| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*---------------------------------------------------------------------------+ | 
 | 2 |  |  poly_sin.c                                                               | | 
 | 3 |  |                                                                           | | 
 | 4 |  |  Computation of an approximation of the sin function and the cosine       | | 
 | 5 |  |  function by a polynomial.                                                | | 
 | 6 |  |                                                                           | | 
 | 7 |  | Copyright (C) 1992,1993,1994,1997,1999                                    | | 
 | 8 |  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | 
 | 9 |  |                  E-mail   billm@melbpc.org.au                             | | 
 | 10 |  |                                                                           | | 
 | 11 |  |                                                                           | | 
 | 12 |  +---------------------------------------------------------------------------*/ | 
 | 13 |  | 
 | 14 |  | 
 | 15 | #include "exception.h" | 
 | 16 | #include "reg_constant.h" | 
 | 17 | #include "fpu_emu.h" | 
 | 18 | #include "fpu_system.h" | 
 | 19 | #include "control_w.h" | 
 | 20 | #include "poly.h" | 
 | 21 |  | 
 | 22 |  | 
 | 23 | #define	N_COEFF_P	4 | 
 | 24 | #define	N_COEFF_N	4 | 
 | 25 |  | 
 | 26 | static const unsigned long long pos_terms_l[N_COEFF_P] = | 
 | 27 | { | 
 | 28 |   0xaaaaaaaaaaaaaaabLL, | 
 | 29 |   0x00d00d00d00cf906LL, | 
 | 30 |   0x000006b99159a8bbLL, | 
 | 31 |   0x000000000d7392e6LL | 
 | 32 | }; | 
 | 33 |  | 
 | 34 | static const unsigned long long neg_terms_l[N_COEFF_N] = | 
 | 35 | { | 
 | 36 |   0x2222222222222167LL, | 
 | 37 |   0x0002e3bc74aab624LL, | 
 | 38 |   0x0000000b09229062LL, | 
 | 39 |   0x00000000000c7973LL | 
 | 40 | }; | 
 | 41 |  | 
 | 42 |  | 
 | 43 |  | 
 | 44 | #define	N_COEFF_PH	4 | 
 | 45 | #define	N_COEFF_NH	4 | 
 | 46 | static const unsigned long long pos_terms_h[N_COEFF_PH] = | 
 | 47 | { | 
 | 48 |   0x0000000000000000LL, | 
 | 49 |   0x05b05b05b05b0406LL, | 
 | 50 |   0x000049f93edd91a9LL, | 
 | 51 |   0x00000000c9c9ed62LL | 
 | 52 | }; | 
 | 53 |  | 
 | 54 | static const unsigned long long neg_terms_h[N_COEFF_NH] = | 
 | 55 | { | 
 | 56 |   0xaaaaaaaaaaaaaa98LL, | 
 | 57 |   0x001a01a01a019064LL, | 
 | 58 |   0x0000008f76c68a77LL, | 
 | 59 |   0x0000000000d58f5eLL | 
 | 60 | }; | 
 | 61 |  | 
 | 62 |  | 
 | 63 | /*--- poly_sine() -----------------------------------------------------------+ | 
 | 64 |  |                                                                           | | 
 | 65 |  +---------------------------------------------------------------------------*/ | 
 | 66 | void	poly_sine(FPU_REG *st0_ptr) | 
 | 67 | { | 
 | 68 |   int                 exponent, echange; | 
 | 69 |   Xsig                accumulator, argSqrd, argTo4; | 
 | 70 |   unsigned long       fix_up, adj; | 
 | 71 |   unsigned long long  fixed_arg; | 
 | 72 |   FPU_REG	      result; | 
 | 73 |  | 
 | 74 |   exponent = exponent(st0_ptr); | 
 | 75 |  | 
 | 76 |   accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
 | 77 |  | 
