David Brownell | 8ae12a0 | 2006-01-08 13:34:19 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * spi.c - SPI init/core code |
| 3 | * |
| 4 | * Copyright (C) 2005 David Brownell |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 19 | */ |
| 20 | |
| 21 | #include <linux/autoconf.h> |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/device.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/cache.h> |
| 26 | #include <linux/spi/spi.h> |
| 27 | |
| 28 | |
| 29 | /* SPI bustype and spi_master class are registered during early boot, |
| 30 | * usually before board init code provides the SPI device tables, and |
| 31 | * are available later when driver init code needs them. |
| 32 | * |
| 33 | * Drivers for SPI devices started out like those for platform bus |
| 34 | * devices. But both have changed in 2.6.15; maybe this should get |
| 35 | * an "spi_driver" structure at some point (not currently needed) |
| 36 | */ |
| 37 | static void spidev_release(struct device *dev) |
| 38 | { |
| 39 | const struct spi_device *spi = to_spi_device(dev); |
| 40 | |
| 41 | /* spi masters may cleanup for released devices */ |
| 42 | if (spi->master->cleanup) |
| 43 | spi->master->cleanup(spi); |
| 44 | |
| 45 | class_device_put(&spi->master->cdev); |
| 46 | kfree(dev); |
| 47 | } |
| 48 | |
| 49 | static ssize_t |
| 50 | modalias_show(struct device *dev, struct device_attribute *a, char *buf) |
| 51 | { |
| 52 | const struct spi_device *spi = to_spi_device(dev); |
| 53 | |
| 54 | return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias); |
| 55 | } |
| 56 | |
| 57 | static struct device_attribute spi_dev_attrs[] = { |
| 58 | __ATTR_RO(modalias), |
| 59 | __ATTR_NULL, |
| 60 | }; |
| 61 | |
| 62 | /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, |
| 63 | * and the sysfs version makes coldplug work too. |
| 64 | */ |
| 65 | |
| 66 | static int spi_match_device(struct device *dev, struct device_driver *drv) |
| 67 | { |
| 68 | const struct spi_device *spi = to_spi_device(dev); |
| 69 | |
| 70 | return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0; |
| 71 | } |
| 72 | |
| 73 | static int spi_uevent(struct device *dev, char **envp, int num_envp, |
| 74 | char *buffer, int buffer_size) |
| 75 | { |
| 76 | const struct spi_device *spi = to_spi_device(dev); |
| 77 | |
| 78 | envp[0] = buffer; |
| 79 | snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias); |
| 80 | envp[1] = NULL; |
| 81 | return 0; |
| 82 | } |
| 83 | |
| 84 | #ifdef CONFIG_PM |
| 85 | |
| 86 | /* Suspend/resume in "struct device_driver" don't really need that |
| 87 | * strange third parameter, so we just make it a constant and expect |
| 88 | * SPI drivers to ignore it just like most platform drivers do. |
| 89 | * |
| 90 | * NOTE: the suspend() method for an spi_master controller driver |
| 91 | * should verify that all its child devices are marked as suspended; |
| 92 | * suspend requests delivered through sysfs power/state files don't |
| 93 | * enforce such constraints. |
| 94 | */ |
| 95 | static int spi_suspend(struct device *dev, pm_message_t message) |
| 96 | { |
| 97 | int value; |
| 98 | |
| 99 | if (!dev->driver || !dev->driver->suspend) |
| 100 | return 0; |
| 101 | |
| 102 | /* suspend will stop irqs and dma; no more i/o */ |
| 103 | value = dev->driver->suspend(dev, message); |
| 104 | if (value == 0) |
| 105 | dev->power.power_state = message; |
| 106 | return value; |
| 107 | } |
| 108 | |
| 109 | static int spi_resume(struct device *dev) |
