blob: 3853d49c7d56365d7df880017c55d1f2663a4f6f [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
Ingo Molnarcdd6c482009-09-21 12:02:48 +020059int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61/*
62 * max perf event sample rate
63 */
64int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66static atomic64_t perf_event_id;
67
68/*
69 * Lock for (sysadmin-configurable) event reservations:
70 */
71static DEFINE_SPINLOCK(perf_resource_lock);
72
73/*
74 * Architecture provided APIs - weak aliases:
75 */
76extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77{
78 return NULL;
79}
80
81void __weak hw_perf_disable(void) { barrier(); }
82void __weak hw_perf_enable(void) { barrier(); }
83
Ingo Molnarcdd6c482009-09-21 12:02:48 +020084int __weak
85hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +010087 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +020088{
89 return 0;
90}
91
92void __weak perf_event_print_debug(void) { }
93
94static DEFINE_PER_CPU(int, perf_disable_count);
95
Ingo Molnarcdd6c482009-09-21 12:02:48 +020096void perf_disable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200100}
101
102void perf_enable(void)
103{
Peter Zijlstra32975a42010-03-06 19:49:19 +0100104 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200105 hw_perf_enable();
106}
107
108static void get_ctx(struct perf_event_context *ctx)
109{
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111}
112
113static void free_ctx(struct rcu_head *head)
114{
115 struct perf_event_context *ctx;
116
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
119}
120
121static void put_ctx(struct perf_event_context *ctx)
122{
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
129 }
130}
131
132static void unclone_ctx(struct perf_event_context *ctx)
133{
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
137 }
138}
139
140/*
141 * If we inherit events we want to return the parent event id
142 * to userspace.
143 */
144static u64 primary_event_id(struct perf_event *event)
145{
146 u64 id = event->id;
147
148 if (event->parent)
149 id = event->parent->id;
150
151 return id;
152}
153
154/*
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
158 */
159static struct perf_event_context *
160perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161{
162 struct perf_event_context *ctx;
163
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
168 /*
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
177 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100178 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200181 goto retry;
182 }
183
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200186 ctx = NULL;
187 }
188 }
189 rcu_read_unlock();
190 return ctx;
191}
192
193/*
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
197 */
198static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199{
200 struct perf_event_context *ctx;
201 unsigned long flags;
202
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 }
208 return ctx;
209}
210
211static void perf_unpin_context(struct perf_event_context *ctx)
212{
213 unsigned long flags;
214
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100215 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200216 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200218 put_ctx(ctx);
219}
220
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100221static inline u64 perf_clock(void)
222{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100223 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100224}
225
226/*
227 * Update the record of the current time in a context.
228 */
229static void update_context_time(struct perf_event_context *ctx)
230{
231 u64 now = perf_clock();
232
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
235}
236
237/*
238 * Update the total_time_enabled and total_time_running fields for a event.
239 */
240static void update_event_times(struct perf_event *event)
241{
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
244
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
248
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
253
254 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100255
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
260
261 event->total_time_running = run_end - event->tstamp_running;
262}
263
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100264static struct list_head *
265ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266{
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
271}
272
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200273/*
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277static void
278list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279{
280 struct perf_event *group_leader = event->group_leader;
281
282 /*
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
286 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100287 if (group_leader == event) {
288 struct list_head *list;
289
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
292
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308}
309
310/*
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
313 */
314static void
315list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316{
317 struct perf_event *sibling, *tmp;
318
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
324
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
327
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
330
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100331 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800332
333 /*
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
339 */
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100342
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100349 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200350
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100354
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200357 }
358}
359
360static void
361event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
364{
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
367
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
376
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
382}
383
384static void
385group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
388{
389 struct perf_event *event;
390
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
393
394 event_sched_out(group_event, cpuctx, ctx);
395
396 /*
397 * Schedule out siblings (if any):
398 */
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
401
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
404}
405
406/*
407 * Cross CPU call to remove a performance event
408 *
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
411 */
412static void __perf_event_remove_from_context(void *info)
413{
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
417
418 /*
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
422 */
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
425
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100426 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200427 /*
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
430 */
431 perf_disable();
432
433 event_sched_out(event, cpuctx, ctx);
434
435 list_del_event(event, ctx);
436
437 if (!ctx->task) {
438 /*
439 * Allow more per task events with respect to the
440 * reservation:
441 */
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
445 }
446
447 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100448 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200449}
450
451
452/*
453 * Remove the event from a task's (or a CPU's) list of events.
454 *
455 * Must be called with ctx->mutex held.
456 *
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
459 *
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
466 */
467static void perf_event_remove_from_context(struct perf_event *event)
468{
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
471
472 if (!task) {
473 /*
474 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200475 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200476 */
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
481 }
482
483retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
486
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100487 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200488 /*
489 * If the context is active we need to retry the smp call.
490 */
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100492 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200493 goto retry;
494 }
495
496 /*
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
500 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100501 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200502 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100503 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504}
505
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200506/*
507 * Update total_time_enabled and total_time_running for all events in a group.
508 */
509static void update_group_times(struct perf_event *leader)
510{
511 struct perf_event *event;
512
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
516}
517
518/*
519 * Cross CPU call to disable a performance event
520 */
521static void __perf_event_disable(void *info)
522{
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
526
527 /*
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
530 */
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
533
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100534 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200535
536 /*
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
539 */
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
548 }
549
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100550 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200551}
552
553/*
554 * Disable a event.
555 *
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
565 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100566void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200567{
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
570
571 if (!task) {
572 /*
573 * Disable the event on the cpu that it's on
574 */
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
578 }
579
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
582
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100583 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200584 /*
585 * If the event is still active, we need to retry the cross-call.
586 */
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100588 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200589 goto retry;
590 }
591
592 /*
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
595 */
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100601 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200602}
603
604static int
605event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100607 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200608{
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
611
612 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100613 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200614 /*
615 * The new state must be visible before we turn it on in the hardware:
616 */
617 smp_wmb();
618
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
623 }
624
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
630
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
633
634 return 0;
635}
636
637static int
638group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100640 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200641{
642 struct perf_event *event, *partial_group;
643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Peter Zijlstra6e377382010-02-11 13:21:58 +0100648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200649 if (ret)
650 return ret < 0 ? ret : 0;
651
Peter Zijlstra6e377382010-02-11 13:21:58 +0100652 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200653 return -EAGAIN;
654
655 /*
656 * Schedule in siblings as one group (if any):
657 */
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100659 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200660 partial_group = event;
661 goto group_error;
662 }
663 }
664
665 return 0;
666
667group_error:
668 /*
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
671 */
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
676 }
677 event_sched_out(group_event, cpuctx, ctx);
678
679 return -EAGAIN;
680}
681
682/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200683 * Work out whether we can put this event group on the CPU now.
684 */
685static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
688{
689 /*
690 * Groups consisting entirely of software events can always go on.
691 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100692 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200693 return 1;
694 /*
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
697 */
698 if (cpuctx->exclusive)
699 return 0;
700 /*
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
703 */
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
706 /*
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
709 */
710 return can_add_hw;
711}
712
713static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
715{
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
720}
721
722/*
723 * Cross CPU call to install and enable a performance event
724 *
725 * Must be called with ctx->mutex held
726 */
727static void __perf_install_in_context(void *info)
728{
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100748 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
755 */
756 perf_disable();
757
758 add_event_to_ctx(event, ctx);
759
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
762
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200763 /*
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
766 */
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
770
771 /*
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
775 */
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100779 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780
781 if (err) {
782 /*
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
786 */
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
792 }
793 }
794
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
797
798 unlock:
799 perf_enable();
800
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100801 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200802}
803
804/*
805 * Attach a performance event to a context
806 *
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
809 *
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
813 *
814 * Must be called with ctx->mutex held.
815 */
816static void
817perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
820{
821 struct task_struct *task = ctx->task;
822
823 if (!task) {
824 /*
825 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200826 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200827 */
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
831 }
832
833retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
836
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100837 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200838 /*
839 * we need to retry the smp call.
840 */
841 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100842 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200843 goto retry;
844 }
845
846 /*
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
850 */
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100853 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200854}
855
856/*
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
863 */
864static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
866{
867 struct perf_event *sub;
868
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
875}
876
877/*
878 * Cross CPU call to enable a performance event
879 */
880static void __perf_event_enable(void *info)
881{
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
887
888 /*
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
891 */
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
896 }
897
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100898 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200899 ctx->is_active = 1;
900 update_context_time(ctx);
901
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
905
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
908
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100921 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100923 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200924 perf_enable();
925 }
926
927 if (err) {
928 /*
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
931 */
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
937 }
938 }
939
940 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100941 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200942}
943
944/*
945 * Enable a event.
946 *
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
952 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100953void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200954{
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
957
958 if (!task) {
959 /*
960 * Enable the event on the cpu that it's on
961 */
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
965 }
966
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100967 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
970
971 /*
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
977 */
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
980
981 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100982 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200983 task_oncpu_function_call(task, __perf_event_enable, event);
984
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100985 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200986
987 /*
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
990 */
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
993
994 /*
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
997 */
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1000
1001 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001002 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001003}
1004
1005static int perf_event_refresh(struct perf_event *event, int refresh)
1006{
1007 /*
1008 * not supported on inherited events
1009 */
1010 if (event->attr.inherit)
1011 return -EINVAL;
1012
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1015
1016 return 0;
1017}
1018
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001019enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023};
1024
1025static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001028{
1029 struct perf_event *event;
1030
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001031 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1036
1037 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001038 if (!ctx->nr_active)
1039 goto out_enable;
1040
1041 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1044
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001045 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001047 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001048
1049 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001050 perf_enable();
1051 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001052 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001053}
1054
1055/*
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1065 */
1066static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1068{
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1072}
1073
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001074static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1076{
1077 u64 value;
1078
1079 if (!event->attr.inherit_stat)
1080 return;
1081
1082 /*
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1088 */
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001091 event->pmu->read(event);
1092 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001093
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 /*
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1105 */
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1109
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1112
1113 /*
1114 * Since we swizzled the values, update the user visible data too.
1115 */
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1118}
1119
1120#define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1122
1123static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1125{
1126 struct perf_event *event, *next_event;
1127
1128 if (!ctx->nr_stat)
1129 return;
1130
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001131 update_context_time(ctx);
1132
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1138
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1141
1142 __perf_event_sync_stat(event, next_event);
1143
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1146 }
1147}
1148
1149/*
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1152 *
1153 * We stop each event and update the event value in event->count.
1154 *
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1159 */
1160void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001161 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001162{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 struct pt_regs *regs;
1168 int do_switch = 1;
1169
1170 regs = task_pt_regs(task);
1171 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1172
1173 if (likely(!ctx || !cpuctx->task_ctx))
1174 return;
1175
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001176 rcu_read_lock();
1177 parent = rcu_dereference(ctx->parent_ctx);
1178 next_ctx = next->perf_event_ctxp;
1179 if (parent && next_ctx &&
1180 rcu_dereference(next_ctx->parent_ctx) == parent) {
1181 /*
1182 * Looks like the two contexts are clones, so we might be
1183 * able to optimize the context switch. We lock both
1184 * contexts and check that they are clones under the
1185 * lock (including re-checking that neither has been
1186 * uncloned in the meantime). It doesn't matter which
1187 * order we take the locks because no other cpu could
1188 * be trying to lock both of these tasks.
1189 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001190 raw_spin_lock(&ctx->lock);
1191 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001192 if (context_equiv(ctx, next_ctx)) {
1193 /*
1194 * XXX do we need a memory barrier of sorts
1195 * wrt to rcu_dereference() of perf_event_ctxp
1196 */
1197 task->perf_event_ctxp = next_ctx;
1198 next->perf_event_ctxp = ctx;
1199 ctx->task = next;
1200 next_ctx->task = task;
1201 do_switch = 0;
1202
1203 perf_event_sync_stat(ctx, next_ctx);
1204 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001205 raw_spin_unlock(&next_ctx->lock);
1206 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001207 }
1208 rcu_read_unlock();
1209
1210 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001211 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001212 cpuctx->task_ctx = NULL;
1213 }
1214}
1215
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001216static void task_ctx_sched_out(struct perf_event_context *ctx,
1217 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218{
1219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220
1221 if (!cpuctx->task_ctx)
1222 return;
1223
1224 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225 return;
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001228 cpuctx->task_ctx = NULL;
1229}
1230
1231/*
1232 * Called with IRQs disabled
1233 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001234static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001235{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001236 task_ctx_sched_out(ctx, EVENT_ALL);
1237}
1238
1239/*
1240 * Called with IRQs disabled
1241 */
1242static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243 enum event_type_t event_type)
1244{
1245 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246}
1247
1248static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001250 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001253
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001254 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001256 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001257 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001258 continue;
1259
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001260 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001272}
1273
1274static void
1275ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001276 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001277{
1278 struct perf_event *event;
1279 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001280
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001281 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282 /* Ignore events in OFF or ERROR state */
1283 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001284 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285 /*
1286 * Listen to the 'cpu' scheduling filter constraint
1287 * of events:
1288 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001289 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001292 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001293 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001294 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001296}
1297
1298static void
1299ctx_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx,
1301 enum event_type_t event_type)
1302{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001303 raw_spin_lock(&ctx->lock);
1304 ctx->is_active = 1;
1305 if (likely(!ctx->nr_events))
1306 goto out;
1307
1308 ctx->timestamp = perf_clock();
1309
1310 perf_disable();
1311
1312 /*
1313 * First go through the list and put on any pinned groups
1314 * in order to give them the best chance of going on.
1315 */
1316 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001317 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001318
1319 /* Then walk through the lower prio flexible groups */
1320 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001321 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001322
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001323 perf_enable();
1324 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001325 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001326}
1327
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001328static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329 enum event_type_t event_type)
1330{
1331 struct perf_event_context *ctx = &cpuctx->ctx;
1332
1333 ctx_sched_in(ctx, cpuctx, event_type);
1334}
1335
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001336static void task_ctx_sched_in(struct task_struct *task,
1337 enum event_type_t event_type)
1338{
1339 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340 struct perf_event_context *ctx = task->perf_event_ctxp;
1341
1342 if (likely(!ctx))
1343 return;
1344 if (cpuctx->task_ctx == ctx)
1345 return;
1346 ctx_sched_in(ctx, cpuctx, event_type);
1347 cpuctx->task_ctx = ctx;
1348}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001349/*
1350 * Called from scheduler to add the events of the current task
1351 * with interrupts disabled.
1352 *
1353 * We restore the event value and then enable it.
1354 *
1355 * This does not protect us against NMI, but enable()
1356 * sets the enabled bit in the control field of event _before_
1357 * accessing the event control register. If a NMI hits, then it will
1358 * keep the event running.
1359 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001360void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001362 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001364
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365 if (likely(!ctx))
1366 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001367
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001368 if (cpuctx->task_ctx == ctx)
1369 return;
1370
eranian@google.com9b33fa62010-03-10 22:26:05 -08001371 perf_disable();
1372
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001373 /*
1374 * We want to keep the following priority order:
1375 * cpu pinned (that don't need to move), task pinned,
1376 * cpu flexible, task flexible.
1377 */
1378 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1379
1380 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1381 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1382 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1383
1384 cpuctx->task_ctx = ctx;
eranian@google.com9b33fa62010-03-10 22:26:05 -08001385
1386 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001387}
1388
1389#define MAX_INTERRUPTS (~0ULL)
1390
1391static void perf_log_throttle(struct perf_event *event, int enable);
1392
Peter Zijlstraabd50712010-01-26 18:50:16 +01001393static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1394{
1395 u64 frequency = event->attr.sample_freq;
1396 u64 sec = NSEC_PER_SEC;
1397 u64 divisor, dividend;
1398
1399 int count_fls, nsec_fls, frequency_fls, sec_fls;
1400
1401 count_fls = fls64(count);
1402 nsec_fls = fls64(nsec);
1403 frequency_fls = fls64(frequency);
1404 sec_fls = 30;
1405
1406 /*
1407 * We got @count in @nsec, with a target of sample_freq HZ
1408 * the target period becomes:
1409 *
1410 * @count * 10^9
1411 * period = -------------------
1412 * @nsec * sample_freq
1413 *
1414 */
1415
1416 /*
1417 * Reduce accuracy by one bit such that @a and @b converge
1418 * to a similar magnitude.