 | 78 |   /* Split into two ranges, for arguments below and above 1.0 */ | 
 | 79 |   /* The boundary between upper and lower is approx 0.88309101259 */ | 
 | 80 |   if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa)) ) | 
 | 81 |     { | 
 | 82 |       /* The argument is <= 0.88309101259 */ | 
 | 83 |  | 
 | 84 |       argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0; | 
 | 85 |       mul64_Xsig(&argSqrd, &significand(st0_ptr)); | 
 | 86 |       shr_Xsig(&argSqrd, 2*(-1-exponent)); | 
 | 87 |       argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | 
 | 88 |       argTo4.lsw = argSqrd.lsw; | 
 | 89 |       mul_Xsig_Xsig(&argTo4, &argTo4); | 
 | 90 |  | 
 | 91 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | 
 | 92 | 		      N_COEFF_N-1); | 
 | 93 |       mul_Xsig_Xsig(&accumulator, &argSqrd); | 
 | 94 |       negate_Xsig(&accumulator); | 
 | 95 |  | 
 | 96 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | 
 | 97 | 		      N_COEFF_P-1); | 
 | 98 |  | 
 | 99 |       shr_Xsig(&accumulator, 2);    /* Divide by four */ | 
 | 100 |       accumulator.msw |= 0x80000000;  /* Add 1.0 */ | 
 | 101 |  | 
 | 102 |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
 | 103 |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
 | 104 |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
 | 105 |  | 
 | 106 |       /* Divide by four, FPU_REG compatible, etc */ | 
 | 107 |       exponent = 3*exponent; | 
 | 108 |  | 
 | 109 |       /* The minimum exponent difference is 3 */ | 
 | 110 |       shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); | 
 | 111 |  | 
 | 112 |       negate_Xsig(&accumulator); | 
 | 113 |       XSIG_LL(accumulator) += significand(st0_ptr); | 
 | 114 |  | 
 | 115 |       echange = round_Xsig(&accumulator); | 
 | 116 |  | 
 | 117 |       setexponentpos(&result, exponent(st0_ptr) + echange); | 
 | 118 |     } | 
 | 119 |   else | 
 | 120 |     { | 
 | 121 |       /* The argument is > 0.88309101259 */ | 
 | 122 |       /* We use sin(st(0)) = cos(pi/2-st(0)) */ | 
 | 123 |  | 
 | 124 |       fixed_arg = significand(st0_ptr); | 
 | 125 |  | 
 | 126 |       if ( exponent == 0 ) | 
 | 127 | 	{ | 
 | 128 | 	  /* The argument is >= 1.0 */ | 
 | 129 |  | 
 | 130 | 	  /* Put the binary point at the left. */ | 
 | 131 | 	  fixed_arg <<= 1; | 
 | 132 | 	} | 
 | 133 |       /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
 | 134 |       fixed_arg = 0x921fb54442d18469LL - fixed_arg; | 
 | 135 |       /* There is a special case which arises due to rounding, to fix here. */ | 
 | 136 |       if ( fixed_arg == 0xffffffffffffffffLL ) | 
 | 137 | 	fixed_arg = 0; | 
 | 138 |  | 
 | 139 |       XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; | 
 | 140 |       mul64_Xsig(&argSqrd, &fixed_arg); | 
 | 141 |  | 
 | 142 |       XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; | 
 | 143 |       mul_Xsig_Xsig(&argTo4, &argTo4); | 
 | 144 |  | 
 | 145 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | 
 | 146 | 		      N_COEFF_NH-1); | 
 | 147 |       mul_Xsig_Xsig(&accumulator, &argSqrd); | 
 | 148 |       negate_Xsig(&accumulator); | 
 | 149 |  | 
 | 150 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | 
