .comm_size */
3592 .event_id = {
3593 .header = {
3594 .type = PERF_RECORD_COMM,
3595 .misc = 0,
3596 /* .size */
3597 },
3598 /* .pid */
3599 /* .tid */
3600 },
3601 };
3602
3603 perf_event_comm_event(&comm_event);
3604}
3605
3606/*
3607 * mmap tracking
3608 */
3609
3610struct perf_mmap_event {
3611 struct vm_area_struct *vma;
3612
3613 const char *file_name;
3614 int file_size;
3615
3616 struct {
3617 struct perf_event_header header;
3618
3619 u32 pid;
3620 u32 tid;
3621 u64 start;
3622 u64 len;
3623 u64 pgoff;
3624 } event_id;
3625};
3626
3627static void perf_event_mmap_output(struct perf_event *event,
3628 struct perf_mmap_event *mmap_event)
3629{
3630 struct perf_output_handle handle;
3631 int size = mmap_event->event_id.header.size;
3632 int ret = perf_output_begin(&handle, event, size, 0, 0);
3633
3634 if (ret)
3635 return;
3636
3637 mmap_event->event_id.pid = perf_event_pid(event, current);
3638 mmap_event->event_id.tid = perf_event_tid(event, current);
3639
3640 perf_output_put(&handle, mmap_event->event_id);
3641 perf_output_copy(&handle, mmap_event->file_name,
3642 mmap_event->file_size);
3643 perf_output_end(&handle);
3644}
3645
3646static int perf_event_mmap_match(struct perf_event *event,
3647 struct perf_mmap_event *mmap_event)
3648{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003649 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003650 return 0;
3651
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003652 if (event->cpu != -1 && event->cpu != smp_processor_id())
3653 return 0;
3654
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003655 if (event->attr.mmap)
3656 return 1;
3657
3658 return 0;
3659}
3660
3661static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3662 struct perf_mmap_event *mmap_event)
3663{
3664 struct perf_event *event;
3665
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003666 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3667 if (perf_event_mmap_match(event, mmap_event))
3668 perf_event_mmap_output(event, mmap_event);
3669 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003670}
3671
3672static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3673{
3674 struct perf_cpu_context *cpuctx;
3675 struct perf_event_context *ctx;
3676 struct vm_area_struct *vma = mmap_event->vma;
3677 struct file *file = vma->vm_file;
3678 unsigned int size;
3679 char tmp[16];
3680 char *buf = NULL;
3681 const char *name;
3682
3683 memset(tmp, 0, sizeof(tmp));
3684
3685 if (file) {
3686 /*
3687 * d_path works from the end of the buffer backwards, so we
3688 * need to add enough zero bytes after the string to handle
3689 * the 64bit alignment we do later.
3690 */
3691 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3692 if (!buf) {
3693 name = strncpy(tmp, "//enomem", sizeof(tmp));
3694 goto got_name;
3695 }
3696 name = d_path(&file->f_path, buf, PATH_MAX);
3697 if (IS_ERR(name)) {
3698 name = strncpy(tmp, "//toolong", sizeof(tmp));
3699 goto got_name;
3700 }
3701 } else {
3702 if (arch_vma_name(mmap_event->vma)) {
3703 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3704 sizeof(tmp));
3705 goto got_name;
3706 }
3707
3708 if (!vma->vm_mm) {
3709 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3710 goto got_name;
3711 }
3712
3713 name = strncpy(tmp, "//anon", sizeof(tmp));
3714 goto got_name;
3715 }
3716
3717got_name:
3718 size = ALIGN(strlen(name)+1, sizeof(u64));
3719
3720 mmap_event->file_name = name;
3721 mmap_event->file_size = size;
3722
3723 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3724
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003725 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003726 cpuctx = &get_cpu_var(perf_cpu_context);
3727 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003728 ctx = rcu_dereference(current->perf_event_ctxp);
3729 if (ctx)
3730 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003731 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003732 rcu_read_unlock();
3733
3734 kfree(buf);
3735}
3736
3737void __perf_event_mmap(struct vm_area_struct *vma)
3738{
3739 struct perf_mmap_event mmap_event;
3740
3741 if (!atomic_read(&nr_mmap_events))
3742 return;
3743
3744 mmap_event = (struct perf_mmap_event){
3745 .vma = vma,
3746 /* .file_name */
3747 /* .file_size */
3748 .event_id = {
3749 .header = {
3750 .type = PERF_RECORD_MMAP,
3751 .misc = 0,
3752 /* .size */
3753 },
3754 /* .pid */
3755 /* .tid */
3756 .start = vma->vm_start,
3757 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003758 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003759 },
3760 };
3761
3762 perf_event_mmap_event(&mmap_event);
3763}
3764
3765/*
3766 * IRQ throttle logging
3767 */
3768
3769static void perf_log_throttle(struct perf_event *event, int enable)
3770{
3771 struct perf_output_handle handle;
3772 int ret;
3773
3774 struct {
3775 struct perf_event_header header;
3776 u64 time;
3777 u64 id;
3778 u64 stream_id;
3779 } throttle_event = {
3780 .header = {
3781 .type = PERF_RECORD_THROTTLE,
3782 .misc = 0,
3783 .size = sizeof(throttle_event),
3784 },
3785 .time = perf_clock(),
3786 .id = primary_event_id(event),
3787 .stream_id = event->id,
3788 };
3789
3790 if (enable)
3791 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3792
3793 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3794 if (ret)
3795 return;
3796
3797 perf_output_put(&handle, throttle_event);
3798 perf_output_end(&handle);
3799}
3800
3801/*
3802 * Generic event overflow handling, sampling.
3803 */
3804
3805static int __perf_event_overflow(struct perf_event *event, int nmi,
3806 int throttle, struct perf_sample_data *data,
3807 struct pt_regs *regs)
3808{
3809 int events = atomic_read(&event->event_limit);
3810 struct hw_perf_event *hwc = &event->hw;
3811 int ret = 0;
3812
3813 throttle = (throttle && event->pmu->unthrottle != NULL);
3814
3815 if (!throttle) {
3816 hwc->interrupts++;
3817 } else {
3818 if (hwc->interrupts != MAX_INTERRUPTS) {
3819 hwc->interrupts++;
3820 if (HZ * hwc->interrupts >
3821 (u64)sysctl_perf_event_sample_rate) {
3822 hwc->interrupts = MAX_INTERRUPTS;
3823 perf_log_throttle(event, 0);
3824 ret = 1;
3825 }
3826 } else {
3827 /*
3828 * Keep re-disabling events even though on the previous
3829 * pass we disabled it - just in case we raced with a
3830 * sched-in and the event got enabled again:
3831 */
3832 ret = 1;
3833 }
3834 }
3835
3836 if (event->attr.freq) {
3837 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003838 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003839
Peter Zijlstraabd50712010-01-26 18:50:16 +01003840 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003841
Peter Zijlstraabd50712010-01-26 18:50:16 +01003842 if (delta > 0 && delta < 2*TICK_NSEC)
3843 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003844 }
3845
3846 /*
3847 * XXX event_limit might not quite work as expected on inherited
3848 * events
3849 */
3850
3851 event->pending_kill = POLL_IN;
3852 if (events && atomic_dec_and_test(&event->event_limit)) {
3853 ret = 1;
3854 event->pending_kill = POLL_HUP;
3855 if (nmi) {
3856 event->pending_disable = 1;
3857 perf_pending_queue(&event->pending,
3858 perf_pending_event);
3859 } else
3860 perf_event_disable(event);
3861 }
3862
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003863 if (event->overflow_handler)
3864 event->overflow_handler(event, nmi, data, regs);
3865 else
3866 perf_event_output(event, nmi, data, regs);
3867
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003868 return ret;
3869}
3870
3871int perf_event_overflow(struct perf_event *event, int nmi,
3872 struct perf_sample_data *data,
3873 struct pt_regs *regs)
3874{
3875 return __perf_event_overflow(event, nmi, 1, data, regs);
3876}
3877
3878/*
3879 * Generic software event infrastructure
3880 */
3881
3882/*
3883 * We directly increment event->count and keep a second value in
3884 * event->hw.period_left to count intervals. This period event
3885 * is kept in the range [-sample_period, 0] so that we can use the
3886 * sign as trigger.