1419 */
1420#define REDUCE_FLS(a, b) \
1421do { \
1422 if (a##_fls > b##_fls) { \
1423 a >>= 1; \
1424 a##_fls--; \
1425 } else { \
1426 b >>= 1; \
1427 b##_fls--; \
1428 } \
1429} while (0)
1430
1431 /*
1432 * Reduce accuracy until either term fits in a u64, then proceed with
1433 * the other, so that finally we can do a u64/u64 division.
1434 */
1435 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1436 REDUCE_FLS(nsec, frequency);
1437 REDUCE_FLS(sec, count);
1438 }
1439
1440 if (count_fls + sec_fls > 64) {
1441 divisor = nsec * frequency;
1442
1443 while (count_fls + sec_fls > 64) {
1444 REDUCE_FLS(count, sec);
1445 divisor >>= 1;
1446 }
1447
1448 dividend = count * sec;
1449 } else {
1450 dividend = count * sec;
1451
1452 while (nsec_fls + frequency_fls > 64) {
1453 REDUCE_FLS(nsec, frequency);
1454 dividend >>= 1;
1455 }
1456
1457 divisor = nsec * frequency;
1458 }
1459
1460 return div64_u64(dividend, divisor);
1461}
1462
Stephane Eraniand76a0812010-02-08 17:06:01 +02001463static void perf_event_stop(struct perf_event *event)
1464{
1465 if (!event->pmu->stop)
1466 return event->pmu->disable(event);
1467
1468 return event->pmu->stop(event);
1469}
1470
1471static int perf_event_start(struct perf_event *event)
1472{
1473 if (!event->pmu->start)
1474 return event->pmu->enable(event);
1475
1476 return event->pmu->start(event);
1477}
1478
Peter Zijlstraabd50712010-01-26 18:50:16 +01001479static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001480{
1481 struct hw_perf_event *hwc = &event->hw;
1482 u64 period, sample_period;
1483 s64 delta;
1484
Peter Zijlstraabd50712010-01-26 18:50:16 +01001485 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001486
1487 delta = (s64)(period - hwc->sample_period);
1488 delta = (delta + 7) / 8; /* low pass filter */
1489
1490 sample_period = hwc->sample_period + delta;
1491
1492 if (!sample_period)
1493 sample_period = 1;
1494
1495 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496
1497 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1498 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001499 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001500 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001501 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001502 perf_enable();
1503 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001504}
1505
1506static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507{
1508 struct perf_event *event;
1509 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001510 u64 interrupts, now;
1511 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001512
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001513 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001514 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515 if (event->state != PERF_EVENT_STATE_ACTIVE)
1516 continue;
1517
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001518 if (event->cpu != -1 && event->cpu != smp_processor_id())
1519 continue;
1520
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001521 hwc = &event->hw;
1522
1523 interrupts = hwc->interrupts;
1524 hwc->interrupts = 0;
1525
1526 /*
1527 * unthrottle events on the tick
1528 */
1529 if (interrupts == MAX_INTERRUPTS) {
1530 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001531 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001533 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001534 }
1535
1536 if (!event->attr.freq || !event->attr.sample_freq)
1537 continue;
1538
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001539 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001540 event->pmu->read(event);
1541 now = atomic64_read(&event->count);
1542 delta = now - hwc->freq_count_stamp;
1543 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001544
Peter Zijlstraabd50712010-01-26 18:50:16 +01001545 if (delta > 0)
1546 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001547 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001548 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001549 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001550}
1551
1552/*
1553 * Round-robin a context's events:
1554 */
1555static void rotate_ctx(struct perf_event_context *ctx)
1556{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001557 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001558
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001559 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001560 list_rotate_left(&ctx->flexible_groups);
1561
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001562 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001563}
1564
Peter Zijlstra49f47432009-12-27 11:51:52 +01001565void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001566{
1567 struct perf_cpu_context *cpuctx;
1568 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001569 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001570
1571 if (!atomic_read(&nr_events))
1572 return;
1573
Peter Zijlstra49f47432009-12-27 11:51:52 +01001574 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001575 if (cpuctx->ctx.nr_events &&
1576 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1577 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001578
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001579 ctx = curr->perf_event_ctxp;
1580 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1581 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001582
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001583 perf_ctx_adjust_freq(&cpuctx->ctx);
1584 if (ctx)
1585 perf_ctx_adjust_freq(ctx);
1586
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001587 if (!rotate)
1588 return;
1589
1590 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001591 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001592 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001593 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001594
1595 rotate_ctx(&cpuctx->ctx);
1596 if (ctx)
1597 rotate_ctx(ctx);
1598
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001599 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001600 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001601 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001602 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603}
1604
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001605static int event_enable_on_exec(struct perf_event *event,
1606 struct perf_event_context *ctx)
1607{
1608 if (!event->attr.enable_on_exec)
1609 return 0;
1610
1611 event->attr.enable_on_exec = 0;
1612 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1613 return 0;
1614
1615 __perf_event_mark_enabled(event, ctx);
1616
1617 return 1;
1618}
1619
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001620/*
1621 * Enable all of a task's events that have been marked enable-on-exec.
1622 * This expects task == current.
1623 */
1624static void perf_event_enable_on_exec(struct task_struct *task)
1625{
1626 struct perf_event_context *ctx;
1627 struct perf_event *event;
1628 unsigned long flags;
1629 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001630 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001631
1632 local_irq_save(flags);
1633 ctx = task->perf_event_ctxp;
1634 if (!ctx || !ctx->nr_events)
1635 goto out;
1636
1637 __perf_event_task_sched_out(ctx);
1638
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001639 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001640
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001641 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1642 ret = event_enable_on_exec(event, ctx);
1643 if (ret)
1644 enabled = 1;
1645 }
1646
1647 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1648 ret = event_enable_on_exec(event, ctx);
1649 if (ret)
1650 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001651 }
1652
1653 /*
1654 * Unclone this context if we enabled any event.
1655 */
1656 if (enabled)
1657 unclone_ctx(ctx);
1658
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001659 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001660
Peter Zijlstra49f47432009-12-27 11:51:52 +01001661 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662 out:
1663 local_irq_restore(flags);
1664}
1665
1666/*
1667 * Cross CPU call to read the hardware event
1668 */
1669static void __perf_event_read(void *info)
1670{
1671 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1672 struct perf_event *event = info;
1673 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001674
1675 /*
1676 * If this is a task context, we need to check whether it is
1677 * the current task context of this cpu. If not it has been
1678 * scheduled out before the smp call arrived. In that case
1679 * event->count would have been updated to a recent sample
1680 * when the event was scheduled out.
1681 */
1682 if (ctx->task && cpuctx->task_ctx != ctx)
1683 return;
1684
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001685 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001686 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001687 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001688 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001689
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001690 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001691}
1692
1693static u64 perf_event_read(struct perf_event *event)
1694{
1695 /*
1696 * If event is enabled and currently active on a CPU, update the
1697 * value in the event structure:
1698 */
1699 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1700 smp_call_function_single(event->oncpu,
1701 __perf_event_read, event, 1);
1702 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001703 struct perf_event_context *ctx = event->ctx;
1704 unsigned long flags;
1705
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001706 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001707 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001708 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001709 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001710 }
1711
1712 return atomic64_read(&event->count);
1713}
1714
1715/*
1716 * Initialize the perf_event context in a task_struct:
1717 */
1718static void
1719__perf_event_init_context(struct perf_event_context *ctx,
1720 struct task_struct *task)
1721{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001722 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001723 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001724 INIT_LIST_HEAD(&ctx->pinned_groups);
1725 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001726 INIT_LIST_HEAD(&ctx->event_list);
1727 atomic_set(&ctx->refcount, 1);
1728 ctx->task = task;
1729}
1730
1731static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1732{
1733 struct perf_event_context *ctx;
1734 struct perf_cpu_context *cpuctx;
1735 struct task_struct *task;
1736 unsigned long flags;
1737 int err;
1738
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001739 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001740 /* Must be root to operate on a CPU event: */
1741 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1742 return ERR_PTR(-EACCES);
1743
Paul Mackerras0f624e72009-12-15 19:40:32 +11001744 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001745 return ERR_PTR(-EINVAL);
1746
1747 /*
1748 * We could be clever and allow to attach a event to an
1749 * offline CPU and activate it when the CPU comes up, but
1750 * that's for later.
1751 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001752 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001753 return ERR_PTR(-ENODEV);
1754
1755 cpuctx = &per_cpu(perf_cpu_context, cpu);
1756 ctx = &cpuctx->ctx;
1757 get_ctx(ctx);
1758
1759 return ctx;
1760 }
1761
1762 rcu_read_lock();
1763 if (!pid)
1764 task = current;
1765 else
1766 task = find_task_by_vpid(pid);
1767 if (task)
1768 get_task_struct(task);
1769 rcu_read_unlock();
1770
1771 if (!task)
1772 return ERR_PTR(-ESRCH);
1773
1774 /*
1775 * Can't attach events to a dying task.
1776 */
1777 err = -ESRCH;
1778 if (task->flags & PF_EXITING)
1779 goto errout;
1780
1781 /* Reuse ptrace permission checks for now. */
1782 err = -EACCES;
1783 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1784 goto errout;
1785
1786 retry:
1787 ctx = perf_lock_task_context(task, &flags);
1788 if (ctx) {
1789 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001790 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001791 }
1792
1793 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001794 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001795 err = -ENOMEM;
1796 if (!ctx)
1797 goto errout;
1798 __perf_event_init_context(ctx, task);
1799 get_ctx(ctx);
1800 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801 /*
1802 * We raced with some other task; use
1803 * the context they set.
1804 */
1805 kfree(ctx);
1806 goto retry;
1807 }
1808 get_task_struct(task);
1809 }
1810
1811 put_task_struct(task);
1812 return ctx;
1813
1814 errout:
1815 put_task_struct(task);
1816 return ERR_PTR(err);
1817}
1818
Li Zefan6fb29152009-10-15 11:21:42 +08001819static void perf_event_free_filter(struct perf_event *event);
1820
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001821static void free_event_rcu(struct rcu_head *head)
1822{
1823 struct perf_event *event;
1824
1825 event = container_of(head, struct perf_event, rcu_head);
1826 if (event->ns)
1827 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001828 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001829 kfree(event);
1830}
1831
1832static void perf_pending_sync(struct perf_event *event);
1833
1834static void free_event(struct perf_event *event)
1835{
1836 perf_pending_sync(event);
1837
1838 if (!event->parent) {
1839 atomic_dec(&nr_events);
1840 if (event->attr.mmap)
1841 atomic_dec(&nr_mmap_events);
1842 if (event->attr.comm)
1843 atomic_dec(&nr_comm_events);
1844 if (event->attr.task)
1845 atomic_dec(&nr_task_events);
1846 }
1847
1848 if (event->output) {
1849 fput(event->output->filp);
1850 event->output = NULL;
1851 }
1852
1853 if (event->destroy)
1854 event->destroy(event);
1855
1856 put_ctx(event->ctx);
1857 call_rcu(&event->rcu_head, free_event_rcu);
1858}
1859
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001860int perf_event_release_kernel(struct perf_event *event)
1861{
1862 struct perf_event_context *ctx = event->ctx;
1863
1864 WARN_ON_ONCE(ctx->parent_ctx);
1865 mutex_lock(&ctx->mutex);
1866 perf_event_remove_from_context(event);
1867 mutex_unlock(&ctx->mutex);
1868
1869 mutex_lock(&event->owner->perf_event_mutex);
1870 list_del_init(&event->owner_entry);
1871 mutex_unlock(&event->owner->perf_event_mutex);
1872 put_task_struct(event->owner);
1873
1874 free_event(event);
1875
1876 return 0;
1877}
1878EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1879
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001880/*
1881 * Called when the last reference to the file is gone.
1882 */
1883static int perf_release(struct inode *inode, struct file *file)
1884{
1885 struct perf_event *event = file->private_data;
1886
1887 file->private_data = NULL;
1888
1889 return perf_event_release_kernel(event);
1890}
1891
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001892static int perf_event_read_size(struct perf_event *event)
1893{
1894 int entry = sizeof(u64); /* value */
1895 int size = 0;
1896 int nr = 1;
1897
1898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899 size += sizeof(u64);
1900
1901 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902 size += sizeof(u64);
1903
1904 if (event->attr.read_format & PERF_FORMAT_ID)
1905 entry += sizeof(u64);
1906
1907 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1908 nr += event->group_leader->nr_siblings;
1909 size += sizeof(u64);
1910 }
1911
1912 size += entry * nr;
1913
1914 return size;
1915}
1916
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001917u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001918{
1919 struct perf_event *child;
1920 u64 total = 0;
1921
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001922 *enabled = 0;
1923 *running = 0;
1924
Peter Zijlstra6f105812009-11-20 22:19:56 +01001925 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001926 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001927 *enabled += event->total_time_enabled +
1928 atomic64_read(&event->child_total_time_enabled);
1929 *running += event->total_time_running +
1930 atomic64_read(&event->child_total_time_running);
1931
1932 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001933 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001934 *enabled += child->total_time_enabled;
1935 *running += child->total_time_running;
1936 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001937 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001938
1939 return total;
1940}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001941EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001942
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001943static int perf_event_read_group(struct perf_event *event,
1944 u64 read_format, char __user *buf)
1945{
1946 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001947 int n = 0, size = 0, ret = -EFAULT;
1948 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001949 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001950 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001951
Peter Zijlstra6f105812009-11-20 22:19:56 +01001952 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001953 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001954
1955 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001956 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1957 values[n++] = enabled;
1958 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1959 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001960 values[n++] = count;
1961 if (read_format & PERF_FORMAT_ID)
1962 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001963
1964 size = n * sizeof(u64);
1965
1966 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001967 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001968
Peter Zijlstra6f105812009-11-20 22:19:56 +01001969 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001970
1971 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001972 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001973
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001974 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001975 if (read_format & PERF_FORMAT_ID)
1976 values[n++] = primary_event_id(sub);
1977
1978 size = n * sizeof(u64);
1979
Stephane Eranian184d3da2009-11-23 21:40:49 -08001980 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001981 ret = -EFAULT;
1982 goto unlock;
1983 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001984
1985 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001986 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001987unlock:
1988 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001989
Peter Zijlstraabf48682009-11-20 22:19:49 +01001990 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001991}
1992
1993static int perf_event_read_one(struct perf_event *event,
1994 u64 read_format, char __user *buf)
1995{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001996 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001997 u64 values[4];
1998 int n = 0;
1999
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002000 values[n++] = perf_event_read_value(event, &enabled, &running);
2001 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2002 values[n++] = enabled;
2003 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2004 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002005 if (read_format & PERF_FORMAT_ID)
2006 values[n++] = primary_event_id(event);
2007
2008 if (copy_to_user(buf, values, n * sizeof(u64)))
2009 return -EFAULT;
2010
2011 return n * sizeof(u64);
2012}
2013
2014/*
2015 * Read the performance event - simple non blocking version for now
2016 */
2017static ssize_t
2018perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2019{
2020 u64 read_format = event->attr.read_format;
2021 int ret;
2022
2023 /*
2024 * Return end-of-file for a read on a event that is in
2025 * error state (i.e. because it was pinned but it couldn't be
2026 * scheduled on to the CPU at some point).
