| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  kernel/sched.c | 
|  | 3 | * | 
|  | 4 | *  Kernel scheduler and related syscalls | 
|  | 5 | * | 
|  | 6 | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | 7 | * | 
|  | 8 | *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
|  | 9 | *		make semaphores SMP safe | 
|  | 10 | *  1998-11-19	Implemented schedule_timeout() and related stuff | 
|  | 11 | *		by Andrea Arcangeli | 
|  | 12 | *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
|  | 13 | *		hybrid priority-list and round-robin design with | 
|  | 14 | *		an array-switch method of distributing timeslices | 
|  | 15 | *		and per-CPU runqueues.  Cleanups and useful suggestions | 
|  | 16 | *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
|  | 17 | *  2003-09-03	Interactivity tuning by Con Kolivas. | 
|  | 18 | *  2004-04-02	Scheduler domains code by Nick Piggin | 
|  | 19 | */ | 
|  | 20 |  | 
|  | 21 | #include <linux/mm.h> | 
|  | 22 | #include <linux/module.h> | 
|  | 23 | #include <linux/nmi.h> | 
|  | 24 | #include <linux/init.h> | 
|  | 25 | #include <asm/uaccess.h> | 
|  | 26 | #include <linux/highmem.h> | 
|  | 27 | #include <linux/smp_lock.h> | 
|  | 28 | #include <asm/mmu_context.h> | 
|  | 29 | #include <linux/interrupt.h> | 
| Randy.Dunlap | c59ede7 | 2006-01-11 12:17:46 -0800 | [diff] [blame] | 30 | #include <linux/capability.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 31 | #include <linux/completion.h> | 
|  | 32 | #include <linux/kernel_stat.h> | 
|  | 33 | #include <linux/security.h> | 
|  | 34 | #include <linux/notifier.h> | 
|  | 35 | #include <linux/profile.h> | 
|  | 36 | #include <linux/suspend.h> | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 37 | #include <linux/vmalloc.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 38 | #include <linux/blkdev.h> | 
|  | 39 | #include <linux/delay.h> | 
|  | 40 | #include <linux/smp.h> | 
|  | 41 | #include <linux/threads.h> | 
|  | 42 | #include <linux/timer.h> | 
|  | 43 | #include <linux/rcupdate.h> | 
|  | 44 | #include <linux/cpu.h> | 
|  | 45 | #include <linux/cpuset.h> | 
|  | 46 | #include <linux/percpu.h> | 
|  | 47 | #include <linux/kthread.h> | 
|  | 48 | #include <linux/seq_file.h> | 
|  | 49 | #include <linux/syscalls.h> | 
|  | 50 | #include <linux/times.h> | 
|  | 51 | #include <linux/acct.h> | 
| bibo mao | c6fd91f | 2006-03-26 01:38:20 -0800 | [diff] [blame] | 52 | #include <linux/kprobes.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 53 | #include <asm/tlb.h> | 
|  | 54 |  | 
|  | 55 | #include <asm/unistd.h> | 
|  | 56 |  | 
|  | 57 | /* | 
|  | 58 | * Convert user-nice values [ -20 ... 0 ... 19 ] | 
|  | 59 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
|  | 60 | * and back. | 
|  | 61 | */ | 
|  | 62 | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
|  | 63 | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
|  | 64 | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
|  | 65 |  | 
|  | 66 | /* | 
|  | 67 | * 'User priority' is the nice value converted to something we | 
|  | 68 | * can work with better when scaling various scheduler parameters, | 
|  | 69 | * it's a [ 0 ... 39 ] range. | 
|  | 70 | */ | 
|  | 71 | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
|  | 72 | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
|  | 73 | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * Some helpers for converting nanosecond timing to jiffy resolution | 
|  | 77 | */ | 
|  | 78 | #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ)) | 
|  | 79 | #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ)) | 
|  | 80 |  | 
|  | 81 | /* | 
|  | 82 | * These are the 'tuning knobs' of the scheduler: | 
|  | 83 | * | 
|  | 84 | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | 
|  | 85 | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | 
|  | 86 | * Timeslices get refilled after they expire. | 
|  | 87 | */ | 
|  | 88 | #define MIN_TIMESLICE		max(5 * HZ / 1000, 1) | 
|  | 89 | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
|  | 90 | #define ON_RUNQUEUE_WEIGHT	 30 | 
|  | 91 | #define CHILD_PENALTY		 95 | 
|  | 92 | #define PARENT_PENALTY		100 | 
|  | 93 | #define EXIT_WEIGHT		  3 | 
|  | 94 | #define PRIO_BONUS_RATIO	 25 | 
|  | 95 | #define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | 
|  | 96 | #define INTERACTIVE_DELTA	  2 | 
|  | 97 | #define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS) | 
|  | 98 | #define STARVATION_LIMIT	(MAX_SLEEP_AVG) | 
|  | 99 | #define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG)) | 
|  | 100 |  | 
|  | 101 | /* | 
|  | 102 | * If a task is 'interactive' then we reinsert it in the active | 
|  | 103 | * array after it has expired its current timeslice. (it will not | 
|  | 104 | * continue to run immediately, it will still roundrobin with | 
|  | 105 | * other interactive tasks.) | 
|  | 106 | * | 
|  | 107 | * This part scales the interactivity limit depending on niceness. | 
|  | 108 | * | 
|  | 109 | * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | 
|  | 110 | * Here are a few examples of different nice levels: | 
|  | 111 | * | 
|  | 112 | *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | 
|  | 113 | *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | 
|  | 114 | *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0] | 
|  | 115 | *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | 
|  | 116 | *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | 
|  | 117 | * | 
|  | 118 | * (the X axis represents the possible -5 ... 0 ... +5 dynamic | 
|  | 119 | *  priority range a task can explore, a value of '1' means the | 
|  | 120 | *  task is rated interactive.) | 
|  | 121 | * | 
|  | 122 | * Ie. nice +19 tasks can never get 'interactive' enough to be | 
|  | 123 | * reinserted into the active array. And only heavily CPU-hog nice -20 | 
|  | 124 | * tasks will be expired. Default nice 0 tasks are somewhere between, | 
|  | 125 | * it takes some effort for them to get interactive, but it's not | 
|  | 126 | * too hard. | 
|  | 127 | */ | 
|  | 128 |  | 
|  | 129 | #define CURRENT_BONUS(p) \ | 
|  | 130 | (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | 
|  | 131 | MAX_SLEEP_AVG) | 
|  | 132 |  | 
|  | 133 | #define GRANULARITY	(10 * HZ / 1000 ? : 1) | 
|  | 134 |  | 
|  | 135 | #ifdef CONFIG_SMP | 
|  | 136 | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | 137 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | 
|  | 138 | num_online_cpus()) | 
|  | 139 | #else | 
|  | 140 | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | 141 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | 
|  | 142 | #endif | 
|  | 143 |  | 
|  | 144 | #define SCALE(v1,v1_max,v2_max) \ | 
|  | 145 | (v1) * (v2_max) / (v1_max) | 
|  | 146 |  | 
|  | 147 | #define DELTA(p) \ | 
| Martin Andersson | 013d386 | 2006-03-27 01:15:18 -0800 | [diff] [blame] | 148 | (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \ | 
|  | 149 | INTERACTIVE_DELTA) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 150 |  | 
|  | 151 | #define TASK_INTERACTIVE(p) \ | 
|  | 152 | ((p)->prio <= (p)->static_prio - DELTA(p)) | 
|  | 153 |  | 
|  | 154 | #define INTERACTIVE_SLEEP(p) \ | 
|  | 155 | (JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | 
|  | 156 | (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | 
|  | 157 |  | 
|  | 158 | #define TASK_PREEMPTS_CURR(p, rq) \ | 
|  | 159 | ((p)->prio < (rq)->curr->prio) | 
|  | 160 |  | 
|  | 161 | /* | 
|  | 162 | * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | 
|  | 163 | * to time slice values: [800ms ... 100ms ... 5ms] | 
|  | 164 | * | 
|  | 165 | * The higher a thread's priority, the bigger timeslices | 
|  | 166 | * it gets during one round of execution. But even the lowest | 
|  | 167 | * priority thread gets MIN_TIMESLICE worth of execution time. | 
|  | 168 | */ | 
|  | 169 |  | 
|  | 170 | #define SCALE_PRIO(x, prio) \ | 
|  | 171 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) | 
|  | 172 |  | 
| Ingo Molnar | 48c08d3 | 2005-06-25 14:57:22 -0700 | [diff] [blame] | 173 | static unsigned int task_timeslice(task_t *p) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 174 | { | 
|  | 175 | if (p->static_prio < NICE_TO_PRIO(0)) | 
|  | 176 | return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); | 
|  | 177 | else | 
|  | 178 | return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); | 
|  | 179 | } | 
|  | 180 | #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\ | 
|  | 181 | < (long long) (sd)->cache_hot_time) | 
|  | 182 |  | 
|  | 183 | /* | 
|  | 184 | * These are the runqueue data structures: | 
|  | 185 | */ | 
|  | 186 |  | 
|  | 187 | #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long)) | 
|  | 188 |  | 
|  | 189 | typedef struct runqueue runqueue_t; | 
|  | 190 |  | 
|  | 191 | struct prio_array { | 
|  | 192 | unsigned int nr_active; | 
|  | 193 | unsigned long bitmap[BITMAP_SIZE]; | 
|  | 194 | struct list_head queue[MAX_PRIO]; | 
|  | 195 | }; | 
|  | 196 |  | 
|  | 197 | /* | 
|  | 198 | * This is the main, per-CPU runqueue data structure. | 
|  | 199 | * | 
|  | 200 | * Locking rule: those places that want to lock multiple runqueues | 
|  | 201 | * (such as the load balancing or the thread migration code), lock | 
|  | 202 | * acquire operations must be ordered by ascending &runqueue. | 
|  | 203 | */ | 
|  | 204 | struct runqueue { | 
|  | 205 | spinlock_t lock; | 
|  | 206 |  | 
|  | 207 | /* | 
|  | 208 | * nr_running and cpu_load should be in the same cacheline because | 
|  | 209 | * remote CPUs use both these fields when doing load calculation. | 
|  | 210 | */ | 
|  | 211 | unsigned long nr_running; | 
|  | 212 | #ifdef CONFIG_SMP | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 213 | unsigned long cpu_load[3]; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 214 | #endif | 
|  | 215 | unsigned long long nr_switches; | 
|  | 216 |  | 
|  | 217 | /* | 
|  | 218 | * This is part of a global counter where only the total sum | 
|  | 219 | * over all CPUs matters. A task can increase this counter on | 
|  | 220 | * one CPU and if it got migrated afterwards it may decrease | 
|  | 221 | * it on another CPU. Always updated under the runqueue lock: | 
|  | 222 | */ | 
|  | 223 | unsigned long nr_uninterruptible; | 
|  | 224 |  | 
|  | 225 | unsigned long expired_timestamp; | 
|  | 226 | unsigned long long timestamp_last_tick; | 
|  | 227 | task_t *curr, *idle; | 
|  | 228 | struct mm_struct *prev_mm; | 
|  | 229 | prio_array_t *active, *expired, arrays[2]; | 
|  | 230 | int best_expired_prio; | 
|  | 231 | atomic_t nr_iowait; | 
|  | 232 |  | 
|  | 233 | #ifdef CONFIG_SMP | 
|  | 234 | struct sched_domain *sd; | 
|  | 235 |  | 
|  | 236 | /* For active balancing */ | 
|  | 237 | int active_balance; | 
|  | 238 | int push_cpu; | 
|  | 239 |  | 
|  | 240 | task_t *migration_thread; | 
|  | 241 | struct list_head migration_queue; | 
| Anton Blanchard | e9028b0 | 2006-03-23 02:59:20 -0800 | [diff] [blame] | 242 | int cpu; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 243 | #endif | 
|  | 244 |  | 
|  | 245 | #ifdef CONFIG_SCHEDSTATS | 
|  | 246 | /* latency stats */ | 
|  | 247 | struct sched_info rq_sched_info; | 
|  | 248 |  | 
|  | 249 | /* sys_sched_yield() stats */ | 
|  | 250 | unsigned long yld_exp_empty; | 
|  | 251 | unsigned long yld_act_empty; | 
|  | 252 | unsigned long yld_both_empty; | 
|  | 253 | unsigned long yld_cnt; | 
|  | 254 |  | 
|  | 255 | /* schedule() stats */ | 
|  | 256 | unsigned long sched_switch; | 
|  | 257 | unsigned long sched_cnt; | 
|  | 258 | unsigned long sched_goidle; | 
|  | 259 |  | 
|  | 260 | /* try_to_wake_up() stats */ | 
|  | 261 | unsigned long ttwu_cnt; | 
|  | 262 | unsigned long ttwu_local; | 
|  | 263 | #endif | 
|  | 264 | }; | 
|  | 265 |  | 
|  | 266 | static DEFINE_PER_CPU(struct runqueue, runqueues); | 
|  | 267 |  | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 268 | /* | 
|  | 269 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 270 | * See detach_destroy_domains: synchronize_sched for details. | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 271 | * | 
|  | 272 | * The domain tree of any CPU may only be accessed from within | 
|  | 273 | * preempt-disabled sections. | 
|  | 274 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 275 | #define for_each_domain(cpu, domain) \ | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 276 | for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 277 |  | 
|  | 278 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
|  | 279 | #define this_rq()		(&__get_cpu_var(runqueues)) | 
|  | 280 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
|  | 281 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
|  | 282 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 283 | #ifndef prepare_arch_switch | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 284 | # define prepare_arch_switch(next)	do { } while (0) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 285 | #endif | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 286 | #ifndef finish_arch_switch | 
|  | 287 | # define finish_arch_switch(prev)	do { } while (0) | 
|  | 288 | #endif | 
|  | 289 |  | 
|  | 290 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | 291 | static inline int task_running(runqueue_t *rq, task_t *p) | 
|  | 292 | { | 
|  | 293 | return rq->curr == p; | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | static inline void prepare_lock_switch(runqueue_t *rq, task_t *next) | 
|  | 297 | { | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | static inline void finish_lock_switch(runqueue_t *rq, task_t *prev) | 
|  | 301 | { | 
| Ingo Molnar | da04c03 | 2005-09-13 11:17:59 +0200 | [diff] [blame] | 302 | #ifdef CONFIG_DEBUG_SPINLOCK | 
|  | 303 | /* this is a valid case when another task releases the spinlock */ | 
|  | 304 | rq->lock.owner = current; | 
|  | 305 | #endif | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 306 | spin_unlock_irq(&rq->lock); | 
|  | 307 | } | 
|  | 308 |  | 
|  | 309 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  | 310 | static inline int task_running(runqueue_t *rq, task_t *p) | 
|  | 311 | { | 
|  | 312 | #ifdef CONFIG_SMP | 
|  | 313 | return p->oncpu; | 
|  | 314 | #else | 
|  | 315 | return rq->curr == p; | 
|  | 316 | #endif | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | static inline void prepare_lock_switch(runqueue_t *rq, task_t *next) | 
|  | 320 | { | 
|  | 321 | #ifdef CONFIG_SMP | 
|  | 322 | /* | 
|  | 323 | * We can optimise this out completely for !SMP, because the | 
|  | 324 | * SMP rebalancing from interrupt is the only thing that cares | 
|  | 325 | * here. | 
|  | 326 | */ | 
|  | 327 | next->oncpu = 1; | 
|  | 328 | #endif | 
|  | 329 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | 330 | spin_unlock_irq(&rq->lock); | 
|  | 331 | #else | 
|  | 332 | spin_unlock(&rq->lock); | 
|  | 333 | #endif | 
|  | 334 | } | 
|  | 335 |  | 
|  | 336 | static inline void finish_lock_switch(runqueue_t *rq, task_t *prev) | 
|  | 337 | { | 
|  | 338 | #ifdef CONFIG_SMP | 
|  | 339 | /* | 
|  | 340 | * After ->oncpu is cleared, the task can be moved to a different CPU. | 
|  | 341 | * We must ensure this doesn't happen until the switch is completely | 
|  | 342 | * finished. | 
|  | 343 | */ | 
|  | 344 | smp_wmb(); | 
|  | 345 | prev->oncpu = 0; | 
|  | 346 | #endif | 
|  | 347 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | 348 | local_irq_enable(); | 
|  | 349 | #endif | 
|  | 350 | } | 
|  | 351 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 352 |  | 
|  | 353 | /* | 
|  | 354 | * task_rq_lock - lock the runqueue a given task resides on and disable | 
|  | 355 | * interrupts.  Note the ordering: we can safely lookup the task_rq without | 
|  | 356 | * explicitly disabling preemption. | 
|  | 357 | */ | 
|  | 358 | static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) | 
|  | 359 | __acquires(rq->lock) | 
|  | 360 | { | 
|  | 361 | struct runqueue *rq; | 
|  | 362 |  | 
|  | 363 | repeat_lock_task: | 
|  | 364 | local_irq_save(*flags); | 
|  | 365 | rq = task_rq(p); | 
|  | 366 | spin_lock(&rq->lock); | 
|  | 367 | if (unlikely(rq != task_rq(p))) { | 
|  | 368 | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | 369 | goto repeat_lock_task; | 
|  | 370 | } | 
|  | 371 | return rq; | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) | 
|  | 375 | __releases(rq->lock) | 
|  | 376 | { | 
|  | 377 | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | #ifdef CONFIG_SCHEDSTATS | 
|  | 381 | /* | 
|  | 382 | * bump this up when changing the output format or the meaning of an existing | 
|  | 383 | * format, so that tools can adapt (or abort) | 
|  | 384 | */ | 
| Nick Piggin | 68767a0 | 2005-06-25 14:57:20 -0700 | [diff] [blame] | 385 | #define SCHEDSTAT_VERSION 12 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 386 |  | 
|  | 387 | static int show_schedstat(struct seq_file *seq, void *v) | 
|  | 388 | { | 
|  | 389 | int cpu; | 
|  | 390 |  | 
|  | 391 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | 
|  | 392 | seq_printf(seq, "timestamp %lu\n", jiffies); | 
|  | 393 | for_each_online_cpu(cpu) { | 
|  | 394 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 395 | #ifdef CONFIG_SMP | 
|  | 396 | struct sched_domain *sd; | 
|  | 397 | int dcnt = 0; | 
|  | 398 | #endif | 
|  | 399 |  | 
|  | 400 | /* runqueue-specific stats */ | 
|  | 401 | seq_printf(seq, | 
|  | 402 | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | 403 | cpu, rq->yld_both_empty, | 
|  | 404 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | 
|  | 405 | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | 
|  | 406 | rq->ttwu_cnt, rq->ttwu_local, | 
|  | 407 | rq->rq_sched_info.cpu_time, | 
|  | 408 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | 
|  | 409 |  | 
|  | 410 | seq_printf(seq, "\n"); | 
|  | 411 |  | 
|  | 412 | #ifdef CONFIG_SMP | 
|  | 413 | /* domain-specific stats */ | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 414 | preempt_disable(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 415 | for_each_domain(cpu, sd) { | 
|  | 416 | enum idle_type itype; | 
|  | 417 | char mask_str[NR_CPUS]; | 
|  | 418 |  | 
|  | 419 | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | 
|  | 420 | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | 
|  | 421 | for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | 
|  | 422 | itype++) { | 
|  | 423 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | 424 | sd->lb_cnt[itype], | 
|  | 425 | sd->lb_balanced[itype], | 
|  | 426 | sd->lb_failed[itype], | 
|  | 427 | sd->lb_imbalance[itype], | 
|  | 428 | sd->lb_gained[itype], | 
|  | 429 | sd->lb_hot_gained[itype], | 
|  | 430 | sd->lb_nobusyq[itype], | 
|  | 431 | sd->lb_nobusyg[itype]); | 
|  | 432 | } | 
| Nick Piggin | 68767a0 | 2005-06-25 14:57:20 -0700 | [diff] [blame] | 433 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n", | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 434 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 
| Nick Piggin | 68767a0 | 2005-06-25 14:57:20 -0700 | [diff] [blame] | 435 | sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, | 
|  | 436 | sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 437 | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | 
|  | 438 | } | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 439 | preempt_enable(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 440 | #endif | 
|  | 441 | } | 
|  | 442 | return 0; | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | static int schedstat_open(struct inode *inode, struct file *file) | 
|  | 446 | { | 
|  | 447 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | 
|  | 448 | char *buf = kmalloc(size, GFP_KERNEL); | 
|  | 449 | struct seq_file *m; | 
|  | 450 | int res; | 
|  | 451 |  | 
|  | 452 | if (!buf) | 
|  | 453 | return -ENOMEM; | 
|  | 454 | res = single_open(file, show_schedstat, NULL); | 
|  | 455 | if (!res) { | 
|  | 456 | m = file->private_data; | 
|  | 457 | m->buf = buf; | 
|  | 458 | m->size = size; | 
|  | 459 | } else | 
|  | 460 | kfree(buf); | 
|  | 461 | return res; | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | struct file_operations proc_schedstat_operations = { | 
|  | 465 | .open    = schedstat_open, | 
|  | 466 | .read    = seq_read, | 
|  | 467 | .llseek  = seq_lseek, | 
|  | 468 | .release = single_release, | 
|  | 469 | }; | 
|  | 470 |  | 
|  | 471 | # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0) | 
|  | 472 | # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0) | 
|  | 473 | #else /* !CONFIG_SCHEDSTATS */ | 
|  | 474 | # define schedstat_inc(rq, field)	do { } while (0) | 
|  | 475 | # define schedstat_add(rq, field, amt)	do { } while (0) | 
|  | 476 | #endif | 
|  | 477 |  | 
|  | 478 | /* | 
|  | 479 | * rq_lock - lock a given runqueue and disable interrupts. | 
|  | 480 | */ | 
|  | 481 | static inline runqueue_t *this_rq_lock(void) | 
|  | 482 | __acquires(rq->lock) | 
|  | 483 | { | 
|  | 484 | runqueue_t *rq; | 
|  | 485 |  | 
|  | 486 | local_irq_disable(); | 
|  | 487 | rq = this_rq(); | 
|  | 488 | spin_lock(&rq->lock); | 
|  | 489 |  | 
|  | 490 | return rq; | 
|  | 491 | } | 
|  | 492 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 493 | #ifdef CONFIG_SCHEDSTATS | 
|  | 494 | /* | 
|  | 495 | * Called when a process is dequeued from the active array and given | 
|  | 496 | * the cpu.  We should note that with the exception of interactive | 
|  | 497 | * tasks, the expired queue will become the active queue after the active | 
|  | 498 | * queue is empty, without explicitly dequeuing and requeuing tasks in the | 
|  | 499 | * expired queue.  (Interactive tasks may be requeued directly to the | 
|  | 500 | * active queue, thus delaying tasks in the expired queue from running; | 
|  | 501 | * see scheduler_tick()). | 
|  | 502 | * | 
|  | 503 | * This function is only called from sched_info_arrive(), rather than | 
|  | 504 | * dequeue_task(). Even though a task may be queued and dequeued multiple | 
|  | 505 | * times as it is shuffled about, we're really interested in knowing how | 
|  | 506 | * long it was from the *first* time it was queued to the time that it | 
|  | 507 | * finally hit a cpu. | 
|  | 508 | */ | 
|  | 509 | static inline void sched_info_dequeued(task_t *t) | 
|  | 510 | { | 
|  | 511 | t->sched_info.last_queued = 0; | 
|  | 512 | } | 
|  | 513 |  | 
|  | 514 | /* | 
|  | 515 | * Called when a task finally hits the cpu.  We can now calculate how | 
|  | 516 | * long it was waiting to run.  We also note when it began so that we | 
|  | 517 | * can keep stats on how long its timeslice is. | 
|  | 518 | */ | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 519 | static void sched_info_arrive(task_t *t) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 520 | { | 
|  | 521 | unsigned long now = jiffies, diff = 0; | 
|  | 522 | struct runqueue *rq = task_rq(t); | 
|  | 523 |  | 
|  | 524 | if (t->sched_info.last_queued) | 
|  | 525 | diff = now - t->sched_info.last_queued; | 
|  | 526 | sched_info_dequeued(t); | 
|  | 527 | t->sched_info.run_delay += diff; | 
|  | 528 | t->sched_info.last_arrival = now; | 
|  | 529 | t->sched_info.pcnt++; | 
|  | 530 |  | 
|  | 531 | if (!rq) | 
|  | 532 | return; | 
|  | 533 |  | 
|  | 534 | rq->rq_sched_info.run_delay += diff; | 
|  | 535 | rq->rq_sched_info.pcnt++; | 
|  | 536 | } | 
|  | 537 |  | 
|  | 538 | /* | 
|  | 539 | * Called when a process is queued into either the active or expired | 
|  | 540 | * array.  The time is noted and later used to determine how long we | 
|  | 541 | * had to wait for us to reach the cpu.  Since the expired queue will | 
|  | 542 | * become the active queue after active queue is empty, without dequeuing | 
|  | 543 | * and requeuing any tasks, we are interested in queuing to either. It | 
|  | 544 | * is unusual but not impossible for tasks to be dequeued and immediately | 
|  | 545 | * requeued in the same or another array: this can happen in sched_yield(), | 
|  | 546 | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | 
|  | 547 | * to runqueue. | 
|  | 548 | * | 
|  | 549 | * This function is only called from enqueue_task(), but also only updates | 
|  | 550 | * the timestamp if it is already not set.  It's assumed that | 
|  | 551 | * sched_info_dequeued() will clear that stamp when appropriate. | 
|  | 552 | */ | 
|  | 553 | static inline void sched_info_queued(task_t *t) | 
|  | 554 | { | 
|  | 555 | if (!t->sched_info.last_queued) | 
|  | 556 | t->sched_info.last_queued = jiffies; | 
|  | 557 | } | 
|  | 558 |  | 
|  | 559 | /* | 
|  | 560 | * Called when a process ceases being the active-running process, either | 
|  | 561 | * voluntarily or involuntarily.  Now we can calculate how long we ran. | 
|  | 562 | */ | 
|  | 563 | static inline void sched_info_depart(task_t *t) | 
|  | 564 | { | 
|  | 565 | struct runqueue *rq = task_rq(t); | 
|  | 566 | unsigned long diff = jiffies - t->sched_info.last_arrival; | 
|  | 567 |  | 
|  | 568 | t->sched_info.cpu_time += diff; | 
|  | 569 |  | 
|  | 570 | if (rq) | 
|  | 571 | rq->rq_sched_info.cpu_time += diff; | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | /* | 
|  | 575 | * Called when tasks are switched involuntarily due, typically, to expiring | 
|  | 576 | * their time slice.  (This may also be called when switching to or from | 
|  | 577 | * the idle task.)  We are only called when prev != next. | 
|  | 578 | */ | 
|  | 579 | static inline void sched_info_switch(task_t *prev, task_t *next) | 
|  | 580 | { | 
|  | 581 | struct runqueue *rq = task_rq(prev); | 
|  | 582 |  | 
|  | 583 | /* | 
|  | 584 | * prev now departs the cpu.  It's not interesting to record | 
|  | 585 | * stats about how efficient we were at scheduling the idle | 
|  | 586 | * process, however. | 
|  | 587 | */ | 
|  | 588 | if (prev != rq->idle) | 
|  | 589 | sched_info_depart(prev); | 
|  | 590 |  | 
|  | 591 | if (next != rq->idle) | 
|  | 592 | sched_info_arrive(next); | 
|  | 593 | } | 
|  | 594 | #else | 
|  | 595 | #define sched_info_queued(t)		do { } while (0) | 
|  | 596 | #define sched_info_switch(t, next)	do { } while (0) | 
|  | 597 | #endif /* CONFIG_SCHEDSTATS */ | 
|  | 598 |  | 
|  | 599 | /* | 
|  | 600 | * Adding/removing a task to/from a priority array: | 
|  | 601 | */ | 
|  | 602 | static void dequeue_task(struct task_struct *p, prio_array_t *array) | 
|  | 603 | { | 
|  | 604 | array->nr_active--; | 
|  | 605 | list_del(&p->run_list); | 
|  | 606 | if (list_empty(array->queue + p->prio)) | 
|  | 607 | __clear_bit(p->prio, array->bitmap); | 
|  | 608 | } | 
|  | 609 |  | 
|  | 610 | static void enqueue_task(struct task_struct *p, prio_array_t *array) | 
|  | 611 | { | 
|  | 612 | sched_info_queued(p); | 
|  | 613 | list_add_tail(&p->run_list, array->queue + p->prio); | 
|  | 614 | __set_bit(p->prio, array->bitmap); | 
|  | 615 | array->nr_active++; | 
|  | 616 | p->array = array; | 
|  | 617 | } | 
|  | 618 |  | 
|  | 619 | /* | 
|  | 620 | * Put task to the end of the run list without the overhead of dequeue | 
|  | 621 | * followed by enqueue. | 
|  | 622 | */ | 
|  | 623 | static void requeue_task(struct task_struct *p, prio_array_t *array) | 
|  | 624 | { | 
|  | 625 | list_move_tail(&p->run_list, array->queue + p->prio); | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array) | 
|  | 629 | { | 
|  | 630 | list_add(&p->run_list, array->queue + p->prio); | 
|  | 631 | __set_bit(p->prio, array->bitmap); | 
|  | 632 | array->nr_active++; | 
|  | 633 | p->array = array; | 
|  | 634 | } | 
|  | 635 |  | 
|  | 636 | /* | 
|  | 637 | * effective_prio - return the priority that is based on the static | 
|  | 638 | * priority but is modified by bonuses/penalties. | 
|  | 639 | * | 
|  | 640 | * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | 
|  | 641 | * into the -5 ... 0 ... +5 bonus/penalty range. | 
|  | 642 | * | 
|  | 643 | * We use 25% of the full 0...39 priority range so that: | 
|  | 644 | * | 
|  | 645 | * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | 
|  | 646 | * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | 
|  | 647 | * | 
|  | 648 | * Both properties are important to certain workloads. | 
|  | 649 | */ | 
|  | 650 | static int effective_prio(task_t *p) | 
|  | 651 | { | 
|  | 652 | int bonus, prio; | 
|  | 653 |  | 
|  | 654 | if (rt_task(p)) | 
|  | 655 | return p->prio; | 
|  | 656 |  | 
|  | 657 | bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; | 
|  | 658 |  | 
|  | 659 | prio = p->static_prio - bonus; | 
|  | 660 | if (prio < MAX_RT_PRIO) | 
|  | 661 | prio = MAX_RT_PRIO; | 
|  | 662 | if (prio > MAX_PRIO-1) | 
|  | 663 | prio = MAX_PRIO-1; | 
|  | 664 | return prio; | 
|  | 665 | } | 
|  | 666 |  | 
|  | 667 | /* | 
|  | 668 | * __activate_task - move a task to the runqueue. | 
|  | 669 | */ | 
| Con Kolivas | d425b27 | 2006-03-31 02:31:29 -0800 | [diff] [blame] | 670 | static void __activate_task(task_t *p, runqueue_t *rq) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 671 | { | 
| Con Kolivas | d425b27 | 2006-03-31 02:31:29 -0800 | [diff] [blame] | 672 | prio_array_t *target = rq->active; | 
|  | 673 |  | 
| Linus Torvalds | f1adad7 | 2006-05-21 18:54:09 -0700 | [diff] [blame] | 674 | if (batch_task(p)) | 
| Con Kolivas | d425b27 | 2006-03-31 02:31:29 -0800 | [diff] [blame] | 675 | target = rq->expired; | 
|  | 676 | enqueue_task(p, target); | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 677 | rq->nr_running++; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 678 | } | 
|  | 679 |  | 
|  | 680 | /* | 
|  | 681 | * __activate_idle_task - move idle task to the _front_ of runqueue. | 
|  | 682 | */ | 
|  | 683 | static inline void __activate_idle_task(task_t *p, runqueue_t *rq) | 
|  | 684 | { | 
|  | 685 | enqueue_task_head(p, rq->active); | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 686 | rq->nr_running++; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 687 | } | 
|  | 688 |  | 
| Chen Shang | a3464a1 | 2005-06-25 14:57:31 -0700 | [diff] [blame] | 689 | static int recalc_task_prio(task_t *p, unsigned long long now) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 690 | { | 
|  | 691 | /* Caller must always ensure 'now >= p->timestamp' */ | 
|  | 692 | unsigned long long __sleep_time = now - p->timestamp; | 
|  | 693 | unsigned long sleep_time; | 
|  | 694 |  | 
| Con Kolivas | d425b27 | 2006-03-31 02:31:29 -0800 | [diff] [blame] | 695 | if (batch_task(p)) | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 696 | sleep_time = 0; | 
|  | 697 | else { | 
|  | 698 | if (__sleep_time > NS_MAX_SLEEP_AVG) | 
|  | 699 | sleep_time = NS_MAX_SLEEP_AVG; | 
|  | 700 | else | 
|  | 701 | sleep_time = (unsigned long)__sleep_time; | 
|  | 702 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 703 |  | 
|  | 704 | if (likely(sleep_time > 0)) { | 
|  | 705 | /* | 
|  | 706 | * User tasks that sleep a long time are categorised as | 
| Con Kolivas | e72ff0b | 2006-03-31 02:31:26 -0800 | [diff] [blame] | 707 | * idle. They will only have their sleep_avg increased to a | 
|  | 708 | * level that makes them just interactive priority to stay | 
|  | 709 | * active yet prevent them suddenly becoming cpu hogs and | 
|  | 710 | * starving other processes. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 711 | */ | 
| Con Kolivas | 5138930 | 2006-03-31 02:31:27 -0800 | [diff] [blame] | 712 | if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) { | 
| Con Kolivas | e72ff0b | 2006-03-31 02:31:26 -0800 | [diff] [blame] | 713 | unsigned long ceiling; | 
|  | 714 |  | 
|  | 715 | ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG - | 
|  | 716 | DEF_TIMESLICE); | 
|  | 717 | if (p->sleep_avg < ceiling) | 
|  | 718 | p->sleep_avg = ceiling; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 719 | } else { | 
|  | 720 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 721 | * Tasks waking from uninterruptible sleep are | 
|  | 722 | * limited in their sleep_avg rise as they | 