3887 */
3888
3889static u64 perf_swevent_set_period(struct perf_event *event)
3890{
3891 struct hw_perf_event *hwc = &event->hw;
3892 u64 period = hwc->last_period;
3893 u64 nr, offset;
3894 s64 old, val;
3895
3896 hwc->last_period = hwc->sample_period;
3897
3898again:
3899 old = val = atomic64_read(&hwc->period_left);
3900 if (val < 0)
3901 return 0;
3902
3903 nr = div64_u64(period + val, period);
3904 offset = nr * period;
3905 val -= offset;
3906 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3907 goto again;
3908
3909 return nr;
3910}
3911
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003912static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003913 int nmi, struct perf_sample_data *data,
3914 struct pt_regs *regs)
3915{
3916 struct hw_perf_event *hwc = &event->hw;
3917 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003918
3919 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003920 if (!overflow)
3921 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003922
3923 if (hwc->interrupts == MAX_INTERRUPTS)
3924 return;
3925
3926 for (; overflow; overflow--) {
3927 if (__perf_event_overflow(event, nmi, throttle,
3928 data, regs)) {
3929 /*
3930 * We inhibit the overflow from happening when
3931 * hwc->interrupts == MAX_INTERRUPTS.
3932 */
3933 break;
3934 }
3935 throttle = 1;
3936 }
3937}
3938
3939static void perf_swevent_unthrottle(struct perf_event *event)
3940{
3941 /*
3942 * Nothing to do, we already reset hwc->interrupts.
3943 */
3944}
3945
3946static void perf_swevent_add(struct perf_event *event, u64 nr,
3947 int nmi, struct perf_sample_data *data,
3948 struct pt_regs *regs)
3949{
3950 struct hw_perf_event *hwc = &event->hw;
3951
3952 atomic64_add(nr, &event->count);
3953
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003954 if (!regs)
3955 return;
3956
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003957 if (!hwc->sample_period)
3958 return;
3959
3960 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3961 return perf_swevent_overflow(event, 1, nmi, data, regs);
3962
3963 if (atomic64_add_negative(nr, &hwc->period_left))
3964 return;
3965
3966 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003967}
3968
3969static int perf_swevent_is_counting(struct perf_event *event)
3970{
3971 /*
3972 * The event is active, we're good!
3973 */
3974 if (event->state == PERF_EVENT_STATE_ACTIVE)
3975 return 1;
3976
3977 /*
3978 * The event is off/error, not counting.
3979 */
3980 if (event->state != PERF_EVENT_STATE_INACTIVE)
3981 return 0;
3982
3983 /*
3984 * The event is inactive, if the context is active
3985 * we're part of a group that didn't make it on the 'pmu',
3986 * not counting.
3987 */
3988 if (event->ctx->is_active)
3989 return 0;
3990
3991 /*
3992 * We're inactive and the context is too, this means the
3993 * task is scheduled out, we're counting events that happen
3994 * to us, like migration events.
3995 */
3996 return 1;
3997}
3998
Li Zefan6fb29152009-10-15 11:21:42 +08003999static int perf_tp_event_match(struct perf_event *event,
4000 struct perf_sample_data *data);
4001
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004002static int perf_exclude_event(struct perf_event *event,
4003 struct pt_regs *regs)
4004{
4005 if (regs) {
4006 if (event->attr.exclude_user && user_mode(regs))
4007 return 1;
4008
4009 if (event->attr.exclude_kernel && !user_mode(regs))
4010 return 1;
4011 }
4012
4013 return 0;
4014}
4015
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004016static int perf_swevent_match(struct perf_event *event,
4017 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004018 u32 event_id,
4019 struct perf_sample_data *data,
4020 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004021{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01004022 if (event->cpu != -1 && event->cpu != smp_processor_id())
4023 return 0;
4024
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004025 if (!perf_swevent_is_counting(event))
4026 return 0;
4027
4028 if (event->attr.type != type)
4029 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004030
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004031 if (event->attr.config != event_id)
4032 return 0;
4033
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004034 if (perf_exclude_event(event, regs))
4035 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004036
Li Zefan6fb29152009-10-15 11:21:42 +08004037 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4038 !perf_tp_event_match(event, data))
4039 return 0;
4040
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004041 return 1;
4042}
4043
4044static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4045 enum perf_type_id type,
4046 u32 event_id, u64 nr, int nmi,
4047 struct perf_sample_data *data,
4048 struct pt_regs *regs)
4049{
4050 struct perf_event *event;
4051
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004052 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004053 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004054 perf_swevent_add(event, nr, nmi, data, regs);
4055 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004056}
4057
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004058int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004059{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004060 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4061 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004062
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004063 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004064 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004065 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004066 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004067 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004068 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004069 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004070 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004071
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004072 if (cpuctx->recursion[rctx]) {
4073 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004074 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004075 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004076
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004077 cpuctx->recursion[rctx]++;
4078 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004079
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004080 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004081}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004082EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004083
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004084void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004085{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004086 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4087 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004088 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004089 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004090}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004091EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004092
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004093static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4094 u64 nr, int nmi,
4095 struct perf_sample_data *data,
4096 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004097{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004098 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004099 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004100
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004101 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004102 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004103 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4104 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004105 /*
4106 * doesn't really matter which of the child contexts the
4107 * events ends up in.