2027 */
2028 if (event->state == PERF_EVENT_STATE_ERROR)
2029 return 0;
2030
2031 if (count < perf_event_read_size(event))
2032 return -ENOSPC;
2033
2034 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002035 if (read_format & PERF_FORMAT_GROUP)
2036 ret = perf_event_read_group(event, read_format, buf);
2037 else
2038 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002039
2040 return ret;
2041}
2042
2043static ssize_t
2044perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2045{
2046 struct perf_event *event = file->private_data;
2047
2048 return perf_read_hw(event, buf, count);
2049}
2050
2051static unsigned int perf_poll(struct file *file, poll_table *wait)
2052{
2053 struct perf_event *event = file->private_data;
2054 struct perf_mmap_data *data;
2055 unsigned int events = POLL_HUP;
2056
2057 rcu_read_lock();
2058 data = rcu_dereference(event->data);
2059 if (data)
2060 events = atomic_xchg(&data->poll, 0);
2061 rcu_read_unlock();
2062
2063 poll_wait(file, &event->waitq, wait);
2064
2065 return events;
2066}
2067
2068static void perf_event_reset(struct perf_event *event)
2069{
2070 (void)perf_event_read(event);
2071 atomic64_set(&event->count, 0);
2072 perf_event_update_userpage(event);
2073}
2074
2075/*
2076 * Holding the top-level event's child_mutex means that any
2077 * descendant process that has inherited this event will block
2078 * in sync_child_event if it goes to exit, thus satisfying the
2079 * task existence requirements of perf_event_enable/disable.
2080 */
2081static void perf_event_for_each_child(struct perf_event *event,
2082 void (*func)(struct perf_event *))
2083{
2084 struct perf_event *child;
2085
2086 WARN_ON_ONCE(event->ctx->parent_ctx);
2087 mutex_lock(&event->child_mutex);
2088 func(event);
2089 list_for_each_entry(child, &event->child_list, child_list)
2090 func(child);
2091 mutex_unlock(&event->child_mutex);
2092}
2093
2094static void perf_event_for_each(struct perf_event *event,
2095 void (*func)(struct perf_event *))
2096{
2097 struct perf_event_context *ctx = event->ctx;
2098 struct perf_event *sibling;
2099
2100 WARN_ON_ONCE(ctx->parent_ctx);
2101 mutex_lock(&ctx->mutex);
2102 event = event->group_leader;
2103
2104 perf_event_for_each_child(event, func);
2105 func(event);
2106 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2107 perf_event_for_each_child(event, func);
2108 mutex_unlock(&ctx->mutex);
2109}
2110
2111static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112{
2113 struct perf_event_context *ctx = event->ctx;
2114 unsigned long size;
2115 int ret = 0;
2116 u64 value;
2117
2118 if (!event->attr.sample_period)
2119 return -EINVAL;
2120
2121 size = copy_from_user(&value, arg, sizeof(value));
2122 if (size != sizeof(value))
2123 return -EFAULT;
2124
2125 if (!value)
2126 return -EINVAL;
2127
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002128 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002129 if (event->attr.freq) {
2130 if (value > sysctl_perf_event_sample_rate) {
2131 ret = -EINVAL;
2132 goto unlock;
2133 }
2134
2135 event->attr.sample_freq = value;
2136 } else {
2137 event->attr.sample_period = value;
2138 event->hw.sample_period = value;
2139 }
2140unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002141 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002142
2143 return ret;
2144}
2145
Li Zefan6fb29152009-10-15 11:21:42 +08002146static int perf_event_set_output(struct perf_event *event, int output_fd);
2147static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002148
2149static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2150{
2151 struct perf_event *event = file->private_data;
2152 void (*func)(struct perf_event *);
2153 u32 flags = arg;
2154
2155 switch (cmd) {
2156 case PERF_EVENT_IOC_ENABLE:
2157 func = perf_event_enable;
2158 break;
2159 case PERF_EVENT_IOC_DISABLE:
2160 func = perf_event_disable;
2161 break;
2162 case PERF_EVENT_IOC_RESET:
2163 func = perf_event_reset;
2164 break;
2165
2166 case PERF_EVENT_IOC_REFRESH:
2167 return perf_event_refresh(event, arg);
2168
2169 case PERF_EVENT_IOC_PERIOD:
2170 return perf_event_period(event, (u64 __user *)arg);
2171
2172 case PERF_EVENT_IOC_SET_OUTPUT:
2173 return perf_event_set_output(event, arg);
2174
Li Zefan6fb29152009-10-15 11:21:42 +08002175 case PERF_EVENT_IOC_SET_FILTER:
2176 return perf_event_set_filter(event, (void __user *)arg);
2177
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002178 default:
2179 return -ENOTTY;
2180 }
2181
2182 if (flags & PERF_IOC_FLAG_GROUP)
2183 perf_event_for_each(event, func);
2184 else
2185 perf_event_for_each_child(event, func);
2186
2187 return 0;
2188}
2189
2190int perf_event_task_enable(void)
2191{
2192 struct perf_event *event;
2193
2194 mutex_lock(&current->perf_event_mutex);
2195 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2196 perf_event_for_each_child(event, perf_event_enable);
2197 mutex_unlock(&current->perf_event_mutex);
2198
2199 return 0;
2200}
2201
2202int perf_event_task_disable(void)
2203{
2204 struct perf_event *event;
2205
2206 mutex_lock(&current->perf_event_mutex);
2207 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2208 perf_event_for_each_child(event, perf_event_disable);
2209 mutex_unlock(&current->perf_event_mutex);
2210
2211 return 0;
2212}
2213
2214#ifndef PERF_EVENT_INDEX_OFFSET
2215# define PERF_EVENT_INDEX_OFFSET 0
2216#endif
2217
2218static int perf_event_index(struct perf_event *event)
2219{
2220 if (event->state != PERF_EVENT_STATE_ACTIVE)
2221 return 0;
2222
2223 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224}
2225
2226/*
2227 * Callers need to ensure there can be no nesting of this function, otherwise
2228 * the seqlock logic goes bad. We can not serialize this because the arch
2229 * code calls this from NMI context.
2230 */
2231void perf_event_update_userpage(struct perf_event *event)
2232{
2233 struct perf_event_mmap_page *userpg;
2234 struct perf_mmap_data *data;
2235
2236 rcu_read_lock();
2237 data = rcu_dereference(event->data);
2238 if (!data)
2239 goto unlock;
2240
2241 userpg = data->user_page;
2242
2243 /*
2244 * Disable preemption so as to not let the corresponding user-space
2245 * spin too long if we get preempted.
2246 */
2247 preempt_disable();
2248 ++userpg->lock;
2249 barrier();
2250 userpg->index = perf_event_index(event);
2251 userpg->offset = atomic64_read(&event->count);
2252 if (event->state == PERF_EVENT_STATE_ACTIVE)
2253 userpg->offset -= atomic64_read(&event->hw.prev_count);
2254
2255 userpg->time_enabled = event->total_time_enabled +
2256 atomic64_read(&event->child_total_time_enabled);
2257
2258 userpg->time_running = event->total_time_running +
2259 atomic64_read(&event->child_total_time_running);
2260
2261 barrier();
2262 ++userpg->lock;
2263 preempt_enable();
2264unlock:
2265 rcu_read_unlock();
2266}
2267
Peter Zijlstra906010b2009-09-21 16:08:49 +02002268static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002269{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002270 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002271}
2272
Peter Zijlstra906010b2009-09-21 16:08:49 +02002273#ifndef CONFIG_PERF_USE_VMALLOC
2274
2275/*
2276 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2277 */
2278
2279static struct page *
2280perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2281{
2282 if (pgoff > data->nr_pages)
2283 return NULL;
2284
2285 if (pgoff == 0)
2286 return virt_to_page(data->user_page);
2287
2288 return virt_to_page(data->data_pages[pgoff - 1]);
2289}
2290
2291static struct perf_mmap_data *
2292perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002293{
2294 struct perf_mmap_data *data;
2295 unsigned long size;
2296 int i;
2297
2298 WARN_ON(atomic_read(&event->mmap_count));
2299
2300 size = sizeof(struct perf_mmap_data);
2301 size += nr_pages * sizeof(void *);
2302
2303 data = kzalloc(size, GFP_KERNEL);
2304 if (!data)
2305 goto fail;
2306
2307 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2308 if (!data->user_page)
2309 goto fail_user_page;
2310
2311 for (i = 0; i < nr_pages; i++) {
2312 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2313 if (!data->data_pages[i])
2314 goto fail_data_pages;
2315 }
2316
Peter Zijlstra906010b2009-09-21 16:08:49 +02002317 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002318 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002319
Peter Zijlstra906010b2009-09-21 16:08:49 +02002320 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002321
2322fail_data_pages:
2323 for (i--; i >= 0; i--)
2324 free_page((unsigned long)data->data_pages[i]);
2325
2326 free_page((unsigned long)data->user_page);
2327
2328fail_user_page:
2329 kfree(data);
2330
2331fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002332 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002333}
2334
2335static void perf_mmap_free_page(unsigned long addr)
2336{
2337 struct page *page = virt_to_page((void *)addr);
2338
2339 page->mapping = NULL;
2340 __free_page(page);
2341}
2342
Peter Zijlstra906010b2009-09-21 16:08:49 +02002343static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002344{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002345 int i;
2346
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002347 perf_mmap_free_page((unsigned long)data->user_page);
2348 for (i = 0; i < data->nr_pages; i++)
2349 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002350 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002351}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002352
Peter Zijlstra906010b2009-09-21 16:08:49 +02002353#else
2354
2355/*
2356 * Back perf_mmap() with vmalloc memory.
2357 *
2358 * Required for architectures that have d-cache aliasing issues.
2359 */
2360
2361static struct page *
2362perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2363{
2364 if (pgoff > (1UL << data->data_order))
2365 return NULL;
2366
2367 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2368}
2369
2370static void perf_mmap_unmark_page(void *addr)
2371{
2372 struct page *page = vmalloc_to_page(addr);
2373
2374 page->mapping = NULL;
2375}
2376
2377static void perf_mmap_data_free_work(struct work_struct *work)
2378{
2379 struct perf_mmap_data *data;
2380 void *base;
2381 int i, nr;
2382
2383 data = container_of(work, struct perf_mmap_data, work);
2384 nr = 1 << data->data_order;
2385
2386 base = data->user_page;
2387 for (i = 0; i < nr + 1; i++)
2388 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2389
2390 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002391 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002392}
2393
2394static void perf_mmap_data_free(struct perf_mmap_data *data)
2395{
2396 schedule_work(&data->work);
2397}
2398
2399static struct perf_mmap_data *
2400perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2401{
2402 struct perf_mmap_data *data;
2403 unsigned long size;
2404 void *all_buf;
2405
2406 WARN_ON(atomic_read(&event->mmap_count));
2407
2408 size = sizeof(struct perf_mmap_data);
2409 size += sizeof(void *);
2410
2411 data = kzalloc(size, GFP_KERNEL);
2412 if (!data)
2413 goto fail;
2414
2415 INIT_WORK(&data->work, perf_mmap_data_free_work);
2416
2417 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2418 if (!all_buf)
2419 goto fail_all_buf;
2420
2421 data->user_page = all_buf;
2422 data->data_pages[0] = all_buf + PAGE_SIZE;
2423 data->data_order = ilog2(nr_pages);
2424 data->nr_pages = 1;
2425
2426 return data;
2427
2428fail_all_buf:
2429 kfree(data);
2430
2431fail:
2432 return NULL;
2433}
2434
2435#endif
2436
2437static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2438{
2439 struct perf_event *event = vma->vm_file->private_data;
2440 struct perf_mmap_data *data;
2441 int ret = VM_FAULT_SIGBUS;
2442
2443 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2444 if (vmf->pgoff == 0)
2445 ret = 0;
2446 return ret;
2447 }
2448
2449 rcu_read_lock();
2450 data = rcu_dereference(event->data);
2451 if (!data)
2452 goto unlock;
2453
2454 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2455 goto unlock;
2456
2457 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2458 if (!vmf->page)
2459 goto unlock;
2460
2461 get_page(vmf->page);
2462 vmf->page->mapping = vma->vm_file->f_mapping;
2463 vmf->page->index = vmf->pgoff;
2464
2465 ret = 0;
2466unlock:
2467 rcu_read_unlock();
2468
2469 return ret;
2470}
2471
2472static void
2473perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2474{
2475 long max_size = perf_data_size(data);
2476
2477 atomic_set(&data->lock, -1);
2478
2479 if (event->attr.watermark) {
2480 data->watermark = min_t(long, max_size,
2481 event->attr.wakeup_watermark);
2482 }
2483
2484 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002485 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002486
2487
2488 rcu_assign_pointer(event->data, data);
2489}
2490
2491static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2492{
2493 struct perf_mmap_data *data;
2494
2495 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2496 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002497}
2498
Peter Zijlstra906010b2009-09-21 16:08:49 +02002499static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002500{
2501 struct perf_mmap_data *data = event->data;
2502
2503 WARN_ON(atomic_read(&event->mmap_count));
2504
2505 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002506 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002507}
2508
2509static void perf_mmap_open(struct vm_area_struct *vma)
2510{
2511 struct perf_event *event = vma->vm_file->private_data;
2512
2513 atomic_inc(&event->mmap_count);
2514}
2515
2516static void perf_mmap_close(struct vm_area_struct *vma)
2517{
2518 struct perf_event *event = vma->vm_file->private_data;
2519
2520 WARN_ON_ONCE(event->ctx->parent_ctx);
2521 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002522 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002523 struct user_struct *user = current_user();
2524
Peter Zijlstra906010b2009-09-21 16:08:49 +02002525 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002526 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002527 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002528 mutex_unlock(&event->mmap_mutex);
2529 }
2530}
2531
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002532static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002533 .open = perf_mmap_open,
2534 .close = perf_mmap_close,
2535 .fault = perf_mmap_fault,
2536 .page_mkwrite = perf_mmap_fault,
2537};
2538
2539static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2540{
2541 struct perf_event *event = file->private_data;
2542 unsigned long user_locked, user_lock_limit;
2543 struct user_struct *user = current_user();
2544 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002545 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002546 unsigned long vma_size;
2547 unsigned long nr_pages;
2548 long user_extra, extra;
2549 int ret = 0;
2550
2551 if (!(vma->vm_flags & VM_SHARED))
2552 return -EINVAL;
2553
2554 vma_size = vma->vm_end - vma->vm_start;
2555 nr_pages = (vma_size / PAGE_SIZE) - 1;
2556
2557 /*
2558 * If we have data pages ensure they're a power-of-two number, so we
2559 * can do bitmasks instead of modulo.
2560 */
2561 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562 return -EINVAL;
2563
2564 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565 return -EINVAL;
2566
2567 if (vma->vm_pgoff != 0)
2568 return -EINVAL;
2569
2570 WARN_ON_ONCE(event->ctx->parent_ctx);
2571 mutex_lock(&event->mmap_mutex);
2572 if (event->output) {
2573 ret = -EINVAL;
2574 goto unlock;
2575 }
2576
2577 if (atomic_inc_not_zero(&event->mmap_count)) {
2578 if (nr_pages != event->data->nr_pages)
2579 ret = -EINVAL;
2580 goto unlock;
2581 }
2582
2583 user_extra = nr_pages + 1;
2584 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2585
2586 /*
2587 * Increase the limit linearly with more CPUs:
2588 */
2589 user_lock_limit *= num_online_cpus();
2590
2591 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592
2593 extra = 0;
2594 if (user_locked > user_lock_limit)
2595 extra = user_locked - user_lock_limit;
2596
Jiri Slaby78d7d402010-03-05 13:42:54 -08002597 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002598 lock_limit >>= PAGE_SHIFT;
2599 locked = vma->vm_mm->locked_vm + extra;
2600
2601 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2602 !capable(CAP_IPC_LOCK)) {
2603 ret = -EPERM;
2604 goto unlock;
2605 }
2606
2607 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002608
2609 data = perf_mmap_data_alloc(event, nr_pages);
2610 ret = -ENOMEM;
2611 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002612 goto unlock;
2613
Peter Zijlstra906010b2009-09-21 16:08:49 +02002614 ret = 0;
2615 perf_mmap_data_init(event, data);
2616
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002617 atomic_set(&event->mmap_count, 1);
2618 atomic_long_add(user_extra, &user->locked_vm);
2619 vma->vm_mm->locked_vm += extra;
2620 event->data->nr_locked = extra;
2621 if (vma->vm_flags & VM_WRITE)
2622 event->data->writable = 1;
2623
2624unlock:
2625 mutex_unlock(&event->mmap_mutex);
2626
2627 vma->vm_flags |= VM_RESERVED;
2628 vma->vm_ops = &perf_mmap_vmops;
2629
2630 return ret;
2631}
2632
2633static int perf_fasync(int fd, struct file *filp, int on)
2634{
2635 struct inode *inode = filp->f_path.dentry->d_inode;
2636 struct perf_event *event = filp->private_data;
2637 int retval;
2638
2639 mutex_lock(&inode->i_mutex);
2640 retval = fasync_helper(fd, filp, on, &event->fasync);
2641 mutex_unlock(&inode->i_mutex);
2642
2643 if (retval < 0)
2644 return retval;
2645
2646 return 0;
2647}
2648
2649static const struct file_operations perf_fops = {
2650 .release = perf_release,
2651 .read = perf_read,
2652 .poll = perf_poll,
2653 .unlocked_ioctl = perf_ioctl,
2654 .compat_ioctl = perf_ioctl,
2655 .mmap = perf_mmap,
2656 .fasync = perf_fasync,
2657};
2658
2659/*
2660 * Perf event wakeup
2661 *
2662 * If there's data, ensure we set the poll() state and publish everything
2663 * to user-space before waking everybody up.