|  | 723 | * are likely to be waiting on I/O | 
|  | 724 | */ | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 725 | if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 726 | if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) | 
|  | 727 | sleep_time = 0; | 
|  | 728 | else if (p->sleep_avg + sleep_time >= | 
|  | 729 | INTERACTIVE_SLEEP(p)) { | 
|  | 730 | p->sleep_avg = INTERACTIVE_SLEEP(p); | 
|  | 731 | sleep_time = 0; | 
|  | 732 | } | 
|  | 733 | } | 
|  | 734 |  | 
|  | 735 | /* | 
|  | 736 | * This code gives a bonus to interactive tasks. | 
|  | 737 | * | 
|  | 738 | * The boost works by updating the 'average sleep time' | 
|  | 739 | * value here, based on ->timestamp. The more time a | 
|  | 740 | * task spends sleeping, the higher the average gets - | 
|  | 741 | * and the higher the priority boost gets as well. | 
|  | 742 | */ | 
|  | 743 | p->sleep_avg += sleep_time; | 
|  | 744 |  | 
|  | 745 | if (p->sleep_avg > NS_MAX_SLEEP_AVG) | 
|  | 746 | p->sleep_avg = NS_MAX_SLEEP_AVG; | 
|  | 747 | } | 
|  | 748 | } | 
|  | 749 |  | 
| Chen Shang | a3464a1 | 2005-06-25 14:57:31 -0700 | [diff] [blame] | 750 | return effective_prio(p); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 751 | } | 
|  | 752 |  | 
|  | 753 | /* | 
|  | 754 | * activate_task - move a task to the runqueue and do priority recalculation | 
|  | 755 | * | 
|  | 756 | * Update all the scheduling statistics stuff. (sleep average | 
|  | 757 | * calculation, priority modifiers, etc.) | 
|  | 758 | */ | 
|  | 759 | static void activate_task(task_t *p, runqueue_t *rq, int local) | 
|  | 760 | { | 
|  | 761 | unsigned long long now; | 
|  | 762 |  | 
|  | 763 | now = sched_clock(); | 
|  | 764 | #ifdef CONFIG_SMP | 
|  | 765 | if (!local) { | 
|  | 766 | /* Compensate for drifting sched_clock */ | 
|  | 767 | runqueue_t *this_rq = this_rq(); | 
|  | 768 | now = (now - this_rq->timestamp_last_tick) | 
|  | 769 | + rq->timestamp_last_tick; | 
|  | 770 | } | 
|  | 771 | #endif | 
|  | 772 |  | 
| Chen, Kenneth W | a47ab93 | 2005-11-09 15:45:29 -0800 | [diff] [blame] | 773 | if (!rt_task(p)) | 
|  | 774 | p->prio = recalc_task_prio(p, now); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 775 |  | 
|  | 776 | /* | 
|  | 777 | * This checks to make sure it's not an uninterruptible task | 
|  | 778 | * that is now waking up. | 
|  | 779 | */ | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 780 | if (p->sleep_type == SLEEP_NORMAL) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 781 | /* | 
|  | 782 | * Tasks which were woken up by interrupts (ie. hw events) | 
|  | 783 | * are most likely of interactive nature. So we give them | 
|  | 784 | * the credit of extending their sleep time to the period | 
|  | 785 | * of time they spend on the runqueue, waiting for execution | 
|  | 786 | * on a CPU, first time around: | 
|  | 787 | */ | 
|  | 788 | if (in_interrupt()) | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 789 | p->sleep_type = SLEEP_INTERRUPTED; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 790 | else { | 
|  | 791 | /* | 
|  | 792 | * Normal first-time wakeups get a credit too for | 
|  | 793 | * on-runqueue time, but it will be weighted down: | 
|  | 794 | */ | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 795 | p->sleep_type = SLEEP_INTERACTIVE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 796 | } | 
|  | 797 | } | 
|  | 798 | p->timestamp = now; | 
|  | 799 |  | 
|  | 800 | __activate_task(p, rq); | 
|  | 801 | } | 
|  | 802 |  | 
|  | 803 | /* | 
|  | 804 | * deactivate_task - remove a task from the runqueue. | 
|  | 805 | */ | 
|  | 806 | static void deactivate_task(struct task_struct *p, runqueue_t *rq) | 
|  | 807 | { | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 808 | rq->nr_running--; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 809 | dequeue_task(p, p->array); | 
|  | 810 | p->array = NULL; | 
|  | 811 | } | 
|  | 812 |  | 
|  | 813 | /* | 
|  | 814 | * resched_task - mark a task 'to be rescheduled now'. | 
|  | 815 | * | 
|  | 816 | * On UP this means the setting of the need_resched flag, on SMP it | 
|  | 817 | * might also involve a cross-CPU call to trigger the scheduler on | 
|  | 818 | * the target CPU. | 
|  | 819 | */ | 
|  | 820 | #ifdef CONFIG_SMP | 
|  | 821 | static void resched_task(task_t *p) | 
|  | 822 | { | 
| Nick Piggin | 64c7c8f | 2005-11-08 21:39:04 -0800 | [diff] [blame] | 823 | int cpu; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 824 |  | 
|  | 825 | assert_spin_locked(&task_rq(p)->lock); | 
|  | 826 |  | 
| Nick Piggin | 64c7c8f | 2005-11-08 21:39:04 -0800 | [diff] [blame] | 827 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 
|  | 828 | return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 829 |  | 
| Nick Piggin | 64c7c8f | 2005-11-08 21:39:04 -0800 | [diff] [blame] | 830 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 
|  | 831 |  | 
|  | 832 | cpu = task_cpu(p); | 
|  | 833 | if (cpu == smp_processor_id()) | 
|  | 834 | return; | 
|  | 835 |  | 
|  | 836 | /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */ | 
|  | 837 | smp_mb(); | 
|  | 838 | if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG)) | 
|  | 839 | smp_send_reschedule(cpu); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 840 | } | 
|  | 841 | #else | 
|  | 842 | static inline void resched_task(task_t *p) | 
|  | 843 | { | 
| Nick Piggin | 64c7c8f | 2005-11-08 21:39:04 -0800 | [diff] [blame] | 844 | assert_spin_locked(&task_rq(p)->lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 845 | set_tsk_need_resched(p); | 
|  | 846 | } | 
|  | 847 | #endif | 
|  | 848 |  | 
|  | 849 | /** | 
|  | 850 | * task_curr - is this task currently executing on a CPU? | 
|  | 851 | * @p: the task in question. | 
|  | 852 | */ | 
|  | 853 | inline int task_curr(const task_t *p) | 
|  | 854 | { | 
|  | 855 | return cpu_curr(task_cpu(p)) == p; | 
|  | 856 | } | 
|  | 857 |  | 
|  | 858 | #ifdef CONFIG_SMP | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 859 | typedef struct { | 
|  | 860 | struct list_head list; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 861 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 862 | task_t *task; | 
|  | 863 | int dest_cpu; | 
|  | 864 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 865 | struct completion done; | 
|  | 866 | } migration_req_t; | 
|  | 867 |  | 
|  | 868 | /* | 
|  | 869 | * The task's runqueue lock must be held. | 
|  | 870 | * Returns true if you have to wait for migration thread. | 
|  | 871 | */ | 
|  | 872 | static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req) | 
|  | 873 | { | 
|  | 874 | runqueue_t *rq = task_rq(p); | 
|  | 875 |  | 
|  | 876 | /* | 
|  | 877 | * If the task is not on a runqueue (and not running), then | 
|  | 878 | * it is sufficient to simply update the task's cpu field. | 
|  | 879 | */ | 
|  | 880 | if (!p->array && !task_running(rq, p)) { | 
|  | 881 | set_task_cpu(p, dest_cpu); | 
|  | 882 | return 0; | 
|  | 883 | } | 
|  | 884 |  | 
|  | 885 | init_completion(&req->done); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 886 | req->task = p; | 
|  | 887 | req->dest_cpu = dest_cpu; | 
|  | 888 | list_add(&req->list, &rq->migration_queue); | 
|  | 889 | return 1; | 
|  | 890 | } | 
|  | 891 |  | 
|  | 892 | /* | 
|  | 893 | * wait_task_inactive - wait for a thread to unschedule. | 
|  | 894 | * | 
|  | 895 | * The caller must ensure that the task *will* unschedule sometime soon, | 
|  | 896 | * else this function might spin for a *long* time. This function can't | 
|  | 897 | * be called with interrupts off, or it may introduce deadlock with | 
|  | 898 | * smp_call_function() if an IPI is sent by the same process we are | 
|  | 899 | * waiting to become inactive. | 
|  | 900 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 901 | void wait_task_inactive(task_t *p) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 902 | { | 
|  | 903 | unsigned long flags; | 
|  | 904 | runqueue_t *rq; | 
|  | 905 | int preempted; | 
|  | 906 |  | 
|  | 907 | repeat: | 
|  | 908 | rq = task_rq_lock(p, &flags); | 
|  | 909 | /* Must be off runqueue entirely, not preempted. */ | 
|  | 910 | if (unlikely(p->array || task_running(rq, p))) { | 
|  | 911 | /* If it's preempted, we yield.  It could be a while. */ | 
|  | 912 | preempted = !task_running(rq, p); | 
|  | 913 | task_rq_unlock(rq, &flags); | 
|  | 914 | cpu_relax(); | 
|  | 915 | if (preempted) | 
|  | 916 | yield(); | 
|  | 917 | goto repeat; | 
|  | 918 | } | 
|  | 919 | task_rq_unlock(rq, &flags); | 
|  | 920 | } | 
|  | 921 |  | 
|  | 922 | /*** | 
|  | 923 | * kick_process - kick a running thread to enter/exit the kernel | 
|  | 924 | * @p: the to-be-kicked thread | 
|  | 925 | * | 
|  | 926 | * Cause a process which is running on another CPU to enter | 
|  | 927 | * kernel-mode, without any delay. (to get signals handled.) | 
|  | 928 | * | 
|  | 929 | * NOTE: this function doesnt have to take the runqueue lock, | 
|  | 930 | * because all it wants to ensure is that the remote task enters | 
|  | 931 | * the kernel. If the IPI races and the task has been migrated | 
|  | 932 | * to another CPU then no harm is done and the purpose has been | 
|  | 933 | * achieved as well. | 
|  | 934 | */ | 
|  | 935 | void kick_process(task_t *p) | 
|  | 936 | { | 
|  | 937 | int cpu; | 
|  | 938 |  | 
|  | 939 | preempt_disable(); | 
|  | 940 | cpu = task_cpu(p); | 
|  | 941 | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|  | 942 | smp_send_reschedule(cpu); | 
|  | 943 | preempt_enable(); | 
|  | 944 | } | 
|  | 945 |  | 
|  | 946 | /* | 
|  | 947 | * Return a low guess at the load of a migration-source cpu. | 
|  | 948 | * | 
|  | 949 | * We want to under-estimate the load of migration sources, to | 
|  | 950 | * balance conservatively. | 
|  | 951 | */ | 
| Con Kolivas | b910472 | 2005-11-08 21:38:55 -0800 | [diff] [blame] | 952 | static inline unsigned long source_load(int cpu, int type) | 
|  | 953 | { | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 954 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 955 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
|  | 956 | if (type == 0) | 
|  | 957 | return load_now; | 
|  | 958 |  | 
|  | 959 | return min(rq->cpu_load[type-1], load_now); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 960 | } | 
|  | 961 |  | 
|  | 962 | /* | 
|  | 963 | * Return a high guess at the load of a migration-target cpu | 
|  | 964 | */ | 
| Con Kolivas | b910472 | 2005-11-08 21:38:55 -0800 | [diff] [blame] | 965 | static inline unsigned long target_load(int cpu, int type) | 
|  | 966 | { | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 967 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 968 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
|  | 969 | if (type == 0) | 
|  | 970 | return load_now; | 
|  | 971 |  | 
|  | 972 | return max(rq->cpu_load[type-1], load_now); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 973 | } | 
|  | 974 |  | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 975 | /* | 
|  | 976 | * find_idlest_group finds and returns the least busy CPU group within the | 
|  | 977 | * domain. | 
|  | 978 | */ | 
|  | 979 | static struct sched_group * | 
|  | 980 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
|  | 981 | { | 
|  | 982 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 
|  | 983 | unsigned long min_load = ULONG_MAX, this_load = 0; | 
|  | 984 | int load_idx = sd->forkexec_idx; | 
|  | 985 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
|  | 986 |  | 
|  | 987 | do { | 
|  | 988 | unsigned long load, avg_load; | 
|  | 989 | int local_group; | 
|  | 990 | int i; | 
|  | 991 |  | 
| M.Baris Demiray | da5a552 | 2005-09-10 00:26:09 -0700 | [diff] [blame] | 992 | /* Skip over this group if it has no CPUs allowed */ | 
|  | 993 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | 
|  | 994 | goto nextgroup; | 
|  | 995 |  | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 996 | local_group = cpu_isset(this_cpu, group->cpumask); | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 997 |  | 
|  | 998 | /* Tally up the load of all CPUs in the group */ | 
|  | 999 | avg_load = 0; | 
|  | 1000 |  | 
|  | 1001 | for_each_cpu_mask(i, group->cpumask) { | 
|  | 1002 | /* Bias balancing toward cpus of our domain */ | 
|  | 1003 | if (local_group) | 
|  | 1004 | load = source_load(i, load_idx); | 
|  | 1005 | else | 
|  | 1006 | load = target_load(i, load_idx); | 
|  | 1007 |  | 
|  | 1008 | avg_load += load; | 
|  | 1009 | } | 
|  | 1010 |  | 
|  | 1011 | /* Adjust by relative CPU power of the group */ | 
|  | 1012 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
|  | 1013 |  | 
|  | 1014 | if (local_group) { | 
|  | 1015 | this_load = avg_load; | 
|  | 1016 | this = group; | 
|  | 1017 | } else if (avg_load < min_load) { | 
|  | 1018 | min_load = avg_load; | 
|  | 1019 | idlest = group; | 
|  | 1020 | } | 
| M.Baris Demiray | da5a552 | 2005-09-10 00:26:09 -0700 | [diff] [blame] | 1021 | nextgroup: | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 1022 | group = group->next; | 
|  | 1023 | } while (group != sd->groups); | 
|  | 1024 |  | 
|  | 1025 | if (!idlest || 100*this_load < imbalance*min_load) | 
|  | 1026 | return NULL; | 
|  | 1027 | return idlest; | 
|  | 1028 | } | 
|  | 1029 |  | 
|  | 1030 | /* | 
|  | 1031 | * find_idlest_queue - find the idlest runqueue among the cpus in group. | 
|  | 1032 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 1033 | static int | 
|  | 1034 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 1035 | { | 
| M.Baris Demiray | da5a552 | 2005-09-10 00:26:09 -0700 | [diff] [blame] | 1036 | cpumask_t tmp; | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 1037 | unsigned long load, min_load = ULONG_MAX; | 
|  | 1038 | int idlest = -1; | 
|  | 1039 | int i; | 
|  | 1040 |  | 
| M.Baris Demiray | da5a552 | 2005-09-10 00:26:09 -0700 | [diff] [blame] | 1041 | /* Traverse only the allowed CPUs */ | 
|  | 1042 | cpus_and(tmp, group->cpumask, p->cpus_allowed); | 
|  | 1043 |  | 
|  | 1044 | for_each_cpu_mask(i, tmp) { | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 1045 | load = source_load(i, 0); | 
|  | 1046 |  | 
|  | 1047 | if (load < min_load || (load == min_load && i == this_cpu)) { | 
|  | 1048 | min_load = load; | 
|  | 1049 | idlest = i; | 
|  | 1050 | } | 
|  | 1051 | } | 
|  | 1052 |  | 
|  | 1053 | return idlest; | 
|  | 1054 | } | 
|  | 1055 |  | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1056 | /* | 
|  | 1057 | * sched_balance_self: balance the current task (running on cpu) in domains | 
|  | 1058 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
|  | 1059 | * SD_BALANCE_EXEC. | 
|  | 1060 | * | 
|  | 1061 | * Balance, ie. select the least loaded group. | 
|  | 1062 | * | 
|  | 1063 | * Returns the target CPU number, or the same CPU if no balancing is needed. | 
|  | 1064 | * | 
|  | 1065 | * preempt must be disabled. | 
|  | 1066 | */ | 
|  | 1067 | static int sched_balance_self(int cpu, int flag) | 
|  | 1068 | { | 
|  | 1069 | struct task_struct *t = current; | 
|  | 1070 | struct sched_domain *tmp, *sd = NULL; | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 1071 |  | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1072 | for_each_domain(cpu, tmp) | 
|  | 1073 | if (tmp->flags & flag) | 
|  | 1074 | sd = tmp; | 
|  | 1075 |  | 
|  | 1076 | while (sd) { | 
|  | 1077 | cpumask_t span; | 
|  | 1078 | struct sched_group *group; | 
|  | 1079 | int new_cpu; | 
|  | 1080 | int weight; | 
|  | 1081 |  | 
|  | 1082 | span = sd->span; | 
|  | 1083 | group = find_idlest_group(sd, t, cpu); | 
|  | 1084 | if (!group) | 
|  | 1085 | goto nextlevel; | 
|  | 1086 |  | 
| M.Baris Demiray | da5a552 | 2005-09-10 00:26:09 -0700 | [diff] [blame] | 1087 | new_cpu = find_idlest_cpu(group, t, cpu); | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1088 | if (new_cpu == -1 || new_cpu == cpu) | 
|  | 1089 | goto nextlevel; | 
|  | 1090 |  | 
|  | 1091 | /* Now try balancing at a lower domain level */ | 
|  | 1092 | cpu = new_cpu; | 
|  | 1093 | nextlevel: | 
|  | 1094 | sd = NULL; | 
|  | 1095 | weight = cpus_weight(span); | 
|  | 1096 | for_each_domain(cpu, tmp) { | 
|  | 1097 | if (weight <= cpus_weight(tmp->span)) | 
|  | 1098 | break; | 
|  | 1099 | if (tmp->flags & flag) | 
|  | 1100 | sd = tmp; | 
|  | 1101 | } | 
|  | 1102 | /* while loop will break here if sd == NULL */ | 
|  | 1103 | } | 
|  | 1104 |  | 
|  | 1105 | return cpu; | 
|  | 1106 | } | 
|  | 1107 |  | 
|  | 1108 | #endif /* CONFIG_SMP */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1109 |  | 
|  | 1110 | /* | 
|  | 1111 | * wake_idle() will wake a task on an idle cpu if task->cpu is | 
|  | 1112 | * not idle and an idle cpu is available.  The span of cpus to | 
|  | 1113 | * search starts with cpus closest then further out as needed, | 
|  | 1114 | * so we always favor a closer, idle cpu. | 
|  | 1115 | * | 
|  | 1116 | * Returns the CPU we should wake onto. | 
|  | 1117 | */ | 
|  | 1118 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
|  | 1119 | static int wake_idle(int cpu, task_t *p) | 
|  | 1120 | { | 
|  | 1121 | cpumask_t tmp; | 
|  | 1122 | struct sched_domain *sd; | 
|  | 1123 | int i; | 
|  | 1124 |  | 
|  | 1125 | if (idle_cpu(cpu)) | 
|  | 1126 | return cpu; | 
|  | 1127 |  | 
|  | 1128 | for_each_domain(cpu, sd) { | 
|  | 1129 | if (sd->flags & SD_WAKE_IDLE) { | 
| Nick Piggin | e0f364f | 2005-06-25 14:57:06 -0700 | [diff] [blame] | 1130 | cpus_and(tmp, sd->span, p->cpus_allowed); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1131 | for_each_cpu_mask(i, tmp) { | 
|  | 1132 | if (idle_cpu(i)) | 
|  | 1133 | return i; | 
|  | 1134 | } | 
|  | 1135 | } | 
| Nick Piggin | e0f364f | 2005-06-25 14:57:06 -0700 | [diff] [blame] | 1136 | else | 
|  | 1137 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1138 | } | 
|  | 1139 | return cpu; | 
|  | 1140 | } | 
|  | 1141 | #else | 
|  | 1142 | static inline int wake_idle(int cpu, task_t *p) | 
|  | 1143 | { | 
|  | 1144 | return cpu; | 
|  | 1145 | } | 
|  | 1146 | #endif | 
|  | 1147 |  | 
|  | 1148 | /*** | 
|  | 1149 | * try_to_wake_up - wake up a thread | 
|  | 1150 | * @p: the to-be-woken-up thread | 
|  | 1151 | * @state: the mask of task states that can be woken | 
|  | 1152 | * @sync: do a synchronous wakeup? | 
|  | 1153 | * | 
|  | 1154 | * Put it on the run-queue if it's not already there. The "current" | 
|  | 1155 | * thread is always on the run-queue (except when the actual | 
|  | 1156 | * re-schedule is in progress), and as such you're allowed to do | 
|  | 1157 | * the simpler "current->state = TASK_RUNNING" to mark yourself | 
|  | 1158 | * runnable without the overhead of this. | 
|  | 1159 | * | 
|  | 1160 | * returns failure only if the task is already active. | 
|  | 1161 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 1162 | static int try_to_wake_up(task_t *p, unsigned int state, int sync) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1163 | { | 
|  | 1164 | int cpu, this_cpu, success = 0; | 
|  | 1165 | unsigned long flags; | 
|  | 1166 | long old_state; | 
|  | 1167 | runqueue_t *rq; | 
|  | 1168 | #ifdef CONFIG_SMP | 
|  | 1169 | unsigned long load, this_load; | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1170 | struct sched_domain *sd, *this_sd = NULL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1171 | int new_cpu; | 
|  | 1172 | #endif | 
|  | 1173 |  | 
|  | 1174 | rq = task_rq_lock(p, &flags); | 
|  | 1175 | old_state = p->state; | 
|  | 1176 | if (!(old_state & state)) | 
|  | 1177 | goto out; | 
|  | 1178 |  | 
|  | 1179 | if (p->array) | 
|  | 1180 | goto out_running; | 
|  | 1181 |  | 
|  | 1182 | cpu = task_cpu(p); | 
|  | 1183 | this_cpu = smp_processor_id(); | 
|  | 1184 |  | 
|  | 1185 | #ifdef CONFIG_SMP | 
|  | 1186 | if (unlikely(task_running(rq, p))) | 
|  | 1187 | goto out_activate; | 
|  | 1188 |  | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1189 | new_cpu = cpu; | 
|  | 1190 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1191 | schedstat_inc(rq, ttwu_cnt); | 
|  | 1192 | if (cpu == this_cpu) { | 
|  | 1193 | schedstat_inc(rq, ttwu_local); | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1194 | goto out_set_cpu; | 
|  | 1195 | } | 
|  | 1196 |  | 
|  | 1197 | for_each_domain(this_cpu, sd) { | 
|  | 1198 | if (cpu_isset(cpu, sd->span)) { | 
|  | 1199 | schedstat_inc(sd, ttwu_wake_remote); | 
|  | 1200 | this_sd = sd; | 
|  | 1201 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1202 | } | 
|  | 1203 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1204 |  | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1205 | if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1206 | goto out_set_cpu; | 
|  | 1207 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1208 | /* | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1209 | * Check for affine wakeup and passive balancing possibilities. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1210 | */ | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1211 | if (this_sd) { | 
|  | 1212 | int idx = this_sd->wake_idx; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1213 | unsigned int imbalance; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1214 |  | 
| Nick Piggin | a3f21bc | 2005-06-25 14:57:15 -0700 | [diff] [blame] | 1215 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 
|  | 1216 |  | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1217 | load = source_load(cpu, idx); | 
|  | 1218 | this_load = target_load(this_cpu, idx); | 
|  | 1219 |  | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1220 | new_cpu = this_cpu; /* Wake to this CPU if we can */ | 
|  | 1221 |  | 
| Nick Piggin | a3f21bc | 2005-06-25 14:57:15 -0700 | [diff] [blame] | 1222 | if (this_sd->flags & SD_WAKE_AFFINE) { | 
|  | 1223 | unsigned long tl = this_load; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1224 | /* | 
| Nick Piggin | a3f21bc | 2005-06-25 14:57:15 -0700 | [diff] [blame] | 1225 | * If sync wakeup then subtract the (maximum possible) | 
|  | 1226 | * effect of the currently running task from the load | 
|  | 1227 | * of the current CPU: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1228 | */ | 
| Nick Piggin | a3f21bc | 2005-06-25 14:57:15 -0700 | [diff] [blame] | 1229 | if (sync) | 
|  | 1230 | tl -= SCHED_LOAD_SCALE; | 
|  | 1231 |  | 
|  | 1232 | if ((tl <= load && | 
|  | 1233 | tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) || | 
|  | 1234 | 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) { | 
|  | 1235 | /* | 
|  | 1236 | * This domain has SD_WAKE_AFFINE and | 
|  | 1237 | * p is cache cold in this domain, and | 
|  | 1238 | * there is no bad imbalance. | 
|  | 1239 | */ | 
|  | 1240 | schedstat_inc(this_sd, ttwu_move_affine); | 
|  | 1241 | goto out_set_cpu; | 
|  | 1242 | } | 
|  | 1243 | } | 
|  | 1244 |  | 
|  | 1245 | /* | 
|  | 1246 | * Start passive balancing when half the imbalance_pct | 
|  | 1247 | * limit is reached. | 
|  | 1248 | */ | 
|  | 1249 | if (this_sd->flags & SD_WAKE_BALANCE) { | 
|  | 1250 | if (imbalance*this_load <= 100*load) { | 
|  | 1251 | schedstat_inc(this_sd, ttwu_move_balance); | 
|  | 1252 | goto out_set_cpu; | 
|  | 1253 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1254 | } | 
|  | 1255 | } | 
|  | 1256 |  | 
|  | 1257 | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | 
|  | 1258 | out_set_cpu: | 
|  | 1259 | new_cpu = wake_idle(new_cpu, p); | 
|  | 1260 | if (new_cpu != cpu) { | 
|  | 1261 | set_task_cpu(p, new_cpu); | 
|  | 1262 | task_rq_unlock(rq, &flags); | 
|  | 1263 | /* might preempt at this point */ | 
|  | 1264 | rq = task_rq_lock(p, &flags); | 
|  | 1265 | old_state = p->state; | 
|  | 1266 | if (!(old_state & state)) | 
|  | 1267 | goto out; | 
|  | 1268 | if (p->array) | 
|  | 1269 | goto out_running; | 
|  | 1270 |  | 
|  | 1271 | this_cpu = smp_processor_id(); | 
|  | 1272 | cpu = task_cpu(p); | 
|  | 1273 | } | 
|  | 1274 |  | 
|  | 1275 | out_activate: | 
|  | 1276 | #endif /* CONFIG_SMP */ | 
|  | 1277 | if (old_state == TASK_UNINTERRUPTIBLE) { | 
|  | 1278 | rq->nr_uninterruptible--; | 
|  | 1279 | /* | 
|  | 1280 | * Tasks on involuntary sleep don't earn | 
|  | 1281 | * sleep_avg beyond just interactive state. | 
|  | 1282 | */ | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 1283 | p->sleep_type = SLEEP_NONINTERACTIVE; | 
| Con Kolivas | e7c38cb | 2006-03-31 02:31:25 -0800 | [diff] [blame] | 1284 | } else | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1285 |  | 
|  | 1286 | /* | 
| Ingo Molnar | d79fc0f | 2005-09-10 00:26:12 -0700 | [diff] [blame] | 1287 | * Tasks that have marked their sleep as noninteractive get | 
| Con Kolivas | e7c38cb | 2006-03-31 02:31:25 -0800 | [diff] [blame] | 1288 | * woken up with their sleep average not weighted in an | 
|  | 1289 | * interactive way. | 
| Ingo Molnar | d79fc0f | 2005-09-10 00:26:12 -0700 | [diff] [blame] | 1290 | */ | 
| Con Kolivas | e7c38cb | 2006-03-31 02:31:25 -0800 | [diff] [blame] | 1291 | if (old_state & TASK_NONINTERACTIVE) | 
|  | 1292 | p->sleep_type = SLEEP_NONINTERACTIVE; | 
|  | 1293 |  | 
|  | 1294 |  | 
|  | 1295 | activate_task(p, rq, cpu == this_cpu); | 
| Ingo Molnar | d79fc0f | 2005-09-10 00:26:12 -0700 | [diff] [blame] | 1296 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1297 | * Sync wakeups (i.e. those types of wakeups where the waker | 
|  | 1298 | * has indicated that it will leave the CPU in short order) | 
|  | 1299 | * don't trigger a preemption, if the woken up task will run on | 
|  | 1300 | * this cpu. (in this case the 'I will reschedule' promise of | 
|  | 1301 | * the waker guarantees that the freshly woken up task is going | 
|  | 1302 | * to be considered on this CPU.) | 
|  | 1303 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1304 | if (!sync || cpu != this_cpu) { | 
|  | 1305 | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | 1306 | resched_task(rq->curr); | 
|  | 1307 | } | 
|  | 1308 | success = 1; | 
|  | 1309 |  | 
|  | 1310 | out_running: | 
|  | 1311 | p->state = TASK_RUNNING; | 
|  | 1312 | out: | 
|  | 1313 | task_rq_unlock(rq, &flags); | 
|  | 1314 |  | 
|  | 1315 | return success; | 
|  | 1316 | } | 
|  | 1317 |  | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 1318 | int fastcall wake_up_process(task_t *p) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1319 | { | 
|  | 1320 | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | 
|  | 1321 | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | 
|  | 1322 | } | 
|  | 1323 |  | 
|  | 1324 | EXPORT_SYMBOL(wake_up_process); | 
|  | 1325 |  | 
|  | 1326 | int fastcall wake_up_state(task_t *p, unsigned int state) | 
|  | 1327 | { | 
|  | 1328 | return try_to_wake_up(p, state, 0); | 
|  | 1329 | } | 
|  | 1330 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1331 | /* | 
|  | 1332 | * Perform scheduler related setup for a newly forked process p. | 
|  | 1333 | * p is forked by current. | 
|  | 1334 | */ | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1335 | void fastcall sched_fork(task_t *p, int clone_flags) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1336 | { | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1337 | int cpu = get_cpu(); | 
|  | 1338 |  | 
|  | 1339 | #ifdef CONFIG_SMP | 
|  | 1340 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | 
|  | 1341 | #endif | 
|  | 1342 | set_task_cpu(p, cpu); | 
|  | 1343 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1344 | /* | 
|  | 1345 | * We mark the process as running here, but have not actually | 
|  | 1346 | * inserted it onto the runqueue yet. This guarantees that | 
|  | 1347 | * nobody will actually run it, and a signal or other external | 
|  | 1348 | * event cannot wake it up and insert it on the runqueue either. | 
|  | 1349 | */ | 
|  | 1350 | p->state = TASK_RUNNING; | 
|  | 1351 | INIT_LIST_HEAD(&p->run_list); | 
|  | 1352 | p->array = NULL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1353 | #ifdef CONFIG_SCHEDSTATS | 
|  | 1354 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
|  | 1355 | #endif | 
| Chen, Kenneth W | d6077cb | 2006-02-14 13:53:10 -0800 | [diff] [blame] | 1356 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1357 | p->oncpu = 0; | 
|  | 1358 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1359 | #ifdef CONFIG_PREEMPT | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1360 | /* Want to start with kernel preemption disabled. */ | 
| Al Viro | a1261f5 | 2005-11-13 16:06:55 -0800 | [diff] [blame] | 1361 | task_thread_info(p)->preempt_count = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1362 | #endif | 
|  | 1363 | /* | 
|  | 1364 | * Share the timeslice between parent and child, thus the | 
|  | 1365 | * total amount of pending timeslices in the system doesn't change, | 
|  | 1366 | * resulting in more scheduling fairness. | 
|  | 1367 | */ | 
|  | 1368 | local_irq_disable(); | 
|  | 1369 | p->time_slice = (current->time_slice + 1) >> 1; | 
|  | 1370 | /* | 
|  | 1371 | * The remainder of the first timeslice might be recovered by | 
|  | 1372 | * the parent if the child exits early enough. | 
|  | 1373 | */ | 
|  | 1374 | p->first_time_slice = 1; | 
|  | 1375 | current->time_slice >>= 1; | 
|  | 1376 | p->timestamp = sched_clock(); | 
|  | 1377 | if (unlikely(!current->time_slice)) { | 
|  | 1378 | /* | 
|  | 1379 | * This case is rare, it happens when the parent has only | 
|  | 1380 | * a single jiffy left from its timeslice. Taking the | 
|  | 1381 | * runqueue lock is not a problem. | 
|  | 1382 | */ | 
|  | 1383 | current->time_slice = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1384 | scheduler_tick(); | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1385 | } | 
|  | 1386 | local_irq_enable(); | 
|  | 1387 | put_cpu(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1388 | } | 
|  | 1389 |  | 
|  | 1390 | /* | 
|  | 1391 | * wake_up_new_task - wake up a newly created task for the first time. | 
|  | 1392 | * | 
|  | 1393 | * This function will do some initial scheduler statistics housekeeping | 
|  | 1394 | * that must be done for every newly created context, then puts the task | 
|  | 1395 | * on the runqueue and wakes it. | 
|  | 1396 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 1397 | void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1398 | { | 
|  | 1399 | unsigned long flags; | 
|  | 1400 | int this_cpu, cpu; | 
|  | 1401 | runqueue_t *rq, *this_rq; | 
|  | 1402 |  | 
|  | 1403 | rq = task_rq_lock(p, &flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1404 | BUG_ON(p->state != TASK_RUNNING); | 
| Nick Piggin | 147cbb4 | 2005-06-25 14:57:19 -0700 | [diff] [blame] | 1405 | this_cpu = smp_processor_id(); | 
|  | 1406 | cpu = task_cpu(p); | 
|  | 1407 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1408 | /* | 
|  | 1409 | * We decrease the sleep average of forking parents | 
|  | 1410 | * and children as well, to keep max-interactive tasks | 
|  | 1411 | * from forking tasks that are max-interactive. The parent | 
|  | 1412 | * (current) is done further down, under its lock. | 
|  | 1413 | */ | 
|  | 1414 | p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | 
|  | 1415 | CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  | 1416 |  | 
|  | 1417 | p->prio = effective_prio(p); | 
|  | 1418 |  | 
|  | 1419 | if (likely(cpu == this_cpu)) { | 
|  | 1420 | if (!(clone_flags & CLONE_VM)) { | 
|  | 1421 | /* | 
|  | 1422 | * The VM isn't cloned, so we're in a good position to | 
|  | 1423 | * do child-runs-first in anticipation of an exec. This | 
|  | 1424 | * usually avoids a lot of COW overhead. | 
|  | 1425 | */ | 
|  | 1426 | if (unlikely(!current->array)) | 
|  | 1427 | __activate_task(p, rq); | 
|  | 1428 | else { | 
|  | 1429 | p->prio = current->prio; | 
|  | 1430 | list_add_tail(&p->run_list, ¤t->run_list); | 
|  | 1431 | p->array = current->array; | 
|  | 1432 | p->array->nr_active++; | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 1433 | rq->nr_running++; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1434 | } | 