4108 */
4109 ctx = rcu_dereference(current->perf_event_ctxp);
4110 if (ctx)
4111 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4112 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004113}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004114
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004115void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4116 struct pt_regs *regs, u64 addr)
4117{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004118 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004119 int rctx;
4120
4121 rctx = perf_swevent_get_recursion_context();
4122 if (rctx < 0)
4123 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004124
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004125 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004126
4127 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004128
4129 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004130}
4131
4132static void perf_swevent_read(struct perf_event *event)
4133{
4134}
4135
4136static int perf_swevent_enable(struct perf_event *event)
4137{
4138 struct hw_perf_event *hwc = &event->hw;
4139
4140 if (hwc->sample_period) {
4141 hwc->last_period = hwc->sample_period;
4142 perf_swevent_set_period(event);
4143 }
4144 return 0;
4145}
4146
4147static void perf_swevent_disable(struct perf_event *event)
4148{
4149}
4150
4151static const struct pmu perf_ops_generic = {
4152 .enable = perf_swevent_enable,
4153 .disable = perf_swevent_disable,
4154 .read = perf_swevent_read,
4155 .unthrottle = perf_swevent_unthrottle,
4156};
4157
4158/*
4159 * hrtimer based swevent callback
4160 */
4161
4162static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4163{
4164 enum hrtimer_restart ret = HRTIMER_RESTART;
4165 struct perf_sample_data data;
4166 struct pt_regs *regs;
4167 struct perf_event *event;
4168 u64 period;
4169
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004170 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004171 event->pmu->read(event);
4172
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004173 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004174 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004175 regs = get_irq_regs();
4176 /*
4177 * In case we exclude kernel IPs or are somehow not in interrupt
4178 * context, provide the next best thing, the user IP.
4179 */
4180 if ((event->attr.exclude_kernel || !regs) &&
4181 !event->attr.exclude_user)
4182 regs = task_pt_regs(current);
4183
4184 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004185 if (!(event->attr.exclude_idle && current->pid == 0))
4186 if (perf_event_overflow(event, 0, &data, regs))
4187 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004188 }
4189
4190 period = max_t(u64, 10000, event->hw.sample_period);
4191 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4192
4193 return ret;
4194}
4195
Soeren Sandmann721a6692009-09-15 14:33:08 +02004196static void perf_swevent_start_hrtimer(struct perf_event *event)
4197{
4198 struct hw_perf_event *hwc = &event->hw;
4199
4200 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4201 hwc->hrtimer.function = perf_swevent_hrtimer;
4202 if (hwc->sample_period) {
4203 u64 period;
4204
4205 if (hwc->remaining) {
4206 if (hwc->remaining < 0)
4207 period = 10000;
4208 else
4209 period = hwc->remaining;
4210 hwc->remaining = 0;
4211 } else {
4212 period = max_t(u64, 10000, hwc->sample_period);
4213 }
4214 __hrtimer_start_range_ns(&hwc->hrtimer,
4215 ns_to_ktime(period), 0,
4216 HRTIMER_MODE_REL, 0);
4217 }
4218}
4219
4220static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4221{
4222 struct hw_perf_event *hwc = &event->hw;
4223
4224 if (hwc->sample_period) {
4225 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4226 hwc->remaining = ktime_to_ns(remaining);
4227
4228 hrtimer_cancel(&hwc->hrtimer);
4229 }
4230}
4231
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004232/*
4233 * Software event: cpu wall time clock
4234 */
4235
4236static void cpu_clock_perf_event_update(struct perf_event *event)
4237{
4238 int cpu = raw_smp_processor_id();
4239 s64 prev;
4240 u64 now;
4241
4242 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004243 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004244 atomic64_add(now - prev, &event->count);
4245}
4246
4247static int cpu_clock_perf_event_enable(struct perf_event *event)
4248{
4249 struct hw_perf_event *hwc = &event->hw;
4250 int cpu = raw_smp_processor_id();
4251
4252 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004253 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004254
4255 return 0;
4256}
4257
4258static void cpu_clock_perf_event_disable(struct perf_event *event)
4259{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004260 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004261 cpu_clock_perf_event_update(event);
4262}
4263
4264static void cpu_clock_perf_event_read(struct perf_event *event)
4265{
4266 cpu_clock_perf_event_update(event);
4267}
4268
4269static const struct pmu perf_ops_cpu_clock = {
4270 .enable = cpu_clock_perf_event_enable,
4271 .disable = cpu_clock_perf_event_disable,
4272 .read = cpu_clock_perf_event_read,
4273};
4274
4275/*
4276 * Software event: task time clock
4277 */
4278
4279static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4280{
4281 u64 prev;
4282 s64 delta;
4283
4284 prev = atomic64_xchg(&event->hw.prev_count, now);
4285 delta = now - prev;
4286 atomic64_add(delta, &event->count);
4287}
4288
4289static int task_clock_perf_event_enable(struct perf_event *event)
4290{
4291 struct hw_perf_event *hwc = &event->hw;
4292 u64 now;
4293
4294 now = event->ctx->time;
4295
4296 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004297
4298 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004299
4300 return 0;
4301}
4302
4303static void task_clock_perf_event_disable(struct perf_event *event)
4304{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004305 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004306 task_clock_perf_event_update(event, event->ctx->time);
4307
4308}
4309
4310static void task_clock_perf_event_read(struct perf_event *event)
4311{
4312 u64 time;
4313
4314 if (!in_nmi()) {
4315 update_context_time(event->ctx);
4316 time = event->ctx->time;
4317 } else {
4318 u64 now = perf_clock();
4319 u64 delta = now - event->ctx->timestamp;
4320 time = event->ctx->time + delta;
4321 }
4322
4323 task_clock_perf_event_update(event, time);
4324}
4325
4326static const struct pmu perf_ops_task_clock = {
4327 .enable = task_clock_perf_event_enable,
4328 .disable = task_clock_perf_event_disable,
4329 .read = task_clock_perf_event_read,
4330};
4331
Li Zefan07b139c2009-12-21 14:27:35 +08004332#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004333
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004334void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
Frederic Weisbeckerc5306652010-03-03 07:16:16 +01004335 int entry_size, struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004336{
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004337 struct perf_sample_data data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004338 struct perf_raw_record raw = {
4339 .size = entry_size,
4340 .data = record,
4341 };
4342
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004343 perf_sample_data_init(&data, addr);
4344 data.raw = &raw;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004345
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004346 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004347 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Frederic Weisbeckerc5306652010-03-03 07:16:16 +01004348 &data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004349}
4350EXPORT_SYMBOL_GPL(perf_tp_event);
4351
Li Zefan6fb29152009-10-15 11:21:42 +08004352static int perf_tp_event_match(struct perf_event *event,
4353 struct perf_sample_data *data)
4354{
4355 void *record = data->raw->data;
4356
4357 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4358 return 1;
4359 return 0;
4360}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004361
4362static void tp_perf_event_destroy(struct perf_event *event)
4363{
Frederic Weisbecker97d5a222010-03-05 05:35:37 +01004364 perf_trace_disable(event->attr.config);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004365}
4366
4367static const struct pmu *tp_perf_event_init(struct perf_event *event)
4368{
4369 /*
4370 * Raw tracepoint data is a severe data leak, only allow root to
4371 * have these.