| 110 | { |
| 111 | int value; |
| 112 | |
| 113 | if (!dev->driver || !dev->driver->resume) |
| 114 | return 0; |
| 115 | |
| 116 | /* resume may restart the i/o queue */ |
| 117 | value = dev->driver->resume(dev); |
| 118 | if (value == 0) |
| 119 | dev->power.power_state = PMSG_ON; |
| 120 | return value; |
| 121 | } |
| 122 | |
| 123 | #else |
| 124 | #define spi_suspend NULL |
| 125 | #define spi_resume NULL |
| 126 | #endif |
| 127 | |
| 128 | struct bus_type spi_bus_type = { |
| 129 | .name = "spi", |
| 130 | .dev_attrs = spi_dev_attrs, |
| 131 | .match = spi_match_device, |
| 132 | .uevent = spi_uevent, |
| 133 | .suspend = spi_suspend, |
| 134 | .resume = spi_resume, |
| 135 | }; |
| 136 | EXPORT_SYMBOL_GPL(spi_bus_type); |
| 137 | |
| 138 | /*-------------------------------------------------------------------------*/ |
| 139 | |
| 140 | /* SPI devices should normally not be created by SPI device drivers; that |
| 141 | * would make them board-specific. Similarly with SPI master drivers. |
| 142 | * Device registration normally goes into like arch/.../mach.../board-YYY.c |
| 143 | * with other readonly (flashable) information about mainboard devices. |
| 144 | */ |
| 145 | |
| 146 | struct boardinfo { |
| 147 | struct list_head list; |
| 148 | unsigned n_board_info; |
| 149 | struct spi_board_info board_info[0]; |
| 150 | }; |
| 151 | |
| 152 | static LIST_HEAD(board_list); |
| 153 | static DECLARE_MUTEX(board_lock); |
| 154 | |
| 155 | |
| 156 | /* On typical mainboards, this is purely internal; and it's not needed |
| 157 | * after board init creates the hard-wired devices. Some development |
| 158 | * platforms may not be able to use spi_register_board_info though, and |
| 159 | * this is exported so that for example a USB or parport based adapter |
| 160 | * driver could add devices (which it would learn about out-of-band). |
| 161 | */ |
| 162 | struct spi_device *__init_or_module |
| 163 | spi_new_device(struct spi_master *master, struct spi_board_info *chip) |
| 164 | { |
| 165 | struct spi_device *proxy; |
| 166 | struct device *dev = master->cdev.dev; |
| 167 | int status; |
| 168 | |
| 169 | /* NOTE: caller did any chip->bus_num checks necessary */ |
| 170 | |
| 171 | if (!class_device_get(&master->cdev)) |
| 172 | return NULL; |
| 173 | |
| 174 | proxy = kzalloc(sizeof *proxy, GFP_KERNEL); |
| 175 | if (!proxy) { |
| 176 | dev_err(dev, "can't alloc dev for cs%d\n", |
| 177 | chip->chip_select); |
| 178 | goto fail; |
| 179 | } |
| 180 | proxy->master = master; |
| 181 | proxy->chip_select = chip->chip_select; |
| 182 | proxy->max_speed_hz = chip->max_speed_hz; |
| 183 | proxy->irq = chip->irq; |
| 184 | proxy->modalias = chip->modalias; |
| 185 | |
| 186 | snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id, |
| 187 | "%s.%u", master->cdev.class_id, |
| 188 | chip->chip_select); |
| 189 | proxy->dev.parent = dev; |
| 190 | proxy->dev.bus = &spi_bus_type; |
| 191 | proxy->dev.platform_data = (void *) chip->platform_data; |
| 192 | proxy->controller_data = chip->controller_data; |
| 193 | proxy->controller_state = NULL; |
| 194 | proxy->dev.release = spidev_release; |
| 195 | |
| 196 | /* drivers may modify this default i/o setup */ |
| 197 | status = master->setup(proxy); |
| 198 | if (status < 0) { |
| 199 | dev_dbg(dev, "can't %s %s, status %d\n", |
| 200 | "setup", proxy->dev.bus_id, status); |
| 201 | goto fail; |
| 202 | } |
| 203 | |
| 204 | /* driver core catches callers that misbehave by defining |