2664 */
2665
2666void perf_event_wakeup(struct perf_event *event)
2667{
2668 wake_up_all(&event->waitq);
2669
2670 if (event->pending_kill) {
2671 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2672 event->pending_kill = 0;
2673 }
2674}
2675
2676/*
2677 * Pending wakeups
2678 *
2679 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2680 *
2681 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2682 * single linked list and use cmpxchg() to add entries lockless.
2683 */
2684
2685static void perf_pending_event(struct perf_pending_entry *entry)
2686{
2687 struct perf_event *event = container_of(entry,
2688 struct perf_event, pending);
2689
2690 if (event->pending_disable) {
2691 event->pending_disable = 0;
2692 __perf_event_disable(event);
2693 }
2694
2695 if (event->pending_wakeup) {
2696 event->pending_wakeup = 0;
2697 perf_event_wakeup(event);
2698 }
2699}
2700
2701#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2702
2703static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2704 PENDING_TAIL,
2705};
2706
2707static void perf_pending_queue(struct perf_pending_entry *entry,
2708 void (*func)(struct perf_pending_entry *))
2709{
2710 struct perf_pending_entry **head;
2711
2712 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2713 return;
2714
2715 entry->func = func;
2716
2717 head = &get_cpu_var(perf_pending_head);
2718
2719 do {
2720 entry->next = *head;
2721 } while (cmpxchg(head, entry->next, entry) != entry->next);
2722
2723 set_perf_event_pending();
2724
2725 put_cpu_var(perf_pending_head);
2726}
2727
2728static int __perf_pending_run(void)
2729{
2730 struct perf_pending_entry *list;
2731 int nr = 0;
2732
2733 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2734 while (list != PENDING_TAIL) {
2735 void (*func)(struct perf_pending_entry *);
2736 struct perf_pending_entry *entry = list;
2737
2738 list = list->next;
2739
2740 func = entry->func;
2741 entry->next = NULL;
2742 /*
2743 * Ensure we observe the unqueue before we issue the wakeup,
2744 * so that we won't be waiting forever.
2745 * -- see perf_not_pending().
2746 */
2747 smp_wmb();
2748
2749 func(entry);
2750 nr++;
2751 }
2752
2753 return nr;
2754}
2755
2756static inline int perf_not_pending(struct perf_event *event)
2757{
2758 /*
2759 * If we flush on whatever cpu we run, there is a chance we don't
2760 * need to wait.
2761 */
2762 get_cpu();
2763 __perf_pending_run();
2764 put_cpu();
2765
2766 /*
2767 * Ensure we see the proper queue state before going to sleep
2768 * so that we do not miss the wakeup. -- see perf_pending_handle()
2769 */
2770 smp_rmb();
2771 return event->pending.next == NULL;
2772}
2773
2774static void perf_pending_sync(struct perf_event *event)
2775{
2776 wait_event(event->waitq, perf_not_pending(event));
2777}
2778
2779void perf_event_do_pending(void)
2780{
2781 __perf_pending_run();
2782}
2783
2784/*
2785 * Callchain support -- arch specific
2786 */
2787
2788__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2789{
2790 return NULL;
2791}
2792
2793/*
2794 * Output
2795 */
2796static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2797 unsigned long offset, unsigned long head)
2798{
2799 unsigned long mask;
2800
2801 if (!data->writable)
2802 return true;
2803
Peter Zijlstra906010b2009-09-21 16:08:49 +02002804 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002805
2806 offset = (offset - tail) & mask;
2807 head = (head - tail) & mask;
2808
2809 if ((int)(head - offset) < 0)
2810 return false;
2811
2812 return true;
2813}
2814
2815static void perf_output_wakeup(struct perf_output_handle *handle)
2816{
2817 atomic_set(&handle->data->poll, POLL_IN);
2818
2819 if (handle->nmi) {
2820 handle->event->pending_wakeup = 1;
2821 perf_pending_queue(&handle->event->pending,
2822 perf_pending_event);
2823 } else
2824 perf_event_wakeup(handle->event);
2825}
2826
2827/*
2828 * Curious locking construct.
2829 *
2830 * We need to ensure a later event_id doesn't publish a head when a former
2831 * event_id isn't done writing. However since we need to deal with NMIs we
2832 * cannot fully serialize things.
2833 *
2834 * What we do is serialize between CPUs so we only have to deal with NMI
2835 * nesting on a single CPU.
2836 *
2837 * We only publish the head (and generate a wakeup) when the outer-most
2838 * event_id completes.
2839 */
2840static void perf_output_lock(struct perf_output_handle *handle)
2841{
2842 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002843 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002844
2845 handle->locked = 0;
2846
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002847 for (;;) {
2848 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2849 if (cur == -1) {
2850 handle->locked = 1;
2851 break;
2852 }
2853 if (cur == cpu)
2854 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002855
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002856 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002857 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002858}
2859
2860static void perf_output_unlock(struct perf_output_handle *handle)
2861{
2862 struct perf_mmap_data *data = handle->data;
2863 unsigned long head;
2864 int cpu;
2865
2866 data->done_head = data->head;
2867
2868 if (!handle->locked)
2869 goto out;
2870
2871again:
2872 /*
2873 * The xchg implies a full barrier that ensures all writes are done
2874 * before we publish the new head, matched by a rmb() in userspace when
2875 * reading this position.
2876 */
2877 while ((head = atomic_long_xchg(&data->done_head, 0)))
2878 data->user_page->data_head = head;
2879
2880 /*
2881 * NMI can happen here, which means we can miss a done_head update.
2882 */
2883
2884 cpu = atomic_xchg(&data->lock, -1);
2885 WARN_ON_ONCE(cpu != smp_processor_id());
2886
2887 /*
2888 * Therefore we have to validate we did not indeed do so.
2889 */
2890 if (unlikely(atomic_long_read(&data->done_head))) {
2891 /*
2892 * Since we had it locked, we can lock it again.
2893 */
2894 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2895 cpu_relax();
2896
2897 goto again;
2898 }
2899
2900 if (atomic_xchg(&data->wakeup, 0))
2901 perf_output_wakeup(handle);
2902out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002903 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002904}
2905
2906void perf_output_copy(struct perf_output_handle *handle,
2907 const void *buf, unsigned int len)
2908{
2909 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002910 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002911 unsigned int size;
2912 void **pages;
2913
2914 offset = handle->offset;
2915 pages_mask = handle->data->nr_pages - 1;
2916 pages = handle->data->data_pages;
2917
2918 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002919 unsigned long page_offset;
2920 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002921 int nr;
2922
2923 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002924 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2925 page_offset = offset & (page_size - 1);
2926 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002927
2928 memcpy(pages[nr] + page_offset, buf, size);
2929
2930 len -= size;
2931 buf += size;
2932 offset += size;
2933 } while (len);
2934
2935 handle->offset = offset;
2936
2937 /*
2938 * Check we didn't copy past our reservation window, taking the
2939 * possible unsigned int wrap into account.
2940 */
2941 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2942}
2943
2944int perf_output_begin(struct perf_output_handle *handle,
2945 struct perf_event *event, unsigned int size,
2946 int nmi, int sample)
2947{
2948 struct perf_event *output_event;
2949 struct perf_mmap_data *data;
2950 unsigned long tail, offset, head;
2951 int have_lost;
2952 struct {
2953 struct perf_event_header header;
2954 u64 id;
2955 u64 lost;
2956 } lost_event;
2957
2958 rcu_read_lock();
2959 /*
2960 * For inherited events we send all the output towards the parent.
2961 */
2962 if (event->parent)
2963 event = event->parent;
2964
2965 output_event = rcu_dereference(event->output);
2966 if (output_event)
2967 event = output_event;
2968
2969 data = rcu_dereference(event->data);
2970 if (!data)
2971 goto out;
2972
2973 handle->data = data;
2974 handle->event = event;
2975 handle->nmi = nmi;
2976 handle->sample = sample;
2977
2978 if (!data->nr_pages)
2979 goto fail;
2980
2981 have_lost = atomic_read(&data->lost);
2982 if (have_lost)
2983 size += sizeof(lost_event);
2984
2985 perf_output_lock(handle);
2986
2987 do {
2988 /*
2989 * Userspace could choose to issue a mb() before updating the
2990 * tail pointer. So that all reads will be completed before the
2991 * write is issued.
2992 */
2993 tail = ACCESS_ONCE(data->user_page->data_tail);
2994 smp_rmb();
2995 offset = head = atomic_long_read(&data->head);
2996 head += size;
2997 if (unlikely(!perf_output_space(data, tail, offset, head)))
2998 goto fail;
2999 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3000
3001 handle->offset = offset;
3002 handle->head = head;
3003
3004 if (head - tail > data->watermark)
3005 atomic_set(&data->wakeup, 1);
3006
3007 if (have_lost) {
3008 lost_event.header.type = PERF_RECORD_LOST;
3009 lost_event.header.misc = 0;
3010 lost_event.header.size = sizeof(lost_event);
3011 lost_event.id = event->id;
3012 lost_event.lost = atomic_xchg(&data->lost, 0);
3013
3014 perf_output_put(handle, lost_event);
3015 }
3016
3017 return 0;
3018
3019fail:
3020 atomic_inc(&data->lost);
3021 perf_output_unlock(handle);
3022out:
3023 rcu_read_unlock();
3024
3025 return -ENOSPC;
3026}
3027
3028void perf_output_end(struct perf_output_handle *handle)
3029{
3030 struct perf_event *event = handle->event;
3031 struct perf_mmap_data *data = handle->data;
3032
3033 int wakeup_events = event->attr.wakeup_events;
3034
3035 if (handle->sample && wakeup_events) {
3036 int events = atomic_inc_return(&data->events);
3037 if (events >= wakeup_events) {
3038 atomic_sub(wakeup_events, &data->events);
3039 atomic_set(&data->wakeup, 1);
3040 }
3041 }
3042
3043 perf_output_unlock(handle);
3044 rcu_read_unlock();
3045}
3046
3047static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3048{
3049 /*
3050 * only top level events have the pid namespace they were created in
3051 */
3052 if (event->parent)
3053 event = event->parent;
3054
3055 return task_tgid_nr_ns(p, event->ns);
3056}
3057
3058static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3059{
3060 /*
3061 * only top level events have the pid namespace they were created in
3062 */
3063 if (event->parent)
3064 event = event->parent;
3065
3066 return task_pid_nr_ns(p, event->ns);
3067}
3068
3069static void perf_output_read_one(struct perf_output_handle *handle,
3070 struct perf_event *event)
3071{
3072 u64 read_format = event->attr.read_format;
3073 u64 values[4];
3074 int n = 0;
3075
3076 values[n++] = atomic64_read(&event->count);
3077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3078 values[n++] = event->total_time_enabled +
3079 atomic64_read(&event->child_total_time_enabled);
3080 }
3081 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3082 values[n++] = event->total_time_running +
3083 atomic64_read(&event->child_total_time_running);
3084 }
3085 if (read_format & PERF_FORMAT_ID)
3086 values[n++] = primary_event_id(event);
3087
3088 perf_output_copy(handle, values, n * sizeof(u64));
3089}
3090
3091/*
3092 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3093 */
3094static void perf_output_read_group(struct perf_output_handle *handle,
3095 struct perf_event *event)
3096{
3097 struct perf_event *leader = event->group_leader, *sub;
3098 u64 read_format = event->attr.read_format;
3099 u64 values[5];
3100 int n = 0;
3101
3102 values[n++] = 1 + leader->nr_siblings;
3103
3104 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3105 values[n++] = leader->total_time_enabled;
3106
3107 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3108 values[n++] = leader->total_time_running;
3109
3110 if (leader != event)
3111 leader->pmu->read(leader);
3112
3113 values[n++] = atomic64_read(&leader->count);
3114 if (read_format & PERF_FORMAT_ID)
3115 values[n++] = primary_event_id(leader);
3116
3117 perf_output_copy(handle, values, n * sizeof(u64));
3118
3119 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3120 n = 0;
3121
3122 if (sub != event)
3123 sub->pmu->read(sub);
3124
3125 values[n++] = atomic64_read(&sub->count);
3126 if (read_format & PERF_FORMAT_ID)
3127 values[n++] = primary_event_id(sub);
3128
3129 perf_output_copy(handle, values, n * sizeof(u64));
3130 }
3131}
3132
3133static void perf_output_read(struct perf_output_handle *handle,
3134 struct perf_event *event)
3135{
3136 if (event->attr.read_format & PERF_FORMAT_GROUP)
3137 perf_output_read_group(handle, event);
3138 else
3139 perf_output_read_one(handle, event);
3140}
3141
3142void perf_output_sample(struct perf_output_handle *handle,
3143 struct perf_event_header *header,
3144 struct perf_sample_data *data,
3145 struct perf_event *event)
3146{
3147 u64 sample_type = data->type;
3148
3149 perf_output_put(handle, *header);
3150
3151 if (sample_type & PERF_SAMPLE_IP)
3152 perf_output_put(handle, data->ip);
3153
3154 if (sample_type & PERF_SAMPLE_TID)
3155 perf_output_put(handle, data->tid_entry);
3156
3157 if (sample_type & PERF_SAMPLE_TIME)
3158 perf_output_put(handle, data->time);
3159
3160 if (sample_type & PERF_SAMPLE_ADDR)
3161 perf_output_put(handle, data->addr);
3162
3163 if (sample_type & PERF_SAMPLE_ID)
3164 perf_output_put(handle, data->id);
3165
3166 if (sample_type & PERF_SAMPLE_STREAM_ID)
3167 perf_output_put(handle, data->stream_id);
3168
3169 if (sample_type & PERF_SAMPLE_CPU)
3170 perf_output_put(handle, data->cpu_entry);
3171
3172 if (sample_type & PERF_SAMPLE_PERIOD)
3173 perf_output_put(handle, data->period);
3174
3175 if (sample_type & PERF_SAMPLE_READ)
3176 perf_output_read(handle, event);
3177
3178 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3179 if (data->callchain) {
3180 int size = 1;
3181
3182 if (data->callchain)
3183 size += data->callchain->nr;
3184
3185 size *= sizeof(u64);
3186
3187 perf_output_copy(handle, data->callchain, size);
3188 } else {
3189 u64 nr = 0;
3190 perf_output_put(handle, nr);
3191 }
3192 }
3193
3194 if (sample_type & PERF_SAMPLE_RAW) {
3195 if (data->raw) {
3196 perf_output_put(handle, data->raw->size);
3197 perf_output_copy(handle, data->raw->data,
3198 data->raw->size);
3199 } else {
3200 struct {
3201 u32 size;
3202 u32 data;
3203 } raw = {
3204 .size = sizeof(u32),
3205 .data = 0,
3206 };
3207 perf_output_put(handle, raw);
3208 }
3209 }
3210}
3211
3212void perf_prepare_sample(struct perf_event_header *header,
3213 struct perf_sample_data *data,
3214 struct perf_event *event,
3215 struct pt_regs *regs)
3216{
3217 u64 sample_type = event->attr.sample_type;
3218
3219 data->type = sample_type;
3220
3221 header->type = PERF_RECORD_SAMPLE;
3222 header->size = sizeof(*header);
3223
3224 header->misc = 0;
3225 header->misc |= perf_misc_flags(regs);
3226
3227 if (sample_type & PERF_SAMPLE_IP) {
3228 data->ip = perf_instruction_pointer(regs);
3229