4372 */
4373 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4374 perf_paranoid_tracepoint_raw() &&
4375 !capable(CAP_SYS_ADMIN))
4376 return ERR_PTR(-EPERM);
4377
Frederic Weisbecker97d5a222010-03-05 05:35:37 +01004378 if (perf_trace_enable(event->attr.config))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004379 return NULL;
4380
4381 event->destroy = tp_perf_event_destroy;
4382
4383 return &perf_ops_generic;
4384}
Li Zefan6fb29152009-10-15 11:21:42 +08004385
4386static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4387{
4388 char *filter_str;
4389 int ret;
4390
4391 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4392 return -EINVAL;
4393
4394 filter_str = strndup_user(arg, PAGE_SIZE);
4395 if (IS_ERR(filter_str))
4396 return PTR_ERR(filter_str);
4397
4398 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4399
4400 kfree(filter_str);
4401 return ret;
4402}
4403
4404static void perf_event_free_filter(struct perf_event *event)
4405{
4406 ftrace_profile_free_filter(event);
4407}
4408
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004409#else
Li Zefan6fb29152009-10-15 11:21:42 +08004410
4411static int perf_tp_event_match(struct perf_event *event,
4412 struct perf_sample_data *data)
4413{
4414 return 1;
4415}
4416
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004417static const struct pmu *tp_perf_event_init(struct perf_event *event)
4418{
4419 return NULL;
4420}
Li Zefan6fb29152009-10-15 11:21:42 +08004421
4422static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4423{
4424 return -ENOENT;
4425}
4426
4427static void perf_event_free_filter(struct perf_event *event)
4428{
4429}
4430
Li Zefan07b139c2009-12-21 14:27:35 +08004431#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004432
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004433#ifdef CONFIG_HAVE_HW_BREAKPOINT
4434static void bp_perf_event_destroy(struct perf_event *event)
4435{
4436 release_bp_slot(event);
4437}
4438
4439static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4440{
4441 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004442
4443 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004444 if (err)
4445 return ERR_PTR(err);
4446
4447 bp->destroy = bp_perf_event_destroy;
4448
4449 return &perf_ops_bp;
4450}
4451
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004452void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004453{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004454 struct perf_sample_data sample;
4455 struct pt_regs *regs = data;
4456
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004457 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004458
4459 if (!perf_exclude_event(bp, regs))
4460 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004461}
4462#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004463static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4464{
4465 return NULL;
4466}
4467
4468void perf_bp_event(struct perf_event *bp, void *regs)
4469{
4470}
4471#endif
4472
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004473atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4474
4475static void sw_perf_event_destroy(struct perf_event *event)
4476{
4477 u64 event_id = event->attr.config;
4478
4479 WARN_ON(event->parent);
4480
4481 atomic_dec(&perf_swevent_enabled[event_id]);
4482}
4483
4484static const struct pmu *sw_perf_event_init(struct perf_event *event)
4485{
4486 const struct pmu *pmu = NULL;
4487 u64 event_id = event->attr.config;
4488
4489 /*
4490 * Software events (currently) can't in general distinguish
4491 * between user, kernel and hypervisor events.
4492 * However, context switches and cpu migrations are considered
4493 * to be kernel events, and page faults are never hypervisor
4494 * events.
4495 */
4496 switch (event_id) {
4497 case PERF_COUNT_SW_CPU_CLOCK:
4498 pmu = &perf_ops_cpu_clock;
4499
4500 break;
4501 case PERF_COUNT_SW_TASK_CLOCK:
4502 /*
4503 * If the user instantiates this as a per-cpu event,
4504 * use the cpu_clock event instead.
4505 */
4506 if (event->ctx->task)
4507 pmu = &perf_ops_task_clock;
4508 else
4509 pmu = &perf_ops_cpu_clock;
4510
4511 break;
4512 case PERF_COUNT_SW_PAGE_FAULTS:
4513 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4514 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4515 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4516 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004517 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4518 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004519 if (!event->parent) {
4520 atomic_inc(&perf_swevent_enabled[event_id]);
4521 event->destroy = sw_perf_event_destroy;
4522 }
4523 pmu = &perf_ops_generic;
4524 break;
4525 }
4526
4527 return pmu;
4528}
4529
4530/*
4531 * Allocate and initialize a event structure
4532 */
4533static struct perf_event *
4534perf_event_alloc(struct perf_event_attr *attr,
4535 int cpu,
4536 struct perf_event_context *ctx,
4537 struct perf_event *group_leader,
4538 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004539 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004540 gfp_t gfpflags)
4541{
4542 const struct pmu *pmu;
4543 struct perf_event *event;
4544 struct hw_perf_event *hwc;
4545 long err;
4546
4547 event = kzalloc(sizeof(*event), gfpflags);
4548 if (!event)
4549 return ERR_PTR(-ENOMEM);
4550
4551 /*
4552 * Single events are their own group leaders, with an
4553 * empty sibling list:
4554 */
4555 if (!group_leader)
4556 group_leader = event;
4557
4558 mutex_init(&event->child_mutex);
4559 INIT_LIST_HEAD(&event->child_list);
4560
4561 INIT_LIST_HEAD(&event->group_entry);
4562 INIT_LIST_HEAD(&event->event_entry);
4563 INIT_LIST_HEAD(&event->sibling_list);
4564 init_waitqueue_head(&event->waitq);
4565
4566 mutex_init(&event->mmap_mutex);
4567
4568 event->cpu = cpu;
4569 event->attr = *attr;
4570 event->group_leader = group_leader;
4571 event->pmu = NULL;
4572 event->ctx = ctx;
4573 event->oncpu = -1;
4574
4575 event->parent = parent_event;
4576
4577 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4578 event->id = atomic64_inc_return(&perf_event_id);
4579
4580 event->state = PERF_EVENT_STATE_INACTIVE;
4581
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004582 if (!overflow_handler && parent_event)
4583 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004584
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004585 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004586
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004587 if (attr->disabled)
4588 event->state = PERF_EVENT_STATE_OFF;
4589
4590 pmu = NULL;
4591
4592 hwc = &event->hw;
4593 hwc->sample_period = attr->sample_period;
4594 if (attr->freq && attr->sample_freq)
4595 hwc->sample_period = 1;
4596 hwc->last_period = hwc->sample_period;
4597
4598 atomic64_set(&hwc->period_left, hwc->sample_period);
4599
4600 /*
4601 * we currently do not support PERF_FORMAT_GROUP on inherited events
4602 */
4603 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4604 goto done;
4605
4606 switch (attr->type) {
4607 case PERF_TYPE_RAW:
4608 case PERF_TYPE_HARDWARE:
4609 case PERF_TYPE_HW_CACHE:
4610 pmu = hw_perf_event_init(event);
4611 break;
4612
4613 case PERF_TYPE_SOFTWARE:
4614 pmu = sw_perf_event_init(event);
4615 break;
4616
4617 case PERF_TYPE_TRACEPOINT:
4618 pmu = tp_perf_event_init(event);
4619 break;
4620
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004621 case PERF_TYPE_BREAKPOINT:
4622 pmu = bp_perf_event_init(event);
4623 break;
4624
4625
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004626 default:
4627 break;
4628 }
4629done:
4630 err = 0;
4631 if (!pmu)
4632 err = -EINVAL;
4633 else if (IS_ERR(pmu))
4634 err = PTR_ERR(pmu);
4635
4636 if (err) {
4637 if (event->ns)
4638 put_pid_ns(event->ns);
4639 kfree(event);
4640 return ERR_PTR(err);
4641 }
4642
4643 event->pmu = pmu;
4644
4645 if (!event->parent) {
4646 atomic_inc(&nr_events);
4647 if (event->attr.mmap)
4648 atomic_inc(&nr_mmap_events);
4649 if (event->attr.comm)
4650 atomic_inc(&nr_comm_events);
4651 if (event->attr.task)
4652 atomic_inc(&nr_task_events);
4653 }
4654
4655 return event;
4656}
4657
4658static int perf_copy_attr(struct perf_event_attr __user *uattr,
4659 struct perf_event_attr *attr)
4660{
4661 u32 size;
4662 int ret;
4663
4664 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4665 return -EFAULT;
4666
4667 /*
4668 * zero the full structure, so that a short copy will be nice.