| 205 | * devices that already exist. |
| 206 | */ |
| 207 | status = device_register(&proxy->dev); |
| 208 | if (status < 0) { |
| 209 | dev_dbg(dev, "can't %s %s, status %d\n", |
| 210 | "add", proxy->dev.bus_id, status); |
| 211 | fail: |
| 212 | class_device_put(&master->cdev); |
| 213 | kfree(proxy); |
| 214 | return NULL; |
| 215 | } |
| 216 | dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id); |
| 217 | return proxy; |
| 218 | } |
| 219 | EXPORT_SYMBOL_GPL(spi_new_device); |
| 220 | |
| 221 | /* |
| 222 | * Board-specific early init code calls this (probably during arch_initcall) |
| 223 | * with segments of the SPI device table. Any device nodes are created later, |
| 224 | * after the relevant parent SPI controller (bus_num) is defined. We keep |
| 225 | * this table of devices forever, so that reloading a controller driver will |
| 226 | * not make Linux forget about these hard-wired devices. |
| 227 | * |
| 228 | * Other code can also call this, e.g. a particular add-on board might provide |
| 229 | * SPI devices through its expansion connector, so code initializing that board |
| 230 | * would naturally declare its SPI devices. |
| 231 | * |
| 232 | * The board info passed can safely be __initdata ... but be careful of |
| 233 | * any embedded pointers (platform_data, etc), they're copied as-is. |
| 234 | */ |
| 235 | int __init |
| 236 | spi_register_board_info(struct spi_board_info const *info, unsigned n) |
| 237 | { |
| 238 | struct boardinfo *bi; |
| 239 | |
| 240 | bi = kmalloc (sizeof (*bi) + n * sizeof (*info), GFP_KERNEL); |
| 241 | if (!bi) |
| 242 | return -ENOMEM; |
| 243 | bi->n_board_info = n; |
| 244 | memcpy(bi->board_info, info, n * sizeof (*info)); |
| 245 | |
| 246 | down(&board_lock); |
| 247 | list_add_tail(&bi->list, &board_list); |
| 248 | up(&board_lock); |
| 249 | return 0; |
| 250 | } |
| 251 | EXPORT_SYMBOL_GPL(spi_register_board_info); |
| 252 | |
| 253 | /* FIXME someone should add support for a __setup("spi", ...) that |
| 254 | * creates board info from kernel command lines |
| 255 | */ |
| 256 | |
| 257 | static void __init_or_module |
| 258 | scan_boardinfo(struct spi_master *master) |
| 259 | { |
| 260 | struct boardinfo *bi; |
| 261 | struct device *dev = master->cdev.dev; |
| 262 | |
| 263 | down(&board_lock); |
| 264 | list_for_each_entry(bi, &board_list, list) { |
| 265 | struct spi_board_info *chip = bi->board_info; |
| 266 | unsigned n; |
| 267 | |
| 268 | for (n = bi->n_board_info; n > 0; n--, chip++) { |
| 269 | if (chip->bus_num != master->bus_num) |
| 270 | continue; |
| 271 | /* some controllers only have one chip, so they |
| 272 | * might not use chipselects. otherwise, the |
| 273 | * chipselects are numbered 0..max. |
| 274 | */ |
| 275 | if (chip->chip_select >= master->num_chipselect |
| 276 | && master->num_chipselect) { |
| 277 | dev_dbg(dev, "cs%d > max %d\n", |
| 278 | chip->chip_select, |
| 279 | master->num_chipselect); |
| 280 | continue; |
| 281 | } |
| 282 | (void) spi_new_device(master, chip); |
| 283 | } |
| 284 | } |
| 285 | up(&board_lock); |
| 286 | } |
| 287 | |
| 288 | /*-------------------------------------------------------------------------*/ |
| 289 | |
| 290 | static void spi_master_release(struct class_device *cdev) |
| 291 | { |
| 292 | struct spi_master *master; |
| 293 | |
| 294 | master = container_of(cdev, struct spi_master, cdev); |
| 295 | put_device(master->cdev.dev); |
| 296 | master->cdev.dev = NULL; |
| 297 | kfree(master); |
| 298 | } |
| 299 | |