 | 151 | 		      N_COEFF_PH-1); | 
 | 152 |       negate_Xsig(&accumulator); | 
 | 153 |  | 
 | 154 |       mul64_Xsig(&accumulator, &fixed_arg); | 
 | 155 |       mul64_Xsig(&accumulator, &fixed_arg); | 
 | 156 |  | 
 | 157 |       shr_Xsig(&accumulator, 3); | 
 | 158 |       negate_Xsig(&accumulator); | 
 | 159 |  | 
 | 160 |       add_Xsig_Xsig(&accumulator, &argSqrd); | 
 | 161 |  | 
 | 162 |       shr_Xsig(&accumulator, 1); | 
 | 163 |  | 
 | 164 |       accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */ | 
 | 165 |       negate_Xsig(&accumulator); | 
 | 166 |  | 
 | 167 |       /* The basic computation is complete. Now fix the answer to | 
 | 168 | 	 compensate for the error due to the approximation used for | 
 | 169 | 	 pi/2 | 
 | 170 | 	 */ | 
 | 171 |  | 
 | 172 |       /* This has an exponent of -65 */ | 
 | 173 |       fix_up = 0x898cc517; | 
 | 174 |       /* The fix-up needs to be improved for larger args */ | 
 | 175 |       if ( argSqrd.msw & 0xffc00000 ) | 
 | 176 | 	{ | 
 | 177 | 	  /* Get about 32 bit precision in these: */ | 
 | 178 | 	  fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; | 
 | 179 | 	} | 
 | 180 |       fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); | 
 | 181 |  | 
 | 182 |       adj = accumulator.lsw;    /* temp save */ | 
 | 183 |       accumulator.lsw -= fix_up; | 
 | 184 |       if ( accumulator.lsw > adj ) | 
 | 185 | 	XSIG_LL(accumulator) --; | 
 | 186 |  | 
 | 187 |       echange = round_Xsig(&accumulator); | 
 | 188 |  | 
 | 189 |       setexponentpos(&result, echange - 1); | 
 | 190 |     } | 
 | 191 |  | 
 | 192 |   significand(&result) = XSIG_LL(accumulator); | 
 | 193 |   setsign(&result, getsign(st0_ptr)); | 
 | 194 |   FPU_copy_to_reg0(&result, TAG_Valid); | 
 | 195 |  | 
 | 196 | #ifdef PARANOID | 
 | 197 |   if ( (exponent(&result) >= 0) | 
 | 198 |       && (significand(&result) > 0x8000000000000000LL) ) | 
 | 199 |     { | 
 | 200 |       EXCEPTION(EX_INTERNAL|0x150); | 
 | 201 |     } | 
 | 202 | #endif /* PARANOID */ | 
 | 203 |  | 
 | 204 | } | 
 | 205 |  | 
 | 206 |  | 
 | 207 |  | 
 | 208 | /*--- poly_cos() ------------------------------------------------------------+ | 
 | 209 |  |                                                                           | | 
 | 210 |  +---------------------------------------------------------------------------*/ | 
 | 211 | void	poly_cos(FPU_REG *st0_ptr) | 
 | 212 | { | 
 | 213 |   FPU_REG	      result; | 
 | 214 |   long int            exponent, exp2, echange; | 
 | 215 |   Xsig                accumulator, argSqrd, fix_up, argTo4; | 
 | 216 |   unsigned long long  fixed_arg; | 
 | 217 |  | 
 | 218 | #ifdef PARANOID | 
 | 219 |   if ( (exponent(st0_ptr) > 0) | 
 | 220 |       || ((exponent(st0_ptr) == 0) | 
 | 221 | 	  && (significand(st0_ptr) > 0xc90fdaa22168c234LL)) ) | 
 | 222 |     { | 
 | 223 |       EXCEPTION(EX_Invalid); | 
 | 224 |       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
 | 225 |       return; | 
 | 226 |     } | 
 | 227 | #endif /* PARANOID */ | 
 | 228 |  | 
 | 229 |   exponent = exponent(st0_ptr); | 
 | 230 |  | 
 | 231 |   accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
 | 232 |  | 