4669 */
4670 memset(attr, 0, sizeof(*attr));
4671
4672 ret = get_user(size, &uattr->size);
4673 if (ret)
4674 return ret;
4675
4676 if (size > PAGE_SIZE) /* silly large */
4677 goto err_size;
4678
4679 if (!size) /* abi compat */
4680 size = PERF_ATTR_SIZE_VER0;
4681
4682 if (size < PERF_ATTR_SIZE_VER0)
4683 goto err_size;
4684
4685 /*
4686 * If we're handed a bigger struct than we know of,
4687 * ensure all the unknown bits are 0 - i.e. new
4688 * user-space does not rely on any kernel feature
4689 * extensions we dont know about yet.
4690 */
4691 if (size > sizeof(*attr)) {
4692 unsigned char __user *addr;
4693 unsigned char __user *end;
4694 unsigned char val;
4695
4696 addr = (void __user *)uattr + sizeof(*attr);
4697 end = (void __user *)uattr + size;
4698
4699 for (; addr < end; addr++) {
4700 ret = get_user(val, addr);
4701 if (ret)
4702 return ret;
4703 if (val)
4704 goto err_size;
4705 }
4706 size = sizeof(*attr);
4707 }
4708
4709 ret = copy_from_user(attr, uattr, size);
4710 if (ret)
4711 return -EFAULT;
4712
4713 /*
4714 * If the type exists, the corresponding creation will verify
4715 * the attr->config.
4716 */
4717 if (attr->type >= PERF_TYPE_MAX)
4718 return -EINVAL;
4719
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304720 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004721 return -EINVAL;
4722
4723 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4724 return -EINVAL;
4725
4726 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4727 return -EINVAL;
4728
4729out:
4730 return ret;
4731
4732err_size:
4733 put_user(sizeof(*attr), &uattr->size);
4734 ret = -E2BIG;
4735 goto out;
4736}
4737
Li Zefan6fb29152009-10-15 11:21:42 +08004738static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004739{
4740 struct perf_event *output_event = NULL;
4741 struct file *output_file = NULL;
4742 struct perf_event *old_output;
4743 int fput_needed = 0;
4744 int ret = -EINVAL;
4745
4746 if (!output_fd)
4747 goto set;
4748
4749 output_file = fget_light(output_fd, &fput_needed);
4750 if (!output_file)
4751 return -EBADF;
4752
4753 if (output_file->f_op != &perf_fops)
4754 goto out;
4755
4756 output_event = output_file->private_data;
4757
4758 /* Don't chain output fds */
4759 if (output_event->output)
4760 goto out;
4761
4762 /* Don't set an output fd when we already have an output channel */
4763 if (event->data)
4764 goto out;
4765
4766 atomic_long_inc(&output_file->f_count);
4767
4768set:
4769 mutex_lock(&event->mmap_mutex);
4770 old_output = event->output;
4771 rcu_assign_pointer(event->output, output_event);
4772 mutex_unlock(&event->mmap_mutex);
4773
4774 if (old_output) {
4775 /*
4776 * we need to make sure no existing perf_output_*()
4777 * is still referencing this event.
4778 */
4779 synchronize_rcu();
4780 fput(old_output->filp);
4781 }
4782
4783 ret = 0;
4784out:
4785 fput_light(output_file, fput_needed);
4786 return ret;
4787}
4788
4789/**
4790 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4791 *
4792 * @attr_uptr: event_id type attributes for monitoring/sampling
4793 * @pid: target pid
4794 * @cpu: target cpu
4795 * @group_fd: group leader event fd
4796 */
4797SYSCALL_DEFINE5(perf_event_open,
4798 struct perf_event_attr __user *, attr_uptr,
4799 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4800{
4801 struct perf_event *event, *group_leader;
4802 struct perf_event_attr attr;
4803 struct perf_event_context *ctx;
4804 struct file *event_file = NULL;
4805 struct file *group_file = NULL;
4806 int fput_needed = 0;
4807 int fput_needed2 = 0;
4808 int err;
4809
4810 /* for future expandability... */
4811 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4812 return -EINVAL;
4813
4814 err = perf_copy_attr(attr_uptr, &attr);
4815 if (err)
4816 return err;
4817
4818 if (!attr.exclude_kernel) {
4819 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4820 return -EACCES;
4821 }
4822
4823 if (attr.freq) {
4824 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4825 return -EINVAL;
4826 }
4827
4828 /*
4829 * Get the target context (task or percpu):
4830 */
4831 ctx = find_get_context(pid, cpu);
4832 if (IS_ERR(ctx))
4833 return PTR_ERR(ctx);
4834
4835 /*
4836 * Look up the group leader (we will attach this event to it):
4837 */
4838 group_leader = NULL;
4839 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4840 err = -EINVAL;
4841 group_file = fget_light(group_fd, &fput_needed);
4842 if (!group_file)
4843 goto err_put_context;
4844 if (group_file->f_op != &perf_fops)
4845 goto err_put_context;
4846
4847 group_leader = group_file->private_data;
4848 /*
4849 * Do not allow a recursive hierarchy (this new sibling
4850 * becoming part of another group-sibling):
4851 */
4852 if (group_leader->group_leader != group_leader)
4853 goto err_put_context;
4854 /*
4855 * Do not allow to attach to a group in a different
4856 * task or CPU context:
4857 */
4858 if (group_leader->ctx != ctx)
4859 goto err_put_context;
4860 /*
4861 * Only a group leader can be exclusive or pinned
4862 */
4863 if (attr.exclusive || attr.pinned)
4864 goto err_put_context;
4865 }
4866
4867 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004868 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004869 err = PTR_ERR(event);
4870 if (IS_ERR(event))
4871 goto err_put_context;
4872
Roland Dreier628ff7c2009-12-18 09:41:24 -08004873 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004874 if (err < 0)
4875 goto err_free_put_context;
4876
4877 event_file = fget_light(err, &fput_needed2);
4878 if (!event_file)
4879 goto err_free_put_context;
4880
4881 if (flags & PERF_FLAG_FD_OUTPUT) {
4882 err = perf_event_set_output(event, group_fd);
4883 if (err)
4884 goto err_fput_free_put_context;
4885 }
4886
4887 event->filp = event_file;
4888 WARN_ON_ONCE(ctx->parent_ctx);
4889 mutex_lock(&ctx->mutex);
4890 perf_install_in_context(ctx, event, cpu);
4891 ++ctx->generation;
4892 mutex_unlock(&ctx->mutex);
4893
4894 event->owner = current;
4895 get_task_struct(current);
4896 mutex_lock(&current->perf_event_mutex);
4897 list_add_tail(&event->owner_entry, &current->perf_event_list);
4898 mutex_unlock(&current->perf_event_mutex);
4899
4900err_fput_free_put_context:
4901 fput_light(event_file, fput_needed2);
4902
4903err_free_put_context:
4904 if (err < 0)
Tejun Heo048c8522010-05-01 10:11:35 +02004905 free_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004906