|  | 1435 | set_need_resched(); | 
|  | 1436 | } else | 
|  | 1437 | /* Run child last */ | 
|  | 1438 | __activate_task(p, rq); | 
|  | 1439 | /* | 
|  | 1440 | * We skip the following code due to cpu == this_cpu | 
|  | 1441 | * | 
|  | 1442 | *   task_rq_unlock(rq, &flags); | 
|  | 1443 | *   this_rq = task_rq_lock(current, &flags); | 
|  | 1444 | */ | 
|  | 1445 | this_rq = rq; | 
|  | 1446 | } else { | 
|  | 1447 | this_rq = cpu_rq(this_cpu); | 
|  | 1448 |  | 
|  | 1449 | /* | 
|  | 1450 | * Not the local CPU - must adjust timestamp. This should | 
|  | 1451 | * get optimised away in the !CONFIG_SMP case. | 
|  | 1452 | */ | 
|  | 1453 | p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | 
|  | 1454 | + rq->timestamp_last_tick; | 
|  | 1455 | __activate_task(p, rq); | 
|  | 1456 | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | 1457 | resched_task(rq->curr); | 
|  | 1458 |  | 
|  | 1459 | /* | 
|  | 1460 | * Parent and child are on different CPUs, now get the | 
|  | 1461 | * parent runqueue to update the parent's ->sleep_avg: | 
|  | 1462 | */ | 
|  | 1463 | task_rq_unlock(rq, &flags); | 
|  | 1464 | this_rq = task_rq_lock(current, &flags); | 
|  | 1465 | } | 
|  | 1466 | current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | 
|  | 1467 | PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  | 1468 | task_rq_unlock(this_rq, &flags); | 
|  | 1469 | } | 
|  | 1470 |  | 
|  | 1471 | /* | 
|  | 1472 | * Potentially available exiting-child timeslices are | 
|  | 1473 | * retrieved here - this way the parent does not get | 
|  | 1474 | * penalized for creating too many threads. | 
|  | 1475 | * | 
|  | 1476 | * (this cannot be used to 'generate' timeslices | 
|  | 1477 | * artificially, because any timeslice recovered here | 
|  | 1478 | * was given away by the parent in the first place.) | 
|  | 1479 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 1480 | void fastcall sched_exit(task_t *p) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1481 | { | 
|  | 1482 | unsigned long flags; | 
|  | 1483 | runqueue_t *rq; | 
|  | 1484 |  | 
|  | 1485 | /* | 
|  | 1486 | * If the child was a (relative-) CPU hog then decrease | 
|  | 1487 | * the sleep_avg of the parent as well. | 
|  | 1488 | */ | 
|  | 1489 | rq = task_rq_lock(p->parent, &flags); | 
| Oleg Nesterov | 889dfaf | 2005-11-04 18:54:30 +0300 | [diff] [blame] | 1490 | if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1491 | p->parent->time_slice += p->time_slice; | 
|  | 1492 | if (unlikely(p->parent->time_slice > task_timeslice(p))) | 
|  | 1493 | p->parent->time_slice = task_timeslice(p); | 
|  | 1494 | } | 
|  | 1495 | if (p->sleep_avg < p->parent->sleep_avg) | 
|  | 1496 | p->parent->sleep_avg = p->parent->sleep_avg / | 
|  | 1497 | (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | 
|  | 1498 | (EXIT_WEIGHT + 1); | 
|  | 1499 | task_rq_unlock(rq, &flags); | 
|  | 1500 | } | 
|  | 1501 |  | 
|  | 1502 | /** | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1503 | * prepare_task_switch - prepare to switch tasks | 
|  | 1504 | * @rq: the runqueue preparing to switch | 
|  | 1505 | * @next: the task we are going to switch to. | 
|  | 1506 | * | 
|  | 1507 | * This is called with the rq lock held and interrupts off. It must | 
|  | 1508 | * be paired with a subsequent finish_task_switch after the context | 
|  | 1509 | * switch. | 
|  | 1510 | * | 
|  | 1511 | * prepare_task_switch sets up locking and calls architecture specific | 
|  | 1512 | * hooks. | 
|  | 1513 | */ | 
|  | 1514 | static inline void prepare_task_switch(runqueue_t *rq, task_t *next) | 
|  | 1515 | { | 
|  | 1516 | prepare_lock_switch(rq, next); | 
|  | 1517 | prepare_arch_switch(next); | 
|  | 1518 | } | 
|  | 1519 |  | 
|  | 1520 | /** | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1521 | * finish_task_switch - clean up after a task-switch | 
| Jeff Garzik | 344baba | 2005-09-07 01:15:17 -0400 | [diff] [blame] | 1522 | * @rq: runqueue associated with task-switch | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1523 | * @prev: the thread we just switched away from. | 
|  | 1524 | * | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1525 | * finish_task_switch must be called after the context switch, paired | 
|  | 1526 | * with a prepare_task_switch call before the context switch. | 
|  | 1527 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
|  | 1528 | * and do any other architecture-specific cleanup actions. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1529 | * | 
|  | 1530 | * Note that we may have delayed dropping an mm in context_switch(). If | 
|  | 1531 | * so, we finish that here outside of the runqueue lock.  (Doing it | 
|  | 1532 | * with the lock held can cause deadlocks; see schedule() for | 
|  | 1533 | * details.) | 
|  | 1534 | */ | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1535 | static inline void finish_task_switch(runqueue_t *rq, task_t *prev) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1536 | __releases(rq->lock) | 
|  | 1537 | { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1538 | struct mm_struct *mm = rq->prev_mm; | 
|  | 1539 | unsigned long prev_task_flags; | 
|  | 1540 |  | 
|  | 1541 | rq->prev_mm = NULL; | 
|  | 1542 |  | 
|  | 1543 | /* | 
|  | 1544 | * A task struct has one reference for the use as "current". | 
|  | 1545 | * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and | 
|  | 1546 | * calls schedule one last time. The schedule call will never return, | 
|  | 1547 | * and the scheduled task must drop that reference. | 
|  | 1548 | * The test for EXIT_ZOMBIE must occur while the runqueue locks are | 
|  | 1549 | * still held, otherwise prev could be scheduled on another cpu, die | 
|  | 1550 | * there before we look at prev->state, and then the reference would | 
|  | 1551 | * be dropped twice. | 
|  | 1552 | *		Manfred Spraul <manfred@colorfullife.com> | 
|  | 1553 | */ | 
|  | 1554 | prev_task_flags = prev->flags; | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1555 | finish_arch_switch(prev); | 
|  | 1556 | finish_lock_switch(rq, prev); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1557 | if (mm) | 
|  | 1558 | mmdrop(mm); | 
| bibo mao | c6fd91f | 2006-03-26 01:38:20 -0800 | [diff] [blame] | 1559 | if (unlikely(prev_task_flags & PF_DEAD)) { | 
|  | 1560 | /* | 
|  | 1561 | * Remove function-return probe instances associated with this | 
|  | 1562 | * task and put them back on the free list. | 
|  | 1563 | */ | 
|  | 1564 | kprobe_flush_task(prev); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1565 | put_task_struct(prev); | 
| bibo mao | c6fd91f | 2006-03-26 01:38:20 -0800 | [diff] [blame] | 1566 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1567 | } | 
|  | 1568 |  | 
|  | 1569 | /** | 
|  | 1570 | * schedule_tail - first thing a freshly forked thread must call. | 
|  | 1571 | * @prev: the thread we just switched away from. | 
|  | 1572 | */ | 
|  | 1573 | asmlinkage void schedule_tail(task_t *prev) | 
|  | 1574 | __releases(rq->lock) | 
|  | 1575 | { | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 1576 | runqueue_t *rq = this_rq(); | 
|  | 1577 | finish_task_switch(rq, prev); | 
|  | 1578 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | 1579 | /* In this case, finish_task_switch does not reenable preemption */ | 
|  | 1580 | preempt_enable(); | 
|  | 1581 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1582 | if (current->set_child_tid) | 
|  | 1583 | put_user(current->pid, current->set_child_tid); | 
|  | 1584 | } | 
|  | 1585 |  | 
|  | 1586 | /* | 
|  | 1587 | * context_switch - switch to the new MM and the new | 
|  | 1588 | * thread's register state. | 
|  | 1589 | */ | 
|  | 1590 | static inline | 
|  | 1591 | task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next) | 
|  | 1592 | { | 
|  | 1593 | struct mm_struct *mm = next->mm; | 
|  | 1594 | struct mm_struct *oldmm = prev->active_mm; | 
|  | 1595 |  | 
|  | 1596 | if (unlikely(!mm)) { | 
|  | 1597 | next->active_mm = oldmm; | 
|  | 1598 | atomic_inc(&oldmm->mm_count); | 
|  | 1599 | enter_lazy_tlb(oldmm, next); | 
|  | 1600 | } else | 
|  | 1601 | switch_mm(oldmm, mm, next); | 
|  | 1602 |  | 
|  | 1603 | if (unlikely(!prev->mm)) { | 
|  | 1604 | prev->active_mm = NULL; | 
|  | 1605 | WARN_ON(rq->prev_mm); | 
|  | 1606 | rq->prev_mm = oldmm; | 
|  | 1607 | } | 
|  | 1608 |  | 
|  | 1609 | /* Here we just switch the register state and the stack. */ | 
|  | 1610 | switch_to(prev, next, prev); | 
|  | 1611 |  | 
|  | 1612 | return prev; | 
|  | 1613 | } | 
|  | 1614 |  | 
|  | 1615 | /* | 
|  | 1616 | * nr_running, nr_uninterruptible and nr_context_switches: | 
|  | 1617 | * | 
|  | 1618 | * externally visible scheduler statistics: current number of runnable | 
|  | 1619 | * threads, current number of uninterruptible-sleeping threads, total | 
|  | 1620 | * number of context switches performed since bootup. | 
|  | 1621 | */ | 
|  | 1622 | unsigned long nr_running(void) | 
|  | 1623 | { | 
|  | 1624 | unsigned long i, sum = 0; | 
|  | 1625 |  | 
|  | 1626 | for_each_online_cpu(i) | 
|  | 1627 | sum += cpu_rq(i)->nr_running; | 
|  | 1628 |  | 
|  | 1629 | return sum; | 
|  | 1630 | } | 
|  | 1631 |  | 
|  | 1632 | unsigned long nr_uninterruptible(void) | 
|  | 1633 | { | 
|  | 1634 | unsigned long i, sum = 0; | 
|  | 1635 |  | 
| KAMEZAWA Hiroyuki | 0a94502 | 2006-03-28 01:56:37 -0800 | [diff] [blame] | 1636 | for_each_possible_cpu(i) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1637 | sum += cpu_rq(i)->nr_uninterruptible; | 
|  | 1638 |  | 
|  | 1639 | /* | 
|  | 1640 | * Since we read the counters lockless, it might be slightly | 
|  | 1641 | * inaccurate. Do not allow it to go below zero though: | 
|  | 1642 | */ | 
|  | 1643 | if (unlikely((long)sum < 0)) | 
|  | 1644 | sum = 0; | 
|  | 1645 |  | 
|  | 1646 | return sum; | 
|  | 1647 | } | 
|  | 1648 |  | 
|  | 1649 | unsigned long long nr_context_switches(void) | 
|  | 1650 | { | 
|  | 1651 | unsigned long long i, sum = 0; | 
|  | 1652 |  | 
| KAMEZAWA Hiroyuki | 0a94502 | 2006-03-28 01:56:37 -0800 | [diff] [blame] | 1653 | for_each_possible_cpu(i) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1654 | sum += cpu_rq(i)->nr_switches; | 
|  | 1655 |  | 
|  | 1656 | return sum; | 
|  | 1657 | } | 
|  | 1658 |  | 
|  | 1659 | unsigned long nr_iowait(void) | 
|  | 1660 | { | 
|  | 1661 | unsigned long i, sum = 0; | 
|  | 1662 |  | 
| KAMEZAWA Hiroyuki | 0a94502 | 2006-03-28 01:56:37 -0800 | [diff] [blame] | 1663 | for_each_possible_cpu(i) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1664 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
|  | 1665 |  | 
|  | 1666 | return sum; | 
|  | 1667 | } | 
|  | 1668 |  | 
| Jack Steiner | db1b1fe | 2006-03-31 02:31:21 -0800 | [diff] [blame] | 1669 | unsigned long nr_active(void) | 
|  | 1670 | { | 
|  | 1671 | unsigned long i, running = 0, uninterruptible = 0; | 
|  | 1672 |  | 
|  | 1673 | for_each_online_cpu(i) { | 
|  | 1674 | running += cpu_rq(i)->nr_running; | 
|  | 1675 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | 
|  | 1676 | } | 
|  | 1677 |  | 
|  | 1678 | if (unlikely((long)uninterruptible < 0)) | 
|  | 1679 | uninterruptible = 0; | 
|  | 1680 |  | 
|  | 1681 | return running + uninterruptible; | 
|  | 1682 | } | 
|  | 1683 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1684 | #ifdef CONFIG_SMP | 
|  | 1685 |  | 
|  | 1686 | /* | 
|  | 1687 | * double_rq_lock - safely lock two runqueues | 
|  | 1688 | * | 
| Anton Blanchard | e9028b0 | 2006-03-23 02:59:20 -0800 | [diff] [blame] | 1689 | * We must take them in cpu order to match code in | 
|  | 1690 | * dependent_sleeper and wake_dependent_sleeper. | 
|  | 1691 | * | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1692 | * Note this does not disable interrupts like task_rq_lock, | 
|  | 1693 | * you need to do so manually before calling. | 
|  | 1694 | */ | 
|  | 1695 | static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | 
|  | 1696 | __acquires(rq1->lock) | 
|  | 1697 | __acquires(rq2->lock) | 
|  | 1698 | { | 
|  | 1699 | if (rq1 == rq2) { | 
|  | 1700 | spin_lock(&rq1->lock); | 
|  | 1701 | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | 1702 | } else { | 
| Anton Blanchard | e9028b0 | 2006-03-23 02:59:20 -0800 | [diff] [blame] | 1703 | if (rq1->cpu < rq2->cpu) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1704 | spin_lock(&rq1->lock); | 
|  | 1705 | spin_lock(&rq2->lock); | 
|  | 1706 | } else { | 
|  | 1707 | spin_lock(&rq2->lock); | 
|  | 1708 | spin_lock(&rq1->lock); | 
|  | 1709 | } | 
|  | 1710 | } | 
|  | 1711 | } | 
|  | 1712 |  | 
|  | 1713 | /* | 
|  | 1714 | * double_rq_unlock - safely unlock two runqueues | 
|  | 1715 | * | 
|  | 1716 | * Note this does not restore interrupts like task_rq_unlock, | 
|  | 1717 | * you need to do so manually after calling. | 
|  | 1718 | */ | 
|  | 1719 | static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) | 
|  | 1720 | __releases(rq1->lock) | 
|  | 1721 | __releases(rq2->lock) | 
|  | 1722 | { | 
|  | 1723 | spin_unlock(&rq1->lock); | 
|  | 1724 | if (rq1 != rq2) | 
|  | 1725 | spin_unlock(&rq2->lock); | 
|  | 1726 | else | 
|  | 1727 | __release(rq2->lock); | 
|  | 1728 | } | 
|  | 1729 |  | 
|  | 1730 | /* | 
|  | 1731 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
|  | 1732 | */ | 
|  | 1733 | static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | 
|  | 1734 | __releases(this_rq->lock) | 
|  | 1735 | __acquires(busiest->lock) | 
|  | 1736 | __acquires(this_rq->lock) | 
|  | 1737 | { | 
|  | 1738 | if (unlikely(!spin_trylock(&busiest->lock))) { | 
| Anton Blanchard | e9028b0 | 2006-03-23 02:59:20 -0800 | [diff] [blame] | 1739 | if (busiest->cpu < this_rq->cpu) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1740 | spin_unlock(&this_rq->lock); | 
|  | 1741 | spin_lock(&busiest->lock); | 
|  | 1742 | spin_lock(&this_rq->lock); | 
|  | 1743 | } else | 
|  | 1744 | spin_lock(&busiest->lock); | 
|  | 1745 | } | 
|  | 1746 | } | 
|  | 1747 |  | 
|  | 1748 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1749 | * If dest_cpu is allowed for this process, migrate the task to it. | 
|  | 1750 | * This is accomplished by forcing the cpu_allowed mask to only | 
|  | 1751 | * allow dest_cpu, which will force the cpu onto dest_cpu.  Then | 
|  | 1752 | * the cpu_allowed mask is restored. | 
|  | 1753 | */ | 
|  | 1754 | static void sched_migrate_task(task_t *p, int dest_cpu) | 
|  | 1755 | { | 
|  | 1756 | migration_req_t req; | 
|  | 1757 | runqueue_t *rq; | 
|  | 1758 | unsigned long flags; | 
|  | 1759 |  | 
|  | 1760 | rq = task_rq_lock(p, &flags); | 
|  | 1761 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
|  | 1762 | || unlikely(cpu_is_offline(dest_cpu))) | 
|  | 1763 | goto out; | 
|  | 1764 |  | 
|  | 1765 | /* force the process onto the specified CPU */ | 
|  | 1766 | if (migrate_task(p, dest_cpu, &req)) { | 
|  | 1767 | /* Need to wait for migration thread (might exit: take ref). */ | 
|  | 1768 | struct task_struct *mt = rq->migration_thread; | 
|  | 1769 | get_task_struct(mt); | 
|  | 1770 | task_rq_unlock(rq, &flags); | 
|  | 1771 | wake_up_process(mt); | 
|  | 1772 | put_task_struct(mt); | 
|  | 1773 | wait_for_completion(&req.done); | 
|  | 1774 | return; | 
|  | 1775 | } | 
|  | 1776 | out: | 
|  | 1777 | task_rq_unlock(rq, &flags); | 
|  | 1778 | } | 
|  | 1779 |  | 
|  | 1780 | /* | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1781 | * sched_exec - execve() is a valuable balancing opportunity, because at | 
|  | 1782 | * this point the task has the smallest effective memory and cache footprint. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1783 | */ | 
|  | 1784 | void sched_exec(void) | 
|  | 1785 | { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1786 | int new_cpu, this_cpu = get_cpu(); | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1787 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1788 | put_cpu(); | 
| Nick Piggin | 476d139 | 2005-06-25 14:57:29 -0700 | [diff] [blame] | 1789 | if (new_cpu != this_cpu) | 
|  | 1790 | sched_migrate_task(current, new_cpu); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1791 | } | 
|  | 1792 |  | 
|  | 1793 | /* | 
|  | 1794 | * pull_task - move a task from a remote runqueue to the local runqueue. | 
|  | 1795 | * Both runqueues must be locked. | 
|  | 1796 | */ | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 1797 | static | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1798 | void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, | 
|  | 1799 | runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) | 
|  | 1800 | { | 
|  | 1801 | dequeue_task(p, src_array); | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 1802 | src_rq->nr_running--; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1803 | set_task_cpu(p, this_cpu); | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 1804 | this_rq->nr_running++; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1805 | enqueue_task(p, this_array); | 
|  | 1806 | p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | 
|  | 1807 | + this_rq->timestamp_last_tick; | 
|  | 1808 | /* | 
|  | 1809 | * Note that idle threads have a prio of MAX_PRIO, for this test | 
|  | 1810 | * to be always true for them. | 
|  | 1811 | */ | 
|  | 1812 | if (TASK_PREEMPTS_CURR(p, this_rq)) | 
|  | 1813 | resched_task(this_rq->curr); | 
|  | 1814 | } | 
|  | 1815 |  | 
|  | 1816 | /* | 
|  | 1817 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | 1818 | */ | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 1819 | static | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1820 | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 1821 | struct sched_domain *sd, enum idle_type idle, | 
|  | 1822 | int *all_pinned) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1823 | { | 
|  | 1824 | /* | 
|  | 1825 | * We do not migrate tasks that are: | 
|  | 1826 | * 1) running (obviously), or | 
|  | 1827 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
|  | 1828 | * 3) are cache-hot on their current CPU. | 
|  | 1829 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1830 | if (!cpu_isset(this_cpu, p->cpus_allowed)) | 
|  | 1831 | return 0; | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1832 | *all_pinned = 0; | 
|  | 1833 |  | 
|  | 1834 | if (task_running(rq, p)) | 
|  | 1835 | return 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1836 |  | 
|  | 1837 | /* | 
|  | 1838 | * Aggressive migration if: | 
| Nick Piggin | cafb20c | 2005-06-25 14:57:17 -0700 | [diff] [blame] | 1839 | * 1) task is cache cold, or | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1840 | * 2) too many balance attempts have failed. | 
|  | 1841 | */ | 
|  | 1842 |  | 
| Nick Piggin | cafb20c | 2005-06-25 14:57:17 -0700 | [diff] [blame] | 1843 | if (sd->nr_balance_failed > sd->cache_nice_tries) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1844 | return 1; | 
|  | 1845 |  | 
|  | 1846 | if (task_hot(p, rq->timestamp_last_tick, sd)) | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1847 | return 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1848 | return 1; | 
|  | 1849 | } | 
|  | 1850 |  | 
|  | 1851 | /* | 
|  | 1852 | * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, | 
|  | 1853 | * as part of a balancing operation within "domain". Returns the number of | 
|  | 1854 | * tasks moved. | 
|  | 1855 | * | 
|  | 1856 | * Called with both runqueues locked. | 
|  | 1857 | */ | 
|  | 1858 | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, | 
|  | 1859 | unsigned long max_nr_move, struct sched_domain *sd, | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1860 | enum idle_type idle, int *all_pinned) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1861 | { | 
|  | 1862 | prio_array_t *array, *dst_array; | 
|  | 1863 | struct list_head *head, *curr; | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1864 | int idx, pulled = 0, pinned = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1865 | task_t *tmp; | 
|  | 1866 |  | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1867 | if (max_nr_move == 0) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1868 | goto out; | 
|  | 1869 |  | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1870 | pinned = 1; | 
|  | 1871 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1872 | /* | 
|  | 1873 | * We first consider expired tasks. Those will likely not be | 
|  | 1874 | * executed in the near future, and they are most likely to | 
|  | 1875 | * be cache-cold, thus switching CPUs has the least effect | 
|  | 1876 | * on them. | 
|  | 1877 | */ | 
|  | 1878 | if (busiest->expired->nr_active) { | 
|  | 1879 | array = busiest->expired; | 
|  | 1880 | dst_array = this_rq->expired; | 
|  | 1881 | } else { | 
|  | 1882 | array = busiest->active; | 
|  | 1883 | dst_array = this_rq->active; | 
|  | 1884 | } | 
|  | 1885 |  | 
|  | 1886 | new_array: | 
|  | 1887 | /* Start searching at priority 0: */ | 
|  | 1888 | idx = 0; | 
|  | 1889 | skip_bitmap: | 
|  | 1890 | if (!idx) | 
|  | 1891 | idx = sched_find_first_bit(array->bitmap); | 
|  | 1892 | else | 
|  | 1893 | idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | 
|  | 1894 | if (idx >= MAX_PRIO) { | 
|  | 1895 | if (array == busiest->expired && busiest->active->nr_active) { | 
|  | 1896 | array = busiest->active; | 
|  | 1897 | dst_array = this_rq->active; | 
|  | 1898 | goto new_array; | 
|  | 1899 | } | 
|  | 1900 | goto out; | 
|  | 1901 | } | 
|  | 1902 |  | 
|  | 1903 | head = array->queue + idx; | 
|  | 1904 | curr = head->prev; | 
|  | 1905 | skip_queue: | 
|  | 1906 | tmp = list_entry(curr, task_t, run_list); | 
|  | 1907 |  | 
|  | 1908 | curr = curr->prev; | 
|  | 1909 |  | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1910 | if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1911 | if (curr != head) | 
|  | 1912 | goto skip_queue; | 
|  | 1913 | idx++; | 
|  | 1914 | goto skip_bitmap; | 
|  | 1915 | } | 
|  | 1916 |  | 
|  | 1917 | #ifdef CONFIG_SCHEDSTATS | 
|  | 1918 | if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | 
|  | 1919 | schedstat_inc(sd, lb_hot_gained[idle]); | 
|  | 1920 | #endif | 
|  | 1921 |  | 
|  | 1922 | pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | 
|  | 1923 | pulled++; | 
|  | 1924 |  | 
|  | 1925 | /* We only want to steal up to the prescribed number of tasks. */ | 
|  | 1926 | if (pulled < max_nr_move) { | 
|  | 1927 | if (curr != head) | 
|  | 1928 | goto skip_queue; | 
|  | 1929 | idx++; | 
|  | 1930 | goto skip_bitmap; | 
|  | 1931 | } | 
|  | 1932 | out: | 
|  | 1933 | /* | 
|  | 1934 | * Right now, this is the only place pull_task() is called, | 
|  | 1935 | * so we can safely collect pull_task() stats here rather than | 
|  | 1936 | * inside pull_task(). | 
|  | 1937 | */ | 
|  | 1938 | schedstat_add(sd, lb_gained[idle], pulled); | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 1939 |  | 
|  | 1940 | if (all_pinned) | 
|  | 1941 | *all_pinned = pinned; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1942 | return pulled; | 
|  | 1943 | } | 
|  | 1944 |  | 
|  | 1945 | /* | 
|  | 1946 | * find_busiest_group finds and returns the busiest CPU group within the | 
|  | 1947 | * domain. It calculates and returns the number of tasks which should be | 
|  | 1948 | * moved to restore balance via the imbalance parameter. | 
|  | 1949 | */ | 
|  | 1950 | static struct sched_group * | 
|  | 1951 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 1952 | unsigned long *imbalance, enum idle_type idle, int *sd_idle) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1953 | { | 
|  | 1954 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
|  | 1955 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
| Siddha, Suresh B | 0c117f1 | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 1956 | unsigned long max_pull; | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1957 | int load_idx; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1958 |  | 
|  | 1959 | max_load = this_load = total_load = total_pwr = 0; | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 1960 | if (idle == NOT_IDLE) | 
|  | 1961 | load_idx = sd->busy_idx; | 
|  | 1962 | else if (idle == NEWLY_IDLE) | 
|  | 1963 | load_idx = sd->newidle_idx; | 
|  | 1964 | else | 
|  | 1965 | load_idx = sd->idle_idx; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1966 |  | 
|  | 1967 | do { | 
|  | 1968 | unsigned long load; | 
|  | 1969 | int local_group; | 
|  | 1970 | int i; | 
|  | 1971 |  | 
|  | 1972 | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  | 1973 |  | 
|  | 1974 | /* Tally up the load of all CPUs in the group */ | 
|  | 1975 | avg_load = 0; | 
|  | 1976 |  | 
|  | 1977 | for_each_cpu_mask(i, group->cpumask) { | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 1978 | if (*sd_idle && !idle_cpu(i)) | 
|  | 1979 | *sd_idle = 0; | 
|  | 1980 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1981 | /* Bias balancing toward cpus of our domain */ | 
|  | 1982 | if (local_group) | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 1983 | load = target_load(i, load_idx); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1984 | else | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 1985 | load = source_load(i, load_idx); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1986 |  | 
|  | 1987 | avg_load += load; | 
|  | 1988 | } | 
|  | 1989 |  | 
|  | 1990 | total_load += avg_load; | 
|  | 1991 | total_pwr += group->cpu_power; | 
|  | 1992 |  | 
|  | 1993 | /* Adjust by relative CPU power of the group */ | 
|  | 1994 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
|  | 1995 |  | 
|  | 1996 | if (local_group) { | 
|  | 1997 | this_load = avg_load; | 
|  | 1998 | this = group; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1999 | } else if (avg_load > max_load) { | 
|  | 2000 | max_load = avg_load; | 
|  | 2001 | busiest = group; | 
|  | 2002 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2003 | group = group->next; | 
|  | 2004 | } while (group != sd->groups); | 
|  | 2005 |  | 
| Siddha, Suresh B | 0c117f1 | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 2006 | if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2007 | goto out_balanced; | 
|  | 2008 |  | 
|  | 2009 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
|  | 2010 |  | 
|  | 2011 | if (this_load >= avg_load || | 
|  | 2012 | 100*max_load <= sd->imbalance_pct*this_load) | 
|  | 2013 | goto out_balanced; | 
|  | 2014 |  | 
|  | 2015 | /* | 
|  | 2016 | * We're trying to get all the cpus to the average_load, so we don't | 
|  | 2017 | * want to push ourselves above the average load, nor do we wish to | 
|  | 2018 | * reduce the max loaded cpu below the average load, as either of these | 
|  | 2019 | * actions would just result in more rebalancing later, and ping-pong | 
|  | 2020 | * tasks around. Thus we look for the minimum possible imbalance. | 
|  | 2021 | * Negative imbalances (*we* are more loaded than anyone else) will | 
|  | 2022 | * be counted as no imbalance for these purposes -- we can't fix that | 
|  | 2023 | * by pulling tasks to us.  Be careful of negative numbers as they'll | 
|  | 2024 | * appear as very large values with unsigned longs. | 
|  | 2025 | */ | 
| Siddha, Suresh B | 0c117f1 | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 2026 |  | 
|  | 2027 | /* Don't want to pull so many tasks that a group would go idle */ | 
|  | 2028 | max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE); | 
|  | 2029 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2030 | /* How much load to actually move to equalise the imbalance */ | 
| Siddha, Suresh B | 0c117f1 | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 2031 | *imbalance = min(max_pull * busiest->cpu_power, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2032 | (avg_load - this_load) * this->cpu_power) | 
|  | 2033 | / SCHED_LOAD_SCALE; | 
|  | 2034 |  | 
|  | 2035 | if (*imbalance < SCHED_LOAD_SCALE) { | 
|  | 2036 | unsigned long pwr_now = 0, pwr_move = 0; | 
|  | 2037 | unsigned long tmp; | 
|  | 2038 |  | 
|  | 2039 | if (max_load - this_load >= SCHED_LOAD_SCALE*2) { | 
|  | 2040 | *imbalance = 1; | 
|  | 2041 | return busiest; | 
|  | 2042 | } | 
|  | 2043 |  | 
|  | 2044 | /* | 
|  | 2045 | * OK, we don't have enough imbalance to justify moving tasks, | 
|  | 2046 | * however we may be able to increase total CPU power used by | 
|  | 2047 | * moving them. | 
|  | 2048 | */ | 
|  | 2049 |  | 
|  | 2050 | pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); | 
|  | 2051 | pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); | 
|  | 2052 | pwr_now /= SCHED_LOAD_SCALE; | 
|  | 2053 |  | 
|  | 2054 | /* Amount of load we'd subtract */ | 
|  | 2055 | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; | 
|  | 2056 | if (max_load > tmp) | 
|  | 2057 | pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, | 
|  | 2058 | max_load - tmp); | 
|  | 2059 |  | 
|  | 2060 | /* Amount of load we'd add */ | 
|  | 2061 | if (max_load*busiest->cpu_power < | 
|  | 2062 | SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) | 
|  | 2063 | tmp = max_load*busiest->cpu_power/this->cpu_power; | 
|  | 2064 | else | 
|  | 2065 | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; | 
|  | 2066 | pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); | 
|  | 2067 | pwr_move /= SCHED_LOAD_SCALE; | 
|  | 2068 |  | 
|  | 2069 | /* Move if we gain throughput */ | 
|  | 2070 | if (pwr_move <= pwr_now) | 
|  | 2071 | goto out_balanced; | 
|  | 2072 |  | 
|  | 2073 | *imbalance = 1; | 
|  | 2074 | return busiest; | 
|  | 2075 | } | 
|  | 2076 |  | 
|  | 2077 | /* Get rid of the scaling factor, rounding down as we divide */ | 
|  | 2078 | *imbalance = *imbalance / SCHED_LOAD_SCALE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2079 | return busiest; | 
|  | 2080 |  | 
|  | 2081 | out_balanced: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2082 |  | 
|  | 2083 | *imbalance = 0; | 
|  | 2084 | return NULL; | 
|  | 2085 | } | 
|  | 2086 |  | 
|  | 2087 | /* | 
|  | 2088 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
|  | 2089 | */ | 
| Con Kolivas | b910472 | 2005-11-08 21:38:55 -0800 | [diff] [blame] | 2090 | static runqueue_t *find_busiest_queue(struct sched_group *group, | 
|  | 2091 | enum idle_type idle) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2092 | { | 
|  | 2093 | unsigned long load, max_load = 0; | 
|  | 2094 | runqueue_t *busiest = NULL; | 
|  | 2095 | int i; | 
|  | 2096 |  | 
|  | 2097 | for_each_cpu_mask(i, group->cpumask) { | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 2098 | load = source_load(i, 0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2099 |  | 
|  | 2100 | if (load > max_load) { | 
|  | 2101 | max_load = load; | 
|  | 2102 | busiest = cpu_rq(i); | 
|  | 2103 | } | 
|  | 2104 | } | 
|  | 2105 |  | 
|  | 2106 | return busiest; | 
|  | 2107 | } | 
|  | 2108 |  | 
|  | 2109 | /* | 
| Nick Piggin | 77391d7 | 2005-06-25 14:57:30 -0700 | [diff] [blame] | 2110 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
|  | 2111 | * so long as it is large enough. | 
|  | 2112 | */ | 
|  | 2113 | #define MAX_PINNED_INTERVAL	512 | 
|  | 2114 |  | 
|  | 2115 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2116 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | 2117 | * tasks if there is an imbalance. | 
|  | 2118 | * | 
|  | 2119 | * Called with this_rq unlocked. | 
|  | 2120 | */ | 
|  | 2121 | static int load_balance(int this_cpu, runqueue_t *this_rq, | 
|  | 2122 | struct sched_domain *sd, enum idle_type idle) | 
|  | 2123 | { | 
|  | 2124 | struct sched_group *group; | 
|  | 2125 | runqueue_t *busiest; | 
|  | 2126 | unsigned long imbalance; | 
| Nick Piggin | 77391d7 | 2005-06-25 14:57:30 -0700 | [diff] [blame] | 2127 | int nr_moved, all_pinned = 0; | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2128 | int active_balance = 0; | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2129 | int sd_idle = 0; | 