3230 header->size += sizeof(data->ip);
3231 }
3232
3233 if (sample_type & PERF_SAMPLE_TID) {
3234 /* namespace issues */
3235 data->tid_entry.pid = perf_event_pid(event, current);
3236 data->tid_entry.tid = perf_event_tid(event, current);
3237
3238 header->size += sizeof(data->tid_entry);
3239 }
3240
3241 if (sample_type & PERF_SAMPLE_TIME) {
3242 data->time = perf_clock();
3243
3244 header->size += sizeof(data->time);
3245 }
3246
3247 if (sample_type & PERF_SAMPLE_ADDR)
3248 header->size += sizeof(data->addr);
3249
3250 if (sample_type & PERF_SAMPLE_ID) {
3251 data->id = primary_event_id(event);
3252
3253 header->size += sizeof(data->id);
3254 }
3255
3256 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3257 data->stream_id = event->id;
3258
3259 header->size += sizeof(data->stream_id);
3260 }
3261
3262 if (sample_type & PERF_SAMPLE_CPU) {
3263 data->cpu_entry.cpu = raw_smp_processor_id();
3264 data->cpu_entry.reserved = 0;
3265
3266 header->size += sizeof(data->cpu_entry);
3267 }
3268
3269 if (sample_type & PERF_SAMPLE_PERIOD)
3270 header->size += sizeof(data->period);
3271
3272 if (sample_type & PERF_SAMPLE_READ)
3273 header->size += perf_event_read_size(event);
3274
3275 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3276 int size = 1;
3277
3278 data->callchain = perf_callchain(regs);
3279
3280 if (data->callchain)
3281 size += data->callchain->nr;
3282
3283 header->size += size * sizeof(u64);
3284 }
3285
3286 if (sample_type & PERF_SAMPLE_RAW) {
3287 int size = sizeof(u32);
3288
3289 if (data->raw)
3290 size += data->raw->size;
3291 else
3292 size += sizeof(u32);
3293
3294 WARN_ON_ONCE(size & (sizeof(u64)-1));
3295 header->size += size;
3296 }
3297}
3298
3299static void perf_event_output(struct perf_event *event, int nmi,
3300 struct perf_sample_data *data,
3301 struct pt_regs *regs)
3302{
3303 struct perf_output_handle handle;
3304 struct perf_event_header header;
3305
3306 perf_prepare_sample(&header, data, event, regs);
3307
3308 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3309 return;
3310
3311 perf_output_sample(&handle, &header, data, event);
3312
3313 perf_output_end(&handle);
3314}
3315
3316/*
3317 * read event_id
3318 */
3319
3320struct perf_read_event {
3321 struct perf_event_header header;
3322
3323 u32 pid;
3324 u32 tid;
3325};
3326
3327static void
3328perf_event_read_event(struct perf_event *event,
3329 struct task_struct *task)
3330{
3331 struct perf_output_handle handle;
3332 struct perf_read_event read_event = {
3333 .header = {
3334 .type = PERF_RECORD_READ,
3335 .misc = 0,
3336 .size = sizeof(read_event) + perf_event_read_size(event),
3337 },
3338 .pid = perf_event_pid(event, task),
3339 .tid = perf_event_tid(event, task),
3340 };
3341 int ret;
3342
3343 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3344 if (ret)
3345 return;
3346
3347 perf_output_put(&handle, read_event);
3348 perf_output_read(&handle, event);
3349
3350 perf_output_end(&handle);
3351}
3352
3353/*
3354 * task tracking -- fork/exit
3355 *
3356 * enabled by: attr.comm | attr.mmap | attr.task
3357 */
3358
3359struct perf_task_event {
3360 struct task_struct *task;
3361 struct perf_event_context *task_ctx;
3362
3363 struct {
3364 struct perf_event_header header;
3365
3366 u32 pid;
3367 u32 ppid;
3368 u32 tid;
3369 u32 ptid;
3370 u64 time;
3371 } event_id;
3372};
3373
3374static void perf_event_task_output(struct perf_event *event,
3375 struct perf_task_event *task_event)
3376{
3377 struct perf_output_handle handle;
3378 int size;
3379 struct task_struct *task = task_event->task;
3380 int ret;
3381
3382 size = task_event->event_id.header.size;
3383 ret = perf_output_begin(&handle, event, size, 0, 0);
3384
3385 if (ret)
3386 return;
3387
3388 task_event->event_id.pid = perf_event_pid(event, task);
3389 task_event->event_id.ppid = perf_event_pid(event, current);
3390
3391 task_event->event_id.tid = perf_event_tid(event, task);
3392 task_event->event_id.ptid = perf_event_tid(event, current);
3393
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003394 perf_output_put(&handle, task_event->event_id);
3395
3396 perf_output_end(&handle);
3397}
3398
3399static int perf_event_task_match(struct perf_event *event)
3400{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003401 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003402 return 0;
3403
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003404 if (event->cpu != -1 && event->cpu != smp_processor_id())
3405 return 0;
3406
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003407 if (event->attr.comm || event->attr.mmap || event->attr.task)
3408 return 1;
3409
3410 return 0;
3411}
3412
3413static void perf_event_task_ctx(struct perf_event_context *ctx,
3414 struct perf_task_event *task_event)
3415{
3416 struct perf_event *event;
3417
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419 if (perf_event_task_match(event))
3420 perf_event_task_output(event, task_event);
3421 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003422}
3423
3424static void perf_event_task_event(struct perf_task_event *task_event)
3425{
3426 struct perf_cpu_context *cpuctx;
3427 struct perf_event_context *ctx = task_event->task_ctx;
3428
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003429 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003430 cpuctx = &get_cpu_var(perf_cpu_context);
3431 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003432 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003433 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003434 if (ctx)
3435 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003436 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003437 rcu_read_unlock();
3438}
3439
3440static void perf_event_task(struct task_struct *task,
3441 struct perf_event_context *task_ctx,
3442 int new)
3443{
3444 struct perf_task_event task_event;
3445
3446 if (!atomic_read(&nr_comm_events) &&
3447 !atomic_read(&nr_mmap_events) &&
3448 !atomic_read(&nr_task_events))
3449 return;
3450
3451 task_event = (struct perf_task_event){
3452 .task = task,
3453 .task_ctx = task_ctx,
3454 .event_id = {
3455 .header = {
3456 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3457 .misc = 0,
3458 .size = sizeof(task_event.event_id),
3459 },
3460 /* .pid */
3461 /* .ppid */
3462 /* .tid */
3463 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003464 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003465 },
3466 };
3467
3468 perf_event_task_event(&task_event);
3469}
3470
3471void perf_event_fork(struct task_struct *task)
3472{
3473 perf_event_task(task, NULL, 1);
3474}
3475
3476/*
3477 * comm tracking
3478 */
3479
3480struct perf_comm_event {
3481 struct task_struct *task;
3482 char *comm;
3483 int comm_size;
3484
3485 struct {
3486 struct perf_event_header header;
3487
3488 u32 pid;
3489 u32 tid;
3490 } event_id;
3491};
3492
3493static void perf_event_comm_output(struct perf_event *event,
3494 struct perf_comm_event *comm_event)
3495{
3496 struct perf_output_handle handle;
3497 int size = comm_event->event_id.header.size;
3498 int ret = perf_output_begin(&handle, event, size, 0, 0);
3499
3500 if (ret)
3501 return;
3502
3503 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3504 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3505
3506 perf_output_put(&handle, comm_event->event_id);
3507 perf_output_copy(&handle, comm_event->comm,
3508 comm_event->comm_size);
3509 perf_output_end(&handle);
3510}
3511
3512static int perf_event_comm_match(struct perf_event *event)
3513{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003514 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003515 return 0;
3516
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003517 if (event->cpu != -1 && event->cpu != smp_processor_id())
3518 return 0;
3519
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003520 if (event->attr.comm)
3521 return 1;
3522
3523 return 0;
3524}
3525
3526static void perf_event_comm_ctx(struct perf_event_context *ctx,
3527 struct perf_comm_event *comm_event)
3528{
3529 struct perf_event *event;
3530
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003531 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3532 if (perf_event_comm_match(event))
3533 perf_event_comm_output(event, comm_event);
3534 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003535}
3536
3537static void perf_event_comm_event(struct perf_comm_event *comm_event)
3538{
3539 struct perf_cpu_context *cpuctx;
3540 struct perf_event_context *ctx;
3541 unsigned int size;
3542 char comm[TASK_COMM_LEN];
3543
3544 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003545 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003546 size = ALIGN(strlen(comm)+1, sizeof(u64));
3547
3548 comm_event->comm = comm;
3549 comm_event->comm_size = size;
3550
3551 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3552
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003553 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003554 cpuctx = &get_cpu_var(perf_cpu_context);
3555 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003556 ctx = rcu_dereference(current->perf_event_ctxp);
3557 if (ctx)
3558 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003559 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003560 rcu_read_unlock();
3561}
3562
3563void perf_event_comm(struct task_struct *task)
3564{
3565 struct perf_comm_event comm_event;
3566
3567 if (task->perf_event_ctxp)
3568 perf_event_enable_on_exec(task);
3569
3570 if (!atomic_read(&nr_comm_events))
3571 return;
3572
3573 comm_event = (struct perf_comm_event){
3574 .task = task,
3575 /* .comm */
3576 /* .comm_size */
3577 .event_id = {
3578 .header = {
3579 .type = PERF_RECORD_COMM,
3580 .misc = 0,
3581 /* .size */
3582 },
3583 /* .pid */
3584 /* .tid */
3585 },
3586 };
3587
3588 perf_event_comm_event(&comm_event);
3589}
3590
3591/*
3592 * mmap tracking
3593 */
3594
3595struct perf_mmap_event {
3596 struct vm_area_struct *vma;
3597
3598 const char *file_name;
3599 int file_size;
3600
3601 struct {
3602 struct perf_event_header header;
3603
3604 u32 pid;
3605 u32 tid;
3606 u64 start;
3607 u64 len;
3608 u64 pgoff;
3609 } event_id;
3610};
3611
3612static void perf_event_mmap_output(struct perf_event *event,
3613 struct perf_mmap_event *mmap_event)
3614{
3615 struct perf_output_handle handle;
3616 int size = mmap_event->event_id.header.size;
3617 int ret = perf_output_begin(&handle, event, size, 0, 0);
3618
3619 if (ret)
3620 return;
3621
3622 mmap_event->event_id.pid = perf_event_pid(event, current);
3623 mmap_event->event_id.tid = perf_event_tid(event, current);
3624
3625 perf_output_put(&handle, mmap_event->event_id);
3626 perf_output_copy(&handle, mmap_event->file_name,
3627 mmap_event->file_size);
3628 perf_output_end(&handle);
3629}
3630
3631static int perf_event_mmap_match(struct perf_event *event,
3632 struct perf_mmap_event *mmap_event)
3633{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003634 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003635 return 0;
3636
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003637 if (event->cpu != -1 && event->cpu != smp_processor_id())
3638 return 0;
3639
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003640 if (event->attr.mmap)
3641 return 1;
3642
3643 return 0;
3644}
3645
3646static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3647 struct perf_mmap_event *mmap_event)
3648{
3649 struct perf_event *event;
3650
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003651 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3652 if (perf_event_mmap_match(event, mmap_event))
3653 perf_event_mmap_output(event, mmap_event);
3654 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003655}
3656
3657static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3658{
3659 struct perf_cpu_context *cpuctx;
3660 struct perf_event_context *ctx;
3661 struct vm_area_struct *vma = mmap_event->vma;
3662 struct file *file = vma->vm_file;
3663 unsigned int size;
3664 char tmp[16];
3665 char *buf = NULL;
3666 const char *name;
3667
3668 memset(tmp, 0, sizeof(tmp));
3669
3670 if (file) {
3671 /*
3672 * d_path works from the end of the buffer backwards, so we
3673 * need to add enough zero bytes after the string to handle
3674 * the 64bit alignment we do later.
3675 */
3676 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3677 if (!buf) {
3678 name = strncpy(tmp, "//enomem", sizeof(tmp));
3679 goto got_name;
3680 }
3681 name = d_path(&file->f_path, buf, PATH_MAX);
3682 if (IS_ERR(name)) {
3683 name = strncpy(tmp, "//toolong", sizeof(tmp));
3684 goto got_name;
3685 }
3686 } else {
3687 if (arch_vma_name(mmap_event->vma)) {
3688 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3689 sizeof(tmp));
3690 goto got_name;
3691 }
3692
3693 if (!vma->vm_mm) {
3694 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3695 goto got_name;
3696 }
3697
3698 name = strncpy(tmp, "//anon", sizeof(tmp));
3699 goto got_name;
3700 }
3701
3702got_name:
3703 size = ALIGN(strlen(name)+1, sizeof(u64));
3704
3705 mmap_event->file_name = name;
3706 mmap_event->file_size = size;
3707
3708 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3709
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003710 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003711 cpuctx = &get_cpu_var(perf_cpu_context);
3712 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003713 ctx = rcu_dereference(current->perf_event_ctxp);
3714 if (ctx)
3715 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003716 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003717 rcu_read_unlock();
3718
3719 kfree(buf);
3720}
3721
3722void __perf_event_mmap(struct vm_area_struct *vma)
3723{
3724 struct perf_mmap_event mmap_event;
3725
3726 if (!atomic_read(&nr_mmap_events))
3727 return;
3728
3729 mmap_event = (struct perf_mmap_event){
3730 .vma = vma,
3731 /* .file_name */
3732 /* .file_size */
3733 .event_id = {
3734 .header = {
3735 .type = PERF_RECORD_MMAP,
3736 .misc = 0,
3737 /* .size */
3738 },
3739 /* .pid */
3740 /* .tid */
3741 .start = vma->vm_start,
3742 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003743 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003744 },
3745 };
3746
3747 perf_event_mmap_event(&mmap_event);
3748}
3749
3750/*
3751 * IRQ throttle logging
3752 */
3753
3754static void perf_log_throttle(struct perf_event *event, int enable)
3755{
3756 struct perf_output_handle handle;
3757 int ret;
3758
3759 struct {
3760 struct perf_event_header header;
3761 u64 time;
3762 u64 id;
3763 u64 stream_id;
3764 } throttle_event = {
3765 .header = {
3766 .type = PERF_RECORD_THROTTLE,
3767 .misc = 0,
3768 .size = sizeof(throttle_event),
3769 },
3770 .time = perf_clock(),
3771 .id = primary_event_id(event),
3772 .stream_id = event->id,
3773 };
3774
3775 if (enable)
3776 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3777
3778 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3779 if (ret)
3780 return;
3781
3782 perf_output_put(&handle, throttle_event);
3783 perf_output_end(&handle);
3784}
3785
3786/*
3787 * Generic event overflow handling, sampling.