| 300 | static struct class spi_master_class = { |
| 301 | .name = "spi_master", |
| 302 | .owner = THIS_MODULE, |
| 303 | .release = spi_master_release, |
| 304 | }; |
| 305 | |
| 306 | |
| 307 | /** |
| 308 | * spi_alloc_master - allocate SPI master controller |
| 309 | * @dev: the controller, possibly using the platform_bus |
| 310 | * @size: how much driver-private data to preallocate; a pointer to this |
| 311 | * memory in the class_data field of the returned class_device |
| 312 | * |
| 313 | * This call is used only by SPI master controller drivers, which are the |
| 314 | * only ones directly touching chip registers. It's how they allocate |
| 315 | * an spi_master structure, prior to calling spi_add_master(). |
| 316 | * |
| 317 | * This must be called from context that can sleep. It returns the SPI |
| 318 | * master structure on success, else NULL. |
| 319 | * |
| 320 | * The caller is responsible for assigning the bus number and initializing |
| 321 | * the master's methods before calling spi_add_master(), or else (on error) |
| 322 | * calling class_device_put() to prevent a memory leak. |
| 323 | */ |
| 324 | struct spi_master * __init_or_module |
| 325 | spi_alloc_master(struct device *dev, unsigned size) |
| 326 | { |
| 327 | struct spi_master *master; |
| 328 | |
| 329 | master = kzalloc(size + sizeof *master, SLAB_KERNEL); |
| 330 | if (!master) |
| 331 | return NULL; |
| 332 | |
| 333 | master->cdev.class = &spi_master_class; |
| 334 | master->cdev.dev = get_device(dev); |
| 335 | class_set_devdata(&master->cdev, &master[1]); |
| 336 | |
| 337 | return master; |
| 338 | } |
| 339 | EXPORT_SYMBOL_GPL(spi_alloc_master); |
| 340 | |
| 341 | /** |
| 342 | * spi_register_master - register SPI master controller |
| 343 | * @master: initialized master, originally from spi_alloc_master() |
| 344 | * |
| 345 | * SPI master controllers connect to their drivers using some non-SPI bus, |
| 346 | * such as the platform bus. The final stage of probe() in that code |
| 347 | * includes calling spi_register_master() to hook up to this SPI bus glue. |
| 348 | * |
| 349 | * SPI controllers use board specific (often SOC specific) bus numbers, |
| 350 | * and board-specific addressing for SPI devices combines those numbers |
| 351 | * with chip select numbers. Since SPI does not directly support dynamic |
| 352 | * device identification, boards need configuration tables telling which |
| 353 | * chip is at which address. |
| 354 | * |
| 355 | * This must be called from context that can sleep. It returns zero on |
| 356 | * success, else a negative error code (dropping the master's refcount). |
| 357 | */ |
| 358 | int __init_or_module |
| 359 | spi_register_master(struct spi_master *master) |
| 360 | { |
| 361 | static atomic_t dyn_bus_id = ATOMIC_INIT(0); |
| 362 | struct device *dev = master->cdev.dev; |
| 363 | int status = -ENODEV; |
| 364 | int dynamic = 0; |
| 365 | |
| 366 | /* convention: dynamically assigned bus IDs count down from the max */ |
| 367 | if (master->bus_num == 0) { |
| 368 | master->bus_num = atomic_dec_return(&dyn_bus_id); |
| 369 | dynamic = 0; |
| 370 | } |
| 371 | |
| 372 | /* register the device, then userspace will see it. |
| 373 | * registration fails if the bus ID is in use. |
| 374 | */ |
| 375 | snprintf(master->cdev.class_id, sizeof master->cdev.class_id, |
| 376 | "spi%u", master->bus_num); |
| 377 | status = class_device_register(&master->cdev); |
| 378 | if (status < 0) { |
| 379 | class_device_put(&master->cdev); |