4907err_put_context:
4908 if (err < 0)
4909 put_ctx(ctx);
4910
4911 fput_light(group_file, fput_needed);
4912
4913 return err;
4914}
4915
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004916/**
4917 * perf_event_create_kernel_counter
4918 *
4919 * @attr: attributes of the counter to create
4920 * @cpu: cpu in which the counter is bound
4921 * @pid: task to profile
4922 */
4923struct perf_event *
4924perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004925 pid_t pid,
4926 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004927{
4928 struct perf_event *event;
4929 struct perf_event_context *ctx;
4930 int err;
4931
4932 /*
4933 * Get the target context (task or percpu):
4934 */
4935
4936 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004937 if (IS_ERR(ctx)) {
4938 err = PTR_ERR(ctx);
4939 goto err_exit;
4940 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004941
4942 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004943 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004944 if (IS_ERR(event)) {
4945 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004946 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004947 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004948
4949 event->filp = NULL;
4950 WARN_ON_ONCE(ctx->parent_ctx);
4951 mutex_lock(&ctx->mutex);
4952 perf_install_in_context(ctx, event, cpu);
4953 ++ctx->generation;
4954 mutex_unlock(&ctx->mutex);
4955
4956 event->owner = current;
4957 get_task_struct(current);
4958 mutex_lock(&current->perf_event_mutex);
4959 list_add_tail(&event->owner_entry, &current->perf_event_list);
4960 mutex_unlock(&current->perf_event_mutex);
4961
4962 return event;
4963
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004964 err_put_context:
4965 put_ctx(ctx);
4966 err_exit:
4967 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004968}
4969EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4970
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004971/*
4972 * inherit a event from parent task to child task:
4973 */
4974static struct perf_event *
4975inherit_event(struct perf_event *parent_event,
4976 struct task_struct *parent,
4977 struct perf_event_context *parent_ctx,
4978 struct task_struct *child,
4979 struct perf_event *group_leader,
4980 struct perf_event_context *child_ctx)
4981{
4982 struct perf_event *child_event;
4983
4984 /*
4985 * Instead of creating recursive hierarchies of events,
4986 * we link inherited events back to the original parent,
4987 * which has a filp for sure, which we use as the reference
4988 * count:
4989 */
4990 if (parent_event->parent)
4991 parent_event = parent_event->parent;
4992
4993 child_event = perf_event_alloc(&parent_event->attr,
4994 parent_event->cpu, child_ctx,
4995 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004996 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004997 if (IS_ERR(child_event))
4998 return child_event;
4999 get_ctx(child_ctx);
5000
5001 /*
5002 * Make the child state follow the state of the parent event,
5003 * not its attr.disabled bit. We hold the parent's mutex,
5004 * so we won't race with perf_event_{en, dis}able_family.
5005 */
5006 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5007 child_event->state = PERF_EVENT_STATE_INACTIVE;
5008 else
5009 child_event->state = PERF_EVENT_STATE_OFF;
5010
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005011 if (parent_event->attr.freq) {
5012 u64 sample_period = parent_event->hw.sample_period;
5013 struct hw_perf_event *hwc = &child_event->hw;
5014
5015 hwc->sample_period = sample_period;
5016 hwc->last_period = sample_period;
5017
5018 atomic64_set(&hwc->period_left, sample_period);
5019 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005020
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005021 child_event->overflow_handler = parent_event->overflow_handler;
5022
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005023 /*
5024 * Link it up in the child's context:
5025 */
5026 add_event_to_ctx(child_event, child_ctx);
5027
5028 /*
5029 * Get a reference to the parent filp - we will fput it
5030 * when the child event exits. This is safe to do because
5031 * we are in the parent and we know that the filp still
5032 * exists and has a nonzero count:
5033 */
5034 atomic_long_inc(&parent_event->filp->f_count);
5035
5036 /*
5037 * Link this into the parent event's child list
5038 */
5039 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5040 mutex_lock(&parent_event->child_mutex);
5041 list_add_tail(&child_event->child_list, &parent_event->child_list);
5042 mutex_unlock(&parent_event->child_mutex);
5043
5044 return child_event;
5045}
5046
5047static int inherit_group(struct perf_event *parent_event,
5048 struct task_struct *parent,
5049 struct perf_event_context *parent_ctx,
5050 struct task_struct *child,
5051 struct perf_event_context *child_ctx)
5052{
5053 struct perf_event *leader;
5054 struct perf_event *sub;
5055 struct perf_event *child_ctr;
5056
5057 leader = inherit_event(parent_event, parent, parent_ctx,
5058 child, NULL, child_ctx);
5059 if (IS_ERR(leader))
5060 return PTR_ERR(leader);
5061 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5062 child_ctr = inherit_event(sub, parent, parent_ctx,
5063 child, leader, child_ctx);
5064 if (IS_ERR(child_ctr))
5065 return PTR_ERR(child_ctr);
5066 }
5067 return 0;
5068}
5069
5070static void sync_child_event(struct perf_event *child_event,
5071 struct task_struct *child)
5072{
5073 struct perf_event *parent_event = child_event->parent;
5074 u64 child_val;
5075
5076 if (child_event->attr.inherit_stat)
5077 perf_event_read_event(child_event, child);
5078
5079 child_val = atomic64_read(&child_event->count);
5080
5081 /*
5082 * Add back the child's count to the parent's count:
5083 */
5084 atomic64_add(child_val, &parent_event->count);
5085 atomic64_add(child_event->total_time_enabled,
5086 &parent_event->child_total_time_enabled);
5087 atomic64_add(child_event->total_time_running,
5088 &parent_event->child_total_time_running);
5089
5090 /*
5091 * Remove this event from the parent's list
5092 */
5093 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5094 mutex_lock(&parent_event->child_mutex);
5095 list_del_init(&child_event->child_list);
5096 mutex_unlock(&parent_event->child_mutex);
5097
5098 /*
5099 * Release the parent event, if this was the last
5100 * reference to it.