3788 */
3789
3790static int __perf_event_overflow(struct perf_event *event, int nmi,
3791 int throttle, struct perf_sample_data *data,
3792 struct pt_regs *regs)
3793{
3794 int events = atomic_read(&event->event_limit);
3795 struct hw_perf_event *hwc = &event->hw;
3796 int ret = 0;
3797
3798 throttle = (throttle && event->pmu->unthrottle != NULL);
3799
3800 if (!throttle) {
3801 hwc->interrupts++;
3802 } else {
3803 if (hwc->interrupts != MAX_INTERRUPTS) {
3804 hwc->interrupts++;
3805 if (HZ * hwc->interrupts >
3806 (u64)sysctl_perf_event_sample_rate) {
3807 hwc->interrupts = MAX_INTERRUPTS;
3808 perf_log_throttle(event, 0);
3809 ret = 1;
3810 }
3811 } else {
3812 /*
3813 * Keep re-disabling events even though on the previous
3814 * pass we disabled it - just in case we raced with a
3815 * sched-in and the event got enabled again:
3816 */
3817 ret = 1;
3818 }
3819 }
3820
3821 if (event->attr.freq) {
3822 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003823 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003824
Peter Zijlstraabd50712010-01-26 18:50:16 +01003825 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003826
Peter Zijlstraabd50712010-01-26 18:50:16 +01003827 if (delta > 0 && delta < 2*TICK_NSEC)
3828 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003829 }
3830
3831 /*
3832 * XXX event_limit might not quite work as expected on inherited
3833 * events
3834 */
3835
3836 event->pending_kill = POLL_IN;
3837 if (events && atomic_dec_and_test(&event->event_limit)) {
3838 ret = 1;
3839 event->pending_kill = POLL_HUP;
3840 if (nmi) {
3841 event->pending_disable = 1;
3842 perf_pending_queue(&event->pending,
3843 perf_pending_event);
3844 } else
3845 perf_event_disable(event);
3846 }
3847
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003848 if (event->overflow_handler)
3849 event->overflow_handler(event, nmi, data, regs);
3850 else
3851 perf_event_output(event, nmi, data, regs);
3852
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003853 return ret;
3854}
3855
3856int perf_event_overflow(struct perf_event *event, int nmi,
3857 struct perf_sample_data *data,
3858 struct pt_regs *regs)
3859{
3860 return __perf_event_overflow(event, nmi, 1, data, regs);
3861}
3862
3863/*
3864 * Generic software event infrastructure
3865 */
3866
3867/*
3868 * We directly increment event->count and keep a second value in
3869 * event->hw.period_left to count intervals. This period event
3870 * is kept in the range [-sample_period, 0] so that we can use the
3871 * sign as trigger.
3872 */
3873
3874static u64 perf_swevent_set_period(struct perf_event *event)
3875{
3876 struct hw_perf_event *hwc = &event->hw;
3877 u64 period = hwc->last_period;
3878 u64 nr, offset;
3879 s64 old, val;
3880
3881 hwc->last_period = hwc->sample_period;
3882
3883again:
3884 old = val = atomic64_read(&hwc->period_left);
3885 if (val < 0)
3886 return 0;
3887
3888 nr = div64_u64(period + val, period);
3889 offset = nr * period;
3890 val -= offset;
3891 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3892 goto again;
3893
3894 return nr;
3895}
3896
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003897static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003898 int nmi, struct perf_sample_data *data,
3899 struct pt_regs *regs)
3900{
3901 struct hw_perf_event *hwc = &event->hw;
3902 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003903
3904 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003905 if (!overflow)
3906 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003907
3908 if (hwc->interrupts == MAX_INTERRUPTS)
3909 return;
3910
3911 for (; overflow; overflow--) {
3912 if (__perf_event_overflow(event, nmi, throttle,
3913 data, regs)) {
3914 /*
3915 * We inhibit the overflow from happening when
3916 * hwc->interrupts == MAX_INTERRUPTS.
3917 */
3918 break;
3919 }
3920 throttle = 1;
3921 }
3922}
3923
3924static void perf_swevent_unthrottle(struct perf_event *event)
3925{
3926 /*
3927 * Nothing to do, we already reset hwc->interrupts.
3928 */
3929}
3930
3931static void perf_swevent_add(struct perf_event *event, u64 nr,
3932 int nmi, struct perf_sample_data *data,
3933 struct pt_regs *regs)
3934{
3935 struct hw_perf_event *hwc = &event->hw;
3936
3937 atomic64_add(nr, &event->count);
3938
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003939 if (!regs)
3940 return;
3941
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003942 if (!hwc->sample_period)
3943 return;
3944
3945 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3946 return perf_swevent_overflow(event, 1, nmi, data, regs);
3947
3948 if (atomic64_add_negative(nr, &hwc->period_left))
3949 return;
3950
3951 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003952}
3953
3954static int perf_swevent_is_counting(struct perf_event *event)
3955{
3956 /*
3957 * The event is active, we're good!
3958 */
3959 if (event->state == PERF_EVENT_STATE_ACTIVE)
3960 return 1;
3961
3962 /*
3963 * The event is off/error, not counting.
3964 */
3965 if (event->state != PERF_EVENT_STATE_INACTIVE)
3966 return 0;
3967
3968 /*
3969 * The event is inactive, if the context is active
3970 * we're part of a group that didn't make it on the 'pmu',
3971 * not counting.
3972 */
3973 if (event->ctx->is_active)
3974 return 0;
3975
3976 /*
3977 * We're inactive and the context is too, this means the
3978 * task is scheduled out, we're counting events that happen
3979 * to us, like migration events.
3980 */
3981 return 1;
3982}
3983
Li Zefan6fb29152009-10-15 11:21:42 +08003984static int perf_tp_event_match(struct perf_event *event,
3985 struct perf_sample_data *data);
3986
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003987static int perf_exclude_event(struct perf_event *event,
3988 struct pt_regs *regs)
3989{
3990 if (regs) {
3991 if (event->attr.exclude_user && user_mode(regs))
3992 return 1;
3993
3994 if (event->attr.exclude_kernel && !user_mode(regs))
3995 return 1;
3996 }
3997
3998 return 0;
3999}
4000
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004001static int perf_swevent_match(struct perf_event *event,
4002 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004003 u32 event_id,
4004 struct perf_sample_data *data,
4005 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004006{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01004007 if (event->cpu != -1 && event->cpu != smp_processor_id())
4008 return 0;
4009
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004010 if (!perf_swevent_is_counting(event))
4011 return 0;
4012
4013 if (event->attr.type != type)
4014 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004015
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004016 if (event->attr.config != event_id)
4017 return 0;
4018
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004019 if (perf_exclude_event(event, regs))
4020 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004021
Li Zefan6fb29152009-10-15 11:21:42 +08004022 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4023 !perf_tp_event_match(event, data))
4024 return 0;
4025
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004026 return 1;
4027}
4028
4029static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4030 enum perf_type_id type,
4031 u32 event_id, u64 nr, int nmi,
4032 struct perf_sample_data *data,
4033 struct pt_regs *regs)
4034{
4035 struct perf_event *event;
4036
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004037 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004038 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004039 perf_swevent_add(event, nr, nmi, data, regs);
4040 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004041}
4042
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004043int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004044{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004045 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4046 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004047
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004049 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004050 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004051 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004052 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004053 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004054 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004055 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004056
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004057 if (cpuctx->recursion[rctx]) {
4058 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004059 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004060 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004061
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004062 cpuctx->recursion[rctx]++;
4063 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004064
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004065 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004066}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004067EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004068
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004069void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004070{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004071 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4072 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004073 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004074 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004075}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004076EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004077
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004078static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4079 u64 nr, int nmi,
4080 struct perf_sample_data *data,
4081 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004082{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004083 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004084 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004085
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004086 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004087 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004088 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4089 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004090 /*
4091 * doesn't really matter which of the child contexts the
4092 * events ends up in.
4093 */
4094 ctx = rcu_dereference(current->perf_event_ctxp);
4095 if (ctx)
4096 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4097 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004098}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004099
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004100void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4101 struct pt_regs *regs, u64 addr)
4102{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004103 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004104 int rctx;
4105
4106 rctx = perf_swevent_get_recursion_context();
4107 if (rctx < 0)
4108 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004109
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004110 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004111
4112 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004113
4114 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004115}
4116
4117static void perf_swevent_read(struct perf_event *event)
4118{
4119}
4120
4121static int perf_swevent_enable(struct perf_event *event)
4122{
4123 struct hw_perf_event *hwc = &event->hw;
4124
4125 if (hwc->sample_period) {
4126 hwc->last_period = hwc->sample_period;
4127 perf_swevent_set_period(event);
4128 }
4129 return 0;
4130}
4131
4132static void perf_swevent_disable(struct perf_event *event)
4133{
4134}
4135
4136static const struct pmu perf_ops_generic = {
4137 .enable = perf_swevent_enable,
4138 .disable = perf_swevent_disable,
4139 .read = perf_swevent_read,
4140 .unthrottle = perf_swevent_unthrottle,
4141};
4142
4143/*
4144 * hrtimer based swevent callback
4145 */
4146
4147static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4148{
4149 enum hrtimer_restart ret = HRTIMER_RESTART;
4150 struct perf_sample_data data;
4151 struct pt_regs *regs;
4152 struct perf_event *event;
4153 u64 period;
4154
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004155 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004156 event->pmu->read(event);
4157
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004158 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004159 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004160 regs = get_irq_regs();
4161 /*
4162 * In case we exclude kernel IPs or are somehow not in interrupt
4163 * context, provide the next best thing, the user IP.
4164 */
4165 if ((event->attr.exclude_kernel || !regs) &&
4166 !event->attr.exclude_user)
4167 regs = task_pt_regs(current);
4168
4169 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004170 if (!(event->attr.exclude_idle && current->pid == 0))
4171 if (perf_event_overflow(event, 0, &data, regs))
4172 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004173 }
4174
4175 period = max_t(u64, 10000, event->hw.sample_period);
4176 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4177
4178 return ret;
4179}
4180
Soeren Sandmann721a6692009-09-15 14:33:08 +02004181static void perf_swevent_start_hrtimer(struct perf_event *event)
4182{
4183 struct hw_perf_event *hwc = &event->hw;
4184
4185 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4186 hwc->hrtimer.function = perf_swevent_hrtimer;
4187 if (hwc->sample_period) {
4188 u64 period;
4189
4190 if (hwc->remaining) {
4191 if (hwc->remaining < 0)
4192 period = 10000;
4193 else
4194 period = hwc->remaining;
4195 hwc->remaining = 0;
4196 } else {
4197 period = max_t(u64, 10000, hwc->sample_period);
4198 }
4199 __hrtimer_start_range_ns(&hwc->hrtimer,
4200 ns_to_ktime(period), 0,
4201 HRTIMER_MODE_REL, 0);
4202 }
4203}
4204
4205static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4206{
4207 struct hw_perf_event *hwc = &event->hw;
4208
4209 if (hwc->sample_period) {
4210 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4211 hwc->remaining = ktime_to_ns(remaining);
4212
4213 hrtimer_cancel(&hwc->hrtimer);
4214 }
4215}
4216
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004217/*
4218 * Software event: cpu wall time clock
4219 */
4220
4221static void cpu_clock_perf_event_update(struct perf_event *event)
4222{
4223 int cpu = raw_smp_processor_id();
4224 s64 prev;
4225 u64 now;
4226
4227 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004228 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004229 atomic64_add(now - prev, &event->count);
4230}
4231
4232static int cpu_clock_perf_event_enable(struct perf_event *event)
4233{
4234 struct hw_perf_event *hwc = &event->hw;
4235 int cpu = raw_smp_processor_id();
4236
4237 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004238 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004239
4240 return 0;
4241}
4242
4243static void cpu_clock_perf_event_disable(struct perf_event *event)
4244{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004245 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004246 cpu_clock_perf_event_update(event);
4247}
4248
4249static void cpu_clock_perf_event_read(struct perf_event *event)
4250{
4251 cpu_clock_perf_event_update(event);
4252}
4253
4254static const struct pmu perf_ops_cpu_clock = {
4255 .enable = cpu_clock_perf_event_enable,
4256 .disable = cpu_clock_perf_event_disable,
4257 .read = cpu_clock_perf_event_read,
4258};
4259
4260/*
4261 * Software event: task time clock
4262 */
4263
4264static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4265{
4266 u64 prev;
4267 s64 delta;
4268
4269 prev = atomic64_xchg(&event->hw.prev_count, now);
4270 delta = now - prev;
4271 atomic64_add(delta, &event->count);
4272}
4273
4274static int task_clock_perf_event_enable(struct perf_event *event)
4275{
4276 struct hw_perf_event *hwc = &event->hw;
4277 u64 now;
4278
4279 now = event->ctx->time;
4280
4281 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004282
4283 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004284
4285 return 0;
4286}
4287
4288static void task_clock_perf_event_disable(struct perf_event *event)
4289{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004290 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004291 task_clock_perf_event_update(event, event->ctx->time);
4292
4293}
4294
4295static void task_clock_perf_event_read(struct perf_event *event)
4296{
4297 u64 time;
4298
4299 if (!in_nmi()) {
4300 update_context_time(event->ctx);
4301 time = event->ctx->time;
4302 } else {
4303 u64 now = perf_clock();
4304 u64 delta = now - event->ctx->timestamp;
4305 time = event->ctx->time + delta;
4306 }
4307
4308 task_clock_perf_event_update(event, time);
4309}
4310
4311static const struct pmu perf_ops_task_clock = {
4312 .enable = task_clock_perf_event_enable,
4313 .disable = task_clock_perf_event_disable,
4314 .read = task_clock_perf_event_read,
4315};
4316
Li Zefan07b139c2009-12-21 14:27:35 +08004317#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004318
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004319void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4320 int entry_size)
4321{
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004322 struct pt_regs *regs = get_irq_regs();
4323 struct perf_sample_data data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004324 struct perf_raw_record raw = {
4325 .size = entry_size,
4326 .data = record,
4327 };
4328
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004329 perf_sample_data_init(&data, addr);
4330 data.raw = &raw;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004331
4332 if (!regs)
4333 regs = task_pt_regs(current);
4334
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004335 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004336 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004337 &data, regs);
4338}
4339EXPORT_SYMBOL_GPL(perf_tp_event);
4340
Li Zefan6fb29152009-10-15 11:21:42 +08004341static int perf_tp_event_match(struct perf_event *event,
4342 struct perf_sample_data *data)
4343{
4344 void *record = data->raw->data;
4345
4346 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4347 return 1;
4348 return 0;
4349}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004350
4351static void tp_perf_event_destroy(struct perf_event *event)
4352{
4353 ftrace_profile_disable(event->attr.config);
4354}
4355
4356static const struct pmu *tp_perf_event_init(struct perf_event *event)
4357{
4358 /*
4359 * Raw tracepoint data is a severe data leak, only allow root to
4360 * have these.
4361 */
4362 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4363 perf_paranoid_tracepoint_raw() &&
4364 !capable(CAP_SYS_ADMIN))
4365 return ERR_PTR(-EPERM);
4366
4367 if (ftrace_profile_enable(event->attr.config))
4368 return NULL;
4369
4370 event->destroy = tp_perf_event_destroy;
4371
4372 return &perf_ops_generic;
4373}
Li Zefan6fb29152009-10-15 11:21:42 +08004374
4375static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4376{
4377 char *filter_str;
4378 int ret;
4379
4380 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4381 return -EINVAL;
4382
4383 filter_str = strndup_user(arg, PAGE_SIZE);
4384 if (IS_ERR(filter_str))
4385 return PTR_ERR(filter_str);
4386
4387 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4388
4389 kfree(filter_str);
4390 return ret;
4391}
4392
4393static void perf_event_free_filter(struct perf_event *event)
4394{
4395 ftrace_profile_free_filter(event);
4396}
4397
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004398#else
Li Zefan6fb29152009-10-15 11:21:42 +08004399
4400static int perf_tp_event_match(struct perf_event *event,
4401 struct perf_sample_data *data)
4402{
4403 return 1;
4404}
4405
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004406static const struct pmu *tp_perf_event_init(struct perf_event *event)
4407{
4408 return NULL;
4409}
Li Zefan6fb29152009-10-15 11:21:42 +08004410
4411static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4412{
4413 return -ENOENT;
4414}
4415
4416static void perf_event_free_filter(struct perf_event *event)
4417{
4418}
4419
Li Zefan07b139c2009-12-21 14:27:35 +08004420#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004421
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004422#ifdef CONFIG_HAVE_HW_BREAKPOINT
4423static void bp_perf_event_destroy(struct perf_event *event)
4424{
4425 release_bp_slot(event);
4426}
4427
4428static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4429{
4430 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004431
4432 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004433 if (err)
4434 return ERR_PTR(err);
4435
4436 bp->destroy = bp_perf_event_destroy;
4437
4438 return &perf_ops_bp;
4439}
4440
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004441void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004442{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004443 struct perf_sample_data sample;
4444 struct pt_regs *regs = data;
4445
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004446 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004447
4448 if (!perf_exclude_event(bp, regs))
4449 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004450}
4451#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004452static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4453{
4454 return NULL;
4455}
4456
4457void perf_bp_event(struct perf_event *bp, void *regs)
4458{
4459}
4460#endif
4461
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004462atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4463
4464static void sw_perf_event_destroy(struct perf_event *event)
4465{
4466 u64 event_id = event->attr.config;
4467
4468 WARN_ON(event->parent);
4469
4470 atomic_dec(&perf_swevent_enabled[event_id]);
4471}
4472
4473static const struct pmu *sw_perf_event_init(struct perf_event *event)
4474{
4475 const struct pmu *pmu = NULL;
4476 u64 event_id = event->attr.config;
4477
4478 /*
4479 * Software events (currently) can't in general distinguish
4480 * between user, kernel and hypervisor events.