 | 233 |   if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54)) ) | 
 | 234 |     { | 
 | 235 |       /* arg is < 0.687705 */ | 
 | 236 |  | 
 | 237 |       argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; | 
 | 238 |       argSqrd.lsw = 0; | 
 | 239 |       mul64_Xsig(&argSqrd, &significand(st0_ptr)); | 
 | 240 |  | 
 | 241 |       if ( exponent < -1 ) | 
 | 242 | 	{ | 
 | 243 | 	  /* shift the argument right by the required places */ | 
 | 244 | 	  shr_Xsig(&argSqrd, 2*(-1-exponent)); | 
 | 245 | 	} | 
 | 246 |  | 
 | 247 |       argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | 
 | 248 |       argTo4.lsw = argSqrd.lsw; | 
 | 249 |       mul_Xsig_Xsig(&argTo4, &argTo4); | 
 | 250 |  | 
 | 251 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | 
 | 252 | 		      N_COEFF_NH-1); | 
 | 253 |       mul_Xsig_Xsig(&accumulator, &argSqrd); | 
 | 254 |       negate_Xsig(&accumulator); | 
 | 255 |  | 
 | 256 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | 
 | 257 | 		      N_COEFF_PH-1); | 
 | 258 |       negate_Xsig(&accumulator); | 
 | 259 |  | 
 | 260 |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
 | 261 |       mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
 | 262 |       shr_Xsig(&accumulator, -2*(1+exponent)); | 
 | 263 |  | 
 | 264 |       shr_Xsig(&accumulator, 3); | 
 | 265 |       negate_Xsig(&accumulator); | 
 | 266 |  | 
 | 267 |       add_Xsig_Xsig(&accumulator, &argSqrd); | 
 | 268 |  | 
 | 269 |       shr_Xsig(&accumulator, 1); | 
 | 270 |  | 
 | 271 |       /* It doesn't matter if accumulator is all zero here, the | 
 | 272 | 	 following code will work ok */ | 
 | 273 |       negate_Xsig(&accumulator); | 
 | 274 |  | 
 | 275 |       if ( accumulator.lsw & 0x80000000 ) | 
 | 276 | 	XSIG_LL(accumulator) ++; | 
 | 277 |       if ( accumulator.msw == 0 ) | 
 | 278 | 	{ | 
 | 279 | 	  /* The result is 1.0 */ | 
 | 280 | 	  FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
 | 281 | 	  return; | 
 | 282 | 	} | 
 | 283 |       else | 
 | 284 | 	{ | 
 | 285 | 	  significand(&result) = XSIG_LL(accumulator); | 
 | 286 |        | 
 | 287 | 	  /* will be a valid positive nr with expon = -1 */ | 
 | 288 | 	  setexponentpos(&result, -1); | 
 | 289 | 	} | 
 | 290 |     } | 
 | 291 |   else | 
 | 292 |     { | 
 | 293 |       fixed_arg = significand(st0_ptr); | 
 | 294 |  | 
 | 295 |       if ( exponent == 0 ) | 
 | 296 | 	{ | 
 | 297 | 	  /* The argument is >= 1.0 */ | 
 | 298 |  | 
 | 299 | 	  /* Put the binary point at the left. */ | 
 | 300 | 	  fixed_arg <<= 1; | 
 | 301 | 	} | 
 | 302 |       /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
 | 303 |       fixed_arg = 0x921fb54442d18469LL - fixed_arg; | 
 | 304 |       /* There is a special case which arises due to rounding, to fix here. */ | 
 | 305 |       if ( fixed_arg == 0xffffffffffffffffLL ) | 
 | 306 | 	fixed_arg = 0; | 
 | 307 |  | 
 | 308 |       exponent = -1; | 
 | 309 |       exp2 = -1; | 
 | 310 |  | 
 | 311 |       /* A shift is needed here only for a narrow range of arguments, | 
 | 312 | 	 i.e. for fixed_arg approx 2^-32, but we pick up more... */ | 
 | 313 |       if ( !(LL_MSW(fixed_arg) & 0xffff0000) ) | 
 | 314 | 	{ | 
 | 315 | 	  fixed_arg <<= 16; | 