|  | 2130 |  | 
|  | 2131 | if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER) | 
|  | 2132 | sd_idle = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2133 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2134 | schedstat_inc(sd, lb_cnt[idle]); | 
|  | 2135 |  | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2136 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2137 | if (!group) { | 
|  | 2138 | schedstat_inc(sd, lb_nobusyg[idle]); | 
|  | 2139 | goto out_balanced; | 
|  | 2140 | } | 
|  | 2141 |  | 
| Con Kolivas | b910472 | 2005-11-08 21:38:55 -0800 | [diff] [blame] | 2142 | busiest = find_busiest_queue(group, idle); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2143 | if (!busiest) { | 
|  | 2144 | schedstat_inc(sd, lb_nobusyq[idle]); | 
|  | 2145 | goto out_balanced; | 
|  | 2146 | } | 
|  | 2147 |  | 
| Nick Piggin | db935db | 2005-06-25 14:57:11 -0700 | [diff] [blame] | 2148 | BUG_ON(busiest == this_rq); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2149 |  | 
|  | 2150 | schedstat_add(sd, lb_imbalance[idle], imbalance); | 
|  | 2151 |  | 
|  | 2152 | nr_moved = 0; | 
|  | 2153 | if (busiest->nr_running > 1) { | 
|  | 2154 | /* | 
|  | 2155 | * Attempt to move tasks. If find_busiest_group has found | 
|  | 2156 | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | 2157 | * still unbalanced. nr_moved simply stays zero, so it is | 
|  | 2158 | * correctly treated as an imbalance. | 
|  | 2159 | */ | 
| Nick Piggin | e17224b | 2005-09-10 00:26:18 -0700 | [diff] [blame] | 2160 | double_rq_lock(this_rq, busiest); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2161 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
| Nick Piggin | d6d5cfa | 2005-09-10 00:26:16 -0700 | [diff] [blame] | 2162 | imbalance, sd, idle, &all_pinned); | 
| Nick Piggin | e17224b | 2005-09-10 00:26:18 -0700 | [diff] [blame] | 2163 | double_rq_unlock(this_rq, busiest); | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2164 |  | 
|  | 2165 | /* All tasks on this runqueue were pinned by CPU affinity */ | 
|  | 2166 | if (unlikely(all_pinned)) | 
|  | 2167 | goto out_balanced; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2168 | } | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2169 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2170 | if (!nr_moved) { | 
|  | 2171 | schedstat_inc(sd, lb_failed[idle]); | 
|  | 2172 | sd->nr_balance_failed++; | 
|  | 2173 |  | 
|  | 2174 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2175 |  | 
|  | 2176 | spin_lock(&busiest->lock); | 
| Siddha, Suresh B | fa3b6dd | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 2177 |  | 
|  | 2178 | /* don't kick the migration_thread, if the curr | 
|  | 2179 | * task on busiest cpu can't be moved to this_cpu | 
|  | 2180 | */ | 
|  | 2181 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | 
|  | 2182 | spin_unlock(&busiest->lock); | 
|  | 2183 | all_pinned = 1; | 
|  | 2184 | goto out_one_pinned; | 
|  | 2185 | } | 
|  | 2186 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2187 | if (!busiest->active_balance) { | 
|  | 2188 | busiest->active_balance = 1; | 
|  | 2189 | busiest->push_cpu = this_cpu; | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2190 | active_balance = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2191 | } | 
|  | 2192 | spin_unlock(&busiest->lock); | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2193 | if (active_balance) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2194 | wake_up_process(busiest->migration_thread); | 
|  | 2195 |  | 
|  | 2196 | /* | 
|  | 2197 | * We've kicked active balancing, reset the failure | 
|  | 2198 | * counter. | 
|  | 2199 | */ | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2200 | sd->nr_balance_failed = sd->cache_nice_tries+1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2201 | } | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2202 | } else | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2203 | sd->nr_balance_failed = 0; | 
|  | 2204 |  | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2205 | if (likely(!active_balance)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2206 | /* We were unbalanced, so reset the balancing interval */ | 
|  | 2207 | sd->balance_interval = sd->min_interval; | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2208 | } else { | 
|  | 2209 | /* | 
|  | 2210 | * If we've begun active balancing, start to back off. This | 
|  | 2211 | * case may not be covered by the all_pinned logic if there | 
|  | 2212 | * is only 1 task on the busy runqueue (because we don't call | 
|  | 2213 | * move_tasks). | 
|  | 2214 | */ | 
|  | 2215 | if (sd->balance_interval < sd->max_interval) | 
|  | 2216 | sd->balance_interval *= 2; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2217 | } | 
|  | 2218 |  | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2219 | if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
|  | 2220 | return -1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2221 | return nr_moved; | 
|  | 2222 |  | 
|  | 2223 | out_balanced: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2224 | schedstat_inc(sd, lb_balanced[idle]); | 
|  | 2225 |  | 
| Nick Piggin | 16cfb1c | 2005-06-25 14:57:08 -0700 | [diff] [blame] | 2226 | sd->nr_balance_failed = 0; | 
| Siddha, Suresh B | fa3b6dd | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 2227 |  | 
|  | 2228 | out_one_pinned: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2229 | /* tune up the balancing interval */ | 
| Nick Piggin | 77391d7 | 2005-06-25 14:57:30 -0700 | [diff] [blame] | 2230 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 
|  | 2231 | (sd->balance_interval < sd->max_interval)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2232 | sd->balance_interval *= 2; | 
|  | 2233 |  | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2234 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
|  | 2235 | return -1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2236 | return 0; | 
|  | 2237 | } | 
|  | 2238 |  | 
|  | 2239 | /* | 
|  | 2240 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | 2241 | * tasks if there is an imbalance. | 
|  | 2242 | * | 
|  | 2243 | * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | 
|  | 2244 | * this_rq is locked. | 
|  | 2245 | */ | 
|  | 2246 | static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, | 
|  | 2247 | struct sched_domain *sd) | 
|  | 2248 | { | 
|  | 2249 | struct sched_group *group; | 
|  | 2250 | runqueue_t *busiest = NULL; | 
|  | 2251 | unsigned long imbalance; | 
|  | 2252 | int nr_moved = 0; | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2253 | int sd_idle = 0; | 
|  | 2254 |  | 
|  | 2255 | if (sd->flags & SD_SHARE_CPUPOWER) | 
|  | 2256 | sd_idle = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2257 |  | 
|  | 2258 | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2259 | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2260 | if (!group) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2261 | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | 
| Nick Piggin | 16cfb1c | 2005-06-25 14:57:08 -0700 | [diff] [blame] | 2262 | goto out_balanced; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2263 | } | 
|  | 2264 |  | 
| Con Kolivas | b910472 | 2005-11-08 21:38:55 -0800 | [diff] [blame] | 2265 | busiest = find_busiest_queue(group, NEWLY_IDLE); | 
| Nick Piggin | db935db | 2005-06-25 14:57:11 -0700 | [diff] [blame] | 2266 | if (!busiest) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2267 | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | 
| Nick Piggin | 16cfb1c | 2005-06-25 14:57:08 -0700 | [diff] [blame] | 2268 | goto out_balanced; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2269 | } | 
|  | 2270 |  | 
| Nick Piggin | db935db | 2005-06-25 14:57:11 -0700 | [diff] [blame] | 2271 | BUG_ON(busiest == this_rq); | 
|  | 2272 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2273 | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | 
| Nick Piggin | d6d5cfa | 2005-09-10 00:26:16 -0700 | [diff] [blame] | 2274 |  | 
|  | 2275 | nr_moved = 0; | 
|  | 2276 | if (busiest->nr_running > 1) { | 
|  | 2277 | /* Attempt to move tasks */ | 
|  | 2278 | double_lock_balance(this_rq, busiest); | 
|  | 2279 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
| Nick Piggin | 8102679 | 2005-06-25 14:57:07 -0700 | [diff] [blame] | 2280 | imbalance, sd, NEWLY_IDLE, NULL); | 
| Nick Piggin | d6d5cfa | 2005-09-10 00:26:16 -0700 | [diff] [blame] | 2281 | spin_unlock(&busiest->lock); | 
|  | 2282 | } | 
|  | 2283 |  | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2284 | if (!nr_moved) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2285 | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2286 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
|  | 2287 | return -1; | 
|  | 2288 | } else | 
| Nick Piggin | 16cfb1c | 2005-06-25 14:57:08 -0700 | [diff] [blame] | 2289 | sd->nr_balance_failed = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2290 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2291 | return nr_moved; | 
| Nick Piggin | 16cfb1c | 2005-06-25 14:57:08 -0700 | [diff] [blame] | 2292 |  | 
|  | 2293 | out_balanced: | 
|  | 2294 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2295 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
|  | 2296 | return -1; | 
| Nick Piggin | 16cfb1c | 2005-06-25 14:57:08 -0700 | [diff] [blame] | 2297 | sd->nr_balance_failed = 0; | 
|  | 2298 | return 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2299 | } | 
|  | 2300 |  | 
|  | 2301 | /* | 
|  | 2302 | * idle_balance is called by schedule() if this_cpu is about to become | 
|  | 2303 | * idle. Attempts to pull tasks from other CPUs. | 
|  | 2304 | */ | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 2305 | static void idle_balance(int this_cpu, runqueue_t *this_rq) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2306 | { | 
|  | 2307 | struct sched_domain *sd; | 
|  | 2308 |  | 
|  | 2309 | for_each_domain(this_cpu, sd) { | 
|  | 2310 | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|  | 2311 | if (load_balance_newidle(this_cpu, this_rq, sd)) { | 
|  | 2312 | /* We've pulled tasks over so stop searching */ | 
|  | 2313 | break; | 
|  | 2314 | } | 
|  | 2315 | } | 
|  | 2316 | } | 
|  | 2317 | } | 
|  | 2318 |  | 
|  | 2319 | /* | 
|  | 2320 | * active_load_balance is run by migration threads. It pushes running tasks | 
|  | 2321 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
|  | 2322 | * running on each physical CPU where possible, and avoids physical / | 
|  | 2323 | * logical imbalances. | 
|  | 2324 | * | 
|  | 2325 | * Called with busiest_rq locked. | 
|  | 2326 | */ | 
|  | 2327 | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) | 
|  | 2328 | { | 
|  | 2329 | struct sched_domain *sd; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2330 | runqueue_t *target_rq; | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2331 | int target_cpu = busiest_rq->push_cpu; | 
|  | 2332 |  | 
|  | 2333 | if (busiest_rq->nr_running <= 1) | 
|  | 2334 | /* no task to move */ | 
|  | 2335 | return; | 
|  | 2336 |  | 
|  | 2337 | target_rq = cpu_rq(target_cpu); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2338 |  | 
|  | 2339 | /* | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2340 | * This condition is "impossible", if it occurs | 
|  | 2341 | * we need to fix it.  Originally reported by | 
|  | 2342 | * Bjorn Helgaas on a 128-cpu setup. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2343 | */ | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2344 | BUG_ON(busiest_rq == target_rq); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2345 |  | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2346 | /* move a task from busiest_rq to target_rq */ | 
|  | 2347 | double_lock_balance(busiest_rq, target_rq); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2348 |  | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2349 | /* Search for an sd spanning us and the target CPU. */ | 
|  | 2350 | for_each_domain(target_cpu, sd) | 
|  | 2351 | if ((sd->flags & SD_LOAD_BALANCE) && | 
|  | 2352 | cpu_isset(busiest_cpu, sd->span)) | 
|  | 2353 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2354 |  | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2355 | if (unlikely(sd == NULL)) | 
|  | 2356 | goto out; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2357 |  | 
| Nick Piggin | 3950745 | 2005-06-25 14:57:09 -0700 | [diff] [blame] | 2358 | schedstat_inc(sd, alb_cnt); | 
|  | 2359 |  | 
|  | 2360 | if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL)) | 
|  | 2361 | schedstat_inc(sd, alb_pushed); | 
|  | 2362 | else | 
|  | 2363 | schedstat_inc(sd, alb_failed); | 
|  | 2364 | out: | 
|  | 2365 | spin_unlock(&target_rq->lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2366 | } | 
|  | 2367 |  | 
|  | 2368 | /* | 
|  | 2369 | * rebalance_tick will get called every timer tick, on every CPU. | 
|  | 2370 | * | 
|  | 2371 | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | 2372 | * and initiates a balancing operation if so. | 
|  | 2373 | * | 
|  | 2374 | * Balancing parameters are set up in arch_init_sched_domains. | 
|  | 2375 | */ | 
|  | 2376 |  | 
|  | 2377 | /* Don't have all balancing operations going off at once */ | 
|  | 2378 | #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS) | 
|  | 2379 |  | 
|  | 2380 | static void rebalance_tick(int this_cpu, runqueue_t *this_rq, | 
|  | 2381 | enum idle_type idle) | 
|  | 2382 | { | 
|  | 2383 | unsigned long old_load, this_load; | 
|  | 2384 | unsigned long j = jiffies + CPU_OFFSET(this_cpu); | 
|  | 2385 | struct sched_domain *sd; | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 2386 | int i; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2387 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2388 | this_load = this_rq->nr_running * SCHED_LOAD_SCALE; | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 2389 | /* Update our load */ | 
|  | 2390 | for (i = 0; i < 3; i++) { | 
|  | 2391 | unsigned long new_load = this_load; | 
|  | 2392 | int scale = 1 << i; | 
|  | 2393 | old_load = this_rq->cpu_load[i]; | 
|  | 2394 | /* | 
|  | 2395 | * Round up the averaging division if load is increasing. This | 
|  | 2396 | * prevents us from getting stuck on 9 if the load is 10, for | 
|  | 2397 | * example. | 
|  | 2398 | */ | 
|  | 2399 | if (new_load > old_load) | 
|  | 2400 | new_load += scale-1; | 
|  | 2401 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale; | 
|  | 2402 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2403 |  | 
|  | 2404 | for_each_domain(this_cpu, sd) { | 
|  | 2405 | unsigned long interval; | 
|  | 2406 |  | 
|  | 2407 | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | 2408 | continue; | 
|  | 2409 |  | 
|  | 2410 | interval = sd->balance_interval; | 
|  | 2411 | if (idle != SCHED_IDLE) | 
|  | 2412 | interval *= sd->busy_factor; | 
|  | 2413 |  | 
|  | 2414 | /* scale ms to jiffies */ | 
|  | 2415 | interval = msecs_to_jiffies(interval); | 
|  | 2416 | if (unlikely(!interval)) | 
|  | 2417 | interval = 1; | 
|  | 2418 |  | 
|  | 2419 | if (j - sd->last_balance >= interval) { | 
|  | 2420 | if (load_balance(this_cpu, this_rq, sd, idle)) { | 
| Siddha, Suresh B | fa3b6dd | 2005-09-10 00:26:21 -0700 | [diff] [blame] | 2421 | /* | 
|  | 2422 | * We've pulled tasks over so either we're no | 
| Nick Piggin | 5969fe0 | 2005-09-10 00:26:19 -0700 | [diff] [blame] | 2423 | * longer idle, or one of our SMT siblings is | 
|  | 2424 | * not idle. | 
|  | 2425 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2426 | idle = NOT_IDLE; | 
|  | 2427 | } | 
|  | 2428 | sd->last_balance += interval; | 
|  | 2429 | } | 
|  | 2430 | } | 
|  | 2431 | } | 
|  | 2432 | #else | 
|  | 2433 | /* | 
|  | 2434 | * on UP we do not need to balance between CPUs: | 
|  | 2435 | */ | 
|  | 2436 | static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle) | 
|  | 2437 | { | 
|  | 2438 | } | 
|  | 2439 | static inline void idle_balance(int cpu, runqueue_t *rq) | 
|  | 2440 | { | 
|  | 2441 | } | 
|  | 2442 | #endif | 
|  | 2443 |  | 
|  | 2444 | static inline int wake_priority_sleeper(runqueue_t *rq) | 
|  | 2445 | { | 
|  | 2446 | int ret = 0; | 
|  | 2447 | #ifdef CONFIG_SCHED_SMT | 
|  | 2448 | spin_lock(&rq->lock); | 
|  | 2449 | /* | 
|  | 2450 | * If an SMT sibling task has been put to sleep for priority | 
|  | 2451 | * reasons reschedule the idle task to see if it can now run. | 
|  | 2452 | */ | 
|  | 2453 | if (rq->nr_running) { | 
|  | 2454 | resched_task(rq->idle); | 
|  | 2455 | ret = 1; | 
|  | 2456 | } | 
|  | 2457 | spin_unlock(&rq->lock); | 
|  | 2458 | #endif | 
|  | 2459 | return ret; | 
|  | 2460 | } | 
|  | 2461 |  | 
|  | 2462 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|  | 2463 |  | 
|  | 2464 | EXPORT_PER_CPU_SYMBOL(kstat); | 
|  | 2465 |  | 
|  | 2466 | /* | 
|  | 2467 | * This is called on clock ticks and on context switches. | 
|  | 2468 | * Bank in p->sched_time the ns elapsed since the last tick or switch. | 
|  | 2469 | */ | 
|  | 2470 | static inline void update_cpu_clock(task_t *p, runqueue_t *rq, | 
|  | 2471 | unsigned long long now) | 
|  | 2472 | { | 
|  | 2473 | unsigned long long last = max(p->timestamp, rq->timestamp_last_tick); | 
|  | 2474 | p->sched_time += now - last; | 
|  | 2475 | } | 
|  | 2476 |  | 
|  | 2477 | /* | 
|  | 2478 | * Return current->sched_time plus any more ns on the sched_clock | 
|  | 2479 | * that have not yet been banked. | 
|  | 2480 | */ | 
|  | 2481 | unsigned long long current_sched_time(const task_t *tsk) | 
|  | 2482 | { | 
|  | 2483 | unsigned long long ns; | 
|  | 2484 | unsigned long flags; | 
|  | 2485 | local_irq_save(flags); | 
|  | 2486 | ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick); | 
|  | 2487 | ns = tsk->sched_time + (sched_clock() - ns); | 
|  | 2488 | local_irq_restore(flags); | 
|  | 2489 | return ns; | 
|  | 2490 | } | 
|  | 2491 |  | 
|  | 2492 | /* | 
| Linus Torvalds | f1adad7 | 2006-05-21 18:54:09 -0700 | [diff] [blame] | 2493 | * We place interactive tasks back into the active array, if possible. | 
|  | 2494 | * | 
|  | 2495 | * To guarantee that this does not starve expired tasks we ignore the | 
|  | 2496 | * interactivity of a task if the first expired task had to wait more | 
|  | 2497 | * than a 'reasonable' amount of time. This deadline timeout is | 
|  | 2498 | * load-dependent, as the frequency of array switched decreases with | 
|  | 2499 | * increasing number of running tasks. We also ignore the interactivity | 
|  | 2500 | * if a better static_prio task has expired: | 
|  | 2501 | */ | 
|  | 2502 | #define EXPIRED_STARVING(rq) \ | 
|  | 2503 | ((STARVATION_LIMIT && ((rq)->expired_timestamp && \ | 
|  | 2504 | (jiffies - (rq)->expired_timestamp >= \ | 
|  | 2505 | STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \ | 
|  | 2506 | ((rq)->curr->static_prio > (rq)->best_expired_prio)) | 
|  | 2507 |  | 
|  | 2508 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2509 | * Account user cpu time to a process. | 
|  | 2510 | * @p: the process that the cpu time gets accounted to | 
|  | 2511 | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | 2512 | * @cputime: the cpu time spent in user space since the last update | 
|  | 2513 | */ | 
|  | 2514 | void account_user_time(struct task_struct *p, cputime_t cputime) | 
|  | 2515 | { | 
|  | 2516 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | 2517 | cputime64_t tmp; | 
|  | 2518 |  | 
|  | 2519 | p->utime = cputime_add(p->utime, cputime); | 
|  | 2520 |  | 
|  | 2521 | /* Add user time to cpustat. */ | 
|  | 2522 | tmp = cputime_to_cputime64(cputime); | 
|  | 2523 | if (TASK_NICE(p) > 0) | 
|  | 2524 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
|  | 2525 | else | 
|  | 2526 | cpustat->user = cputime64_add(cpustat->user, tmp); | 
|  | 2527 | } | 
|  | 2528 |  | 
|  | 2529 | /* | 
|  | 2530 | * Account system cpu time to a process. | 
|  | 2531 | * @p: the process that the cpu time gets accounted to | 
|  | 2532 | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | 2533 | * @cputime: the cpu time spent in kernel space since the last update | 
|  | 2534 | */ | 
|  | 2535 | void account_system_time(struct task_struct *p, int hardirq_offset, | 
|  | 2536 | cputime_t cputime) | 
|  | 2537 | { | 
|  | 2538 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | 2539 | runqueue_t *rq = this_rq(); | 
|  | 2540 | cputime64_t tmp; | 
|  | 2541 |  | 
|  | 2542 | p->stime = cputime_add(p->stime, cputime); | 
|  | 2543 |  | 
|  | 2544 | /* Add system time to cpustat. */ | 
|  | 2545 | tmp = cputime_to_cputime64(cputime); | 
|  | 2546 | if (hardirq_count() - hardirq_offset) | 
|  | 2547 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
|  | 2548 | else if (softirq_count()) | 
|  | 2549 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
|  | 2550 | else if (p != rq->idle) | 
|  | 2551 | cpustat->system = cputime64_add(cpustat->system, tmp); | 
|  | 2552 | else if (atomic_read(&rq->nr_iowait) > 0) | 
|  | 2553 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | 2554 | else | 
|  | 2555 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | 2556 | /* Account for system time used */ | 
|  | 2557 | acct_update_integrals(p); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2558 | } | 
|  | 2559 |  | 
|  | 2560 | /* | 
|  | 2561 | * Account for involuntary wait time. | 
|  | 2562 | * @p: the process from which the cpu time has been stolen | 
|  | 2563 | * @steal: the cpu time spent in involuntary wait | 
|  | 2564 | */ | 
|  | 2565 | void account_steal_time(struct task_struct *p, cputime_t steal) | 
|  | 2566 | { | 
|  | 2567 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | 2568 | cputime64_t tmp = cputime_to_cputime64(steal); | 
|  | 2569 | runqueue_t *rq = this_rq(); | 
|  | 2570 |  | 
|  | 2571 | if (p == rq->idle) { | 
|  | 2572 | p->stime = cputime_add(p->stime, steal); | 
|  | 2573 | if (atomic_read(&rq->nr_iowait) > 0) | 
|  | 2574 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | 2575 | else | 
|  | 2576 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | 2577 | } else | 
|  | 2578 | cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
|  | 2579 | } | 
|  | 2580 |  | 
|  | 2581 | /* | 
|  | 2582 | * This function gets called by the timer code, with HZ frequency. | 
|  | 2583 | * We call it with interrupts disabled. | 
|  | 2584 | * | 
|  | 2585 | * It also gets called by the fork code, when changing the parent's | 
|  | 2586 | * timeslices. | 
|  | 2587 | */ | 
|  | 2588 | void scheduler_tick(void) | 
|  | 2589 | { | 
|  | 2590 | int cpu = smp_processor_id(); | 
|  | 2591 | runqueue_t *rq = this_rq(); | 
|  | 2592 | task_t *p = current; | 
|  | 2593 | unsigned long long now = sched_clock(); | 
|  | 2594 |  | 
|  | 2595 | update_cpu_clock(p, rq, now); | 
|  | 2596 |  | 
|  | 2597 | rq->timestamp_last_tick = now; | 
|  | 2598 |  | 
|  | 2599 | if (p == rq->idle) { | 
|  | 2600 | if (wake_priority_sleeper(rq)) | 
|  | 2601 | goto out; | 
|  | 2602 | rebalance_tick(cpu, rq, SCHED_IDLE); | 
|  | 2603 | return; | 
|  | 2604 | } | 
|  | 2605 |  | 
|  | 2606 | /* Task might have expired already, but not scheduled off yet */ | 
|  | 2607 | if (p->array != rq->active) { | 
|  | 2608 | set_tsk_need_resched(p); | 
|  | 2609 | goto out; | 
|  | 2610 | } | 
|  | 2611 | spin_lock(&rq->lock); | 
|  | 2612 | /* | 
|  | 2613 | * The task was running during this tick - update the | 
|  | 2614 | * time slice counter. Note: we do not update a thread's | 
|  | 2615 | * priority until it either goes to sleep or uses up its | 
|  | 2616 | * timeslice. This makes it possible for interactive tasks | 
|  | 2617 | * to use up their timeslices at their highest priority levels. | 
|  | 2618 | */ | 
|  | 2619 | if (rt_task(p)) { | 
|  | 2620 | /* | 
|  | 2621 | * RR tasks need a special form of timeslice management. | 
|  | 2622 | * FIFO tasks have no timeslices. | 
|  | 2623 | */ | 
|  | 2624 | if ((p->policy == SCHED_RR) && !--p->time_slice) { | 
|  | 2625 | p->time_slice = task_timeslice(p); | 
|  | 2626 | p->first_time_slice = 0; | 
|  | 2627 | set_tsk_need_resched(p); | 
|  | 2628 |  | 
|  | 2629 | /* put it at the end of the queue: */ | 
|  | 2630 | requeue_task(p, rq->active); | 
|  | 2631 | } | 
|  | 2632 | goto out_unlock; | 
|  | 2633 | } | 
|  | 2634 | if (!--p->time_slice) { | 
|  | 2635 | dequeue_task(p, rq->active); | 
|  | 2636 | set_tsk_need_resched(p); | 
|  | 2637 | p->prio = effective_prio(p); | 
|  | 2638 | p->time_slice = task_timeslice(p); | 
|  | 2639 | p->first_time_slice = 0; | 
|  | 2640 |  | 
|  | 2641 | if (!rq->expired_timestamp) | 
|  | 2642 | rq->expired_timestamp = jiffies; | 
| Linus Torvalds | f1adad7 | 2006-05-21 18:54:09 -0700 | [diff] [blame] | 2643 | if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2644 | enqueue_task(p, rq->expired); | 
|  | 2645 | if (p->static_prio < rq->best_expired_prio) | 
|  | 2646 | rq->best_expired_prio = p->static_prio; | 
|  | 2647 | } else | 
|  | 2648 | enqueue_task(p, rq->active); | 
|  | 2649 | } else { | 
|  | 2650 | /* | 
|  | 2651 | * Prevent a too long timeslice allowing a task to monopolize | 
|  | 2652 | * the CPU. We do this by splitting up the timeslice into | 
|  | 2653 | * smaller pieces. | 
|  | 2654 | * | 
|  | 2655 | * Note: this does not mean the task's timeslices expire or | 
|  | 2656 | * get lost in any way, they just might be preempted by | 
|  | 2657 | * another task of equal priority. (one with higher | 
|  | 2658 | * priority would have preempted this task already.) We | 
|  | 2659 | * requeue this task to the end of the list on this priority | 
|  | 2660 | * level, which is in essence a round-robin of tasks with | 
|  | 2661 | * equal priority. | 
|  | 2662 | * | 
|  | 2663 | * This only applies to tasks in the interactive | 
|  | 2664 | * delta range with at least TIMESLICE_GRANULARITY to requeue. | 
|  | 2665 | */ | 
|  | 2666 | if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | 
|  | 2667 | p->time_slice) % TIMESLICE_GRANULARITY(p)) && | 
|  | 2668 | (p->time_slice >= TIMESLICE_GRANULARITY(p)) && | 
|  | 2669 | (p->array == rq->active)) { | 
|  | 2670 |  | 
|  | 2671 | requeue_task(p, rq->active); | 
|  | 2672 | set_tsk_need_resched(p); | 
|  | 2673 | } | 
|  | 2674 | } | 
|  | 2675 | out_unlock: | 
|  | 2676 | spin_unlock(&rq->lock); | 
|  | 2677 | out: | 
|  | 2678 | rebalance_tick(cpu, rq, NOT_IDLE); | 
|  | 2679 | } | 
|  | 2680 |  | 
|  | 2681 | #ifdef CONFIG_SCHED_SMT | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2682 | static inline void wakeup_busy_runqueue(runqueue_t *rq) | 
|  | 2683 | { | 
|  | 2684 | /* If an SMT runqueue is sleeping due to priority reasons wake it up */ | 
|  | 2685 | if (rq->curr == rq->idle && rq->nr_running) | 
|  | 2686 | resched_task(rq->idle); | 
|  | 2687 | } | 
|  | 2688 |  | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 2689 | static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2690 | { | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 2691 | struct sched_domain *tmp, *sd = NULL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2692 | cpumask_t sibling_map; | 
|  | 2693 | int i; | 
|  | 2694 |  | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 2695 | for_each_domain(this_cpu, tmp) | 
|  | 2696 | if (tmp->flags & SD_SHARE_CPUPOWER) | 
|  | 2697 | sd = tmp; | 
|  | 2698 |  | 
|  | 2699 | if (!sd) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2700 | return; | 
|  | 2701 |  | 
|  | 2702 | /* | 
|  | 2703 | * Unlock the current runqueue because we have to lock in | 
|  | 2704 | * CPU order to avoid deadlocks. Caller knows that we might | 
|  | 2705 | * unlock. We keep IRQs disabled. | 
|  | 2706 | */ | 
|  | 2707 | spin_unlock(&this_rq->lock); | 
|  | 2708 |  | 
|  | 2709 | sibling_map = sd->span; | 
|  | 2710 |  | 
|  | 2711 | for_each_cpu_mask(i, sibling_map) | 
|  | 2712 | spin_lock(&cpu_rq(i)->lock); | 
|  | 2713 | /* | 
|  | 2714 | * We clear this CPU from the mask. This both simplifies the | 
|  | 2715 | * inner loop and keps this_rq locked when we exit: | 
|  | 2716 | */ | 
|  | 2717 | cpu_clear(this_cpu, sibling_map); | 
|  | 2718 |  | 
|  | 2719 | for_each_cpu_mask(i, sibling_map) { | 
|  | 2720 | runqueue_t *smt_rq = cpu_rq(i); | 
|  | 2721 |  | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2722 | wakeup_busy_runqueue(smt_rq); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2723 | } | 
|  | 2724 |  | 
|  | 2725 | for_each_cpu_mask(i, sibling_map) | 
|  | 2726 | spin_unlock(&cpu_rq(i)->lock); | 
|  | 2727 | /* | 
|  | 2728 | * We exit with this_cpu's rq still held and IRQs | 
|  | 2729 | * still disabled: | 
|  | 2730 | */ | 
|  | 2731 | } | 
|  | 2732 |  | 
| Ingo Molnar | 67f9a61 | 2005-09-10 00:26:16 -0700 | [diff] [blame] | 2733 | /* | 
|  | 2734 | * number of 'lost' timeslices this task wont be able to fully | 
|  | 2735 | * utilize, if another task runs on a sibling. This models the | 
|  | 2736 | * slowdown effect of other tasks running on siblings: | 
|  | 2737 | */ | 
|  | 2738 | static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd) | 
|  | 2739 | { | 
|  | 2740 | return p->time_slice * (100 - sd->per_cpu_gain) / 100; | 
|  | 2741 | } | 
|  | 2742 |  | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 2743 | static int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2744 | { | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 2745 | struct sched_domain *tmp, *sd = NULL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2746 | cpumask_t sibling_map; | 
|  | 2747 | prio_array_t *array; | 
|  | 2748 | int ret = 0, i; | 
|  | 2749 | task_t *p; | 
|  | 2750 |  | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 2751 | for_each_domain(this_cpu, tmp) | 
|  | 2752 | if (tmp->flags & SD_SHARE_CPUPOWER) | 
|  | 2753 | sd = tmp; | 
|  | 2754 |  | 
|  | 2755 | if (!sd) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2756 | return 0; | 
|  | 2757 |  | 
|  | 2758 | /* | 
|  | 2759 | * The same locking rules and details apply as for | 
|  | 2760 | * wake_sleeping_dependent(): | 
|  | 2761 | */ | 
|  | 2762 | spin_unlock(&this_rq->lock); | 
|  | 2763 | sibling_map = sd->span; | 
|  | 2764 | for_each_cpu_mask(i, sibling_map) | 
|  | 2765 | spin_lock(&cpu_rq(i)->lock); | 
|  | 2766 | cpu_clear(this_cpu, sibling_map); | 
|  | 2767 |  | 
|  | 2768 | /* | 
|  | 2769 | * Establish next task to be run - it might have gone away because | 
|  | 2770 | * we released the runqueue lock above: | 
|  | 2771 | */ | 
|  | 2772 | if (!this_rq->nr_running) | 
|  | 2773 | goto out_unlock; | 
|  | 2774 | array = this_rq->active; | 
|  | 2775 | if (!array->nr_active) | 
|  | 2776 | array = this_rq->expired; | 
|  | 2777 | BUG_ON(!array->nr_active); | 
|  | 2778 |  | 
|  | 2779 | p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, | 
|  | 2780 | task_t, run_list); | 
|  | 2781 |  | 
|  | 2782 | for_each_cpu_mask(i, sibling_map) { | 
|  | 2783 | runqueue_t *smt_rq = cpu_rq(i); | 
|  | 2784 | task_t *smt_curr = smt_rq->curr; | 
|  | 2785 |  | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2786 | /* Kernel threads do not participate in dependent sleeping */ | 
|  | 2787 | if (!p->mm || !smt_curr->mm || rt_task(p)) | 
|  | 2788 | goto check_smt_task; | 
|  | 2789 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2790 | /* | 
|  | 2791 | * If a user task with lower static priority than the | 
|  | 2792 | * running task on the SMT sibling is trying to schedule, | 
|  | 2793 | * delay it till there is proportionately less timeslice | 
|  | 2794 | * left of the sibling task to prevent a lower priority | 
|  | 2795 | * task from using an unfair proportion of the | 
|  | 2796 | * physical cpu's resources. -ck | 
|  | 2797 | */ | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2798 | if (rt_task(smt_curr)) { | 
|  | 2799 | /* | 
|  | 2800 | * With real time tasks we run non-rt tasks only | 
|  | 2801 | * per_cpu_gain% of the time. | 
|  | 2802 | */ | 