| 380 | goto done; |
| 381 | } |
| 382 | dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id, |
| 383 | dynamic ? " (dynamic)" : ""); |
| 384 | |
| 385 | /* populate children from any spi device tables */ |
| 386 | scan_boardinfo(master); |
| 387 | status = 0; |
| 388 | done: |
| 389 | return status; |
| 390 | } |
| 391 | EXPORT_SYMBOL_GPL(spi_register_master); |
| 392 | |
| 393 | |
| 394 | static int __unregister(struct device *dev, void *unused) |
| 395 | { |
| 396 | /* note: before about 2.6.14-rc1 this would corrupt memory: */ |
| 397 | device_unregister(dev); |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | /** |
| 402 | * spi_unregister_master - unregister SPI master controller |
| 403 | * @master: the master being unregistered |
| 404 | * |
| 405 | * This call is used only by SPI master controller drivers, which are the |
| 406 | * only ones directly touching chip registers. |
| 407 | * |
| 408 | * This must be called from context that can sleep. |
| 409 | */ |
| 410 | void spi_unregister_master(struct spi_master *master) |
| 411 | { |
| 412 | class_device_unregister(&master->cdev); |
| 413 | (void) device_for_each_child(master->cdev.dev, NULL, __unregister); |
| 414 | } |
| 415 | EXPORT_SYMBOL_GPL(spi_unregister_master); |
| 416 | |
| 417 | /** |
| 418 | * spi_busnum_to_master - look up master associated with bus_num |
| 419 | * @bus_num: the master's bus number |
| 420 | * |
| 421 | * This call may be used with devices that are registered after |
| 422 | * arch init time. It returns a refcounted pointer to the relevant |
| 423 | * spi_master (which the caller must release), or NULL if there is |
| 424 | * no such master registered. |
| 425 | */ |
| 426 | struct spi_master *spi_busnum_to_master(u16 bus_num) |
| 427 | { |
| 428 | if (bus_num) { |
| 429 | char name[8]; |
| 430 | struct kobject *bus; |
| 431 | |
| 432 | snprintf(name, sizeof name, "spi%u", bus_num); |
| 433 | bus = kset_find_obj(&spi_master_class.subsys.kset, name); |
| 434 | if (bus) |
| 435 | return container_of(bus, struct spi_master, cdev.kobj); |
| 436 | } |
| 437 | return NULL; |
| 438 | } |
| 439 | EXPORT_SYMBOL_GPL(spi_busnum_to_master); |
| 440 | |
| 441 | |
| 442 | /*-------------------------------------------------------------------------*/ |
| 443 | |
| 444 | /** |
| 445 | * spi_sync - blocking/synchronous SPI data transfers |
| 446 | * @spi: device with which data will be exchanged |
| 447 | * @message: describes the data transfers |
| 448 | * |
| 449 | * This call may only be used from a context that may sleep. The sleep |
| 450 | * is non-interruptible, and has no timeout. Low-overhead controller |
| 451 | * drivers may DMA directly into and out of the message buffers. |
| 452 | * |
| 453 | * Note that the SPI device's chip select is active during the message, |
| 454 | * and then is normally disabled between messages. Drivers for some |
| 455 | * frequently-used devices may want to minimize costs of selecting a chip, |
| 456 | * by leaving it selected in anticipation that the next message will go |
| 457 | * to the same chip. (That may increase power usage.) |
| 458 | * |
| 459 | * The return value is a negative error code if the message could not be |
| 460 | * submitted, else zero. When the value is zero, then message->status is |
| 461 | * also defined: it's the completion code for the transfer, either zero |
| 462 | * or a negative error code from the controller driver. |
| 463 | */ |
| 464 | int spi_sync(struct spi_device *spi, struct spi_message *message) |