4481 * However, context switches and cpu migrations are considered
4482 * to be kernel events, and page faults are never hypervisor
4483 * events.
4484 */
4485 switch (event_id) {
4486 case PERF_COUNT_SW_CPU_CLOCK:
4487 pmu = &perf_ops_cpu_clock;
4488
4489 break;
4490 case PERF_COUNT_SW_TASK_CLOCK:
4491 /*
4492 * If the user instantiates this as a per-cpu event,
4493 * use the cpu_clock event instead.
4494 */
4495 if (event->ctx->task)
4496 pmu = &perf_ops_task_clock;
4497 else
4498 pmu = &perf_ops_cpu_clock;
4499
4500 break;
4501 case PERF_COUNT_SW_PAGE_FAULTS:
4502 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4503 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4504 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4505 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004506 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4507 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004508 if (!event->parent) {
4509 atomic_inc(&perf_swevent_enabled[event_id]);
4510 event->destroy = sw_perf_event_destroy;
4511 }
4512 pmu = &perf_ops_generic;
4513 break;
4514 }
4515
4516 return pmu;
4517}
4518
4519/*
4520 * Allocate and initialize a event structure
4521 */
4522static struct perf_event *
4523perf_event_alloc(struct perf_event_attr *attr,
4524 int cpu,
4525 struct perf_event_context *ctx,
4526 struct perf_event *group_leader,
4527 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004528 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004529 gfp_t gfpflags)
4530{
4531 const struct pmu *pmu;
4532 struct perf_event *event;
4533 struct hw_perf_event *hwc;
4534 long err;
4535
4536 event = kzalloc(sizeof(*event), gfpflags);
4537 if (!event)
4538 return ERR_PTR(-ENOMEM);
4539
4540 /*
4541 * Single events are their own group leaders, with an
4542 * empty sibling list:
4543 */
4544 if (!group_leader)
4545 group_leader = event;
4546
4547 mutex_init(&event->child_mutex);
4548 INIT_LIST_HEAD(&event->child_list);
4549
4550 INIT_LIST_HEAD(&event->group_entry);
4551 INIT_LIST_HEAD(&event->event_entry);
4552 INIT_LIST_HEAD(&event->sibling_list);
4553 init_waitqueue_head(&event->waitq);
4554
4555 mutex_init(&event->mmap_mutex);
4556
4557 event->cpu = cpu;
4558 event->attr = *attr;
4559 event->group_leader = group_leader;
4560 event->pmu = NULL;
4561 event->ctx = ctx;
4562 event->oncpu = -1;
4563
4564 event->parent = parent_event;
4565
4566 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4567 event->id = atomic64_inc_return(&perf_event_id);
4568
4569 event->state = PERF_EVENT_STATE_INACTIVE;
4570
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004571 if (!overflow_handler && parent_event)
4572 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004573
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004574 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004575
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004576 if (attr->disabled)
4577 event->state = PERF_EVENT_STATE_OFF;
4578
4579 pmu = NULL;
4580
4581 hwc = &event->hw;
4582 hwc->sample_period = attr->sample_period;
4583 if (attr->freq && attr->sample_freq)
4584 hwc->sample_period = 1;
4585 hwc->last_period = hwc->sample_period;
4586
4587 atomic64_set(&hwc->period_left, hwc->sample_period);
4588
4589 /*
4590 * we currently do not support PERF_FORMAT_GROUP on inherited events
4591 */
4592 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4593 goto done;
4594
4595 switch (attr->type) {
4596 case PERF_TYPE_RAW:
4597 case PERF_TYPE_HARDWARE:
4598 case PERF_TYPE_HW_CACHE:
4599 pmu = hw_perf_event_init(event);
4600 break;
4601
4602 case PERF_TYPE_SOFTWARE:
4603 pmu = sw_perf_event_init(event);
4604 break;
4605
4606 case PERF_TYPE_TRACEPOINT:
4607 pmu = tp_perf_event_init(event);
4608 break;
4609
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004610 case PERF_TYPE_BREAKPOINT:
4611 pmu = bp_perf_event_init(event);
4612 break;
4613
4614
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004615 default:
4616 break;
4617 }
4618done:
4619 err = 0;
4620 if (!pmu)
4621 err = -EINVAL;
4622 else if (IS_ERR(pmu))
4623 err = PTR_ERR(pmu);
4624
4625 if (err) {
4626 if (event->ns)
4627 put_pid_ns(event->ns);
4628 kfree(event);
4629 return ERR_PTR(err);
4630 }
4631
4632 event->pmu = pmu;
4633
4634 if (!event->parent) {
4635 atomic_inc(&nr_events);
4636 if (event->attr.mmap)
4637 atomic_inc(&nr_mmap_events);
4638 if (event->attr.comm)
4639 atomic_inc(&nr_comm_events);
4640 if (event->attr.task)
4641 atomic_inc(&nr_task_events);
4642 }
4643
4644 return event;
4645}
4646
4647static int perf_copy_attr(struct perf_event_attr __user *uattr,
4648 struct perf_event_attr *attr)
4649{
4650 u32 size;
4651 int ret;
4652
4653 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4654 return -EFAULT;
4655
4656 /*
4657 * zero the full structure, so that a short copy will be nice.
4658 */
4659 memset(attr, 0, sizeof(*attr));
4660
4661 ret = get_user(size, &uattr->size);
4662 if (ret)
4663 return ret;
4664
4665 if (size > PAGE_SIZE) /* silly large */
4666 goto err_size;
4667
4668 if (!size) /* abi compat */
4669 size = PERF_ATTR_SIZE_VER0;
4670
4671 if (size < PERF_ATTR_SIZE_VER0)
4672 goto err_size;
4673
4674 /*
4675 * If we're handed a bigger struct than we know of,
4676 * ensure all the unknown bits are 0 - i.e. new
4677 * user-space does not rely on any kernel feature
4678 * extensions we dont know about yet.
4679 */
4680 if (size > sizeof(*attr)) {
4681 unsigned char __user *addr;
4682 unsigned char __user *end;
4683 unsigned char val;
4684
4685 addr = (void __user *)uattr + sizeof(*attr);
4686 end = (void __user *)uattr + size;
4687
4688 for (; addr < end; addr++) {
4689 ret = get_user(val, addr);
4690 if (ret)
4691 return ret;
4692 if (val)
4693 goto err_size;
4694 }
4695 size = sizeof(*attr);
4696 }
4697
4698 ret = copy_from_user(attr, uattr, size);
4699 if (ret)
4700 return -EFAULT;
4701
4702 /*
4703 * If the type exists, the corresponding creation will verify
4704 * the attr->config.
4705 */
4706 if (attr->type >= PERF_TYPE_MAX)
4707 return -EINVAL;
4708
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304709 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004710 return -EINVAL;
4711
4712 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4713 return -EINVAL;
4714
4715 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4716 return -EINVAL;
4717
4718out:
4719 return ret;
4720
4721err_size:
4722 put_user(sizeof(*attr), &uattr->size);
4723 ret = -E2BIG;
4724 goto out;
4725}
4726
Li Zefan6fb29152009-10-15 11:21:42 +08004727static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004728{
4729 struct perf_event *output_event = NULL;
4730 struct file *output_file = NULL;
4731 struct perf_event *old_output;
4732 int fput_needed = 0;
4733 int ret = -EINVAL;
4734
4735 if (!output_fd)
4736 goto set;
4737
4738 output_file = fget_light(output_fd, &fput_needed);
4739 if (!output_file)
4740 return -EBADF;
4741
4742 if (output_file->f_op != &perf_fops)
4743 goto out;
4744
4745 output_event = output_file->private_data;
4746
4747 /* Don't chain output fds */
4748 if (output_event->output)
4749 goto out;
4750
4751 /* Don't set an output fd when we already have an output channel */
4752 if (event->data)
4753 goto out;
4754
4755 atomic_long_inc(&output_file->f_count);
4756
4757set:
4758 mutex_lock(&event->mmap_mutex);
4759 old_output = event->output;
4760 rcu_assign_pointer(event->output, output_event);
4761 mutex_unlock(&event->mmap_mutex);
4762
4763 if (old_output) {
4764 /*
4765 * we need to make sure no existing perf_output_*()
4766 * is still referencing this event.
4767 */
4768 synchronize_rcu();
4769 fput(old_output->filp);
4770 }
4771
4772 ret = 0;
4773out:
4774 fput_light(output_file, fput_needed);
4775 return ret;
4776}
4777
4778/**
4779 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4780 *
4781 * @attr_uptr: event_id type attributes for monitoring/sampling
4782 * @pid: target pid
4783 * @cpu: target cpu
4784 * @group_fd: group leader event fd
4785 */
4786SYSCALL_DEFINE5(perf_event_open,
4787 struct perf_event_attr __user *, attr_uptr,
4788 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4789{
4790 struct perf_event *event, *group_leader;
4791 struct perf_event_attr attr;
4792 struct perf_event_context *ctx;
4793 struct file *event_file = NULL;
4794 struct file *group_file = NULL;
4795 int fput_needed = 0;
4796 int fput_needed2 = 0;
4797 int err;
4798
4799 /* for future expandability... */
4800 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4801 return -EINVAL;
4802
4803 err = perf_copy_attr(attr_uptr, &attr);
4804 if (err)
4805 return err;
4806
4807 if (!attr.exclude_kernel) {
4808 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4809 return -EACCES;
4810 }
4811
4812 if (attr.freq) {
4813 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4814 return -EINVAL;
4815 }
4816
4817 /*
4818 * Get the target context (task or percpu):
4819 */
4820 ctx = find_get_context(pid, cpu);
4821 if (IS_ERR(ctx))
4822 return PTR_ERR(ctx);
4823
4824 /*
4825 * Look up the group leader (we will attach this event to it):
4826 */
4827 group_leader = NULL;
4828 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4829 err = -EINVAL;
4830 group_file = fget_light(group_fd, &fput_needed);
4831 if (!group_file)
4832 goto err_put_context;
4833 if (group_file->f_op != &perf_fops)
4834 goto err_put_context;
4835
4836 group_leader = group_file->private_data;
4837 /*
4838 * Do not allow a recursive hierarchy (this new sibling
4839 * becoming part of another group-sibling):
4840 */
4841 if (group_leader->group_leader != group_leader)
4842 goto err_put_context;
4843 /*
4844 * Do not allow to attach to a group in a different
4845 * task or CPU context:
4846 */
4847 if (group_leader->ctx != ctx)
4848 goto err_put_context;
4849 /*
4850 * Only a group leader can be exclusive or pinned
4851 */
4852 if (attr.exclusive || attr.pinned)
4853 goto err_put_context;
4854 }
4855
4856 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004857 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004858 err = PTR_ERR(event);
4859 if (IS_ERR(event))
4860 goto err_put_context;
4861
Roland Dreier628ff7c2009-12-18 09:41:24 -08004862 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004863 if (err < 0)
4864 goto err_free_put_context;
4865
4866 event_file = fget_light(err, &fput_needed2);
4867 if (!event_file)
4868 goto err_free_put_context;
4869
4870 if (flags & PERF_FLAG_FD_OUTPUT) {
4871 err = perf_event_set_output(event, group_fd);
4872 if (err)
4873 goto err_fput_free_put_context;
4874 }
4875
4876 event->filp = event_file;
4877 WARN_ON_ONCE(ctx->parent_ctx);
4878 mutex_lock(&ctx->mutex);
4879 perf_install_in_context(ctx, event, cpu);
4880 ++ctx->generation;
4881 mutex_unlock(&ctx->mutex);
4882
4883 event->owner = current;
4884 get_task_struct(current);
4885 mutex_lock(&current->perf_event_mutex);
4886 list_add_tail(&event->owner_entry, &current->perf_event_list);
4887 mutex_unlock(&current->perf_event_mutex);
4888
4889err_fput_free_put_context:
4890 fput_light(event_file, fput_needed2);
4891
4892err_free_put_context:
4893 if (err < 0)
4894 kfree(event);
4895
4896err_put_context:
4897 if (err < 0)
4898 put_ctx(ctx);
4899
4900 fput_light(group_file, fput_needed);
4901
4902 return err;
4903}
4904
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004905/**
4906 * perf_event_create_kernel_counter
4907 *
4908 * @attr: attributes of the counter to create
4909 * @cpu: cpu in which the counter is bound
4910 * @pid: task to profile
4911 */
4912struct perf_event *
4913perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004914 pid_t pid,
4915 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004916{
4917 struct perf_event *event;
4918 struct perf_event_context *ctx;
4919 int err;
4920
4921 /*
4922 * Get the target context (task or percpu):
4923 */
4924
4925 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004926 if (IS_ERR(ctx)) {
4927 err = PTR_ERR(ctx);
4928 goto err_exit;
4929 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004930
4931 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004932 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004933 if (IS_ERR(event)) {
4934 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004935 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004936 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004937
4938 event->filp = NULL;
4939 WARN_ON_ONCE(ctx->parent_ctx);
4940 mutex_lock(&ctx->mutex);
4941 perf_install_in_context(ctx, event, cpu);
4942 ++ctx->generation;
4943 mutex_unlock(&ctx->mutex);
4944
4945 event->owner = current;
4946 get_task_struct(current);
4947 mutex_lock(&current->perf_event_mutex);
4948 list_add_tail(&event->owner_entry, &current->perf_event_list);
4949 mutex_unlock(&current->perf_event_mutex);
4950
4951 return event;
4952
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004953 err_put_context:
4954 put_ctx(ctx);
4955 err_exit:
4956 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004957}
4958EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4959
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004960/*
4961 * inherit a event from parent task to child task:
4962 */
4963static struct perf_event *
4964inherit_event(struct perf_event *parent_event,
4965 struct task_struct *parent,
4966 struct perf_event_context *parent_ctx,
4967 struct task_struct *child,
4968 struct perf_event *group_leader,
4969 struct perf_event_context *child_ctx)
4970{
4971 struct perf_event *child_event;
4972
4973 /*
4974 * Instead of creating recursive hierarchies of events,
4975 * we link inherited events back to the original parent,
4976 * which has a filp for sure, which we use as the reference
4977 * count:
4978 */
4979 if (parent_event->parent)
4980 parent_event = parent_event->parent;
4981
4982 child_event = perf_event_alloc(&parent_event->attr,
4983 parent_event->cpu, child_ctx,
4984 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004985 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004986 if (IS_ERR(child_event))
4987 return child_event;
4988 get_ctx(child_ctx);
4989
4990 /*
4991 * Make the child state follow the state of the parent event,
4992 * not its attr.disabled bit. We hold the parent's mutex,
4993 * so we won't race with perf_event_{en, dis}able_family.