|  | 2803 | if ((jiffies % DEF_TIMESLICE) > | 
|  | 2804 | (sd->per_cpu_gain * DEF_TIMESLICE / 100)) | 
|  | 2805 | ret = 1; | 
|  | 2806 | } else | 
| Ingo Molnar | 67f9a61 | 2005-09-10 00:26:16 -0700 | [diff] [blame] | 2807 | if (smt_curr->static_prio < p->static_prio && | 
|  | 2808 | !TASK_PREEMPTS_CURR(p, smt_rq) && | 
|  | 2809 | smt_slice(smt_curr, sd) > task_timeslice(p)) | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2810 | ret = 1; | 
|  | 2811 |  | 
|  | 2812 | check_smt_task: | 
|  | 2813 | if ((!smt_curr->mm && smt_curr != smt_rq->idle) || | 
|  | 2814 | rt_task(smt_curr)) | 
|  | 2815 | continue; | 
|  | 2816 | if (!p->mm) { | 
|  | 2817 | wakeup_busy_runqueue(smt_rq); | 
|  | 2818 | continue; | 
|  | 2819 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2820 |  | 
|  | 2821 | /* | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2822 | * Reschedule a lower priority task on the SMT sibling for | 
|  | 2823 | * it to be put to sleep, or wake it up if it has been put to | 
|  | 2824 | * sleep for priority reasons to see if it should run now. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2825 | */ | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2826 | if (rt_task(p)) { | 
|  | 2827 | if ((jiffies % DEF_TIMESLICE) > | 
|  | 2828 | (sd->per_cpu_gain * DEF_TIMESLICE / 100)) | 
|  | 2829 | resched_task(smt_curr); | 
|  | 2830 | } else { | 
| Ingo Molnar | 67f9a61 | 2005-09-10 00:26:16 -0700 | [diff] [blame] | 2831 | if (TASK_PREEMPTS_CURR(p, smt_rq) && | 
|  | 2832 | smt_slice(p, sd) > task_timeslice(smt_curr)) | 
| Con Kolivas | fc38ed7 | 2005-09-10 00:26:08 -0700 | [diff] [blame] | 2833 | resched_task(smt_curr); | 
|  | 2834 | else | 
|  | 2835 | wakeup_busy_runqueue(smt_rq); | 
|  | 2836 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2837 | } | 
|  | 2838 | out_unlock: | 
|  | 2839 | for_each_cpu_mask(i, sibling_map) | 
|  | 2840 | spin_unlock(&cpu_rq(i)->lock); | 
|  | 2841 | return ret; | 
|  | 2842 | } | 
|  | 2843 | #else | 
|  | 2844 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
|  | 2845 | { | 
|  | 2846 | } | 
|  | 2847 |  | 
|  | 2848 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
|  | 2849 | { | 
|  | 2850 | return 0; | 
|  | 2851 | } | 
|  | 2852 | #endif | 
|  | 2853 |  | 
|  | 2854 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | 
|  | 2855 |  | 
|  | 2856 | void fastcall add_preempt_count(int val) | 
|  | 2857 | { | 
|  | 2858 | /* | 
|  | 2859 | * Underflow? | 
|  | 2860 | */ | 
| Jesper Juhl | be5b4fb | 2005-06-23 00:09:09 -0700 | [diff] [blame] | 2861 | BUG_ON((preempt_count() < 0)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2862 | preempt_count() += val; | 
|  | 2863 | /* | 
|  | 2864 | * Spinlock count overflowing soon? | 
|  | 2865 | */ | 
|  | 2866 | BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); | 
|  | 2867 | } | 
|  | 2868 | EXPORT_SYMBOL(add_preempt_count); | 
|  | 2869 |  | 
|  | 2870 | void fastcall sub_preempt_count(int val) | 
|  | 2871 | { | 
|  | 2872 | /* | 
|  | 2873 | * Underflow? | 
|  | 2874 | */ | 
|  | 2875 | BUG_ON(val > preempt_count()); | 
|  | 2876 | /* | 
|  | 2877 | * Is the spinlock portion underflowing? | 
|  | 2878 | */ | 
|  | 2879 | BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK)); | 
|  | 2880 | preempt_count() -= val; | 
|  | 2881 | } | 
|  | 2882 | EXPORT_SYMBOL(sub_preempt_count); | 
|  | 2883 |  | 
|  | 2884 | #endif | 
|  | 2885 |  | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 2886 | static inline int interactive_sleep(enum sleep_type sleep_type) | 
|  | 2887 | { | 
|  | 2888 | return (sleep_type == SLEEP_INTERACTIVE || | 
|  | 2889 | sleep_type == SLEEP_INTERRUPTED); | 
|  | 2890 | } | 
|  | 2891 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2892 | /* | 
|  | 2893 | * schedule() is the main scheduler function. | 
|  | 2894 | */ | 
|  | 2895 | asmlinkage void __sched schedule(void) | 
|  | 2896 | { | 
|  | 2897 | long *switch_count; | 
|  | 2898 | task_t *prev, *next; | 
|  | 2899 | runqueue_t *rq; | 
|  | 2900 | prio_array_t *array; | 
|  | 2901 | struct list_head *queue; | 
|  | 2902 | unsigned long long now; | 
|  | 2903 | unsigned long run_time; | 
| Chen Shang | a3464a1 | 2005-06-25 14:57:31 -0700 | [diff] [blame] | 2904 | int cpu, idx, new_prio; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2905 |  | 
|  | 2906 | /* | 
|  | 2907 | * Test if we are atomic.  Since do_exit() needs to call into | 
|  | 2908 | * schedule() atomically, we ignore that path for now. | 
|  | 2909 | * Otherwise, whine if we are scheduling when we should not be. | 
|  | 2910 | */ | 
| Andreas Mohr | 77e4bfb | 2006-03-27 01:15:20 -0800 | [diff] [blame] | 2911 | if (unlikely(in_atomic() && !current->exit_state)) { | 
|  | 2912 | printk(KERN_ERR "BUG: scheduling while atomic: " | 
|  | 2913 | "%s/0x%08x/%d\n", | 
|  | 2914 | current->comm, preempt_count(), current->pid); | 
|  | 2915 | dump_stack(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2916 | } | 
|  | 2917 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
|  | 2918 |  | 
|  | 2919 | need_resched: | 
|  | 2920 | preempt_disable(); | 
|  | 2921 | prev = current; | 
|  | 2922 | release_kernel_lock(prev); | 
|  | 2923 | need_resched_nonpreemptible: | 
|  | 2924 | rq = this_rq(); | 
|  | 2925 |  | 
|  | 2926 | /* | 
|  | 2927 | * The idle thread is not allowed to schedule! | 
|  | 2928 | * Remove this check after it has been exercised a bit. | 
|  | 2929 | */ | 
|  | 2930 | if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | 
|  | 2931 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 
|  | 2932 | dump_stack(); | 
|  | 2933 | } | 
|  | 2934 |  | 
|  | 2935 | schedstat_inc(rq, sched_cnt); | 
|  | 2936 | now = sched_clock(); | 
| Ingo Molnar | 238628e | 2005-04-18 10:58:36 -0700 | [diff] [blame] | 2937 | if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2938 | run_time = now - prev->timestamp; | 
| Ingo Molnar | 238628e | 2005-04-18 10:58:36 -0700 | [diff] [blame] | 2939 | if (unlikely((long long)(now - prev->timestamp) < 0)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2940 | run_time = 0; | 
|  | 2941 | } else | 
|  | 2942 | run_time = NS_MAX_SLEEP_AVG; | 
|  | 2943 |  | 
|  | 2944 | /* | 
|  | 2945 | * Tasks charged proportionately less run_time at high sleep_avg to | 
|  | 2946 | * delay them losing their interactive status | 
|  | 2947 | */ | 
|  | 2948 | run_time /= (CURRENT_BONUS(prev) ? : 1); | 
|  | 2949 |  | 
|  | 2950 | spin_lock_irq(&rq->lock); | 
|  | 2951 |  | 
|  | 2952 | if (unlikely(prev->flags & PF_DEAD)) | 
|  | 2953 | prev->state = EXIT_DEAD; | 
|  | 2954 |  | 
|  | 2955 | switch_count = &prev->nivcsw; | 
|  | 2956 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
|  | 2957 | switch_count = &prev->nvcsw; | 
|  | 2958 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 
|  | 2959 | unlikely(signal_pending(prev)))) | 
|  | 2960 | prev->state = TASK_RUNNING; | 
|  | 2961 | else { | 
|  | 2962 | if (prev->state == TASK_UNINTERRUPTIBLE) | 
|  | 2963 | rq->nr_uninterruptible++; | 
|  | 2964 | deactivate_task(prev, rq); | 
|  | 2965 | } | 
|  | 2966 | } | 
|  | 2967 |  | 
|  | 2968 | cpu = smp_processor_id(); | 
|  | 2969 | if (unlikely(!rq->nr_running)) { | 
|  | 2970 | go_idle: | 
|  | 2971 | idle_balance(cpu, rq); | 
|  | 2972 | if (!rq->nr_running) { | 
|  | 2973 | next = rq->idle; | 
|  | 2974 | rq->expired_timestamp = 0; | 
|  | 2975 | wake_sleeping_dependent(cpu, rq); | 
|  | 2976 | /* | 
|  | 2977 | * wake_sleeping_dependent() might have released | 
|  | 2978 | * the runqueue, so break out if we got new | 
|  | 2979 | * tasks meanwhile: | 
|  | 2980 | */ | 
|  | 2981 | if (!rq->nr_running) | 
|  | 2982 | goto switch_tasks; | 
|  | 2983 | } | 
|  | 2984 | } else { | 
|  | 2985 | if (dependent_sleeper(cpu, rq)) { | 
|  | 2986 | next = rq->idle; | 
|  | 2987 | goto switch_tasks; | 
|  | 2988 | } | 
|  | 2989 | /* | 
|  | 2990 | * dependent_sleeper() releases and reacquires the runqueue | 
|  | 2991 | * lock, hence go into the idle loop if the rq went | 
|  | 2992 | * empty meanwhile: | 
|  | 2993 | */ | 
|  | 2994 | if (unlikely(!rq->nr_running)) | 
|  | 2995 | goto go_idle; | 
|  | 2996 | } | 
|  | 2997 |  | 
|  | 2998 | array = rq->active; | 
|  | 2999 | if (unlikely(!array->nr_active)) { | 
|  | 3000 | /* | 
|  | 3001 | * Switch the active and expired arrays. | 
|  | 3002 | */ | 
|  | 3003 | schedstat_inc(rq, sched_switch); | 
|  | 3004 | rq->active = rq->expired; | 
|  | 3005 | rq->expired = array; | 
|  | 3006 | array = rq->active; | 
|  | 3007 | rq->expired_timestamp = 0; | 
|  | 3008 | rq->best_expired_prio = MAX_PRIO; | 
|  | 3009 | } | 
|  | 3010 |  | 
|  | 3011 | idx = sched_find_first_bit(array->bitmap); | 
|  | 3012 | queue = array->queue + idx; | 
|  | 3013 | next = list_entry(queue->next, task_t, run_list); | 
|  | 3014 |  | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 3015 | if (!rt_task(next) && interactive_sleep(next->sleep_type)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3016 | unsigned long long delta = now - next->timestamp; | 
| Ingo Molnar | 238628e | 2005-04-18 10:58:36 -0700 | [diff] [blame] | 3017 | if (unlikely((long long)(now - next->timestamp) < 0)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3018 | delta = 0; | 
|  | 3019 |  | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 3020 | if (next->sleep_type == SLEEP_INTERACTIVE) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3021 | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | 
|  | 3022 |  | 
|  | 3023 | array = next->array; | 
| Chen Shang | a3464a1 | 2005-06-25 14:57:31 -0700 | [diff] [blame] | 3024 | new_prio = recalc_task_prio(next, next->timestamp + delta); | 
|  | 3025 |  | 
|  | 3026 | if (unlikely(next->prio != new_prio)) { | 
|  | 3027 | dequeue_task(next, array); | 
|  | 3028 | next->prio = new_prio; | 
|  | 3029 | enqueue_task(next, array); | 
| Con Kolivas | 7c4bb1f | 2006-03-31 02:31:29 -0800 | [diff] [blame] | 3030 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3031 | } | 
| Con Kolivas | 3dee386 | 2006-03-31 02:31:23 -0800 | [diff] [blame] | 3032 | next->sleep_type = SLEEP_NORMAL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3033 | switch_tasks: | 
|  | 3034 | if (next == rq->idle) | 
|  | 3035 | schedstat_inc(rq, sched_goidle); | 
|  | 3036 | prefetch(next); | 
| Chen, Kenneth W | 383f283 | 2005-09-09 13:02:02 -0700 | [diff] [blame] | 3037 | prefetch_stack(next); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3038 | clear_tsk_need_resched(prev); | 
|  | 3039 | rcu_qsctr_inc(task_cpu(prev)); | 
|  | 3040 |  | 
|  | 3041 | update_cpu_clock(prev, rq, now); | 
|  | 3042 |  | 
|  | 3043 | prev->sleep_avg -= run_time; | 
|  | 3044 | if ((long)prev->sleep_avg <= 0) | 
|  | 3045 | prev->sleep_avg = 0; | 
|  | 3046 | prev->timestamp = prev->last_ran = now; | 
|  | 3047 |  | 
|  | 3048 | sched_info_switch(prev, next); | 
|  | 3049 | if (likely(prev != next)) { | 
|  | 3050 | next->timestamp = now; | 
|  | 3051 | rq->nr_switches++; | 
|  | 3052 | rq->curr = next; | 
|  | 3053 | ++*switch_count; | 
|  | 3054 |  | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 3055 | prepare_task_switch(rq, next); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3056 | prev = context_switch(rq, prev, next); | 
|  | 3057 | barrier(); | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 3058 | /* | 
|  | 3059 | * this_rq must be evaluated again because prev may have moved | 
|  | 3060 | * CPUs since it called schedule(), thus the 'rq' on its stack | 
|  | 3061 | * frame will be invalid. | 
|  | 3062 | */ | 
|  | 3063 | finish_task_switch(this_rq(), prev); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3064 | } else | 
|  | 3065 | spin_unlock_irq(&rq->lock); | 
|  | 3066 |  | 
|  | 3067 | prev = current; | 
|  | 3068 | if (unlikely(reacquire_kernel_lock(prev) < 0)) | 
|  | 3069 | goto need_resched_nonpreemptible; | 
|  | 3070 | preempt_enable_no_resched(); | 
|  | 3071 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | 3072 | goto need_resched; | 
|  | 3073 | } | 
|  | 3074 |  | 
|  | 3075 | EXPORT_SYMBOL(schedule); | 
|  | 3076 |  | 
|  | 3077 | #ifdef CONFIG_PREEMPT | 
|  | 3078 | /* | 
|  | 3079 | * this is is the entry point to schedule() from in-kernel preemption | 
|  | 3080 | * off of preempt_enable.  Kernel preemptions off return from interrupt | 
|  | 3081 | * occur there and call schedule directly. | 
|  | 3082 | */ | 
|  | 3083 | asmlinkage void __sched preempt_schedule(void) | 
|  | 3084 | { | 
|  | 3085 | struct thread_info *ti = current_thread_info(); | 
|  | 3086 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 3087 | struct task_struct *task = current; | 
|  | 3088 | int saved_lock_depth; | 
|  | 3089 | #endif | 
|  | 3090 | /* | 
|  | 3091 | * If there is a non-zero preempt_count or interrupts are disabled, | 
|  | 3092 | * we do not want to preempt the current task.  Just return.. | 
|  | 3093 | */ | 
|  | 3094 | if (unlikely(ti->preempt_count || irqs_disabled())) | 
|  | 3095 | return; | 
|  | 3096 |  | 
|  | 3097 | need_resched: | 
|  | 3098 | add_preempt_count(PREEMPT_ACTIVE); | 
|  | 3099 | /* | 
|  | 3100 | * We keep the big kernel semaphore locked, but we | 
|  | 3101 | * clear ->lock_depth so that schedule() doesnt | 
|  | 3102 | * auto-release the semaphore: | 
|  | 3103 | */ | 
|  | 3104 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 3105 | saved_lock_depth = task->lock_depth; | 
|  | 3106 | task->lock_depth = -1; | 
|  | 3107 | #endif | 
|  | 3108 | schedule(); | 
|  | 3109 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 3110 | task->lock_depth = saved_lock_depth; | 
|  | 3111 | #endif | 
|  | 3112 | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | 3113 |  | 
|  | 3114 | /* we could miss a preemption opportunity between schedule and now */ | 
|  | 3115 | barrier(); | 
|  | 3116 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | 3117 | goto need_resched; | 
|  | 3118 | } | 
|  | 3119 |  | 
|  | 3120 | EXPORT_SYMBOL(preempt_schedule); | 
|  | 3121 |  | 
|  | 3122 | /* | 
|  | 3123 | * this is is the entry point to schedule() from kernel preemption | 
|  | 3124 | * off of irq context. | 
|  | 3125 | * Note, that this is called and return with irqs disabled. This will | 
|  | 3126 | * protect us against recursive calling from irq. | 
|  | 3127 | */ | 
|  | 3128 | asmlinkage void __sched preempt_schedule_irq(void) | 
|  | 3129 | { | 
|  | 3130 | struct thread_info *ti = current_thread_info(); | 
|  | 3131 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 3132 | struct task_struct *task = current; | 
|  | 3133 | int saved_lock_depth; | 
|  | 3134 | #endif | 
|  | 3135 | /* Catch callers which need to be fixed*/ | 
|  | 3136 | BUG_ON(ti->preempt_count || !irqs_disabled()); | 
|  | 3137 |  | 
|  | 3138 | need_resched: | 
|  | 3139 | add_preempt_count(PREEMPT_ACTIVE); | 
|  | 3140 | /* | 
|  | 3141 | * We keep the big kernel semaphore locked, but we | 
|  | 3142 | * clear ->lock_depth so that schedule() doesnt | 
|  | 3143 | * auto-release the semaphore: | 
|  | 3144 | */ | 
|  | 3145 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 3146 | saved_lock_depth = task->lock_depth; | 
|  | 3147 | task->lock_depth = -1; | 
|  | 3148 | #endif | 
|  | 3149 | local_irq_enable(); | 
|  | 3150 | schedule(); | 
|  | 3151 | local_irq_disable(); | 
|  | 3152 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 3153 | task->lock_depth = saved_lock_depth; | 
|  | 3154 | #endif | 
|  | 3155 | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | 3156 |  | 
|  | 3157 | /* we could miss a preemption opportunity between schedule and now */ | 
|  | 3158 | barrier(); | 
|  | 3159 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | 3160 | goto need_resched; | 
|  | 3161 | } | 
|  | 3162 |  | 
|  | 3163 | #endif /* CONFIG_PREEMPT */ | 
|  | 3164 |  | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3165 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 
|  | 3166 | void *key) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3167 | { | 
| Benjamin LaHaise | c43dc2f | 2005-06-23 00:10:27 -0700 | [diff] [blame] | 3168 | task_t *p = curr->private; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3169 | return try_to_wake_up(p, mode, sync); | 
|  | 3170 | } | 
|  | 3171 |  | 
|  | 3172 | EXPORT_SYMBOL(default_wake_function); | 
|  | 3173 |  | 
|  | 3174 | /* | 
|  | 3175 | * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just | 
|  | 3176 | * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve | 
|  | 3177 | * number) then we wake all the non-exclusive tasks and one exclusive task. | 
|  | 3178 | * | 
|  | 3179 | * There are circumstances in which we can try to wake a task which has already | 
|  | 3180 | * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns | 
|  | 3181 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
|  | 3182 | */ | 
|  | 3183 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
|  | 3184 | int nr_exclusive, int sync, void *key) | 
|  | 3185 | { | 
|  | 3186 | struct list_head *tmp, *next; | 
|  | 3187 |  | 
|  | 3188 | list_for_each_safe(tmp, next, &q->task_list) { | 
|  | 3189 | wait_queue_t *curr; | 
|  | 3190 | unsigned flags; | 
|  | 3191 | curr = list_entry(tmp, wait_queue_t, task_list); | 
|  | 3192 | flags = curr->flags; | 
|  | 3193 | if (curr->func(curr, mode, sync, key) && | 
|  | 3194 | (flags & WQ_FLAG_EXCLUSIVE) && | 
|  | 3195 | !--nr_exclusive) | 
|  | 3196 | break; | 
|  | 3197 | } | 
|  | 3198 | } | 
|  | 3199 |  | 
|  | 3200 | /** | 
|  | 3201 | * __wake_up - wake up threads blocked on a waitqueue. | 
|  | 3202 | * @q: the waitqueue | 
|  | 3203 | * @mode: which threads | 
|  | 3204 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
| Martin Waitz | 67be2dd | 2005-05-01 08:59:26 -0700 | [diff] [blame] | 3205 | * @key: is directly passed to the wakeup function | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3206 | */ | 
|  | 3207 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3208 | int nr_exclusive, void *key) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3209 | { | 
|  | 3210 | unsigned long flags; | 
|  | 3211 |  | 
|  | 3212 | spin_lock_irqsave(&q->lock, flags); | 
|  | 3213 | __wake_up_common(q, mode, nr_exclusive, 0, key); | 
|  | 3214 | spin_unlock_irqrestore(&q->lock, flags); | 
|  | 3215 | } | 
|  | 3216 |  | 
|  | 3217 | EXPORT_SYMBOL(__wake_up); | 
|  | 3218 |  | 
|  | 3219 | /* | 
|  | 3220 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
|  | 3221 | */ | 
|  | 3222 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
|  | 3223 | { | 
|  | 3224 | __wake_up_common(q, mode, 1, 0, NULL); | 
|  | 3225 | } | 
|  | 3226 |  | 
|  | 3227 | /** | 
| Martin Waitz | 67be2dd | 2005-05-01 08:59:26 -0700 | [diff] [blame] | 3228 | * __wake_up_sync - wake up threads blocked on a waitqueue. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3229 | * @q: the waitqueue | 
|  | 3230 | * @mode: which threads | 
|  | 3231 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | 3232 | * | 
|  | 3233 | * The sync wakeup differs that the waker knows that it will schedule | 
|  | 3234 | * away soon, so while the target thread will be woken up, it will not | 
|  | 3235 | * be migrated to another CPU - ie. the two threads are 'synchronized' | 
|  | 3236 | * with each other. This can prevent needless bouncing between CPUs. | 
|  | 3237 | * | 
|  | 3238 | * On UP it can prevent extra preemption. | 
|  | 3239 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3240 | void fastcall | 
|  | 3241 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3242 | { | 
|  | 3243 | unsigned long flags; | 
|  | 3244 | int sync = 1; | 
|  | 3245 |  | 
|  | 3246 | if (unlikely(!q)) | 
|  | 3247 | return; | 
|  | 3248 |  | 
|  | 3249 | if (unlikely(!nr_exclusive)) | 
|  | 3250 | sync = 0; | 
|  | 3251 |  | 
|  | 3252 | spin_lock_irqsave(&q->lock, flags); | 
|  | 3253 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
|  | 3254 | spin_unlock_irqrestore(&q->lock, flags); | 
|  | 3255 | } | 
|  | 3256 | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
|  | 3257 |  | 
|  | 3258 | void fastcall complete(struct completion *x) | 
|  | 3259 | { | 
|  | 3260 | unsigned long flags; | 
|  | 3261 |  | 
|  | 3262 | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | 3263 | x->done++; | 
|  | 3264 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 3265 | 1, 0, NULL); | 
|  | 3266 | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | 3267 | } | 
|  | 3268 | EXPORT_SYMBOL(complete); | 
|  | 3269 |  | 
|  | 3270 | void fastcall complete_all(struct completion *x) | 
|  | 3271 | { | 
|  | 3272 | unsigned long flags; | 
|  | 3273 |  | 
|  | 3274 | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | 3275 | x->done += UINT_MAX/2; | 
|  | 3276 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 3277 | 0, 0, NULL); | 
|  | 3278 | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | 3279 | } | 
|  | 3280 | EXPORT_SYMBOL(complete_all); | 
|  | 3281 |  | 
|  | 3282 | void fastcall __sched wait_for_completion(struct completion *x) | 
|  | 3283 | { | 
|  | 3284 | might_sleep(); | 
|  | 3285 | spin_lock_irq(&x->wait.lock); | 
|  | 3286 | if (!x->done) { | 
|  | 3287 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3288 |  | 
|  | 3289 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3290 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3291 | do { | 
|  | 3292 | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 3293 | spin_unlock_irq(&x->wait.lock); | 
|  | 3294 | schedule(); | 
|  | 3295 | spin_lock_irq(&x->wait.lock); | 
|  | 3296 | } while (!x->done); | 
|  | 3297 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3298 | } | 
|  | 3299 | x->done--; | 
|  | 3300 | spin_unlock_irq(&x->wait.lock); | 
|  | 3301 | } | 
|  | 3302 | EXPORT_SYMBOL(wait_for_completion); | 
|  | 3303 |  | 
|  | 3304 | unsigned long fastcall __sched | 
|  | 3305 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
|  | 3306 | { | 
|  | 3307 | might_sleep(); | 
|  | 3308 |  | 
|  | 3309 | spin_lock_irq(&x->wait.lock); | 
|  | 3310 | if (!x->done) { | 
|  | 3311 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3312 |  | 
|  | 3313 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3314 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3315 | do { | 
|  | 3316 | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 3317 | spin_unlock_irq(&x->wait.lock); | 
|  | 3318 | timeout = schedule_timeout(timeout); | 
|  | 3319 | spin_lock_irq(&x->wait.lock); | 
|  | 3320 | if (!timeout) { | 
|  | 3321 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3322 | goto out; | 
|  | 3323 | } | 
|  | 3324 | } while (!x->done); | 
|  | 3325 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3326 | } | 
|  | 3327 | x->done--; | 
|  | 3328 | out: | 
|  | 3329 | spin_unlock_irq(&x->wait.lock); | 
|  | 3330 | return timeout; | 
|  | 3331 | } | 
|  | 3332 | EXPORT_SYMBOL(wait_for_completion_timeout); | 
|  | 3333 |  | 
|  | 3334 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | 
|  | 3335 | { | 
|  | 3336 | int ret = 0; | 
|  | 3337 |  | 
|  | 3338 | might_sleep(); | 
|  | 3339 |  | 
|  | 3340 | spin_lock_irq(&x->wait.lock); | 
|  | 3341 | if (!x->done) { | 
|  | 3342 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3343 |  | 
|  | 3344 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3345 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3346 | do { | 
|  | 3347 | if (signal_pending(current)) { | 
|  | 3348 | ret = -ERESTARTSYS; | 
|  | 3349 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3350 | goto out; | 
|  | 3351 | } | 
|  | 3352 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 3353 | spin_unlock_irq(&x->wait.lock); | 
|  | 3354 | schedule(); | 
|  | 3355 | spin_lock_irq(&x->wait.lock); | 
|  | 3356 | } while (!x->done); | 
|  | 3357 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3358 | } | 
|  | 3359 | x->done--; | 
|  | 3360 | out: | 
|  | 3361 | spin_unlock_irq(&x->wait.lock); | 
|  | 3362 |  | 
|  | 3363 | return ret; | 
|  | 3364 | } | 
|  | 3365 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
|  | 3366 |  | 
|  | 3367 | unsigned long fastcall __sched | 
|  | 3368 | wait_for_completion_interruptible_timeout(struct completion *x, | 
|  | 3369 | unsigned long timeout) | 
|  | 3370 | { | 
|  | 3371 | might_sleep(); | 
|  | 3372 |  | 
|  | 3373 | spin_lock_irq(&x->wait.lock); | 
|  | 3374 | if (!x->done) { | 
|  | 3375 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3376 |  | 
|  | 3377 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3378 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3379 | do { | 
|  | 3380 | if (signal_pending(current)) { | 
|  | 3381 | timeout = -ERESTARTSYS; | 
|  | 3382 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3383 | goto out; | 
|  | 3384 | } | 
|  | 3385 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 3386 | spin_unlock_irq(&x->wait.lock); | 
|  | 3387 | timeout = schedule_timeout(timeout); | 
|  | 3388 | spin_lock_irq(&x->wait.lock); | 
|  | 3389 | if (!timeout) { | 
|  | 3390 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3391 | goto out; | 
|  | 3392 | } | 
|  | 3393 | } while (!x->done); | 
|  | 3394 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3395 | } | 
|  | 3396 | x->done--; | 
|  | 3397 | out: | 
|  | 3398 | spin_unlock_irq(&x->wait.lock); | 
|  | 3399 | return timeout; | 
|  | 3400 | } | 
|  | 3401 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
|  | 3402 |  | 
|  | 3403 |  | 
|  | 3404 | #define	SLEEP_ON_VAR					\ | 
|  | 3405 | unsigned long flags;				\ | 
|  | 3406 | wait_queue_t wait;				\ | 
|  | 3407 | init_waitqueue_entry(&wait, current); | 
|  | 3408 |  | 
|  | 3409 | #define SLEEP_ON_HEAD					\ | 
|  | 3410 | spin_lock_irqsave(&q->lock,flags);		\ | 
|  | 3411 | __add_wait_queue(q, &wait);			\ | 
|  | 3412 | spin_unlock(&q->lock); | 
|  | 3413 |  | 
|  | 3414 | #define	SLEEP_ON_TAIL					\ | 
|  | 3415 | spin_lock_irq(&q->lock);			\ | 
|  | 3416 | __remove_wait_queue(q, &wait);			\ | 
|  | 3417 | spin_unlock_irqrestore(&q->lock, flags); | 
|  | 3418 |  | 
|  | 3419 | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | 
|  | 3420 | { | 
|  | 3421 | SLEEP_ON_VAR | 
|  | 3422 |  | 
|  | 3423 | current->state = TASK_INTERRUPTIBLE; | 
|  | 3424 |  | 
|  | 3425 | SLEEP_ON_HEAD | 
|  | 3426 | schedule(); | 
|  | 3427 | SLEEP_ON_TAIL | 
|  | 3428 | } | 
|  | 3429 |  | 
|  | 3430 | EXPORT_SYMBOL(interruptible_sleep_on); | 
|  | 3431 |  | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3432 | long fastcall __sched | 
|  | 3433 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3434 | { | 
|  | 3435 | SLEEP_ON_VAR | 
|  | 3436 |  | 
|  | 3437 | current->state = TASK_INTERRUPTIBLE; | 
|  | 3438 |  | 
|  | 3439 | SLEEP_ON_HEAD | 
|  | 3440 | timeout = schedule_timeout(timeout); | 
|  | 3441 | SLEEP_ON_TAIL | 
|  | 3442 |  | 
|  | 3443 | return timeout; | 
|  | 3444 | } | 
|  | 3445 |  | 
|  | 3446 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
|  | 3447 |  | 
|  | 3448 | void fastcall __sched sleep_on(wait_queue_head_t *q) | 
|  | 3449 | { | 
|  | 3450 | SLEEP_ON_VAR | 
|  | 3451 |  | 
|  | 3452 | current->state = TASK_UNINTERRUPTIBLE; | 
|  | 3453 |  | 
|  | 3454 | SLEEP_ON_HEAD | 
|  | 3455 | schedule(); | 
|  | 3456 | SLEEP_ON_TAIL | 
|  | 3457 | } | 
|  | 3458 |  | 
|  | 3459 | EXPORT_SYMBOL(sleep_on); | 
|  | 3460 |  | 
|  | 3461 | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | 3462 | { | 
|  | 3463 | SLEEP_ON_VAR | 
|  | 3464 |  | 
|  | 3465 | current->state = TASK_UNINTERRUPTIBLE; | 
|  | 3466 |  | 
|  | 3467 | SLEEP_ON_HEAD | 
|  | 3468 | timeout = schedule_timeout(timeout); | 
|  | 3469 | SLEEP_ON_TAIL | 
|  | 3470 |  | 
|  | 3471 | return timeout; | 
|  | 3472 | } | 
|  | 3473 |  | 
|  | 3474 | EXPORT_SYMBOL(sleep_on_timeout); | 
|  | 3475 |  | 
|  | 3476 | void set_user_nice(task_t *p, long nice) | 
|  | 3477 | { | 
|  | 3478 | unsigned long flags; | 
|  | 3479 | prio_array_t *array; | 
|  | 3480 | runqueue_t *rq; | 
|  | 3481 | int old_prio, new_prio, delta; | 
|  | 3482 |  | 
|  | 3483 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
|  | 3484 | return; | 
|  | 3485 | /* | 
|  | 3486 | * We have to be careful, if called from sys_setpriority(), | 
|  | 3487 | * the task might be in the middle of scheduling on another CPU. | 
|  | 3488 | */ | 
|  | 3489 | rq = task_rq_lock(p, &flags); | 
|  | 3490 | /* | 
|  | 3491 | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | 3492 | * allow the 'normal' nice value to be set - but as expected | 
|  | 3493 | * it wont have any effect on scheduling until the task is | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3494 | * not SCHED_NORMAL/SCHED_BATCH: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3495 | */ | 
|  | 3496 | if (rt_task(p)) { | 
|  | 3497 | p->static_prio = NICE_TO_PRIO(nice); | 
|  | 3498 | goto out_unlock; | 
|  | 3499 | } | 
|  | 3500 | array = p->array; | 
| Nick Piggin | a200057 | 2006-02-10 01:51:02 -0800 | [diff] [blame] | 3501 | if (array) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3502 | dequeue_task(p, array); | 
|  | 3503 |  | 
|  | 3504 | old_prio = p->prio; | 
|  | 3505 | new_prio = NICE_TO_PRIO(nice); | 
|  | 3506 | delta = new_prio - old_prio; | 
|  | 3507 | p->static_prio = NICE_TO_PRIO(nice); | 
|  | 3508 | p->prio += delta; | 
|  | 3509 |  | 
|  | 3510 | if (array) { | 
|  | 3511 | enqueue_task(p, array); | 
|  | 3512 | /* | 
|  | 3513 | * If the task increased its priority or is running and | 
|  | 3514 | * lowered its priority, then reschedule its CPU: | 
|  | 3515 | */ | 
|  | 3516 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
|  | 3517 | resched_task(rq->curr); | 
|  | 3518 | } | 
|  | 3519 | out_unlock: | 
|  | 3520 | task_rq_unlock(rq, &flags); | 
|  | 3521 | } | 
|  | 3522 |  | 
|  | 3523 | EXPORT_SYMBOL(set_user_nice); | 
|  | 3524 |  | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3525 | /* | 
|  | 3526 | * can_nice - check if a task can reduce its nice value | 
|  | 3527 | * @p: task | 
|  | 3528 | * @nice: nice value | 
|  | 3529 | */ | 
|  | 3530 | int can_nice(const task_t *p, const int nice) | 
|  | 3531 | { | 
| Matt Mackall | 024f474 | 2005-08-18 11:24:19 -0700 | [diff] [blame] | 3532 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 
|  | 3533 | int nice_rlim = 20 - nice; | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3534 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
|  | 3535 | capable(CAP_SYS_NICE)); | 
|  | 3536 | } | 
|  | 3537 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3538 | #ifdef __ARCH_WANT_SYS_NICE | 
|  | 3539 |  | 
|  | 3540 | /* | 
|  | 3541 | * sys_nice - change the priority of the current process. | 
|  | 3542 | * @increment: priority increment | 
|  | 3543 | * | 
|  | 3544 | * sys_setpriority is a more generic, but much slower function that | 
|  | 3545 | * does similar things. | 
|  | 3546 | */ | 
|  | 3547 | asmlinkage long sys_nice(int increment) | 
|  | 3548 | { | 
|  | 3549 | int retval; | 
|  | 3550 | long nice; | 
|  | 3551 |  | 
|  | 3552 | /* | 
|  | 3553 | * Setpriority might change our priority at the same moment. | 
|  | 3554 | * We don't have to worry. Conceptually one call occurs first | 
|  | 3555 | * and we have a single winner. | 
|  | 3556 | */ | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3557 | if (increment < -40) | 
|  | 3558 | increment = -40; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3559 | if (increment > 40) | 
|  | 3560 | increment = 40; | 
|  | 3561 |  | 
|  | 3562 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 
|  | 3563 | if (nice < -20) | 
|  | 3564 | nice = -20; | 
|  | 3565 | if (nice > 19) | 
|  | 3566 | nice = 19; | 
|  | 3567 |  | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3568 | if (increment < 0 && !can_nice(current, nice)) | 
|  | 3569 | return -EPERM; | 
|  | 3570 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3571 | retval = security_task_setnice(current, nice); | 
|  | 3572 | if (retval) | 
|  | 3573 | return retval; | 
|  | 3574 |  | 
|  | 3575 | set_user_nice(current, nice); | 
|  | 3576 | return 0; | 
|  | 3577 | } | 