 | 316 | 	  exponent -= 16; | 
 | 317 | 	  exp2 -= 16; | 
 | 318 | 	} | 
 | 319 |  | 
 | 320 |       XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; | 
 | 321 |       mul64_Xsig(&argSqrd, &fixed_arg); | 
 | 322 |  | 
 | 323 |       if ( exponent < -1 ) | 
 | 324 | 	{ | 
 | 325 | 	  /* shift the argument right by the required places */ | 
 | 326 | 	  shr_Xsig(&argSqrd, 2*(-1-exponent)); | 
 | 327 | 	} | 
 | 328 |  | 
 | 329 |       argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | 
 | 330 |       argTo4.lsw = argSqrd.lsw; | 
 | 331 |       mul_Xsig_Xsig(&argTo4, &argTo4); | 
 | 332 |  | 
 | 333 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | 
 | 334 | 		      N_COEFF_N-1); | 
 | 335 |       mul_Xsig_Xsig(&accumulator, &argSqrd); | 
 | 336 |       negate_Xsig(&accumulator); | 
 | 337 |  | 
 | 338 |       polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | 
 | 339 | 		      N_COEFF_P-1); | 
 | 340 |  | 
 | 341 |       shr_Xsig(&accumulator, 2);    /* Divide by four */ | 
 | 342 |       accumulator.msw |= 0x80000000;  /* Add 1.0 */ | 
 | 343 |  | 
 | 344 |       mul64_Xsig(&accumulator, &fixed_arg); | 
 | 345 |       mul64_Xsig(&accumulator, &fixed_arg); | 
 | 346 |       mul64_Xsig(&accumulator, &fixed_arg); | 
 | 347 |  | 
 | 348 |       /* Divide by four, FPU_REG compatible, etc */ | 
 | 349 |       exponent = 3*exponent; | 
 | 350 |  | 
 | 351 |       /* The minimum exponent difference is 3 */ | 
 | 352 |       shr_Xsig(&accumulator, exp2 - exponent); | 
 | 353 |  | 
 | 354 |       negate_Xsig(&accumulator); | 
 | 355 |       XSIG_LL(accumulator) += fixed_arg; | 
 | 356 |  | 
 | 357 |       /* The basic computation is complete. Now fix the answer to | 
 | 358 | 	 compensate for the error due to the approximation used for | 
 | 359 | 	 pi/2 | 
 | 360 | 	 */ | 
 | 361 |  | 
 | 362 |       /* This has an exponent of -65 */ | 
 | 363 |       XSIG_LL(fix_up) = 0x898cc51701b839a2ll; | 
 | 364 |       fix_up.lsw = 0; | 
 | 365 |  | 
 | 366 |       /* The fix-up needs to be improved for larger args */ | 
 | 367 |       if ( argSqrd.msw & 0xffc00000 ) | 
 | 368 | 	{ | 
 | 369 | 	  /* Get about 32 bit precision in these: */ | 
 | 370 | 	  fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; | 
 | 371 | 	  fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; | 
 | 372 | 	} | 
 | 373 |  | 
 | 374 |       exp2 += norm_Xsig(&accumulator); | 
 | 375 |       shr_Xsig(&accumulator, 1); /* Prevent overflow */ | 
 | 376 |       exp2++; | 
 | 377 |       shr_Xsig(&fix_up, 65 + exp2); | 
 | 378 |  | 
 | 379 |       add_Xsig_Xsig(&accumulator, &fix_up); | 
 | 380 |  | 
 | 381 |       echange = round_Xsig(&accumulator); | 
 | 382 |  | 
 | 383 |       setexponentpos(&result, exp2 + echange); | 
 | 384 |       significand(&result) = XSIG_LL(accumulator); | 
 | 385 |     } | 
 | 386 |  | 
 | 387 |   FPU_copy_to_reg0(&result, TAG_Valid); | 
 | 388 |  | 
 | 389 | #ifdef PARANOID | 
 | 390 |   if ( (exponent(&result) >= 0) | 
 | 391 |       && (significand(&result) > 0x8000000000000000LL) ) | 
 | 392 |     { | 
 | 393 |       EXCEPTION(EX_INTERNAL|0x151); | 
 | 394 |     } | 
 | 395 | #endif /* PARANOID */ | 
 | 396 |  | 
 | 397 | } |