5101 */
5102 fput(parent_event->filp);
5103}
5104
5105static void
5106__perf_event_exit_task(struct perf_event *child_event,
5107 struct perf_event_context *child_ctx,
5108 struct task_struct *child)
5109{
5110 struct perf_event *parent_event;
5111
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005112 perf_event_remove_from_context(child_event);
5113
5114 parent_event = child_event->parent;
5115 /*
5116 * It can happen that parent exits first, and has events
5117 * that are still around due to the child reference. These
5118 * events need to be zapped - but otherwise linger.
5119 */
5120 if (parent_event) {
5121 sync_child_event(child_event, child);
5122 free_event(child_event);
5123 }
5124}
5125
5126/*
5127 * When a child task exits, feed back event values to parent events.
5128 */
5129void perf_event_exit_task(struct task_struct *child)
5130{
5131 struct perf_event *child_event, *tmp;
5132 struct perf_event_context *child_ctx;
5133 unsigned long flags;
5134
5135 if (likely(!child->perf_event_ctxp)) {
5136 perf_event_task(child, NULL, 0);
5137 return;
5138 }
5139
5140 local_irq_save(flags);
5141 /*
5142 * We can't reschedule here because interrupts are disabled,
5143 * and either child is current or it is a task that can't be
5144 * scheduled, so we are now safe from rescheduling changing
5145 * our context.
5146 */
5147 child_ctx = child->perf_event_ctxp;
5148 __perf_event_task_sched_out(child_ctx);
5149
5150 /*
5151 * Take the context lock here so that if find_get_context is
5152 * reading child->perf_event_ctxp, we wait until it has
5153 * incremented the context's refcount before we do put_ctx below.
5154 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005155 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005156 child->perf_event_ctxp = NULL;
5157 /*
5158 * If this context is a clone; unclone it so it can't get
5159 * swapped to another process while we're removing all
5160 * the events from it.
5161 */
5162 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005163 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005164 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005165
5166 /*
5167 * Report the task dead after unscheduling the events so that we
5168 * won't get any samples after PERF_RECORD_EXIT. We can however still
5169 * get a few PERF_RECORD_READ events.
5170 */
5171 perf_event_task(child, child_ctx, 0);
5172
5173 /*
5174 * We can recurse on the same lock type through:
5175 *
5176 * __perf_event_exit_task()
5177 * sync_child_event()
5178 * fput(parent_event->filp)
5179 * perf_release()
5180 * mutex_lock(&ctx->mutex)
5181 *
5182 * But since its the parent context it won't be the same instance.
5183 */
5184 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5185
5186again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005187 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5188 group_entry)
5189 __perf_event_exit_task(child_event, child_ctx, child);
5190
5191 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005192 group_entry)
5193 __perf_event_exit_task(child_event, child_ctx, child);
5194
5195 /*
5196 * If the last event was a group event, it will have appended all
5197 * its siblings to the list, but we obtained 'tmp' before that which
5198 * will still point to the list head terminating the iteration.
5199 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005200 if (!list_empty(&child_ctx->pinned_groups) ||
5201 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005202 goto again;
5203
5204 mutex_unlock(&child_ctx->mutex);
5205
5206 put_ctx(child_ctx);
5207}
5208
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005209static void perf_free_event(struct perf_event *event,
5210 struct perf_event_context *ctx)
5211{
5212 struct perf_event *parent = event->parent;
5213
5214 if (WARN_ON_ONCE(!parent))
5215 return;
5216
5217 mutex_lock(&parent->child_mutex);
5218 list_del_init(&event->child_list);
5219 mutex_unlock(&parent->child_mutex);
5220
5221 fput(parent->filp);
5222
5223 list_del_event(event, ctx);
5224 free_event(event);
5225}
5226
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005227/*
5228 * free an unexposed, unused context as created by inheritance by
5229 * init_task below, used by fork() in case of fail.
5230 */
5231void perf_event_free_task(struct task_struct *task)
5232{
5233 struct perf_event_context *ctx = task->perf_event_ctxp;
5234 struct perf_event *event, *tmp;
5235
5236 if (!ctx)
5237 return;
5238
5239 mutex_lock(&ctx->mutex);
5240again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005241 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5242 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005243
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005244 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5245 group_entry)
5246 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005247
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005248 if (!list_empty(&ctx->pinned_groups) ||
5249 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005250 goto again;
5251
5252 mutex_unlock(&ctx->mutex);
5253
5254 put_ctx(ctx);
5255}
5256
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005257static int
5258inherit_task_group(struct perf_event *event, struct task_struct *parent,
5259 struct perf_event_context *parent_ctx,
5260 struct task_struct *child,
5261 int *inherited_all)
5262{
5263 int ret;
5264 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5265
5266 if (!event->attr.inherit) {
5267 *inherited_all = 0;
5268 return 0;
5269 }
5270
5271 if (!child_ctx) {
5272 /*
5273 * This is executed from the parent task context, so
5274 * inherit events that have been marked for cloning.
5275 * First allocate and initialize a context for the
5276 * child.
5277 */
5278
5279 child_ctx = kzalloc(sizeof(struct perf_event_context),
5280 GFP_KERNEL);
5281 if (!child_ctx)
5282 return -ENOMEM;
5283
5284 __perf_event_init_context(child_ctx, child);
5285 child->perf_event_ctxp = child_ctx;
5286 get_task_struct(child);
5287 }
5288
5289 ret = inherit_group(event, parent, parent_ctx,
5290 child, child_ctx);
5291
5292 if (ret)
5293 *inherited_all = 0;
5294
5295 return ret;
5296}
5297
5298
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005299/*
5300 * Initialize the perf_event context in task_struct
5301 */
5302int perf_event_init_task(struct task_struct *child)
5303{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005304 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005305 struct perf_event_context *cloned_ctx;
5306 struct perf_event *event;
5307 struct task_struct *parent = current;
5308 int inherited_all = 1;
5309 int ret = 0;
5310
5311 child->perf_event_ctxp = NULL;
5312
5313 mutex_init(&child->perf_event_mutex);
5314 INIT_LIST_HEAD(&child->perf_event_list);
5315
5316 if (likely(!parent->perf_event_ctxp))
5317 return 0;
5318
5319 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005320 * If the parent's context is a clone, pin it so it won't get
5321 * swapped under us.
5322 */
5323 parent_ctx = perf_pin_task_context(parent);
5324
5325 /*
5326 * No need to check if parent_ctx != NULL here; since we saw
5327 * it non-NULL earlier, the only reason for it to become NULL
5328 * is if we exit, and since we're currently in the middle of
5329 * a fork we can't be exiting at the same time.
5330 */
5331
5332 /*
5333 * Lock the parent list. No need to lock the child - not PID
5334 * hashed yet and not running, so nobody can access it.