|  | 3578 |  | 
|  | 3579 | #endif | 
|  | 3580 |  | 
|  | 3581 | /** | 
|  | 3582 | * task_prio - return the priority value of a given task. | 
|  | 3583 | * @p: the task in question. | 
|  | 3584 | * | 
|  | 3585 | * This is the priority value as seen by users in /proc. | 
|  | 3586 | * RT tasks are offset by -200. Normal tasks are centered | 
|  | 3587 | * around 0, value goes from -16 to +15. | 
|  | 3588 | */ | 
|  | 3589 | int task_prio(const task_t *p) | 
|  | 3590 | { | 
|  | 3591 | return p->prio - MAX_RT_PRIO; | 
|  | 3592 | } | 
|  | 3593 |  | 
|  | 3594 | /** | 
|  | 3595 | * task_nice - return the nice value of a given task. | 
|  | 3596 | * @p: the task in question. | 
|  | 3597 | */ | 
|  | 3598 | int task_nice(const task_t *p) | 
|  | 3599 | { | 
|  | 3600 | return TASK_NICE(p); | 
|  | 3601 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3602 | EXPORT_SYMBOL_GPL(task_nice); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3603 |  | 
|  | 3604 | /** | 
|  | 3605 | * idle_cpu - is a given cpu idle currently? | 
|  | 3606 | * @cpu: the processor in question. | 
|  | 3607 | */ | 
|  | 3608 | int idle_cpu(int cpu) | 
|  | 3609 | { | 
|  | 3610 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
|  | 3611 | } | 
|  | 3612 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3613 | /** | 
|  | 3614 | * idle_task - return the idle task for a given cpu. | 
|  | 3615 | * @cpu: the processor in question. | 
|  | 3616 | */ | 
|  | 3617 | task_t *idle_task(int cpu) | 
|  | 3618 | { | 
|  | 3619 | return cpu_rq(cpu)->idle; | 
|  | 3620 | } | 
|  | 3621 |  | 
|  | 3622 | /** | 
|  | 3623 | * find_process_by_pid - find a process with a matching PID value. | 
|  | 3624 | * @pid: the pid in question. | 
|  | 3625 | */ | 
|  | 3626 | static inline task_t *find_process_by_pid(pid_t pid) | 
|  | 3627 | { | 
|  | 3628 | return pid ? find_task_by_pid(pid) : current; | 
|  | 3629 | } | 
|  | 3630 |  | 
|  | 3631 | /* Actually do priority change: must hold rq lock. */ | 
|  | 3632 | static void __setscheduler(struct task_struct *p, int policy, int prio) | 
|  | 3633 | { | 
|  | 3634 | BUG_ON(p->array); | 
|  | 3635 | p->policy = policy; | 
|  | 3636 | p->rt_priority = prio; | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3637 | if (policy != SCHED_NORMAL && policy != SCHED_BATCH) { | 
| Steven Rostedt | d46523e | 2005-07-25 16:28:39 -0400 | [diff] [blame] | 3638 | p->prio = MAX_RT_PRIO-1 - p->rt_priority; | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3639 | } else { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3640 | p->prio = p->static_prio; | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3641 | /* | 
|  | 3642 | * SCHED_BATCH tasks are treated as perpetual CPU hogs: | 
|  | 3643 | */ | 
|  | 3644 | if (policy == SCHED_BATCH) | 
|  | 3645 | p->sleep_avg = 0; | 
|  | 3646 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3647 | } | 
|  | 3648 |  | 
|  | 3649 | /** | 
|  | 3650 | * sched_setscheduler - change the scheduling policy and/or RT priority of | 
|  | 3651 | * a thread. | 
|  | 3652 | * @p: the task in question. | 
|  | 3653 | * @policy: new policy. | 
|  | 3654 | * @param: structure containing the new RT priority. | 
|  | 3655 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3656 | int sched_setscheduler(struct task_struct *p, int policy, | 
|  | 3657 | struct sched_param *param) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3658 | { | 
|  | 3659 | int retval; | 
|  | 3660 | int oldprio, oldpolicy = -1; | 
|  | 3661 | prio_array_t *array; | 
|  | 3662 | unsigned long flags; | 
|  | 3663 | runqueue_t *rq; | 
|  | 3664 |  | 
|  | 3665 | recheck: | 
|  | 3666 | /* double check policy once rq lock held */ | 
|  | 3667 | if (policy < 0) | 
|  | 3668 | policy = oldpolicy = p->policy; | 
|  | 3669 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3670 | policy != SCHED_NORMAL && policy != SCHED_BATCH) | 
|  | 3671 | return -EINVAL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3672 | /* | 
|  | 3673 | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3674 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and | 
|  | 3675 | * SCHED_BATCH is 0. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3676 | */ | 
|  | 3677 | if (param->sched_priority < 0 || | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3678 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 
| Steven Rostedt | d46523e | 2005-07-25 16:28:39 -0400 | [diff] [blame] | 3679 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3680 | return -EINVAL; | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3681 | if ((policy == SCHED_NORMAL || policy == SCHED_BATCH) | 
|  | 3682 | != (param->sched_priority == 0)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3683 | return -EINVAL; | 
|  | 3684 |  | 
| Olivier Croquette | 37e4ab3 | 2005-06-25 14:57:32 -0700 | [diff] [blame] | 3685 | /* | 
|  | 3686 | * Allow unprivileged RT tasks to decrease priority: | 
|  | 3687 | */ | 
|  | 3688 | if (!capable(CAP_SYS_NICE)) { | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3689 | /* | 
|  | 3690 | * can't change policy, except between SCHED_NORMAL | 
|  | 3691 | * and SCHED_BATCH: | 
|  | 3692 | */ | 
|  | 3693 | if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) && | 
|  | 3694 | (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) && | 
|  | 3695 | !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | 
| Olivier Croquette | 37e4ab3 | 2005-06-25 14:57:32 -0700 | [diff] [blame] | 3696 | return -EPERM; | 
|  | 3697 | /* can't increase priority */ | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 3698 | if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) && | 
| Olivier Croquette | 37e4ab3 | 2005-06-25 14:57:32 -0700 | [diff] [blame] | 3699 | param->sched_priority > p->rt_priority && | 
|  | 3700 | param->sched_priority > | 
|  | 3701 | p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | 
|  | 3702 | return -EPERM; | 
|  | 3703 | /* can't change other user's priorities */ | 
|  | 3704 | if ((current->euid != p->euid) && | 
|  | 3705 | (current->euid != p->uid)) | 
|  | 3706 | return -EPERM; | 
|  | 3707 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3708 |  | 
|  | 3709 | retval = security_task_setscheduler(p, policy, param); | 
|  | 3710 | if (retval) | 
|  | 3711 | return retval; | 
|  | 3712 | /* | 
|  | 3713 | * To be able to change p->policy safely, the apropriate | 
|  | 3714 | * runqueue lock must be held. | 
|  | 3715 | */ | 
|  | 3716 | rq = task_rq_lock(p, &flags); | 
|  | 3717 | /* recheck policy now with rq lock held */ | 
|  | 3718 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | 3719 | policy = oldpolicy = -1; | 
|  | 3720 | task_rq_unlock(rq, &flags); | 
|  | 3721 | goto recheck; | 
|  | 3722 | } | 
|  | 3723 | array = p->array; | 
|  | 3724 | if (array) | 
|  | 3725 | deactivate_task(p, rq); | 
|  | 3726 | oldprio = p->prio; | 
|  | 3727 | __setscheduler(p, policy, param->sched_priority); | 
|  | 3728 | if (array) { | 
|  | 3729 | __activate_task(p, rq); | 
|  | 3730 | /* | 
|  | 3731 | * Reschedule if we are currently running on this runqueue and | 
|  | 3732 | * our priority decreased, or if we are not currently running on | 
|  | 3733 | * this runqueue and our priority is higher than the current's | 
|  | 3734 | */ | 
|  | 3735 | if (task_running(rq, p)) { | 
|  | 3736 | if (p->prio > oldprio) | 
|  | 3737 | resched_task(rq->curr); | 
|  | 3738 | } else if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | 3739 | resched_task(rq->curr); | 
|  | 3740 | } | 
|  | 3741 | task_rq_unlock(rq, &flags); | 
|  | 3742 | return 0; | 
|  | 3743 | } | 
|  | 3744 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
|  | 3745 |  | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 3746 | static int | 
|  | 3747 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3748 | { | 
|  | 3749 | int retval; | 
|  | 3750 | struct sched_param lparam; | 
|  | 3751 | struct task_struct *p; | 
|  | 3752 |  | 
|  | 3753 | if (!param || pid < 0) | 
|  | 3754 | return -EINVAL; | 
|  | 3755 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | 3756 | return -EFAULT; | 
|  | 3757 | read_lock_irq(&tasklist_lock); | 
|  | 3758 | p = find_process_by_pid(pid); | 
|  | 3759 | if (!p) { | 
|  | 3760 | read_unlock_irq(&tasklist_lock); | 
|  | 3761 | return -ESRCH; | 
|  | 3762 | } | 
|  | 3763 | retval = sched_setscheduler(p, policy, &lparam); | 
|  | 3764 | read_unlock_irq(&tasklist_lock); | 
|  | 3765 | return retval; | 
|  | 3766 | } | 
|  | 3767 |  | 
|  | 3768 | /** | 
|  | 3769 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | 3770 | * @pid: the pid in question. | 
|  | 3771 | * @policy: new policy. | 
|  | 3772 | * @param: structure containing the new RT priority. | 
|  | 3773 | */ | 
|  | 3774 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | 
|  | 3775 | struct sched_param __user *param) | 
|  | 3776 | { | 
| Jason Baron | c21761f | 2006-01-18 17:43:03 -0800 | [diff] [blame] | 3777 | /* negative values for policy are not valid */ | 
|  | 3778 | if (policy < 0) | 
|  | 3779 | return -EINVAL; | 
|  | 3780 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3781 | return do_sched_setscheduler(pid, policy, param); | 
|  | 3782 | } | 
|  | 3783 |  | 
|  | 3784 | /** | 
|  | 3785 | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | 3786 | * @pid: the pid in question. | 
|  | 3787 | * @param: structure containing the new RT priority. | 
|  | 3788 | */ | 
|  | 3789 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
|  | 3790 | { | 
|  | 3791 | return do_sched_setscheduler(pid, -1, param); | 
|  | 3792 | } | 
|  | 3793 |  | 
|  | 3794 | /** | 
|  | 3795 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | 3796 | * @pid: the pid in question. | 
|  | 3797 | */ | 
|  | 3798 | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
|  | 3799 | { | 
|  | 3800 | int retval = -EINVAL; | 
|  | 3801 | task_t *p; | 
|  | 3802 |  | 
|  | 3803 | if (pid < 0) | 
|  | 3804 | goto out_nounlock; | 
|  | 3805 |  | 
|  | 3806 | retval = -ESRCH; | 
|  | 3807 | read_lock(&tasklist_lock); | 
|  | 3808 | p = find_process_by_pid(pid); | 
|  | 3809 | if (p) { | 
|  | 3810 | retval = security_task_getscheduler(p); | 
|  | 3811 | if (!retval) | 
|  | 3812 | retval = p->policy; | 
|  | 3813 | } | 
|  | 3814 | read_unlock(&tasklist_lock); | 
|  | 3815 |  | 
|  | 3816 | out_nounlock: | 
|  | 3817 | return retval; | 
|  | 3818 | } | 
|  | 3819 |  | 
|  | 3820 | /** | 
|  | 3821 | * sys_sched_getscheduler - get the RT priority of a thread | 
|  | 3822 | * @pid: the pid in question. | 
|  | 3823 | * @param: structure containing the RT priority. | 
|  | 3824 | */ | 
|  | 3825 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
|  | 3826 | { | 
|  | 3827 | struct sched_param lp; | 
|  | 3828 | int retval = -EINVAL; | 
|  | 3829 | task_t *p; | 
|  | 3830 |  | 
|  | 3831 | if (!param || pid < 0) | 
|  | 3832 | goto out_nounlock; | 
|  | 3833 |  | 
|  | 3834 | read_lock(&tasklist_lock); | 
|  | 3835 | p = find_process_by_pid(pid); | 
|  | 3836 | retval = -ESRCH; | 
|  | 3837 | if (!p) | 
|  | 3838 | goto out_unlock; | 
|  | 3839 |  | 
|  | 3840 | retval = security_task_getscheduler(p); | 
|  | 3841 | if (retval) | 
|  | 3842 | goto out_unlock; | 
|  | 3843 |  | 
|  | 3844 | lp.sched_priority = p->rt_priority; | 
|  | 3845 | read_unlock(&tasklist_lock); | 
|  | 3846 |  | 
|  | 3847 | /* | 
|  | 3848 | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | 3849 | */ | 
|  | 3850 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  | 3851 |  | 
|  | 3852 | out_nounlock: | 
|  | 3853 | return retval; | 
|  | 3854 |  | 
|  | 3855 | out_unlock: | 
|  | 3856 | read_unlock(&tasklist_lock); | 
|  | 3857 | return retval; | 
|  | 3858 | } | 
|  | 3859 |  | 
|  | 3860 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | 
|  | 3861 | { | 
|  | 3862 | task_t *p; | 
|  | 3863 | int retval; | 
|  | 3864 | cpumask_t cpus_allowed; | 
|  | 3865 |  | 
|  | 3866 | lock_cpu_hotplug(); | 
|  | 3867 | read_lock(&tasklist_lock); | 
|  | 3868 |  | 
|  | 3869 | p = find_process_by_pid(pid); | 
|  | 3870 | if (!p) { | 
|  | 3871 | read_unlock(&tasklist_lock); | 
|  | 3872 | unlock_cpu_hotplug(); | 
|  | 3873 | return -ESRCH; | 
|  | 3874 | } | 
|  | 3875 |  | 
|  | 3876 | /* | 
|  | 3877 | * It is not safe to call set_cpus_allowed with the | 
|  | 3878 | * tasklist_lock held.  We will bump the task_struct's | 
|  | 3879 | * usage count and then drop tasklist_lock. | 
|  | 3880 | */ | 
|  | 3881 | get_task_struct(p); | 
|  | 3882 | read_unlock(&tasklist_lock); | 
|  | 3883 |  | 
|  | 3884 | retval = -EPERM; | 
|  | 3885 | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | 3886 | !capable(CAP_SYS_NICE)) | 
|  | 3887 | goto out_unlock; | 
|  | 3888 |  | 
| David Quigley | e7834f8 | 2006-06-23 02:03:59 -0700 | [diff] [blame] | 3889 | retval = security_task_setscheduler(p, 0, NULL); | 
|  | 3890 | if (retval) | 
|  | 3891 | goto out_unlock; | 
|  | 3892 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3893 | cpus_allowed = cpuset_cpus_allowed(p); | 
|  | 3894 | cpus_and(new_mask, new_mask, cpus_allowed); | 
|  | 3895 | retval = set_cpus_allowed(p, new_mask); | 
|  | 3896 |  | 
|  | 3897 | out_unlock: | 
|  | 3898 | put_task_struct(p); | 
|  | 3899 | unlock_cpu_hotplug(); | 
|  | 3900 | return retval; | 
|  | 3901 | } | 
|  | 3902 |  | 
|  | 3903 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | 3904 | cpumask_t *new_mask) | 
|  | 3905 | { | 
|  | 3906 | if (len < sizeof(cpumask_t)) { | 
|  | 3907 | memset(new_mask, 0, sizeof(cpumask_t)); | 
|  | 3908 | } else if (len > sizeof(cpumask_t)) { | 
|  | 3909 | len = sizeof(cpumask_t); | 
|  | 3910 | } | 
|  | 3911 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | 3912 | } | 
|  | 3913 |  | 
|  | 3914 | /** | 
|  | 3915 | * sys_sched_setaffinity - set the cpu affinity of a process | 
|  | 3916 | * @pid: pid of the process | 
|  | 3917 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | 3918 | * @user_mask_ptr: user-space pointer to the new cpu mask | 
|  | 3919 | */ | 
|  | 3920 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
|  | 3921 | unsigned long __user *user_mask_ptr) | 
|  | 3922 | { | 
|  | 3923 | cpumask_t new_mask; | 
|  | 3924 | int retval; | 
|  | 3925 |  | 
|  | 3926 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
|  | 3927 | if (retval) | 
|  | 3928 | return retval; | 
|  | 3929 |  | 
|  | 3930 | return sched_setaffinity(pid, new_mask); | 
|  | 3931 | } | 
|  | 3932 |  | 
|  | 3933 | /* | 
|  | 3934 | * Represents all cpu's present in the system | 
|  | 3935 | * In systems capable of hotplug, this map could dynamically grow | 
|  | 3936 | * as new cpu's are detected in the system via any platform specific | 
|  | 3937 | * method, such as ACPI for e.g. | 
|  | 3938 | */ | 
|  | 3939 |  | 
| Andi Kleen | 4cef0c6 | 2006-01-11 22:44:57 +0100 | [diff] [blame] | 3940 | cpumask_t cpu_present_map __read_mostly; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3941 | EXPORT_SYMBOL(cpu_present_map); | 
|  | 3942 |  | 
|  | 3943 | #ifndef CONFIG_SMP | 
| Andi Kleen | 4cef0c6 | 2006-01-11 22:44:57 +0100 | [diff] [blame] | 3944 | cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; | 
|  | 3945 | cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3946 | #endif | 
|  | 3947 |  | 
|  | 3948 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
|  | 3949 | { | 
|  | 3950 | int retval; | 
|  | 3951 | task_t *p; | 
|  | 3952 |  | 
|  | 3953 | lock_cpu_hotplug(); | 
|  | 3954 | read_lock(&tasklist_lock); | 
|  | 3955 |  | 
|  | 3956 | retval = -ESRCH; | 
|  | 3957 | p = find_process_by_pid(pid); | 
|  | 3958 | if (!p) | 
|  | 3959 | goto out_unlock; | 
|  | 3960 |  | 
| David Quigley | e7834f8 | 2006-06-23 02:03:59 -0700 | [diff] [blame] | 3961 | retval = security_task_getscheduler(p); | 
|  | 3962 | if (retval) | 
|  | 3963 | goto out_unlock; | 
|  | 3964 |  | 
| Jack Steiner | 2f7016d | 2006-02-01 03:05:18 -0800 | [diff] [blame] | 3965 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3966 |  | 
|  | 3967 | out_unlock: | 
|  | 3968 | read_unlock(&tasklist_lock); | 
|  | 3969 | unlock_cpu_hotplug(); | 
|  | 3970 | if (retval) | 
|  | 3971 | return retval; | 
|  | 3972 |  | 
|  | 3973 | return 0; | 
|  | 3974 | } | 
|  | 3975 |  | 
|  | 3976 | /** | 
|  | 3977 | * sys_sched_getaffinity - get the cpu affinity of a process | 
|  | 3978 | * @pid: pid of the process | 
|  | 3979 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | 3980 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
|  | 3981 | */ | 
|  | 3982 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
|  | 3983 | unsigned long __user *user_mask_ptr) | 
|  | 3984 | { | 
|  | 3985 | int ret; | 
|  | 3986 | cpumask_t mask; | 
|  | 3987 |  | 
|  | 3988 | if (len < sizeof(cpumask_t)) | 
|  | 3989 | return -EINVAL; | 
|  | 3990 |  | 
|  | 3991 | ret = sched_getaffinity(pid, &mask); | 
|  | 3992 | if (ret < 0) | 
|  | 3993 | return ret; | 
|  | 3994 |  | 
|  | 3995 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
|  | 3996 | return -EFAULT; | 
|  | 3997 |  | 
|  | 3998 | return sizeof(cpumask_t); | 
|  | 3999 | } | 
|  | 4000 |  | 
|  | 4001 | /** | 
|  | 4002 | * sys_sched_yield - yield the current processor to other threads. | 
|  | 4003 | * | 
|  | 4004 | * this function yields the current CPU by moving the calling thread | 
|  | 4005 | * to the expired array. If there are no other threads running on this | 
|  | 4006 | * CPU then this function will return. | 
|  | 4007 | */ | 
|  | 4008 | asmlinkage long sys_sched_yield(void) | 
|  | 4009 | { | 
|  | 4010 | runqueue_t *rq = this_rq_lock(); | 
|  | 4011 | prio_array_t *array = current->array; | 
|  | 4012 | prio_array_t *target = rq->expired; | 
|  | 4013 |  | 
|  | 4014 | schedstat_inc(rq, yld_cnt); | 
|  | 4015 | /* | 
|  | 4016 | * We implement yielding by moving the task into the expired | 
|  | 4017 | * queue. | 
|  | 4018 | * | 
|  | 4019 | * (special rule: RT tasks will just roundrobin in the active | 
|  | 4020 | *  array.) | 
|  | 4021 | */ | 
|  | 4022 | if (rt_task(current)) | 
|  | 4023 | target = rq->active; | 
|  | 4024 |  | 
| Renaud Lienhart | 5927ad7 | 2005-09-10 00:26:20 -0700 | [diff] [blame] | 4025 | if (array->nr_active == 1) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4026 | schedstat_inc(rq, yld_act_empty); | 
|  | 4027 | if (!rq->expired->nr_active) | 
|  | 4028 | schedstat_inc(rq, yld_both_empty); | 
|  | 4029 | } else if (!rq->expired->nr_active) | 
|  | 4030 | schedstat_inc(rq, yld_exp_empty); | 
|  | 4031 |  | 
|  | 4032 | if (array != target) { | 
|  | 4033 | dequeue_task(current, array); | 
|  | 4034 | enqueue_task(current, target); | 
|  | 4035 | } else | 
|  | 4036 | /* | 
|  | 4037 | * requeue_task is cheaper so perform that if possible. | 
|  | 4038 | */ | 
|  | 4039 | requeue_task(current, array); | 
|  | 4040 |  | 
|  | 4041 | /* | 
|  | 4042 | * Since we are going to call schedule() anyway, there's | 
|  | 4043 | * no need to preempt or enable interrupts: | 
|  | 4044 | */ | 
|  | 4045 | __release(rq->lock); | 
|  | 4046 | _raw_spin_unlock(&rq->lock); | 
|  | 4047 | preempt_enable_no_resched(); | 
|  | 4048 |  | 
|  | 4049 | schedule(); | 
|  | 4050 |  | 
|  | 4051 | return 0; | 
|  | 4052 | } | 
|  | 4053 |  | 
|  | 4054 | static inline void __cond_resched(void) | 
|  | 4055 | { | 
| Ingo Molnar | 8e0a43d | 2006-06-23 02:05:23 -0700 | [diff] [blame] | 4056 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | 4057 | __might_sleep(__FILE__, __LINE__); | 
|  | 4058 | #endif | 
| Ingo Molnar | 5bbcfd9 | 2005-07-07 17:57:04 -0700 | [diff] [blame] | 4059 | /* | 
|  | 4060 | * The BKS might be reacquired before we have dropped | 
|  | 4061 | * PREEMPT_ACTIVE, which could trigger a second | 
|  | 4062 | * cond_resched() call. | 
|  | 4063 | */ | 
|  | 4064 | if (unlikely(preempt_count())) | 
|  | 4065 | return; | 
| Linus Torvalds | 8ba7b0a | 2006-03-06 17:38:49 -0800 | [diff] [blame] | 4066 | if (unlikely(system_state != SYSTEM_RUNNING)) | 
|  | 4067 | return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4068 | do { | 
|  | 4069 | add_preempt_count(PREEMPT_ACTIVE); | 
|  | 4070 | schedule(); | 
|  | 4071 | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | 4072 | } while (need_resched()); | 
|  | 4073 | } | 
|  | 4074 |  | 
|  | 4075 | int __sched cond_resched(void) | 
|  | 4076 | { | 
|  | 4077 | if (need_resched()) { | 
|  | 4078 | __cond_resched(); | 
|  | 4079 | return 1; | 
|  | 4080 | } | 
|  | 4081 | return 0; | 
|  | 4082 | } | 
|  | 4083 |  | 
|  | 4084 | EXPORT_SYMBOL(cond_resched); | 
|  | 4085 |  | 
|  | 4086 | /* | 
|  | 4087 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|  | 4088 | * call schedule, and on return reacquire the lock. | 
|  | 4089 | * | 
|  | 4090 | * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level | 
|  | 4091 | * operations here to prevent schedule() from being called twice (once via | 
|  | 4092 | * spin_unlock(), once by hand). | 
|  | 4093 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 4094 | int cond_resched_lock(spinlock_t *lock) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4095 | { | 
| Jan Kara | 6df3cec | 2005-06-13 15:52:32 -0700 | [diff] [blame] | 4096 | int ret = 0; | 
|  | 4097 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4098 | if (need_lockbreak(lock)) { | 
|  | 4099 | spin_unlock(lock); | 
|  | 4100 | cpu_relax(); | 
| Jan Kara | 6df3cec | 2005-06-13 15:52:32 -0700 | [diff] [blame] | 4101 | ret = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4102 | spin_lock(lock); | 
|  | 4103 | } | 
|  | 4104 | if (need_resched()) { | 
|  | 4105 | _raw_spin_unlock(lock); | 
|  | 4106 | preempt_enable_no_resched(); | 
|  | 4107 | __cond_resched(); | 
| Jan Kara | 6df3cec | 2005-06-13 15:52:32 -0700 | [diff] [blame] | 4108 | ret = 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4109 | spin_lock(lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4110 | } | 
| Jan Kara | 6df3cec | 2005-06-13 15:52:32 -0700 | [diff] [blame] | 4111 | return ret; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4112 | } | 
|  | 4113 |  | 
|  | 4114 | EXPORT_SYMBOL(cond_resched_lock); | 
|  | 4115 |  | 
|  | 4116 | int __sched cond_resched_softirq(void) | 
|  | 4117 | { | 
|  | 4118 | BUG_ON(!in_softirq()); | 
|  | 4119 |  | 
|  | 4120 | if (need_resched()) { | 
|  | 4121 | __local_bh_enable(); | 
|  | 4122 | __cond_resched(); | 
|  | 4123 | local_bh_disable(); | 
|  | 4124 | return 1; | 
|  | 4125 | } | 
|  | 4126 | return 0; | 
|  | 4127 | } | 
|  | 4128 |  | 
|  | 4129 | EXPORT_SYMBOL(cond_resched_softirq); | 
|  | 4130 |  | 
|  | 4131 |  | 
|  | 4132 | /** | 
|  | 4133 | * yield - yield the current processor to other threads. | 
|  | 4134 | * | 
|  | 4135 | * this is a shortcut for kernel-space yielding - it marks the | 
|  | 4136 | * thread runnable and calls sys_sched_yield(). | 
|  | 4137 | */ | 
|  | 4138 | void __sched yield(void) | 
|  | 4139 | { | 
|  | 4140 | set_current_state(TASK_RUNNING); | 
|  | 4141 | sys_sched_yield(); | 
|  | 4142 | } | 
|  | 4143 |  | 
|  | 4144 | EXPORT_SYMBOL(yield); | 
|  | 4145 |  | 
|  | 4146 | /* | 
|  | 4147 | * This task is about to go to sleep on IO.  Increment rq->nr_iowait so | 
|  | 4148 | * that process accounting knows that this is a task in IO wait state. | 
|  | 4149 | * | 
|  | 4150 | * But don't do that if it is a deliberate, throttling IO wait (this task | 
|  | 4151 | * has set its backing_dev_info: the queue against which it should throttle) | 
|  | 4152 | */ | 
|  | 4153 | void __sched io_schedule(void) | 
|  | 4154 | { | 
| Paul Mackerras | bfe5d83 | 2006-06-25 05:47:14 -0700 | [diff] [blame] | 4155 | struct runqueue *rq = &__raw_get_cpu_var(runqueues); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4156 |  | 
|  | 4157 | atomic_inc(&rq->nr_iowait); | 
|  | 4158 | schedule(); | 
|  | 4159 | atomic_dec(&rq->nr_iowait); | 
|  | 4160 | } | 
|  | 4161 |  | 
|  | 4162 | EXPORT_SYMBOL(io_schedule); | 
|  | 4163 |  | 
|  | 4164 | long __sched io_schedule_timeout(long timeout) | 
|  | 4165 | { | 
| Paul Mackerras | bfe5d83 | 2006-06-25 05:47:14 -0700 | [diff] [blame] | 4166 | struct runqueue *rq = &__raw_get_cpu_var(runqueues); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4167 | long ret; | 
|  | 4168 |  | 
|  | 4169 | atomic_inc(&rq->nr_iowait); | 
|  | 4170 | ret = schedule_timeout(timeout); | 
|  | 4171 | atomic_dec(&rq->nr_iowait); | 
|  | 4172 | return ret; | 
|  | 4173 | } | 
|  | 4174 |  | 
|  | 4175 | /** | 
|  | 4176 | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | 4177 | * @policy: scheduling class. | 
|  | 4178 | * | 
|  | 4179 | * this syscall returns the maximum rt_priority that can be used | 
|  | 4180 | * by a given scheduling class. | 
|  | 4181 | */ | 
|  | 4182 | asmlinkage long sys_sched_get_priority_max(int policy) | 
|  | 4183 | { | 
|  | 4184 | int ret = -EINVAL; | 
|  | 4185 |  | 
|  | 4186 | switch (policy) { | 
|  | 4187 | case SCHED_FIFO: | 
|  | 4188 | case SCHED_RR: | 
|  | 4189 | ret = MAX_USER_RT_PRIO-1; | 
|  | 4190 | break; | 
|  | 4191 | case SCHED_NORMAL: | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 4192 | case SCHED_BATCH: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4193 | ret = 0; | 
|  | 4194 | break; | 
|  | 4195 | } | 
|  | 4196 | return ret; | 
|  | 4197 | } | 
|  | 4198 |  | 
|  | 4199 | /** | 
|  | 4200 | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | 4201 | * @policy: scheduling class. | 
|  | 4202 | * | 
|  | 4203 | * this syscall returns the minimum rt_priority that can be used | 
|  | 4204 | * by a given scheduling class. | 
|  | 4205 | */ | 
|  | 4206 | asmlinkage long sys_sched_get_priority_min(int policy) | 
|  | 4207 | { | 
|  | 4208 | int ret = -EINVAL; | 
|  | 4209 |  | 
|  | 4210 | switch (policy) { | 
|  | 4211 | case SCHED_FIFO: | 
|  | 4212 | case SCHED_RR: | 
|  | 4213 | ret = 1; | 
|  | 4214 | break; | 
|  | 4215 | case SCHED_NORMAL: | 
| Ingo Molnar | b0a9499 | 2006-01-14 13:20:41 -0800 | [diff] [blame] | 4216 | case SCHED_BATCH: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4217 | ret = 0; | 
|  | 4218 | } | 
|  | 4219 | return ret; | 
|  | 4220 | } | 
|  | 4221 |  | 
|  | 4222 | /** | 
|  | 4223 | * sys_sched_rr_get_interval - return the default timeslice of a process. | 
|  | 4224 | * @pid: pid of the process. | 
|  | 4225 | * @interval: userspace pointer to the timeslice value. | 
|  | 4226 | * | 
|  | 4227 | * this syscall writes the default timeslice value of a given process | 
|  | 4228 | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | 4229 | */ | 
|  | 4230 | asmlinkage | 
|  | 4231 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
|  | 4232 | { | 
|  | 4233 | int retval = -EINVAL; | 
|  | 4234 | struct timespec t; | 
|  | 4235 | task_t *p; | 
|  | 4236 |  | 
|  | 4237 | if (pid < 0) | 
|  | 4238 | goto out_nounlock; | 
|  | 4239 |  | 
|  | 4240 | retval = -ESRCH; | 
|  | 4241 | read_lock(&tasklist_lock); | 
|  | 4242 | p = find_process_by_pid(pid); | 
|  | 4243 | if (!p) | 
|  | 4244 | goto out_unlock; | 
|  | 4245 |  | 
|  | 4246 | retval = security_task_getscheduler(p); | 
|  | 4247 | if (retval) | 
|  | 4248 | goto out_unlock; | 
|  | 4249 |  | 
|  | 4250 | jiffies_to_timespec(p->policy & SCHED_FIFO ? | 
|  | 4251 | 0 : task_timeslice(p), &t); | 
|  | 4252 | read_unlock(&tasklist_lock); | 
|  | 4253 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
|  | 4254 | out_nounlock: | 
|  | 4255 | return retval; | 
|  | 4256 | out_unlock: | 
|  | 4257 | read_unlock(&tasklist_lock); | 
|  | 4258 | return retval; | 
|  | 4259 | } | 
|  | 4260 |  | 
|  | 4261 | static inline struct task_struct *eldest_child(struct task_struct *p) | 
|  | 4262 | { | 
|  | 4263 | if (list_empty(&p->children)) return NULL; | 
|  | 4264 | return list_entry(p->children.next,struct task_struct,sibling); | 
|  | 4265 | } | 
|  | 4266 |  | 
|  | 4267 | static inline struct task_struct *older_sibling(struct task_struct *p) | 
|  | 4268 | { | 
|  | 4269 | if (p->sibling.prev==&p->parent->children) return NULL; | 
|  | 4270 | return list_entry(p->sibling.prev,struct task_struct,sibling); | 
|  | 4271 | } | 
|  | 4272 |  | 
|  | 4273 | static inline struct task_struct *younger_sibling(struct task_struct *p) | 
|  | 4274 | { | 
|  | 4275 | if (p->sibling.next==&p->parent->children) return NULL; | 
|  | 4276 | return list_entry(p->sibling.next,struct task_struct,sibling); | 
|  | 4277 | } | 
|  | 4278 |  | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 4279 | static void show_task(task_t *p) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4280 | { | 
|  | 4281 | task_t *relative; | 
|  | 4282 | unsigned state; | 
|  | 4283 | unsigned long free = 0; | 
|  | 4284 | static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" }; | 
|  | 4285 |  | 
|  | 4286 | printk("%-13.13s ", p->comm); | 
|  | 4287 | state = p->state ? __ffs(p->state) + 1 : 0; | 
|  | 4288 | if (state < ARRAY_SIZE(stat_nam)) | 
|  | 4289 | printk(stat_nam[state]); | 
|  | 4290 | else | 
|  | 4291 | printk("?"); | 
|  | 4292 | #if (BITS_PER_LONG == 32) | 
|  | 4293 | if (state == TASK_RUNNING) | 
|  | 4294 | printk(" running "); | 
|  | 4295 | else | 
|  | 4296 | printk(" %08lX ", thread_saved_pc(p)); | 
|  | 4297 | #else | 
|  | 4298 | if (state == TASK_RUNNING) | 
|  | 4299 | printk("  running task   "); | 
|  | 4300 | else | 
|  | 4301 | printk(" %016lx ", thread_saved_pc(p)); | 
|  | 4302 | #endif | 
|  | 4303 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | 4304 | { | 
| Al Viro | 10ebffd | 2005-11-13 16:06:56 -0800 | [diff] [blame] | 4305 | unsigned long *n = end_of_stack(p); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4306 | while (!*n) | 
|  | 4307 | n++; | 
| Al Viro | 10ebffd | 2005-11-13 16:06:56 -0800 | [diff] [blame] | 4308 | free = (unsigned long)n - (unsigned long)end_of_stack(p); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4309 | } | 
|  | 4310 | #endif | 
|  | 4311 | printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | 
|  | 4312 | if ((relative = eldest_child(p))) | 
|  | 4313 | printk("%5d ", relative->pid); | 
|  | 4314 | else | 
|  | 4315 | printk("      "); | 
|  | 4316 | if ((relative = younger_sibling(p))) | 
|  | 4317 | printk("%7d", relative->pid); | 
|  | 4318 | else | 
|  | 4319 | printk("       "); | 
|  | 4320 | if ((relative = older_sibling(p))) | 
|  | 4321 | printk(" %5d", relative->pid); | 
|  | 4322 | else | 
|  | 4323 | printk("      "); | 
|  | 4324 | if (!p->mm) | 
|  | 4325 | printk(" (L-TLB)\n"); | 
|  | 4326 | else | 
|  | 4327 | printk(" (NOTLB)\n"); | 
|  | 4328 |  | 
|  | 4329 | if (state != TASK_RUNNING) | 
|  | 4330 | show_stack(p, NULL); | 
|  | 4331 | } | 
|  | 4332 |  | 
|  | 4333 | void show_state(void) | 
|  | 4334 | { | 
|  | 4335 | task_t *g, *p; | 
|  | 4336 |  | 
|  | 4337 | #if (BITS_PER_LONG == 32) | 
|  | 4338 | printk("\n" | 
|  | 4339 | "                                               sibling\n"); | 
|  | 4340 | printk("  task             PC      pid father child younger older\n"); | 
|  | 4341 | #else | 
|  | 4342 | printk("\n" | 
|  | 4343 | "                                                       sibling\n"); | 
|  | 4344 | printk("  task                 PC          pid father child younger older\n"); | 
|  | 4345 | #endif | 
|  | 4346 | read_lock(&tasklist_lock); | 
|  | 4347 | do_each_thread(g, p) { | 
|  | 4348 | /* | 
|  | 4349 | * reset the NMI-timeout, listing all files on a slow | 
|  | 4350 | * console might take alot of time: | 
|  | 4351 | */ | 
|  | 4352 | touch_nmi_watchdog(); | 
|  | 4353 | show_task(p); | 
|  | 4354 | } while_each_thread(g, p); | 
|  | 4355 |  | 
|  | 4356 | read_unlock(&tasklist_lock); | 
| Ingo Molnar | de5097c | 2006-01-09 15:59:21 -0800 | [diff] [blame] | 4357 | mutex_debug_show_all_locks(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4358 | } | 
|  | 4359 |  | 
| Ingo Molnar | f340c0d | 2005-06-28 16:40:42 +0200 | [diff] [blame] | 4360 | /** | 
|  | 4361 | * init_idle - set up an idle thread for a given CPU | 
|  | 4362 | * @idle: task in question | 
|  | 4363 | * @cpu: cpu the idle task belongs to | 