4994 */
4995 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4996 child_event->state = PERF_EVENT_STATE_INACTIVE;
4997 else
4998 child_event->state = PERF_EVENT_STATE_OFF;
4999
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005000 if (parent_event->attr.freq) {
5001 u64 sample_period = parent_event->hw.sample_period;
5002 struct hw_perf_event *hwc = &child_event->hw;
5003
5004 hwc->sample_period = sample_period;
5005 hwc->last_period = sample_period;
5006
5007 atomic64_set(&hwc->period_left, sample_period);
5008 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005009
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005010 child_event->overflow_handler = parent_event->overflow_handler;
5011
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005012 /*
5013 * Link it up in the child's context:
5014 */
5015 add_event_to_ctx(child_event, child_ctx);
5016
5017 /*
5018 * Get a reference to the parent filp - we will fput it
5019 * when the child event exits. This is safe to do because
5020 * we are in the parent and we know that the filp still
5021 * exists and has a nonzero count:
5022 */
5023 atomic_long_inc(&parent_event->filp->f_count);
5024
5025 /*
5026 * Link this into the parent event's child list
5027 */
5028 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5029 mutex_lock(&parent_event->child_mutex);
5030 list_add_tail(&child_event->child_list, &parent_event->child_list);
5031 mutex_unlock(&parent_event->child_mutex);
5032
5033 return child_event;
5034}
5035
5036static int inherit_group(struct perf_event *parent_event,
5037 struct task_struct *parent,
5038 struct perf_event_context *parent_ctx,
5039 struct task_struct *child,
5040 struct perf_event_context *child_ctx)
5041{
5042 struct perf_event *leader;
5043 struct perf_event *sub;
5044 struct perf_event *child_ctr;
5045
5046 leader = inherit_event(parent_event, parent, parent_ctx,
5047 child, NULL, child_ctx);
5048 if (IS_ERR(leader))
5049 return PTR_ERR(leader);
5050 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5051 child_ctr = inherit_event(sub, parent, parent_ctx,
5052 child, leader, child_ctx);
5053 if (IS_ERR(child_ctr))
5054 return PTR_ERR(child_ctr);
5055 }
5056 return 0;
5057}
5058
5059static void sync_child_event(struct perf_event *child_event,
5060 struct task_struct *child)
5061{
5062 struct perf_event *parent_event = child_event->parent;
5063 u64 child_val;
5064
5065 if (child_event->attr.inherit_stat)
5066 perf_event_read_event(child_event, child);
5067
5068 child_val = atomic64_read(&child_event->count);
5069
5070 /*
5071 * Add back the child's count to the parent's count:
5072 */
5073 atomic64_add(child_val, &parent_event->count);
5074 atomic64_add(child_event->total_time_enabled,
5075 &parent_event->child_total_time_enabled);
5076 atomic64_add(child_event->total_time_running,
5077 &parent_event->child_total_time_running);
5078
5079 /*
5080 * Remove this event from the parent's list
5081 */
5082 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5083 mutex_lock(&parent_event->child_mutex);
5084 list_del_init(&child_event->child_list);
5085 mutex_unlock(&parent_event->child_mutex);
5086
5087 /*
5088 * Release the parent event, if this was the last
5089 * reference to it.
5090 */
5091 fput(parent_event->filp);
5092}
5093
5094static void
5095__perf_event_exit_task(struct perf_event *child_event,
5096 struct perf_event_context *child_ctx,
5097 struct task_struct *child)
5098{
5099 struct perf_event *parent_event;
5100
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005101 perf_event_remove_from_context(child_event);
5102
5103 parent_event = child_event->parent;
5104 /*
5105 * It can happen that parent exits first, and has events
5106 * that are still around due to the child reference. These
5107 * events need to be zapped - but otherwise linger.
5108 */
5109 if (parent_event) {
5110 sync_child_event(child_event, child);
5111 free_event(child_event);
5112 }
5113}
5114
5115/*
5116 * When a child task exits, feed back event values to parent events.
5117 */
5118void perf_event_exit_task(struct task_struct *child)
5119{
5120 struct perf_event *child_event, *tmp;
5121 struct perf_event_context *child_ctx;
5122 unsigned long flags;
5123
5124 if (likely(!child->perf_event_ctxp)) {
5125 perf_event_task(child, NULL, 0);
5126 return;
5127 }
5128
5129 local_irq_save(flags);
5130 /*
5131 * We can't reschedule here because interrupts are disabled,
5132 * and either child is current or it is a task that can't be
5133 * scheduled, so we are now safe from rescheduling changing
5134 * our context.
5135 */
5136 child_ctx = child->perf_event_ctxp;
5137 __perf_event_task_sched_out(child_ctx);
5138
5139 /*
5140 * Take the context lock here so that if find_get_context is
5141 * reading child->perf_event_ctxp, we wait until it has
5142 * incremented the context's refcount before we do put_ctx below.
5143 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005144 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005145 child->perf_event_ctxp = NULL;
5146 /*
5147 * If this context is a clone; unclone it so it can't get
5148 * swapped to another process while we're removing all
5149 * the events from it.
5150 */
5151 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005152 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005153 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005154
5155 /*
5156 * Report the task dead after unscheduling the events so that we
5157 * won't get any samples after PERF_RECORD_EXIT. We can however still
5158 * get a few PERF_RECORD_READ events.
5159 */
5160 perf_event_task(child, child_ctx, 0);
5161
5162 /*
5163 * We can recurse on the same lock type through:
5164 *
5165 * __perf_event_exit_task()
5166 * sync_child_event()
5167 * fput(parent_event->filp)
5168 * perf_release()
5169 * mutex_lock(&ctx->mutex)
5170 *
5171 * But since its the parent context it won't be the same instance.
5172 */
5173 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5174
5175again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005176 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5177 group_entry)
5178 __perf_event_exit_task(child_event, child_ctx, child);
5179
5180 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005181 group_entry)
5182 __perf_event_exit_task(child_event, child_ctx, child);
5183
5184 /*
5185 * If the last event was a group event, it will have appended all
5186 * its siblings to the list, but we obtained 'tmp' before that which
5187 * will still point to the list head terminating the iteration.
5188 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005189 if (!list_empty(&child_ctx->pinned_groups) ||
5190 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005191 goto again;
5192
5193 mutex_unlock(&child_ctx->mutex);
5194
5195 put_ctx(child_ctx);
5196}
5197
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005198static void perf_free_event(struct perf_event *event,
5199 struct perf_event_context *ctx)
5200{
5201 struct perf_event *parent = event->parent;
5202
5203 if (WARN_ON_ONCE(!parent))
5204 return;
5205
5206 mutex_lock(&parent->child_mutex);
5207 list_del_init(&event->child_list);
5208 mutex_unlock(&parent->child_mutex);
5209
5210 fput(parent->filp);
5211
5212 list_del_event(event, ctx);
5213 free_event(event);
5214}
5215
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005216/*
5217 * free an unexposed, unused context as created by inheritance by
5218 * init_task below, used by fork() in case of fail.
5219 */
5220void perf_event_free_task(struct task_struct *task)
5221{
5222 struct perf_event_context *ctx = task->perf_event_ctxp;
5223 struct perf_event *event, *tmp;
5224
5225 if (!ctx)
5226 return;
5227
5228 mutex_lock(&ctx->mutex);
5229again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005230 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5231 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005232
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005233 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5234 group_entry)
5235 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005236
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005237 if (!list_empty(&ctx->pinned_groups) ||
5238 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005239 goto again;
5240
5241 mutex_unlock(&ctx->mutex);
5242
5243 put_ctx(ctx);
5244}
5245
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005246static int
5247inherit_task_group(struct perf_event *event, struct task_struct *parent,
5248 struct perf_event_context *parent_ctx,
5249 struct task_struct *child,
5250 int *inherited_all)
5251{
5252 int ret;
5253 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5254
5255 if (!event->attr.inherit) {
5256 *inherited_all = 0;
5257 return 0;
5258 }
5259
5260 if (!child_ctx) {
5261 /*
5262 * This is executed from the parent task context, so
5263 * inherit events that have been marked for cloning.
5264 * First allocate and initialize a context for the
5265 * child.
5266 */
5267
5268 child_ctx = kzalloc(sizeof(struct perf_event_context),
5269 GFP_KERNEL);
5270 if (!child_ctx)
5271 return -ENOMEM;
5272
5273 __perf_event_init_context(child_ctx, child);
5274 child->perf_event_ctxp = child_ctx;
5275 get_task_struct(child);
5276 }
5277
5278 ret = inherit_group(event, parent, parent_ctx,
5279 child, child_ctx);
5280
5281 if (ret)
5282 *inherited_all = 0;
5283
5284 return ret;
5285}
5286
5287
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005288/*
5289 * Initialize the perf_event context in task_struct
5290 */
5291int perf_event_init_task(struct task_struct *child)
5292{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005293 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005294 struct perf_event_context *cloned_ctx;
5295 struct perf_event *event;
5296 struct task_struct *parent = current;
5297 int inherited_all = 1;
5298 int ret = 0;
5299
5300 child->perf_event_ctxp = NULL;
5301
5302 mutex_init(&child->perf_event_mutex);
5303 INIT_LIST_HEAD(&child->perf_event_list);
5304
5305 if (likely(!parent->perf_event_ctxp))
5306 return 0;
5307
5308 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005309 * If the parent's context is a clone, pin it so it won't get
5310 * swapped under us.
5311 */
5312 parent_ctx = perf_pin_task_context(parent);
5313
5314 /*
5315 * No need to check if parent_ctx != NULL here; since we saw
5316 * it non-NULL earlier, the only reason for it to become NULL
5317 * is if we exit, and since we're currently in the middle of
5318 * a fork we can't be exiting at the same time.
5319 */
5320
5321 /*
5322 * Lock the parent list. No need to lock the child - not PID
5323 * hashed yet and not running, so nobody can access it.
5324 */
5325 mutex_lock(&parent_ctx->mutex);
5326
5327 /*
5328 * We dont have to disable NMIs - we are only looking at
5329 * the list, not manipulating it:
5330 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005331 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5332 ret = inherit_task_group(event, parent, parent_ctx, child,
5333 &inherited_all);
5334 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005335 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005336 }
5337
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005338 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5339 ret = inherit_task_group(event, parent, parent_ctx, child,
5340 &inherited_all);
5341 if (ret)
5342 break;
5343 }
5344
5345 child_ctx = child->perf_event_ctxp;
5346
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005347 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005348 /*
5349 * Mark the child context as a clone of the parent
5350 * context, or of whatever the parent is a clone of.
5351 * Note that if the parent is a clone, it could get
5352 * uncloned at any point, but that doesn't matter
5353 * because the list of events and the generation
5354 * count can't have changed since we took the mutex.
5355 */
5356 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5357 if (cloned_ctx) {
5358 child_ctx->parent_ctx = cloned_ctx;
5359 child_ctx->parent_gen = parent_ctx->parent_gen;
5360 } else {
5361 child_ctx->parent_ctx = parent_ctx;
5362 child_ctx->parent_gen = parent_ctx->generation;
5363 }
5364 get_ctx(child_ctx->parent_ctx);
5365 }
5366
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005367 mutex_unlock(&parent_ctx->mutex);
5368
5369 perf_unpin_context(parent_ctx);
5370
5371 return ret;
5372}
5373
5374static void __cpuinit perf_event_init_cpu(int cpu)
5375{
5376 struct perf_cpu_context *cpuctx;
5377
5378 cpuctx = &per_cpu(perf_cpu_context, cpu);
5379 __perf_event_init_context(&cpuctx->ctx, NULL);
5380
5381 spin_lock(&perf_resource_lock);
5382 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5383 spin_unlock(&perf_resource_lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005384}
5385
5386#ifdef CONFIG_HOTPLUG_CPU
5387static void __perf_event_exit_cpu(void *info)
5388{
5389 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5390 struct perf_event_context *ctx = &cpuctx->ctx;
5391 struct perf_event *event, *tmp;
5392
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005393 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5394 __perf_event_remove_from_context(event);
5395 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005396 __perf_event_remove_from_context(event);
5397}
5398static void perf_event_exit_cpu(int cpu)
5399{
5400 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5401 struct perf_event_context *ctx = &cpuctx->ctx;
5402
5403 mutex_lock(&ctx->mutex);
5404 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5405 mutex_unlock(&ctx->mutex);
5406}
5407#else
5408static inline void perf_event_exit_cpu(int cpu) { }
5409#endif
5410
5411static int __cpuinit
5412perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5413{
5414 unsigned int cpu = (long)hcpu;
5415
5416 switch (action) {
5417
5418 case CPU_UP_PREPARE:
5419 case CPU_UP_PREPARE_FROZEN:
5420 perf_event_init_cpu(cpu);
5421 break;
5422
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005423 case CPU_DOWN_PREPARE:
5424 case CPU_DOWN_PREPARE_FROZEN:
5425 perf_event_exit_cpu(cpu);
5426 break;
5427
5428 default:
5429 break;
5430 }
5431
5432 return NOTIFY_OK;
5433}
5434
5435/*
5436 * This has to have a higher priority than migration_notifier in sched.c.
5437 */
5438static struct notifier_block __cpuinitdata perf_cpu_nb = {
5439 .notifier_call = perf_cpu_notify,
5440 .priority = 20,
5441};
5442
5443void __init perf_event_init(void)
5444{
5445 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5446 (void *)(long)smp_processor_id());
5447 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5448 (void *)(long)smp_processor_id());
5449 register_cpu_notifier(&perf_cpu_nb);
5450}
5451
Andi Kleenc9be0a32010-01-05 12:47:58 +01005452static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5453 struct sysdev_class_attribute *attr,
5454 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005455{
5456 return sprintf(buf, "%d\n", perf_reserved_percpu);
5457}
5458
5459static ssize_t
5460perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005461 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005462 const char *buf,
5463 size_t count)
5464{
5465 struct perf_cpu_context *cpuctx;
5466 unsigned long val;
5467 int err, cpu, mpt;
5468
5469 err = strict_strtoul(buf, 10, &val);
5470 if (err)
5471 return err;
5472 if (val > perf_max_events)
5473 return -EINVAL;
5474
5475 spin_lock(&perf_resource_lock);
5476 perf_reserved_percpu = val;
5477 for_each_online_cpu(cpu) {
5478 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005479 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005480 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5481 perf_max_events - perf_reserved_percpu);
5482 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005483 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005484 }
5485 spin_unlock(&perf_resource_lock);
5486
5487 return count;
5488}
5489
Andi Kleenc9be0a32010-01-05 12:47:58 +01005490static ssize_t perf_show_overcommit(struct sysdev_class *class,
5491 struct sysdev_class_attribute *attr,
5492 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005493{
5494 return sprintf(buf, "%d\n", perf_overcommit);
5495}
5496
5497static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005498perf_set_overcommit(struct sysdev_class *class,
5499 struct sysdev_class_attribute *attr,
5500 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005501{
5502 unsigned long val;
5503 int err;
5504
5505 err = strict_strtoul(buf, 10, &val);
5506 if (err)
5507 return err;
5508 if (val > 1)
5509 return -EINVAL;
5510
5511 spin_lock(&perf_resource_lock);
5512 perf_overcommit = val;
5513 spin_unlock(&perf_resource_lock);
5514
5515 return count;
5516}
5517
5518static SYSDEV_CLASS_ATTR(
5519 reserve_percpu,
5520 0644,
5521 perf_show_reserve_percpu,
5522 perf_set_reserve_percpu
5523 );
5524
5525static SYSDEV_CLASS_ATTR(
5526 overcommit,
5527 0644,
5528 perf_show_overcommit,
5529 perf_set_overcommit
5530 );
5531
5532static struct attribute *perfclass_attrs[] = {
5533 &attr_reserve_percpu.attr,
5534 &attr_overcommit.attr,
5535 NULL
5536};
5537
5538static struct attribute_group perfclass_attr_group = {
5539 .attrs = perfclass_attrs,
5540 .name = "perf_events",
5541};
5542
5543static int __init perf_event_sysfs_init(void)
5544{
5545 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5546 &perfclass_attr_group);
5547}
5548device_initcall(perf_event_sysfs_init);