5335 */
5336 mutex_lock(&parent_ctx->mutex);
5337
5338 /*
5339 * We dont have to disable NMIs - we are only looking at
5340 * the list, not manipulating it:
5341 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005342 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5343 ret = inherit_task_group(event, parent, parent_ctx, child,
5344 &inherited_all);
5345 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005346 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005347 }
5348
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005349 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5350 ret = inherit_task_group(event, parent, parent_ctx, child,
5351 &inherited_all);
5352 if (ret)
5353 break;
5354 }
5355
5356 child_ctx = child->perf_event_ctxp;
5357
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005358 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005359 /*
5360 * Mark the child context as a clone of the parent
5361 * context, or of whatever the parent is a clone of.
5362 * Note that if the parent is a clone, it could get
5363 * uncloned at any point, but that doesn't matter
5364 * because the list of events and the generation
5365 * count can't have changed since we took the mutex.
5366 */
5367 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5368 if (cloned_ctx) {
5369 child_ctx->parent_ctx = cloned_ctx;
5370 child_ctx->parent_gen = parent_ctx->parent_gen;
5371 } else {
5372 child_ctx->parent_ctx = parent_ctx;
5373 child_ctx->parent_gen = parent_ctx->generation;
5374 }
5375 get_ctx(child_ctx->parent_ctx);
5376 }
5377
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005378 mutex_unlock(&parent_ctx->mutex);
5379
5380 perf_unpin_context(parent_ctx);
5381
5382 return ret;
5383}
5384
Paul Mackerras220b1402010-03-10 20:45:52 +11005385static void __init perf_event_init_all_cpus(void)
5386{
5387 int cpu;
5388 struct perf_cpu_context *cpuctx;
5389
5390 for_each_possible_cpu(cpu) {
5391 cpuctx = &per_cpu(perf_cpu_context, cpu);
5392 __perf_event_init_context(&cpuctx->ctx, NULL);
5393 }
5394}
5395
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005396static void __cpuinit perf_event_init_cpu(int cpu)
5397{
5398 struct perf_cpu_context *cpuctx;
5399
5400 cpuctx = &per_cpu(perf_cpu_context, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005401
5402 spin_lock(&perf_resource_lock);
5403 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5404 spin_unlock(&perf_resource_lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005405}
5406
5407#ifdef CONFIG_HOTPLUG_CPU
5408static void __perf_event_exit_cpu(void *info)
5409{
5410 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5411 struct perf_event_context *ctx = &cpuctx->ctx;
5412 struct perf_event *event, *tmp;
5413
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005414 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5415 __perf_event_remove_from_context(event);
5416 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005417 __perf_event_remove_from_context(event);
5418}
5419static void perf_event_exit_cpu(int cpu)
5420{
5421 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5422 struct perf_event_context *ctx = &cpuctx->ctx;
5423
5424 mutex_lock(&ctx->mutex);
5425 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5426 mutex_unlock(&ctx->mutex);
5427}
5428#else
5429static inline void perf_event_exit_cpu(int cpu) { }
5430#endif
5431
5432static int __cpuinit
5433perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5434{
5435 unsigned int cpu = (long)hcpu;
5436
5437 switch (action) {
5438
5439 case CPU_UP_PREPARE:
5440 case CPU_UP_PREPARE_FROZEN:
5441 perf_event_init_cpu(cpu);
5442 break;
5443
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005444 case CPU_DOWN_PREPARE:
5445 case CPU_DOWN_PREPARE_FROZEN:
5446 perf_event_exit_cpu(cpu);
5447 break;
5448
5449 default:
5450 break;
5451 }
5452
5453 return NOTIFY_OK;
5454}
5455
5456/*
5457 * This has to have a higher priority than migration_notifier in sched.c.
5458 */
5459static struct notifier_block __cpuinitdata perf_cpu_nb = {
5460 .notifier_call = perf_cpu_notify,
5461 .priority = 20,
5462};
5463
5464void __init perf_event_init(void)
5465{
Paul Mackerras220b1402010-03-10 20:45:52 +11005466 perf_event_init_all_cpus();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005467 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5468 (void *)(long)smp_processor_id());
5469 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5470 (void *)(long)smp_processor_id());
5471 register_cpu_notifier(&perf_cpu_nb);
5472}
5473
Andi Kleenc9be0a32010-01-05 12:47:58 +01005474static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5475 struct sysdev_class_attribute *attr,
5476 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005477{
5478 return sprintf(buf, "%d\n", perf_reserved_percpu);
5479}
5480
5481static ssize_t
5482perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005483 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005484 const char *buf,
5485 size_t count)
5486{
5487 struct perf_cpu_context *cpuctx;
5488 unsigned long val;
5489 int err, cpu, mpt;
5490
5491 err = strict_strtoul(buf, 10, &val);
5492 if (err)
5493 return err;
5494 if (val > perf_max_events)
5495 return -EINVAL;
5496
5497 spin_lock(&perf_resource_lock);
5498 perf_reserved_percpu = val;
5499 for_each_online_cpu(cpu) {
5500 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005501 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005502 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5503 perf_max_events - perf_reserved_percpu);
5504 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005505 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005506 }
5507 spin_unlock(&perf_resource_lock);
5508
5509 return count;
5510}
5511
Andi Kleenc9be0a32010-01-05 12:47:58 +01005512static ssize_t perf_show_overcommit(struct sysdev_class *class,
5513 struct sysdev_class_attribute *attr,
5514 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005515{
5516 return sprintf(buf, "%d\n", perf_overcommit);
5517}
5518
5519static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005520perf_set_overcommit(struct sysdev_class *class,
5521 struct sysdev_class_attribute *attr,
5522 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005523{
5524 unsigned long val;
5525 int err;
5526
5527 err = strict_strtoul(buf, 10, &val);
5528 if (err)
5529 return err;
5530 if (val > 1)
5531 return -EINVAL;
5532
5533 spin_lock(&perf_resource_lock);
5534 perf_overcommit = val;
5535 spin_unlock(&perf_resource_lock);
5536
5537 return count;
5538}
5539
5540static SYSDEV_CLASS_ATTR(
5541 reserve_percpu,
5542 0644,
5543 perf_show_reserve_percpu,
5544 perf_set_reserve_percpu
5545 );
5546
5547static SYSDEV_CLASS_ATTR(
5548 overcommit,
5549 0644,
5550 perf_show_overcommit,
5551 perf_set_overcommit
5552 );
5553
5554static struct attribute *perfclass_attrs[] = {
5555 &attr_reserve_percpu.attr,
5556 &attr_overcommit.attr,
5557 NULL
5558};
5559
5560static struct attribute_group perfclass_attr_group = {
5561 .attrs = perfclass_attrs,
5562 .name = "perf_events",
5563};
5564
5565static int __init perf_event_sysfs_init(void)
5566{
5567 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5568 &perfclass_attr_group);
5569}
5570device_initcall(perf_event_sysfs_init);