|  | 4364 | * | 
|  | 4365 | * NOTE: this function does not set the idle thread's NEED_RESCHED | 
|  | 4366 | * flag, to make booting more robust. | 
|  | 4367 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4368 | void __devinit init_idle(task_t *idle, int cpu) | 
|  | 4369 | { | 
|  | 4370 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 4371 | unsigned long flags; | 
|  | 4372 |  | 
| Ingo Molnar | 81c29a8 | 2006-03-07 21:55:27 -0800 | [diff] [blame] | 4373 | idle->timestamp = sched_clock(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4374 | idle->sleep_avg = 0; | 
|  | 4375 | idle->array = NULL; | 
|  | 4376 | idle->prio = MAX_PRIO; | 
|  | 4377 | idle->state = TASK_RUNNING; | 
|  | 4378 | idle->cpus_allowed = cpumask_of_cpu(cpu); | 
|  | 4379 | set_task_cpu(idle, cpu); | 
|  | 4380 |  | 
|  | 4381 | spin_lock_irqsave(&rq->lock, flags); | 
|  | 4382 | rq->curr = rq->idle = idle; | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 4383 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
|  | 4384 | idle->oncpu = 1; | 
|  | 4385 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4386 | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | 4387 |  | 
|  | 4388 | /* Set the preempt count _outside_ the spinlocks! */ | 
|  | 4389 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | 
| Al Viro | a1261f5 | 2005-11-13 16:06:55 -0800 | [diff] [blame] | 4390 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4391 | #else | 
| Al Viro | a1261f5 | 2005-11-13 16:06:55 -0800 | [diff] [blame] | 4392 | task_thread_info(idle)->preempt_count = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4393 | #endif | 
|  | 4394 | } | 
|  | 4395 |  | 
|  | 4396 | /* | 
|  | 4397 | * In a system that switches off the HZ timer nohz_cpu_mask | 
|  | 4398 | * indicates which cpus entered this state. This is used | 
|  | 4399 | * in the rcu update to wait only for active cpus. For system | 
|  | 4400 | * which do not switch off the HZ timer nohz_cpu_mask should | 
|  | 4401 | * always be CPU_MASK_NONE. | 
|  | 4402 | */ | 
|  | 4403 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
|  | 4404 |  | 
|  | 4405 | #ifdef CONFIG_SMP | 
|  | 4406 | /* | 
|  | 4407 | * This is how migration works: | 
|  | 4408 | * | 
|  | 4409 | * 1) we queue a migration_req_t structure in the source CPU's | 
|  | 4410 | *    runqueue and wake up that CPU's migration thread. | 
|  | 4411 | * 2) we down() the locked semaphore => thread blocks. | 
|  | 4412 | * 3) migration thread wakes up (implicitly it forces the migrated | 
|  | 4413 | *    thread off the CPU) | 
|  | 4414 | * 4) it gets the migration request and checks whether the migrated | 
|  | 4415 | *    task is still in the wrong runqueue. | 
|  | 4416 | * 5) if it's in the wrong runqueue then the migration thread removes | 
|  | 4417 | *    it and puts it into the right queue. | 
|  | 4418 | * 6) migration thread up()s the semaphore. | 
|  | 4419 | * 7) we wake up and the migration is done. | 
|  | 4420 | */ | 
|  | 4421 |  | 
|  | 4422 | /* | 
|  | 4423 | * Change a given task's CPU affinity. Migrate the thread to a | 
|  | 4424 | * proper CPU and schedule it away if the CPU it's executing on | 
|  | 4425 | * is removed from the allowed bitmask. | 
|  | 4426 | * | 
|  | 4427 | * NOTE: the caller must have a valid reference to the task, the | 
|  | 4428 | * task must not exit() & deallocate itself prematurely.  The | 
|  | 4429 | * call is not atomic; no spinlocks may be held. | 
|  | 4430 | */ | 
|  | 4431 | int set_cpus_allowed(task_t *p, cpumask_t new_mask) | 
|  | 4432 | { | 
|  | 4433 | unsigned long flags; | 
|  | 4434 | int ret = 0; | 
|  | 4435 | migration_req_t req; | 
|  | 4436 | runqueue_t *rq; | 
|  | 4437 |  | 
|  | 4438 | rq = task_rq_lock(p, &flags); | 
|  | 4439 | if (!cpus_intersects(new_mask, cpu_online_map)) { | 
|  | 4440 | ret = -EINVAL; | 
|  | 4441 | goto out; | 
|  | 4442 | } | 
|  | 4443 |  | 
|  | 4444 | p->cpus_allowed = new_mask; | 
|  | 4445 | /* Can the task run on the task's current CPU? If so, we're done */ | 
|  | 4446 | if (cpu_isset(task_cpu(p), new_mask)) | 
|  | 4447 | goto out; | 
|  | 4448 |  | 
|  | 4449 | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | 
|  | 4450 | /* Need help from migration thread: drop lock and wait. */ | 
|  | 4451 | task_rq_unlock(rq, &flags); | 
|  | 4452 | wake_up_process(rq->migration_thread); | 
|  | 4453 | wait_for_completion(&req.done); | 
|  | 4454 | tlb_migrate_finish(p->mm); | 
|  | 4455 | return 0; | 
|  | 4456 | } | 
|  | 4457 | out: | 
|  | 4458 | task_rq_unlock(rq, &flags); | 
|  | 4459 | return ret; | 
|  | 4460 | } | 
|  | 4461 |  | 
|  | 4462 | EXPORT_SYMBOL_GPL(set_cpus_allowed); | 
|  | 4463 |  | 
|  | 4464 | /* | 
|  | 4465 | * Move (not current) task off this cpu, onto dest cpu.  We're doing | 
|  | 4466 | * this because either it can't run here any more (set_cpus_allowed() | 
|  | 4467 | * away from this CPU, or CPU going down), or because we're | 
|  | 4468 | * attempting to rebalance this task on exec (sched_exec). | 
|  | 4469 | * | 
|  | 4470 | * So we race with normal scheduler movements, but that's OK, as long | 
|  | 4471 | * as the task is no longer on this CPU. | 
|  | 4472 | */ | 
|  | 4473 | static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
|  | 4474 | { | 
|  | 4475 | runqueue_t *rq_dest, *rq_src; | 
|  | 4476 |  | 
|  | 4477 | if (unlikely(cpu_is_offline(dest_cpu))) | 
|  | 4478 | return; | 
|  | 4479 |  | 
|  | 4480 | rq_src = cpu_rq(src_cpu); | 
|  | 4481 | rq_dest = cpu_rq(dest_cpu); | 
|  | 4482 |  | 
|  | 4483 | double_rq_lock(rq_src, rq_dest); | 
|  | 4484 | /* Already moved. */ | 
|  | 4485 | if (task_cpu(p) != src_cpu) | 
|  | 4486 | goto out; | 
|  | 4487 | /* Affinity changed (again). */ | 
|  | 4488 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
|  | 4489 | goto out; | 
|  | 4490 |  | 
|  | 4491 | set_task_cpu(p, dest_cpu); | 
|  | 4492 | if (p->array) { | 
|  | 4493 | /* | 
|  | 4494 | * Sync timestamp with rq_dest's before activating. | 
|  | 4495 | * The same thing could be achieved by doing this step | 
|  | 4496 | * afterwards, and pretending it was a local activate. | 
|  | 4497 | * This way is cleaner and logically correct. | 
|  | 4498 | */ | 
|  | 4499 | p->timestamp = p->timestamp - rq_src->timestamp_last_tick | 
|  | 4500 | + rq_dest->timestamp_last_tick; | 
|  | 4501 | deactivate_task(p, rq_src); | 
|  | 4502 | activate_task(p, rq_dest, 0); | 
|  | 4503 | if (TASK_PREEMPTS_CURR(p, rq_dest)) | 
|  | 4504 | resched_task(rq_dest->curr); | 
|  | 4505 | } | 
|  | 4506 |  | 
|  | 4507 | out: | 
|  | 4508 | double_rq_unlock(rq_src, rq_dest); | 
|  | 4509 | } | 
|  | 4510 |  | 
|  | 4511 | /* | 
|  | 4512 | * migration_thread - this is a highprio system thread that performs | 
|  | 4513 | * thread migration by bumping thread off CPU then 'pushing' onto | 
|  | 4514 | * another runqueue. | 
|  | 4515 | */ | 
| Ingo Molnar | 95cdf3b | 2005-09-10 00:26:11 -0700 | [diff] [blame] | 4516 | static int migration_thread(void *data) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4517 | { | 
|  | 4518 | runqueue_t *rq; | 
|  | 4519 | int cpu = (long)data; | 
|  | 4520 |  | 
|  | 4521 | rq = cpu_rq(cpu); | 
|  | 4522 | BUG_ON(rq->migration_thread != current); | 
|  | 4523 |  | 
|  | 4524 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4525 | while (!kthread_should_stop()) { | 
|  | 4526 | struct list_head *head; | 
|  | 4527 | migration_req_t *req; | 
|  | 4528 |  | 
| Christoph Lameter | 3e1d1d2 | 2005-06-24 23:13:50 -0700 | [diff] [blame] | 4529 | try_to_freeze(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4530 |  | 
|  | 4531 | spin_lock_irq(&rq->lock); | 
|  | 4532 |  | 
|  | 4533 | if (cpu_is_offline(cpu)) { | 
|  | 4534 | spin_unlock_irq(&rq->lock); | 
|  | 4535 | goto wait_to_die; | 
|  | 4536 | } | 
|  | 4537 |  | 
|  | 4538 | if (rq->active_balance) { | 
|  | 4539 | active_load_balance(rq, cpu); | 
|  | 4540 | rq->active_balance = 0; | 
|  | 4541 | } | 
|  | 4542 |  | 
|  | 4543 | head = &rq->migration_queue; | 
|  | 4544 |  | 
|  | 4545 | if (list_empty(head)) { | 
|  | 4546 | spin_unlock_irq(&rq->lock); | 
|  | 4547 | schedule(); | 
|  | 4548 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4549 | continue; | 
|  | 4550 | } | 
|  | 4551 | req = list_entry(head->next, migration_req_t, list); | 
|  | 4552 | list_del_init(head->next); | 
|  | 4553 |  | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 4554 | spin_unlock(&rq->lock); | 
|  | 4555 | __migrate_task(req->task, cpu, req->dest_cpu); | 
|  | 4556 | local_irq_enable(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4557 |  | 
|  | 4558 | complete(&req->done); | 
|  | 4559 | } | 
|  | 4560 | __set_current_state(TASK_RUNNING); | 
|  | 4561 | return 0; | 
|  | 4562 |  | 
|  | 4563 | wait_to_die: | 
|  | 4564 | /* Wait for kthread_stop */ | 
|  | 4565 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4566 | while (!kthread_should_stop()) { | 
|  | 4567 | schedule(); | 
|  | 4568 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4569 | } | 
|  | 4570 | __set_current_state(TASK_RUNNING); | 
|  | 4571 | return 0; | 
|  | 4572 | } | 
|  | 4573 |  | 
|  | 4574 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 4575 | /* Figure out where task on dead CPU should go, use force if neccessary. */ | 
|  | 4576 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) | 
|  | 4577 | { | 
|  | 4578 | int dest_cpu; | 
|  | 4579 | cpumask_t mask; | 
|  | 4580 |  | 
|  | 4581 | /* On same node? */ | 
|  | 4582 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
|  | 4583 | cpus_and(mask, mask, tsk->cpus_allowed); | 
|  | 4584 | dest_cpu = any_online_cpu(mask); | 
|  | 4585 |  | 
|  | 4586 | /* On any allowed CPU? */ | 
|  | 4587 | if (dest_cpu == NR_CPUS) | 
|  | 4588 | dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
|  | 4589 |  | 
|  | 4590 | /* No more Mr. Nice Guy. */ | 
|  | 4591 | if (dest_cpu == NR_CPUS) { | 
| Paul Jackson | b39c4fa | 2005-05-20 13:59:15 -0700 | [diff] [blame] | 4592 | cpus_setall(tsk->cpus_allowed); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4593 | dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
|  | 4594 |  | 
|  | 4595 | /* | 
|  | 4596 | * Don't tell them about moving exiting tasks or | 
|  | 4597 | * kernel threads (both mm NULL), since they never | 
|  | 4598 | * leave kernel. | 
|  | 4599 | */ | 
|  | 4600 | if (tsk->mm && printk_ratelimit()) | 
|  | 4601 | printk(KERN_INFO "process %d (%s) no " | 
|  | 4602 | "longer affine to cpu%d\n", | 
|  | 4603 | tsk->pid, tsk->comm, dead_cpu); | 
|  | 4604 | } | 
|  | 4605 | __migrate_task(tsk, dead_cpu, dest_cpu); | 
|  | 4606 | } | 
|  | 4607 |  | 
|  | 4608 | /* | 
|  | 4609 | * While a dead CPU has no uninterruptible tasks queued at this point, | 
|  | 4610 | * it might still have a nonzero ->nr_uninterruptible counter, because | 
|  | 4611 | * for performance reasons the counter is not stricly tracking tasks to | 
|  | 4612 | * their home CPUs. So we just add the counter to another CPU's counter, | 
|  | 4613 | * to keep the global sum constant after CPU-down: | 
|  | 4614 | */ | 
|  | 4615 | static void migrate_nr_uninterruptible(runqueue_t *rq_src) | 
|  | 4616 | { | 
|  | 4617 | runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | 
|  | 4618 | unsigned long flags; | 
|  | 4619 |  | 
|  | 4620 | local_irq_save(flags); | 
|  | 4621 | double_rq_lock(rq_src, rq_dest); | 
|  | 4622 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
|  | 4623 | rq_src->nr_uninterruptible = 0; | 
|  | 4624 | double_rq_unlock(rq_src, rq_dest); | 
|  | 4625 | local_irq_restore(flags); | 
|  | 4626 | } | 
|  | 4627 |  | 
|  | 4628 | /* Run through task list and migrate tasks from the dead cpu. */ | 
|  | 4629 | static void migrate_live_tasks(int src_cpu) | 
|  | 4630 | { | 
|  | 4631 | struct task_struct *tsk, *t; | 
|  | 4632 |  | 
|  | 4633 | write_lock_irq(&tasklist_lock); | 
|  | 4634 |  | 
|  | 4635 | do_each_thread(t, tsk) { | 
|  | 4636 | if (tsk == current) | 
|  | 4637 | continue; | 
|  | 4638 |  | 
|  | 4639 | if (task_cpu(tsk) == src_cpu) | 
|  | 4640 | move_task_off_dead_cpu(src_cpu, tsk); | 
|  | 4641 | } while_each_thread(t, tsk); | 
|  | 4642 |  | 
|  | 4643 | write_unlock_irq(&tasklist_lock); | 
|  | 4644 | } | 
|  | 4645 |  | 
|  | 4646 | /* Schedules idle task to be the next runnable task on current CPU. | 
|  | 4647 | * It does so by boosting its priority to highest possible and adding it to | 
|  | 4648 | * the _front_ of runqueue. Used by CPU offline code. | 
|  | 4649 | */ | 
|  | 4650 | void sched_idle_next(void) | 
|  | 4651 | { | 
|  | 4652 | int cpu = smp_processor_id(); | 
|  | 4653 | runqueue_t *rq = this_rq(); | 
|  | 4654 | struct task_struct *p = rq->idle; | 
|  | 4655 | unsigned long flags; | 
|  | 4656 |  | 
|  | 4657 | /* cpu has to be offline */ | 
|  | 4658 | BUG_ON(cpu_online(cpu)); | 
|  | 4659 |  | 
|  | 4660 | /* Strictly not necessary since rest of the CPUs are stopped by now | 
|  | 4661 | * and interrupts disabled on current cpu. | 
|  | 4662 | */ | 
|  | 4663 | spin_lock_irqsave(&rq->lock, flags); | 
|  | 4664 |  | 
|  | 4665 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | 4666 | /* Add idle task to _front_ of it's priority queue */ | 
|  | 4667 | __activate_idle_task(p, rq); | 
|  | 4668 |  | 
|  | 4669 | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | 4670 | } | 
|  | 4671 |  | 
|  | 4672 | /* Ensures that the idle task is using init_mm right before its cpu goes | 
|  | 4673 | * offline. | 
|  | 4674 | */ | 
|  | 4675 | void idle_task_exit(void) | 
|  | 4676 | { | 
|  | 4677 | struct mm_struct *mm = current->active_mm; | 
|  | 4678 |  | 
|  | 4679 | BUG_ON(cpu_online(smp_processor_id())); | 
|  | 4680 |  | 
|  | 4681 | if (mm != &init_mm) | 
|  | 4682 | switch_mm(mm, &init_mm, current); | 
|  | 4683 | mmdrop(mm); | 
|  | 4684 | } | 
|  | 4685 |  | 
|  | 4686 | static void migrate_dead(unsigned int dead_cpu, task_t *tsk) | 
|  | 4687 | { | 
|  | 4688 | struct runqueue *rq = cpu_rq(dead_cpu); | 
|  | 4689 |  | 
|  | 4690 | /* Must be exiting, otherwise would be on tasklist. */ | 
|  | 4691 | BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD); | 
|  | 4692 |  | 
|  | 4693 | /* Cannot have done final schedule yet: would have vanished. */ | 
|  | 4694 | BUG_ON(tsk->flags & PF_DEAD); | 
|  | 4695 |  | 
|  | 4696 | get_task_struct(tsk); | 
|  | 4697 |  | 
|  | 4698 | /* | 
|  | 4699 | * Drop lock around migration; if someone else moves it, | 
|  | 4700 | * that's OK.  No task can be added to this CPU, so iteration is | 
|  | 4701 | * fine. | 
|  | 4702 | */ | 
|  | 4703 | spin_unlock_irq(&rq->lock); | 
|  | 4704 | move_task_off_dead_cpu(dead_cpu, tsk); | 
|  | 4705 | spin_lock_irq(&rq->lock); | 
|  | 4706 |  | 
|  | 4707 | put_task_struct(tsk); | 
|  | 4708 | } | 
|  | 4709 |  | 
|  | 4710 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
|  | 4711 | static void migrate_dead_tasks(unsigned int dead_cpu) | 
|  | 4712 | { | 
|  | 4713 | unsigned arr, i; | 
|  | 4714 | struct runqueue *rq = cpu_rq(dead_cpu); | 
|  | 4715 |  | 
|  | 4716 | for (arr = 0; arr < 2; arr++) { | 
|  | 4717 | for (i = 0; i < MAX_PRIO; i++) { | 
|  | 4718 | struct list_head *list = &rq->arrays[arr].queue[i]; | 
|  | 4719 | while (!list_empty(list)) | 
|  | 4720 | migrate_dead(dead_cpu, | 
|  | 4721 | list_entry(list->next, task_t, | 
|  | 4722 | run_list)); | 
|  | 4723 | } | 
|  | 4724 | } | 
|  | 4725 | } | 
|  | 4726 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  | 4727 |  | 
|  | 4728 | /* | 
|  | 4729 | * migration_call - callback that gets triggered when a CPU is added. | 
|  | 4730 | * Here we can start up the necessary migration thread for the new CPU. | 
|  | 4731 | */ | 
|  | 4732 | static int migration_call(struct notifier_block *nfb, unsigned long action, | 
|  | 4733 | void *hcpu) | 
|  | 4734 | { | 
|  | 4735 | int cpu = (long)hcpu; | 
|  | 4736 | struct task_struct *p; | 
|  | 4737 | struct runqueue *rq; | 
|  | 4738 | unsigned long flags; | 
|  | 4739 |  | 
|  | 4740 | switch (action) { | 
|  | 4741 | case CPU_UP_PREPARE: | 
|  | 4742 | p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | 
|  | 4743 | if (IS_ERR(p)) | 
|  | 4744 | return NOTIFY_BAD; | 
|  | 4745 | p->flags |= PF_NOFREEZE; | 
|  | 4746 | kthread_bind(p, cpu); | 
|  | 4747 | /* Must be high prio: stop_machine expects to yield to it. */ | 
|  | 4748 | rq = task_rq_lock(p, &flags); | 
|  | 4749 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | 4750 | task_rq_unlock(rq, &flags); | 
|  | 4751 | cpu_rq(cpu)->migration_thread = p; | 
|  | 4752 | break; | 
|  | 4753 | case CPU_ONLINE: | 
|  | 4754 | /* Strictly unneccessary, as first user will wake it. */ | 
|  | 4755 | wake_up_process(cpu_rq(cpu)->migration_thread); | 
|  | 4756 | break; | 
|  | 4757 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 4758 | case CPU_UP_CANCELED: | 
| Heiko Carstens | fc75cdf | 2006-06-25 05:49:10 -0700 | [diff] [blame] | 4759 | if (!cpu_rq(cpu)->migration_thread) | 
|  | 4760 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4761 | /* Unbind it from offline cpu so it can run.  Fall thru. */ | 
| Heiko Carstens | a4c4af7 | 2005-11-07 00:58:38 -0800 | [diff] [blame] | 4762 | kthread_bind(cpu_rq(cpu)->migration_thread, | 
|  | 4763 | any_online_cpu(cpu_online_map)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4764 | kthread_stop(cpu_rq(cpu)->migration_thread); | 
|  | 4765 | cpu_rq(cpu)->migration_thread = NULL; | 
|  | 4766 | break; | 
|  | 4767 | case CPU_DEAD: | 
|  | 4768 | migrate_live_tasks(cpu); | 
|  | 4769 | rq = cpu_rq(cpu); | 
|  | 4770 | kthread_stop(rq->migration_thread); | 
|  | 4771 | rq->migration_thread = NULL; | 
|  | 4772 | /* Idle task back to normal (off runqueue, low prio) */ | 
|  | 4773 | rq = task_rq_lock(rq->idle, &flags); | 
|  | 4774 | deactivate_task(rq->idle, rq); | 
|  | 4775 | rq->idle->static_prio = MAX_PRIO; | 
|  | 4776 | __setscheduler(rq->idle, SCHED_NORMAL, 0); | 
|  | 4777 | migrate_dead_tasks(cpu); | 
|  | 4778 | task_rq_unlock(rq, &flags); | 
|  | 4779 | migrate_nr_uninterruptible(rq); | 
|  | 4780 | BUG_ON(rq->nr_running != 0); | 
|  | 4781 |  | 
|  | 4782 | /* No need to migrate the tasks: it was best-effort if | 
|  | 4783 | * they didn't do lock_cpu_hotplug().  Just wake up | 
|  | 4784 | * the requestors. */ | 
|  | 4785 | spin_lock_irq(&rq->lock); | 
|  | 4786 | while (!list_empty(&rq->migration_queue)) { | 
|  | 4787 | migration_req_t *req; | 
|  | 4788 | req = list_entry(rq->migration_queue.next, | 
|  | 4789 | migration_req_t, list); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4790 | list_del_init(&req->list); | 
|  | 4791 | complete(&req->done); | 
|  | 4792 | } | 
|  | 4793 | spin_unlock_irq(&rq->lock); | 
|  | 4794 | break; | 
|  | 4795 | #endif | 
|  | 4796 | } | 
|  | 4797 | return NOTIFY_OK; | 
|  | 4798 | } | 
|  | 4799 |  | 
|  | 4800 | /* Register at highest priority so that task migration (migrate_all_tasks) | 
|  | 4801 | * happens before everything else. | 
|  | 4802 | */ | 
| Chandra Seetharaman | 649bbaa | 2006-04-24 19:35:15 -0700 | [diff] [blame] | 4803 | static struct notifier_block migration_notifier = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4804 | .notifier_call = migration_call, | 
|  | 4805 | .priority = 10 | 
|  | 4806 | }; | 
|  | 4807 |  | 
|  | 4808 | int __init migration_init(void) | 
|  | 4809 | { | 
|  | 4810 | void *cpu = (void *)(long)smp_processor_id(); | 
|  | 4811 | /* Start one for boot CPU. */ | 
|  | 4812 | migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
|  | 4813 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
|  | 4814 | register_cpu_notifier(&migration_notifier); | 
|  | 4815 | return 0; | 
|  | 4816 | } | 
|  | 4817 | #endif | 
|  | 4818 |  | 
|  | 4819 | #ifdef CONFIG_SMP | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 4820 | #undef SCHED_DOMAIN_DEBUG | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4821 | #ifdef SCHED_DOMAIN_DEBUG | 
|  | 4822 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
|  | 4823 | { | 
|  | 4824 | int level = 0; | 
|  | 4825 |  | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 4826 | if (!sd) { | 
|  | 4827 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
|  | 4828 | return; | 
|  | 4829 | } | 
|  | 4830 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4831 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
|  | 4832 |  | 
|  | 4833 | do { | 
|  | 4834 | int i; | 
|  | 4835 | char str[NR_CPUS]; | 
|  | 4836 | struct sched_group *group = sd->groups; | 
|  | 4837 | cpumask_t groupmask; | 
|  | 4838 |  | 
|  | 4839 | cpumask_scnprintf(str, NR_CPUS, sd->span); | 
|  | 4840 | cpus_clear(groupmask); | 
|  | 4841 |  | 
|  | 4842 | printk(KERN_DEBUG); | 
|  | 4843 | for (i = 0; i < level + 1; i++) | 
|  | 4844 | printk(" "); | 
|  | 4845 | printk("domain %d: ", level); | 
|  | 4846 |  | 
|  | 4847 | if (!(sd->flags & SD_LOAD_BALANCE)) { | 
|  | 4848 | printk("does not load-balance\n"); | 
|  | 4849 | if (sd->parent) | 
|  | 4850 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | 
|  | 4851 | break; | 
|  | 4852 | } | 
|  | 4853 |  | 
|  | 4854 | printk("span %s\n", str); | 
|  | 4855 |  | 
|  | 4856 | if (!cpu_isset(cpu, sd->span)) | 
|  | 4857 | printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | 
|  | 4858 | if (!cpu_isset(cpu, group->cpumask)) | 
|  | 4859 | printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | 
|  | 4860 |  | 
|  | 4861 | printk(KERN_DEBUG); | 
|  | 4862 | for (i = 0; i < level + 2; i++) | 
|  | 4863 | printk(" "); | 
|  | 4864 | printk("groups:"); | 
|  | 4865 | do { | 
|  | 4866 | if (!group) { | 
|  | 4867 | printk("\n"); | 
|  | 4868 | printk(KERN_ERR "ERROR: group is NULL\n"); | 
|  | 4869 | break; | 
|  | 4870 | } | 
|  | 4871 |  | 
|  | 4872 | if (!group->cpu_power) { | 
|  | 4873 | printk("\n"); | 
|  | 4874 | printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | 
|  | 4875 | } | 
|  | 4876 |  | 
|  | 4877 | if (!cpus_weight(group->cpumask)) { | 
|  | 4878 | printk("\n"); | 
|  | 4879 | printk(KERN_ERR "ERROR: empty group\n"); | 
|  | 4880 | } | 
|  | 4881 |  | 
|  | 4882 | if (cpus_intersects(groupmask, group->cpumask)) { | 
|  | 4883 | printk("\n"); | 
|  | 4884 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
|  | 4885 | } | 
|  | 4886 |  | 
|  | 4887 | cpus_or(groupmask, groupmask, group->cpumask); | 
|  | 4888 |  | 
|  | 4889 | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | 
|  | 4890 | printk(" %s", str); | 
|  | 4891 |  | 
|  | 4892 | group = group->next; | 
|  | 4893 | } while (group != sd->groups); | 
|  | 4894 | printk("\n"); | 
|  | 4895 |  | 
|  | 4896 | if (!cpus_equal(sd->span, groupmask)) | 
|  | 4897 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
|  | 4898 |  | 
|  | 4899 | level++; | 
|  | 4900 | sd = sd->parent; | 
|  | 4901 |  | 
|  | 4902 | if (sd) { | 
|  | 4903 | if (!cpus_subset(groupmask, sd->span)) | 
|  | 4904 | printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | 
|  | 4905 | } | 
|  | 4906 |  | 
|  | 4907 | } while (sd); | 
|  | 4908 | } | 
|  | 4909 | #else | 
|  | 4910 | #define sched_domain_debug(sd, cpu) {} | 
|  | 4911 | #endif | 
|  | 4912 |  | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 4913 | static int sd_degenerate(struct sched_domain *sd) | 
| Suresh Siddha | 245af2c | 2005-06-25 14:57:25 -0700 | [diff] [blame] | 4914 | { | 
|  | 4915 | if (cpus_weight(sd->span) == 1) | 
|  | 4916 | return 1; | 
|  | 4917 |  | 
|  | 4918 | /* Following flags need at least 2 groups */ | 
|  | 4919 | if (sd->flags & (SD_LOAD_BALANCE | | 
|  | 4920 | SD_BALANCE_NEWIDLE | | 
|  | 4921 | SD_BALANCE_FORK | | 
|  | 4922 | SD_BALANCE_EXEC)) { | 
|  | 4923 | if (sd->groups != sd->groups->next) | 
|  | 4924 | return 0; | 
|  | 4925 | } | 
|  | 4926 |  | 
|  | 4927 | /* Following flags don't use groups */ | 
|  | 4928 | if (sd->flags & (SD_WAKE_IDLE | | 
|  | 4929 | SD_WAKE_AFFINE | | 
|  | 4930 | SD_WAKE_BALANCE)) | 
|  | 4931 | return 0; | 
|  | 4932 |  | 
|  | 4933 | return 1; | 
|  | 4934 | } | 
|  | 4935 |  | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 4936 | static int sd_parent_degenerate(struct sched_domain *sd, | 
| Suresh Siddha | 245af2c | 2005-06-25 14:57:25 -0700 | [diff] [blame] | 4937 | struct sched_domain *parent) | 
|  | 4938 | { | 
|  | 4939 | unsigned long cflags = sd->flags, pflags = parent->flags; | 
|  | 4940 |  | 
|  | 4941 | if (sd_degenerate(parent)) | 
|  | 4942 | return 1; | 
|  | 4943 |  | 
|  | 4944 | if (!cpus_equal(sd->span, parent->span)) | 
|  | 4945 | return 0; | 
|  | 4946 |  | 
|  | 4947 | /* Does parent contain flags not in child? */ | 
|  | 4948 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | 
|  | 4949 | if (cflags & SD_WAKE_AFFINE) | 
|  | 4950 | pflags &= ~SD_WAKE_BALANCE; | 
|  | 4951 | /* Flags needing groups don't count if only 1 group in parent */ | 
|  | 4952 | if (parent->groups == parent->groups->next) { | 
|  | 4953 | pflags &= ~(SD_LOAD_BALANCE | | 
|  | 4954 | SD_BALANCE_NEWIDLE | | 
|  | 4955 | SD_BALANCE_FORK | | 
|  | 4956 | SD_BALANCE_EXEC); | 
|  | 4957 | } | 
|  | 4958 | if (~cflags & pflags) | 
|  | 4959 | return 0; | 
|  | 4960 |  | 
|  | 4961 | return 1; | 
|  | 4962 | } | 
|  | 4963 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4964 | /* | 
|  | 4965 | * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must | 
|  | 4966 | * hold the hotplug lock. | 
|  | 4967 | */ | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 4968 | static void cpu_attach_domain(struct sched_domain *sd, int cpu) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4969 | { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4970 | runqueue_t *rq = cpu_rq(cpu); | 
| Suresh Siddha | 245af2c | 2005-06-25 14:57:25 -0700 | [diff] [blame] | 4971 | struct sched_domain *tmp; | 
|  | 4972 |  | 
|  | 4973 | /* Remove the sched domains which do not contribute to scheduling. */ | 
|  | 4974 | for (tmp = sd; tmp; tmp = tmp->parent) { | 
|  | 4975 | struct sched_domain *parent = tmp->parent; | 
|  | 4976 | if (!parent) | 
|  | 4977 | break; | 
|  | 4978 | if (sd_parent_degenerate(tmp, parent)) | 
|  | 4979 | tmp->parent = parent->parent; | 
|  | 4980 | } | 
|  | 4981 |  | 
|  | 4982 | if (sd && sd_degenerate(sd)) | 
|  | 4983 | sd = sd->parent; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4984 |  | 
|  | 4985 | sched_domain_debug(sd, cpu); | 
|  | 4986 |  | 
| Nick Piggin | 674311d | 2005-06-25 14:57:27 -0700 | [diff] [blame] | 4987 | rcu_assign_pointer(rq->sd, sd); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4988 | } | 
|  | 4989 |  | 
|  | 4990 | /* cpus with isolated domains */ | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 4991 | static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4992 |  | 
|  | 4993 | /* Setup the mask of cpus configured for isolated domains */ | 
|  | 4994 | static int __init isolated_cpu_setup(char *str) | 
|  | 4995 | { | 
|  | 4996 | int ints[NR_CPUS], i; | 
|  | 4997 |  | 
|  | 4998 | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  | 4999 | cpus_clear(cpu_isolated_map); | 
|  | 5000 | for (i = 1; i <= ints[0]; i++) | 
|  | 5001 | if (ints[i] < NR_CPUS) | 
|  | 5002 | cpu_set(ints[i], cpu_isolated_map); | 
|  | 5003 | return 1; | 
|  | 5004 | } | 
|  | 5005 |  | 
|  | 5006 | __setup ("isolcpus=", isolated_cpu_setup); | 
|  | 5007 |  | 
|  | 5008 | /* | 
|  | 5009 | * init_sched_build_groups takes an array of groups, the cpumask we wish | 
|  | 5010 | * to span, and a pointer to a function which identifies what group a CPU | 
|  | 5011 | * belongs to. The return value of group_fn must be a valid index into the | 
|  | 5012 | * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | 
|  | 5013 | * keep track of groups covered with a cpumask_t). | 
|  | 5014 | * | 
|  | 5015 | * init_sched_build_groups will build a circular linked list of the groups | 
|  | 5016 | * covered by the given span, and will set each group's ->cpumask correctly, | 
|  | 5017 | * and ->cpu_power to 0. | 
|  | 5018 | */ | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5019 | static void init_sched_build_groups(struct sched_group groups[], cpumask_t span, | 
|  | 5020 | int (*group_fn)(int cpu)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5021 | { | 
|  | 5022 | struct sched_group *first = NULL, *last = NULL; | 
|  | 5023 | cpumask_t covered = CPU_MASK_NONE; | 
|  | 5024 | int i; | 
|  | 5025 |  | 
|  | 5026 | for_each_cpu_mask(i, span) { | 
|  | 5027 | int group = group_fn(i); | 
|  | 5028 | struct sched_group *sg = &groups[group]; | 
|  | 5029 | int j; | 
|  | 5030 |  | 
|  | 5031 | if (cpu_isset(i, covered)) | 
|  | 5032 | continue; | 
|  | 5033 |  | 
|  | 5034 | sg->cpumask = CPU_MASK_NONE; | 
|  | 5035 | sg->cpu_power = 0; | 
|  | 5036 |  | 
|  | 5037 | for_each_cpu_mask(j, span) { | 
|  | 5038 | if (group_fn(j) != group) | 
|  | 5039 | continue; | 
|  | 5040 |  | 
|  | 5041 | cpu_set(j, covered); | 
|  | 5042 | cpu_set(j, sg->cpumask); | 
|  | 5043 | } | 
|  | 5044 | if (!first) | 
|  | 5045 | first = sg; | 
|  | 5046 | if (last) | 
|  | 5047 | last->next = sg; | 
|  | 5048 | last = sg; | 
|  | 5049 | } | 
|  | 5050 | last->next = first; | 
|  | 5051 | } | 
|  | 5052 |  | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5053 | #define SD_NODES_PER_DOMAIN 16 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5054 |  | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5055 | /* | 
|  | 5056 | * Self-tuning task migration cost measurement between source and target CPUs. | 
|  | 5057 | * | 
|  | 5058 | * This is done by measuring the cost of manipulating buffers of varying | 
|  | 5059 | * sizes. For a given buffer-size here are the steps that are taken: | 
|  | 5060 | * | 
|  | 5061 | * 1) the source CPU reads+dirties a shared buffer | 
|  | 5062 | * 2) the target CPU reads+dirties the same shared buffer | 
|  | 5063 | * | 
|  | 5064 | * We measure how long they take, in the following 4 scenarios: | 
|  | 5065 | * | 
|  | 5066 | *  - source: CPU1, target: CPU2 | cost1 | 
|  | 5067 | *  - source: CPU2, target: CPU1 | cost2 | 
|  | 5068 | *  - source: CPU1, target: CPU1 | cost3 | 
|  | 5069 | *  - source: CPU2, target: CPU2 | cost4 | 
|  | 5070 | * | 
|  | 5071 | * We then calculate the cost3+cost4-cost1-cost2 difference - this is | 
|  | 5072 | * the cost of migration. | 
|  | 5073 | * | 
|  | 5074 | * We then start off from a small buffer-size and iterate up to larger | 
|  | 5075 | * buffer sizes, in 5% steps - measuring each buffer-size separately, and | 
|  | 5076 | * doing a maximum search for the cost. (The maximum cost for a migration | 
|  | 5077 | * normally occurs when the working set size is around the effective cache | 
|  | 5078 | * size.) | 
|  | 5079 | */ | 
|  | 5080 | #define SEARCH_SCOPE		2 | 
|  | 5081 | #define MIN_CACHE_SIZE		(64*1024U) | 
|  | 5082 | #define DEFAULT_CACHE_SIZE	(5*1024*1024U) | 
| Ingo Molnar | 70b4d63 | 2006-01-30 20:24:38 +0100 | [diff] [blame] | 5083 | #define ITERATIONS		1 | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5084 | #define SIZE_THRESH		130 | 
|  | 5085 | #define COST_THRESH		130 | 
|  | 5086 |  | 
|  | 5087 | /* | 
|  | 5088 | * The migration cost is a function of 'domain distance'. Domain | 
|  | 5089 | * distance is the number of steps a CPU has to iterate down its | 
|  | 5090 | * domain tree to share a domain with the other CPU. The farther | 
|  | 5091 | * two CPUs are from each other, the larger the distance gets. | 
|  | 5092 | * | 
|  | 5093 | * Note that we use the distance only to cache measurement results, | 
|  | 5094 | * the distance value is not used numerically otherwise. When two | 
|  | 5095 | * CPUs have the same distance it is assumed that the migration | 
|  | 5096 | * cost is the same. (this is a simplification but quite practical) | 
|  | 5097 | */ | 
|  | 5098 | #define MAX_DOMAIN_DISTANCE 32 | 
|  | 5099 |  | 
|  | 5100 | static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = | 
| Ingo Molnar | 4bbf39c | 2006-02-17 13:52:44 -0800 | [diff] [blame] | 5101 | { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = | 
|  | 5102 | /* | 