| 465 | { |
| 466 | DECLARE_COMPLETION(done); |
| 467 | int status; |
| 468 | |
| 469 | message->complete = (void (*)(void *)) complete; |
| 470 | message->context = &done; |
| 471 | status = spi_async(spi, message); |
| 472 | if (status == 0) |
| 473 | wait_for_completion(&done); |
| 474 | message->context = NULL; |
| 475 | return status; |
| 476 | } |
| 477 | EXPORT_SYMBOL_GPL(spi_sync); |
| 478 | |
| 479 | #define SPI_BUFSIZ (SMP_CACHE_BYTES) |
| 480 | |
| 481 | static u8 *buf; |
| 482 | |
| 483 | /** |
| 484 | * spi_write_then_read - SPI synchronous write followed by read |
| 485 | * @spi: device with which data will be exchanged |
| 486 | * @txbuf: data to be written (need not be dma-safe) |
| 487 | * @n_tx: size of txbuf, in bytes |
| 488 | * @rxbuf: buffer into which data will be read |
| 489 | * @n_rx: size of rxbuf, in bytes (need not be dma-safe) |
| 490 | * |
| 491 | * This performs a half duplex MicroWire style transaction with the |
| 492 | * device, sending txbuf and then reading rxbuf. The return value |
| 493 | * is zero for success, else a negative errno status code. |
| 494 | * |
| 495 | * Parameters to this routine are always copied using a small buffer, |
| 496 | * large transfers should use use spi_{async,sync}() calls with |
| 497 | * dma-safe buffers. |
| 498 | */ |
| 499 | int spi_write_then_read(struct spi_device *spi, |
| 500 | const u8 *txbuf, unsigned n_tx, |
| 501 | u8 *rxbuf, unsigned n_rx) |
| 502 | { |
| 503 | static DECLARE_MUTEX(lock); |
| 504 | |
| 505 | int status; |
| 506 | struct spi_message message; |
| 507 | struct spi_transfer x[2]; |
| 508 | u8 *local_buf; |
| 509 | |
| 510 | /* Use preallocated DMA-safe buffer. We can't avoid copying here, |
| 511 | * (as a pure convenience thing), but we can keep heap costs |
| 512 | * out of the hot path ... |
| 513 | */ |
| 514 | if ((n_tx + n_rx) > SPI_BUFSIZ) |
| 515 | return -EINVAL; |
| 516 | |
| 517 | /* ... unless someone else is using the pre-allocated buffer */ |
| 518 | if (down_trylock(&lock)) { |
| 519 | local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); |
| 520 | if (!local_buf) |
| 521 | return -ENOMEM; |
| 522 | } else |
| 523 | local_buf = buf; |
| 524 | |
| 525 | memset(x, 0, sizeof x); |
| 526 | |
| 527 | memcpy(local_buf, txbuf, n_tx); |
| 528 | x[0].tx_buf = local_buf; |
| 529 | x[0].len = n_tx; |
| 530 | |
| 531 | x[1].rx_buf = local_buf + n_tx; |
| 532 | x[1].len = n_rx; |
| 533 | |
| 534 | /* do the i/o */ |
| 535 | message.transfers = x; |
| 536 | message.n_transfer = ARRAY_SIZE(x); |
| 537 | status = spi_sync(spi, &message); |
| 538 | if (status == 0) { |
| 539 | memcpy(rxbuf, x[1].rx_buf, n_rx); |
| 540 | status = message.status; |
| 541 | } |
| 542 | |
| 543 | if (x[0].tx_buf == buf) |
| 544 | up(&lock); |
| 545 | else |
| 546 | kfree(local_buf); |
| 547 | |
| 548 | return status; |
| 549 | } |
| 550 | EXPORT_SYMBOL_GPL(spi_write_then_read); |
| 551 | |
| 552 | /*-------------------------------------------------------------------------*/ |
| 553 | |
| 554 | static int __init spi_init(void) |
| 555 | { |
| 556 | buf = kmalloc(SPI_BUFSIZ, SLAB_KERNEL); |
| 557 | if (!buf) |
| 558 | return -ENOMEM; |
| 559 | |
| 560 | bus_register(&spi_bus_type); |
| 561 | class_register(&spi_master_class); |
| 562 | return 0; |
| 563 | } |
| 564 | /* board_info is normally registered in arch_initcall(), |
| 565 | * but even essential drivers wait till later |
| 566 | */ |
| 567 | subsys_initcall(spi_init); |
| 568 | |