|  | 5103 | * Architectures may override the migration cost and thus avoid | 
|  | 5104 | * boot-time calibration. Unit is nanoseconds. Mostly useful for | 
|  | 5105 | * virtualized hardware: | 
|  | 5106 | */ | 
|  | 5107 | #ifdef CONFIG_DEFAULT_MIGRATION_COST | 
|  | 5108 | CONFIG_DEFAULT_MIGRATION_COST | 
|  | 5109 | #else | 
|  | 5110 | -1LL | 
|  | 5111 | #endif | 
|  | 5112 | }; | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5113 |  | 
|  | 5114 | /* | 
|  | 5115 | * Allow override of migration cost - in units of microseconds. | 
|  | 5116 | * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost | 
|  | 5117 | * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: | 
|  | 5118 | */ | 
|  | 5119 | static int __init migration_cost_setup(char *str) | 
|  | 5120 | { | 
|  | 5121 | int ints[MAX_DOMAIN_DISTANCE+1], i; | 
|  | 5122 |  | 
|  | 5123 | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  | 5124 |  | 
|  | 5125 | printk("#ints: %d\n", ints[0]); | 
|  | 5126 | for (i = 1; i <= ints[0]; i++) { | 
|  | 5127 | migration_cost[i-1] = (unsigned long long)ints[i]*1000; | 
|  | 5128 | printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); | 
|  | 5129 | } | 
|  | 5130 | return 1; | 
|  | 5131 | } | 
|  | 5132 |  | 
|  | 5133 | __setup ("migration_cost=", migration_cost_setup); | 
|  | 5134 |  | 
|  | 5135 | /* | 
|  | 5136 | * Global multiplier (divisor) for migration-cutoff values, | 
|  | 5137 | * in percentiles. E.g. use a value of 150 to get 1.5 times | 
|  | 5138 | * longer cache-hot cutoff times. | 
|  | 5139 | * | 
|  | 5140 | * (We scale it from 100 to 128 to long long handling easier.) | 
|  | 5141 | */ | 
|  | 5142 |  | 
|  | 5143 | #define MIGRATION_FACTOR_SCALE 128 | 
|  | 5144 |  | 
|  | 5145 | static unsigned int migration_factor = MIGRATION_FACTOR_SCALE; | 
|  | 5146 |  | 
|  | 5147 | static int __init setup_migration_factor(char *str) | 
|  | 5148 | { | 
|  | 5149 | get_option(&str, &migration_factor); | 
|  | 5150 | migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; | 
|  | 5151 | return 1; | 
|  | 5152 | } | 
|  | 5153 |  | 
|  | 5154 | __setup("migration_factor=", setup_migration_factor); | 
|  | 5155 |  | 
|  | 5156 | /* | 
|  | 5157 | * Estimated distance of two CPUs, measured via the number of domains | 
|  | 5158 | * we have to pass for the two CPUs to be in the same span: | 
|  | 5159 | */ | 
|  | 5160 | static unsigned long domain_distance(int cpu1, int cpu2) | 
|  | 5161 | { | 
|  | 5162 | unsigned long distance = 0; | 
|  | 5163 | struct sched_domain *sd; | 
|  | 5164 |  | 
|  | 5165 | for_each_domain(cpu1, sd) { | 
|  | 5166 | WARN_ON(!cpu_isset(cpu1, sd->span)); | 
|  | 5167 | if (cpu_isset(cpu2, sd->span)) | 
|  | 5168 | return distance; | 
|  | 5169 | distance++; | 
|  | 5170 | } | 
|  | 5171 | if (distance >= MAX_DOMAIN_DISTANCE) { | 
|  | 5172 | WARN_ON(1); | 
|  | 5173 | distance = MAX_DOMAIN_DISTANCE-1; | 
|  | 5174 | } | 
|  | 5175 |  | 
|  | 5176 | return distance; | 
|  | 5177 | } | 
|  | 5178 |  | 
|  | 5179 | static unsigned int migration_debug; | 
|  | 5180 |  | 
|  | 5181 | static int __init setup_migration_debug(char *str) | 
|  | 5182 | { | 
|  | 5183 | get_option(&str, &migration_debug); | 
|  | 5184 | return 1; | 
|  | 5185 | } | 
|  | 5186 |  | 
|  | 5187 | __setup("migration_debug=", setup_migration_debug); | 
|  | 5188 |  | 
|  | 5189 | /* | 
|  | 5190 | * Maximum cache-size that the scheduler should try to measure. | 
|  | 5191 | * Architectures with larger caches should tune this up during | 
|  | 5192 | * bootup. Gets used in the domain-setup code (i.e. during SMP | 
|  | 5193 | * bootup). | 
|  | 5194 | */ | 
|  | 5195 | unsigned int max_cache_size; | 
|  | 5196 |  | 
|  | 5197 | static int __init setup_max_cache_size(char *str) | 
|  | 5198 | { | 
|  | 5199 | get_option(&str, &max_cache_size); | 
|  | 5200 | return 1; | 
|  | 5201 | } | 
|  | 5202 |  | 
|  | 5203 | __setup("max_cache_size=", setup_max_cache_size); | 
|  | 5204 |  | 
|  | 5205 | /* | 
|  | 5206 | * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This | 
|  | 5207 | * is the operation that is timed, so we try to generate unpredictable | 
|  | 5208 | * cachemisses that still end up filling the L2 cache: | 
|  | 5209 | */ | 
|  | 5210 | static void touch_cache(void *__cache, unsigned long __size) | 
|  | 5211 | { | 
|  | 5212 | unsigned long size = __size/sizeof(long), chunk1 = size/3, | 
|  | 5213 | chunk2 = 2*size/3; | 
|  | 5214 | unsigned long *cache = __cache; | 
|  | 5215 | int i; | 
|  | 5216 |  | 
|  | 5217 | for (i = 0; i < size/6; i += 8) { | 
|  | 5218 | switch (i % 6) { | 
|  | 5219 | case 0: cache[i]++; | 
|  | 5220 | case 1: cache[size-1-i]++; | 
|  | 5221 | case 2: cache[chunk1-i]++; | 
|  | 5222 | case 3: cache[chunk1+i]++; | 
|  | 5223 | case 4: cache[chunk2-i]++; | 
|  | 5224 | case 5: cache[chunk2+i]++; | 
|  | 5225 | } | 
|  | 5226 | } | 
|  | 5227 | } | 
|  | 5228 |  | 
|  | 5229 | /* | 
|  | 5230 | * Measure the cache-cost of one task migration. Returns in units of nsec. | 
|  | 5231 | */ | 
|  | 5232 | static unsigned long long measure_one(void *cache, unsigned long size, | 
|  | 5233 | int source, int target) | 
|  | 5234 | { | 
|  | 5235 | cpumask_t mask, saved_mask; | 
|  | 5236 | unsigned long long t0, t1, t2, t3, cost; | 
|  | 5237 |  | 
|  | 5238 | saved_mask = current->cpus_allowed; | 
|  | 5239 |  | 
|  | 5240 | /* | 
|  | 5241 | * Flush source caches to RAM and invalidate them: | 
|  | 5242 | */ | 
|  | 5243 | sched_cacheflush(); | 
|  | 5244 |  | 
|  | 5245 | /* | 
|  | 5246 | * Migrate to the source CPU: | 
|  | 5247 | */ | 
|  | 5248 | mask = cpumask_of_cpu(source); | 
|  | 5249 | set_cpus_allowed(current, mask); | 
|  | 5250 | WARN_ON(smp_processor_id() != source); | 
|  | 5251 |  | 
|  | 5252 | /* | 
|  | 5253 | * Dirty the working set: | 
|  | 5254 | */ | 
|  | 5255 | t0 = sched_clock(); | 
|  | 5256 | touch_cache(cache, size); | 
|  | 5257 | t1 = sched_clock(); | 
|  | 5258 |  | 
|  | 5259 | /* | 
|  | 5260 | * Migrate to the target CPU, dirty the L2 cache and access | 
|  | 5261 | * the shared buffer. (which represents the working set | 
|  | 5262 | * of a migrated task.) | 
|  | 5263 | */ | 
|  | 5264 | mask = cpumask_of_cpu(target); | 
|  | 5265 | set_cpus_allowed(current, mask); | 
|  | 5266 | WARN_ON(smp_processor_id() != target); | 
|  | 5267 |  | 
|  | 5268 | t2 = sched_clock(); | 
|  | 5269 | touch_cache(cache, size); | 
|  | 5270 | t3 = sched_clock(); | 
|  | 5271 |  | 
|  | 5272 | cost = t1-t0 + t3-t2; | 
|  | 5273 |  | 
|  | 5274 | if (migration_debug >= 2) | 
|  | 5275 | printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n", | 
|  | 5276 | source, target, t1-t0, t1-t0, t3-t2, cost); | 
|  | 5277 | /* | 
|  | 5278 | * Flush target caches to RAM and invalidate them: | 
|  | 5279 | */ | 
|  | 5280 | sched_cacheflush(); | 
|  | 5281 |  | 
|  | 5282 | set_cpus_allowed(current, saved_mask); | 
|  | 5283 |  | 
|  | 5284 | return cost; | 
|  | 5285 | } | 
|  | 5286 |  | 
|  | 5287 | /* | 
|  | 5288 | * Measure a series of task migrations and return the average | 
|  | 5289 | * result. Since this code runs early during bootup the system | 
|  | 5290 | * is 'undisturbed' and the average latency makes sense. | 
|  | 5291 | * | 
|  | 5292 | * The algorithm in essence auto-detects the relevant cache-size, | 
|  | 5293 | * so it will properly detect different cachesizes for different | 
|  | 5294 | * cache-hierarchies, depending on how the CPUs are connected. | 
|  | 5295 | * | 
|  | 5296 | * Architectures can prime the upper limit of the search range via | 
|  | 5297 | * max_cache_size, otherwise the search range defaults to 20MB...64K. | 
|  | 5298 | */ | 
|  | 5299 | static unsigned long long | 
|  | 5300 | measure_cost(int cpu1, int cpu2, void *cache, unsigned int size) | 
|  | 5301 | { | 
|  | 5302 | unsigned long long cost1, cost2; | 
|  | 5303 | int i; | 
|  | 5304 |  | 
|  | 5305 | /* | 
|  | 5306 | * Measure the migration cost of 'size' bytes, over an | 
|  | 5307 | * average of 10 runs: | 
|  | 5308 | * | 
|  | 5309 | * (We perturb the cache size by a small (0..4k) | 
|  | 5310 | *  value to compensate size/alignment related artifacts. | 
|  | 5311 | *  We also subtract the cost of the operation done on | 
|  | 5312 | *  the same CPU.) | 
|  | 5313 | */ | 
|  | 5314 | cost1 = 0; | 
|  | 5315 |  | 
|  | 5316 | /* | 
|  | 5317 | * dry run, to make sure we start off cache-cold on cpu1, | 
|  | 5318 | * and to get any vmalloc pagefaults in advance: | 
|  | 5319 | */ | 
|  | 5320 | measure_one(cache, size, cpu1, cpu2); | 
|  | 5321 | for (i = 0; i < ITERATIONS; i++) | 
|  | 5322 | cost1 += measure_one(cache, size - i*1024, cpu1, cpu2); | 
|  | 5323 |  | 
|  | 5324 | measure_one(cache, size, cpu2, cpu1); | 
|  | 5325 | for (i = 0; i < ITERATIONS; i++) | 
|  | 5326 | cost1 += measure_one(cache, size - i*1024, cpu2, cpu1); | 
|  | 5327 |  | 
|  | 5328 | /* | 
|  | 5329 | * (We measure the non-migrating [cached] cost on both | 
|  | 5330 | *  cpu1 and cpu2, to handle CPUs with different speeds) | 
|  | 5331 | */ | 
|  | 5332 | cost2 = 0; | 
|  | 5333 |  | 
|  | 5334 | measure_one(cache, size, cpu1, cpu1); | 
|  | 5335 | for (i = 0; i < ITERATIONS; i++) | 
|  | 5336 | cost2 += measure_one(cache, size - i*1024, cpu1, cpu1); | 
|  | 5337 |  | 
|  | 5338 | measure_one(cache, size, cpu2, cpu2); | 
|  | 5339 | for (i = 0; i < ITERATIONS; i++) | 
|  | 5340 | cost2 += measure_one(cache, size - i*1024, cpu2, cpu2); | 
|  | 5341 |  | 
|  | 5342 | /* | 
|  | 5343 | * Get the per-iteration migration cost: | 
|  | 5344 | */ | 
|  | 5345 | do_div(cost1, 2*ITERATIONS); | 
|  | 5346 | do_div(cost2, 2*ITERATIONS); | 
|  | 5347 |  | 
|  | 5348 | return cost1 - cost2; | 
|  | 5349 | } | 
|  | 5350 |  | 
|  | 5351 | static unsigned long long measure_migration_cost(int cpu1, int cpu2) | 
|  | 5352 | { | 
|  | 5353 | unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0; | 
|  | 5354 | unsigned int max_size, size, size_found = 0; | 
|  | 5355 | long long cost = 0, prev_cost; | 
|  | 5356 | void *cache; | 
|  | 5357 |  | 
|  | 5358 | /* | 
|  | 5359 | * Search from max_cache_size*5 down to 64K - the real relevant | 
|  | 5360 | * cachesize has to lie somewhere inbetween. | 
|  | 5361 | */ | 
|  | 5362 | if (max_cache_size) { | 
|  | 5363 | max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE); | 
|  | 5364 | size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE); | 
|  | 5365 | } else { | 
|  | 5366 | /* | 
|  | 5367 | * Since we have no estimation about the relevant | 
|  | 5368 | * search range | 
|  | 5369 | */ | 
|  | 5370 | max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE; | 
|  | 5371 | size = MIN_CACHE_SIZE; | 
|  | 5372 | } | 
|  | 5373 |  | 
|  | 5374 | if (!cpu_online(cpu1) || !cpu_online(cpu2)) { | 
|  | 5375 | printk("cpu %d and %d not both online!\n", cpu1, cpu2); | 
|  | 5376 | return 0; | 
|  | 5377 | } | 
|  | 5378 |  | 
|  | 5379 | /* | 
|  | 5380 | * Allocate the working set: | 
|  | 5381 | */ | 
|  | 5382 | cache = vmalloc(max_size); | 
|  | 5383 | if (!cache) { | 
|  | 5384 | printk("could not vmalloc %d bytes for cache!\n", 2*max_size); | 
|  | 5385 | return 1000000; // return 1 msec on very small boxen | 
|  | 5386 | } | 
|  | 5387 |  | 
|  | 5388 | while (size <= max_size) { | 
|  | 5389 | prev_cost = cost; | 
|  | 5390 | cost = measure_cost(cpu1, cpu2, cache, size); | 
|  | 5391 |  | 
|  | 5392 | /* | 
|  | 5393 | * Update the max: | 
|  | 5394 | */ | 
|  | 5395 | if (cost > 0) { | 
|  | 5396 | if (max_cost < cost) { | 
|  | 5397 | max_cost = cost; | 
|  | 5398 | size_found = size; | 
|  | 5399 | } | 
|  | 5400 | } | 
|  | 5401 | /* | 
|  | 5402 | * Calculate average fluctuation, we use this to prevent | 
|  | 5403 | * noise from triggering an early break out of the loop: | 
|  | 5404 | */ | 
|  | 5405 | fluct = abs(cost - prev_cost); | 
|  | 5406 | avg_fluct = (avg_fluct + fluct)/2; | 
|  | 5407 |  | 
|  | 5408 | if (migration_debug) | 
|  | 5409 | printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n", | 
|  | 5410 | cpu1, cpu2, size, | 
|  | 5411 | (long)cost / 1000000, | 
|  | 5412 | ((long)cost / 100000) % 10, | 
|  | 5413 | (long)max_cost / 1000000, | 
|  | 5414 | ((long)max_cost / 100000) % 10, | 
|  | 5415 | domain_distance(cpu1, cpu2), | 
|  | 5416 | cost, avg_fluct); | 
|  | 5417 |  | 
|  | 5418 | /* | 
|  | 5419 | * If we iterated at least 20% past the previous maximum, | 
|  | 5420 | * and the cost has dropped by more than 20% already, | 
|  | 5421 | * (taking fluctuations into account) then we assume to | 
|  | 5422 | * have found the maximum and break out of the loop early: | 
|  | 5423 | */ | 
|  | 5424 | if (size_found && (size*100 > size_found*SIZE_THRESH)) | 
|  | 5425 | if (cost+avg_fluct <= 0 || | 
|  | 5426 | max_cost*100 > (cost+avg_fluct)*COST_THRESH) { | 
|  | 5427 |  | 
|  | 5428 | if (migration_debug) | 
|  | 5429 | printk("-> found max.\n"); | 
|  | 5430 | break; | 
|  | 5431 | } | 
|  | 5432 | /* | 
| Ingo Molnar | 70b4d63 | 2006-01-30 20:24:38 +0100 | [diff] [blame] | 5433 | * Increase the cachesize in 10% steps: | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5434 | */ | 
| Ingo Molnar | 70b4d63 | 2006-01-30 20:24:38 +0100 | [diff] [blame] | 5435 | size = size * 10 / 9; | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5436 | } | 
|  | 5437 |  | 
|  | 5438 | if (migration_debug) | 
|  | 5439 | printk("[%d][%d] working set size found: %d, cost: %Ld\n", | 
|  | 5440 | cpu1, cpu2, size_found, max_cost); | 
|  | 5441 |  | 
|  | 5442 | vfree(cache); | 
|  | 5443 |  | 
|  | 5444 | /* | 
|  | 5445 | * A task is considered 'cache cold' if at least 2 times | 
|  | 5446 | * the worst-case cost of migration has passed. | 
|  | 5447 | * | 
|  | 5448 | * (this limit is only listened to if the load-balancing | 
|  | 5449 | * situation is 'nice' - if there is a large imbalance we | 
|  | 5450 | * ignore it for the sake of CPU utilization and | 
|  | 5451 | * processing fairness.) | 
|  | 5452 | */ | 
|  | 5453 | return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE; | 
|  | 5454 | } | 
|  | 5455 |  | 
|  | 5456 | static void calibrate_migration_costs(const cpumask_t *cpu_map) | 
|  | 5457 | { | 
|  | 5458 | int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id(); | 
|  | 5459 | unsigned long j0, j1, distance, max_distance = 0; | 
|  | 5460 | struct sched_domain *sd; | 
|  | 5461 |  | 
|  | 5462 | j0 = jiffies; | 
|  | 5463 |  | 
|  | 5464 | /* | 
|  | 5465 | * First pass - calculate the cacheflush times: | 
|  | 5466 | */ | 
|  | 5467 | for_each_cpu_mask(cpu1, *cpu_map) { | 
|  | 5468 | for_each_cpu_mask(cpu2, *cpu_map) { | 
|  | 5469 | if (cpu1 == cpu2) | 
|  | 5470 | continue; | 
|  | 5471 | distance = domain_distance(cpu1, cpu2); | 
|  | 5472 | max_distance = max(max_distance, distance); | 
|  | 5473 | /* | 
|  | 5474 | * No result cached yet? | 
|  | 5475 | */ | 
|  | 5476 | if (migration_cost[distance] == -1LL) | 
|  | 5477 | migration_cost[distance] = | 
|  | 5478 | measure_migration_cost(cpu1, cpu2); | 
|  | 5479 | } | 
|  | 5480 | } | 
|  | 5481 | /* | 
|  | 5482 | * Second pass - update the sched domain hierarchy with | 
|  | 5483 | * the new cache-hot-time estimations: | 
|  | 5484 | */ | 
|  | 5485 | for_each_cpu_mask(cpu, *cpu_map) { | 
|  | 5486 | distance = 0; | 
|  | 5487 | for_each_domain(cpu, sd) { | 
|  | 5488 | sd->cache_hot_time = migration_cost[distance]; | 
|  | 5489 | distance++; | 
|  | 5490 | } | 
|  | 5491 | } | 
|  | 5492 | /* | 
|  | 5493 | * Print the matrix: | 
|  | 5494 | */ | 
|  | 5495 | if (migration_debug) | 
|  | 5496 | printk("migration: max_cache_size: %d, cpu: %d MHz:\n", | 
|  | 5497 | max_cache_size, | 
|  | 5498 | #ifdef CONFIG_X86 | 
|  | 5499 | cpu_khz/1000 | 
|  | 5500 | #else | 
|  | 5501 | -1 | 
|  | 5502 | #endif | 
|  | 5503 | ); | 
| Chuck Ebbert | bd576c9 | 2006-02-04 23:27:42 -0800 | [diff] [blame] | 5504 | if (system_state == SYSTEM_BOOTING) { | 
|  | 5505 | printk("migration_cost="); | 
|  | 5506 | for (distance = 0; distance <= max_distance; distance++) { | 
|  | 5507 | if (distance) | 
|  | 5508 | printk(","); | 
|  | 5509 | printk("%ld", (long)migration_cost[distance] / 1000); | 
|  | 5510 | } | 
|  | 5511 | printk("\n"); | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5512 | } | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5513 | j1 = jiffies; | 
|  | 5514 | if (migration_debug) | 
|  | 5515 | printk("migration: %ld seconds\n", (j1-j0)/HZ); | 
|  | 5516 |  | 
|  | 5517 | /* | 
|  | 5518 | * Move back to the original CPU. NUMA-Q gets confused | 
|  | 5519 | * if we migrate to another quad during bootup. | 
|  | 5520 | */ | 
|  | 5521 | if (raw_smp_processor_id() != orig_cpu) { | 
|  | 5522 | cpumask_t mask = cpumask_of_cpu(orig_cpu), | 
|  | 5523 | saved_mask = current->cpus_allowed; | 
|  | 5524 |  | 
|  | 5525 | set_cpus_allowed(current, mask); | 
|  | 5526 | set_cpus_allowed(current, saved_mask); | 
|  | 5527 | } | 
|  | 5528 | } | 
|  | 5529 |  | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5530 | #ifdef CONFIG_NUMA | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5531 |  | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5532 | /** | 
|  | 5533 | * find_next_best_node - find the next node to include in a sched_domain | 
|  | 5534 | * @node: node whose sched_domain we're building | 
|  | 5535 | * @used_nodes: nodes already in the sched_domain | 
|  | 5536 | * | 
|  | 5537 | * Find the next node to include in a given scheduling domain.  Simply | 
|  | 5538 | * finds the closest node not already in the @used_nodes map. | 
|  | 5539 | * | 
|  | 5540 | * Should use nodemask_t. | 
|  | 5541 | */ | 
|  | 5542 | static int find_next_best_node(int node, unsigned long *used_nodes) | 
|  | 5543 | { | 
|  | 5544 | int i, n, val, min_val, best_node = 0; | 
|  | 5545 |  | 
|  | 5546 | min_val = INT_MAX; | 
|  | 5547 |  | 
|  | 5548 | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | 5549 | /* Start at @node */ | 
|  | 5550 | n = (node + i) % MAX_NUMNODES; | 
|  | 5551 |  | 
|  | 5552 | if (!nr_cpus_node(n)) | 
|  | 5553 | continue; | 
|  | 5554 |  | 
|  | 5555 | /* Skip already used nodes */ | 
|  | 5556 | if (test_bit(n, used_nodes)) | 
|  | 5557 | continue; | 
|  | 5558 |  | 
|  | 5559 | /* Simple min distance search */ | 
|  | 5560 | val = node_distance(node, n); | 
|  | 5561 |  | 
|  | 5562 | if (val < min_val) { | 
|  | 5563 | min_val = val; | 
|  | 5564 | best_node = n; | 
|  | 5565 | } | 
|  | 5566 | } | 
|  | 5567 |  | 
|  | 5568 | set_bit(best_node, used_nodes); | 
|  | 5569 | return best_node; | 
|  | 5570 | } | 
|  | 5571 |  | 
|  | 5572 | /** | 
|  | 5573 | * sched_domain_node_span - get a cpumask for a node's sched_domain | 
|  | 5574 | * @node: node whose cpumask we're constructing | 
|  | 5575 | * @size: number of nodes to include in this span | 
|  | 5576 | * | 
|  | 5577 | * Given a node, construct a good cpumask for its sched_domain to span.  It | 
|  | 5578 | * should be one that prevents unnecessary balancing, but also spreads tasks | 
|  | 5579 | * out optimally. | 
|  | 5580 | */ | 
|  | 5581 | static cpumask_t sched_domain_node_span(int node) | 
|  | 5582 | { | 
|  | 5583 | int i; | 
|  | 5584 | cpumask_t span, nodemask; | 
|  | 5585 | DECLARE_BITMAP(used_nodes, MAX_NUMNODES); | 
|  | 5586 |  | 
|  | 5587 | cpus_clear(span); | 
|  | 5588 | bitmap_zero(used_nodes, MAX_NUMNODES); | 
|  | 5589 |  | 
|  | 5590 | nodemask = node_to_cpumask(node); | 
|  | 5591 | cpus_or(span, span, nodemask); | 
|  | 5592 | set_bit(node, used_nodes); | 
|  | 5593 |  | 
|  | 5594 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 
|  | 5595 | int next_node = find_next_best_node(node, used_nodes); | 
|  | 5596 | nodemask = node_to_cpumask(next_node); | 
|  | 5597 | cpus_or(span, span, nodemask); | 
|  | 5598 | } | 
|  | 5599 |  | 
|  | 5600 | return span; | 
|  | 5601 | } | 
|  | 5602 | #endif | 
|  | 5603 |  | 
|  | 5604 | /* | 
|  | 5605 | * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we | 
|  | 5606 | * can switch it on easily if needed. | 
|  | 5607 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5608 | #ifdef CONFIG_SCHED_SMT | 
|  | 5609 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
|  | 5610 | static struct sched_group sched_group_cpus[NR_CPUS]; | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5611 | static int cpu_to_cpu_group(int cpu) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5612 | { | 
|  | 5613 | return cpu; | 
|  | 5614 | } | 
|  | 5615 | #endif | 
|  | 5616 |  | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5617 | #ifdef CONFIG_SCHED_MC | 
|  | 5618 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | 
|  | 5619 | static struct sched_group sched_group_core[NR_CPUS]; | 
|  | 5620 | #endif | 
|  | 5621 |  | 
|  | 5622 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | 
|  | 5623 | static int cpu_to_core_group(int cpu) | 
|  | 5624 | { | 
|  | 5625 | return first_cpu(cpu_sibling_map[cpu]); | 
|  | 5626 | } | 
|  | 5627 | #elif defined(CONFIG_SCHED_MC) | 
|  | 5628 | static int cpu_to_core_group(int cpu) | 
|  | 5629 | { | 
|  | 5630 | return cpu; | 
|  | 5631 | } | 
|  | 5632 | #endif | 
|  | 5633 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5634 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
|  | 5635 | static struct sched_group sched_group_phys[NR_CPUS]; | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5636 | static int cpu_to_phys_group(int cpu) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5637 | { | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5638 | #if defined(CONFIG_SCHED_MC) | 
|  | 5639 | cpumask_t mask = cpu_coregroup_map(cpu); | 
|  | 5640 | return first_cpu(mask); | 
|  | 5641 | #elif defined(CONFIG_SCHED_SMT) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5642 | return first_cpu(cpu_sibling_map[cpu]); | 
|  | 5643 | #else | 
|  | 5644 | return cpu; | 
|  | 5645 | #endif | 
|  | 5646 | } | 
|  | 5647 |  | 
|  | 5648 | #ifdef CONFIG_NUMA | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5649 | /* | 
|  | 5650 | * The init_sched_build_groups can't handle what we want to do with node | 
|  | 5651 | * groups, so roll our own. Now each node has its own list of groups which | 
|  | 5652 | * gets dynamically allocated. | 
|  | 5653 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5654 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5655 | static struct sched_group **sched_group_nodes_bycpu[NR_CPUS]; | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5656 |  | 
|  | 5657 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5658 | static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS]; | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5659 |  | 
|  | 5660 | static int cpu_to_allnodes_group(int cpu) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5661 | { | 
|  | 5662 | return cpu_to_node(cpu); | 
|  | 5663 | } | 
| Siddha, Suresh B | 0806903 | 2006-03-27 01:15:23 -0800 | [diff] [blame] | 5664 | static void init_numa_sched_groups_power(struct sched_group *group_head) | 
|  | 5665 | { | 
|  | 5666 | struct sched_group *sg = group_head; | 
|  | 5667 | int j; | 
|  | 5668 |  | 
|  | 5669 | if (!sg) | 
|  | 5670 | return; | 
|  | 5671 | next_sg: | 
|  | 5672 | for_each_cpu_mask(j, sg->cpumask) { | 
|  | 5673 | struct sched_domain *sd; | 
|  | 5674 |  | 
|  | 5675 | sd = &per_cpu(phys_domains, j); | 
|  | 5676 | if (j != first_cpu(sd->groups->cpumask)) { | 
|  | 5677 | /* | 
|  | 5678 | * Only add "power" once for each | 
|  | 5679 | * physical package. | 
|  | 5680 | */ | 
|  | 5681 | continue; | 
|  | 5682 | } | 
|  | 5683 |  | 
|  | 5684 | sg->cpu_power += sd->groups->cpu_power; | 
|  | 5685 | } | 
|  | 5686 | sg = sg->next; | 
|  | 5687 | if (sg != group_head) | 
|  | 5688 | goto next_sg; | 
|  | 5689 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5690 | #endif | 
|  | 5691 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5692 | /* | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5693 | * Build sched domains for a given set of cpus and attach the sched domains | 
|  | 5694 | * to the individual cpus | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5695 | */ | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5696 | void build_sched_domains(const cpumask_t *cpu_map) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5697 | { | 
|  | 5698 | int i; | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5699 | #ifdef CONFIG_NUMA | 
|  | 5700 | struct sched_group **sched_group_nodes = NULL; | 
|  | 5701 | struct sched_group *sched_group_allnodes = NULL; | 
|  | 5702 |  | 
|  | 5703 | /* | 
|  | 5704 | * Allocate the per-node list of sched groups | 
|  | 5705 | */ | 
|  | 5706 | sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES, | 
|  | 5707 | GFP_ATOMIC); | 
|  | 5708 | if (!sched_group_nodes) { | 
|  | 5709 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | 
|  | 5710 | return; | 
|  | 5711 | } | 
|  | 5712 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | 
|  | 5713 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5714 |  | 
|  | 5715 | /* | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5716 | * Set up domains for cpus specified by the cpu_map. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5717 | */ | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5718 | for_each_cpu_mask(i, *cpu_map) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5719 | int group; | 
|  | 5720 | struct sched_domain *sd = NULL, *p; | 
|  | 5721 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 
|  | 5722 |  | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5723 | cpus_and(nodemask, nodemask, *cpu_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5724 |  | 
|  | 5725 | #ifdef CONFIG_NUMA | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5726 | if (cpus_weight(*cpu_map) | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5727 | > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5728 | if (!sched_group_allnodes) { | 
|  | 5729 | sched_group_allnodes | 
|  | 5730 | = kmalloc(sizeof(struct sched_group) | 
|  | 5731 | * MAX_NUMNODES, | 
|  | 5732 | GFP_KERNEL); | 
|  | 5733 | if (!sched_group_allnodes) { | 
|  | 5734 | printk(KERN_WARNING | 
|  | 5735 | "Can not alloc allnodes sched group\n"); | 
|  | 5736 | break; | 
|  | 5737 | } | 
|  | 5738 | sched_group_allnodes_bycpu[i] | 
|  | 5739 | = sched_group_allnodes; | 
|  | 5740 | } | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5741 | sd = &per_cpu(allnodes_domains, i); | 
|  | 5742 | *sd = SD_ALLNODES_INIT; | 
|  | 5743 | sd->span = *cpu_map; | 
|  | 5744 | group = cpu_to_allnodes_group(i); | 
|  | 5745 | sd->groups = &sched_group_allnodes[group]; | 
|  | 5746 | p = sd; | 
|  | 5747 | } else | 
|  | 5748 | p = NULL; | 
|  | 5749 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5750 | sd = &per_cpu(node_domains, i); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5751 | *sd = SD_NODE_INIT; | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5752 | sd->span = sched_domain_node_span(cpu_to_node(i)); | 
|  | 5753 | sd->parent = p; | 
|  | 5754 | cpus_and(sd->span, sd->span, *cpu_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5755 | #endif | 
|  | 5756 |  | 
|  | 5757 | p = sd; | 
|  | 5758 | sd = &per_cpu(phys_domains, i); | 
|  | 5759 | group = cpu_to_phys_group(i); | 
|  | 5760 | *sd = SD_CPU_INIT; | 
|  | 5761 | sd->span = nodemask; | 
|  | 5762 | sd->parent = p; | 
|  | 5763 | sd->groups = &sched_group_phys[group]; | 
|  | 5764 |  | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5765 | #ifdef CONFIG_SCHED_MC | 
|  | 5766 | p = sd; | 
|  | 5767 | sd = &per_cpu(core_domains, i); | 
|  | 5768 | group = cpu_to_core_group(i); | 
|  | 5769 | *sd = SD_MC_INIT; | 
|  | 5770 | sd->span = cpu_coregroup_map(i); | 
|  | 5771 | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | 5772 | sd->parent = p; | 
|  | 5773 | sd->groups = &sched_group_core[group]; | 
|  | 5774 | #endif | 
|  | 5775 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5776 | #ifdef CONFIG_SCHED_SMT | 
|  | 5777 | p = sd; | 
|  | 5778 | sd = &per_cpu(cpu_domains, i); | 
|  | 5779 | group = cpu_to_cpu_group(i); | 
|  | 5780 | *sd = SD_SIBLING_INIT; | 
|  | 5781 | sd->span = cpu_sibling_map[i]; | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5782 | cpus_and(sd->span, sd->span, *cpu_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5783 | sd->parent = p; | 
|  | 5784 | sd->groups = &sched_group_cpus[group]; | 
|  | 5785 | #endif | 
|  | 5786 | } | 
|  | 5787 |  | 
|  | 5788 | #ifdef CONFIG_SCHED_SMT | 
|  | 5789 | /* Set up CPU (sibling) groups */ | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5790 | for_each_cpu_mask(i, *cpu_map) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5791 | cpumask_t this_sibling_map = cpu_sibling_map[i]; | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5792 | cpus_and(this_sibling_map, this_sibling_map, *cpu_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5793 | if (i != first_cpu(this_sibling_map)) | 
|  | 5794 | continue; | 
|  | 5795 |  | 
|  | 5796 | init_sched_build_groups(sched_group_cpus, this_sibling_map, | 
|  | 5797 | &cpu_to_cpu_group); | 
|  | 5798 | } | 
|  | 5799 | #endif | 
|  | 5800 |  | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5801 | #ifdef CONFIG_SCHED_MC | 
|  | 5802 | /* Set up multi-core groups */ | 
|  | 5803 | for_each_cpu_mask(i, *cpu_map) { | 
|  | 5804 | cpumask_t this_core_map = cpu_coregroup_map(i); | 
|  | 5805 | cpus_and(this_core_map, this_core_map, *cpu_map); | 
|  | 5806 | if (i != first_cpu(this_core_map)) | 
|  | 5807 | continue; | 
|  | 5808 | init_sched_build_groups(sched_group_core, this_core_map, | 
|  | 5809 | &cpu_to_core_group); | 
|  | 5810 | } | 
|  | 5811 | #endif | 
|  | 5812 |  | 
|  | 5813 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5814 | /* Set up physical groups */ | 
|  | 5815 | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | 5816 | cpumask_t nodemask = node_to_cpumask(i); | 
|  | 5817 |  | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5818 | cpus_and(nodemask, nodemask, *cpu_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5819 | if (cpus_empty(nodemask)) | 
|  | 5820 | continue; | 
|  | 5821 |  | 
|  | 5822 | init_sched_build_groups(sched_group_phys, nodemask, | 
|  | 5823 | &cpu_to_phys_group); | 
|  | 5824 | } | 
|  | 5825 |  | 
|  | 5826 | #ifdef CONFIG_NUMA | 
|  | 5827 | /* Set up node groups */ | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5828 | if (sched_group_allnodes) | 
|  | 5829 | init_sched_build_groups(sched_group_allnodes, *cpu_map, | 
|  | 5830 | &cpu_to_allnodes_group); | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5831 |  | 
|  | 5832 | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | 5833 | /* Set up node groups */ | 
|  | 5834 | struct sched_group *sg, *prev; | 
|  | 5835 | cpumask_t nodemask = node_to_cpumask(i); | 
|  | 5836 | cpumask_t domainspan; | 
|  | 5837 | cpumask_t covered = CPU_MASK_NONE; | 
|  | 5838 | int j; | 
|  | 5839 |  | 
|  | 5840 | cpus_and(nodemask, nodemask, *cpu_map); | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5841 | if (cpus_empty(nodemask)) { | 
|  | 5842 | sched_group_nodes[i] = NULL; | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5843 | continue; | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5844 | } | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5845 |  | 
|  | 5846 | domainspan = sched_domain_node_span(i); | 
|  | 5847 | cpus_and(domainspan, domainspan, *cpu_map); | 
|  | 5848 |  | 
|  | 5849 | sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); | 
|  | 5850 | sched_group_nodes[i] = sg; | 
|  | 5851 | for_each_cpu_mask(j, nodemask) { | 
|  | 5852 | struct sched_domain *sd; | 
|  | 5853 | sd = &per_cpu(node_domains, j); | 
|  | 5854 | sd->groups = sg; | 
|  | 5855 | if (sd->groups == NULL) { | 
|  | 5856 | /* Turn off balancing if we have no groups */ | 
|  | 5857 | sd->flags = 0; | 
|  | 5858 | } | 
|  | 5859 | } | 
|  | 5860 | if (!sg) { | 
|  | 5861 | printk(KERN_WARNING | 
|  | 5862 | "Can not alloc domain group for node %d\n", i); | 
|  | 5863 | continue; | 
|  | 5864 | } | 
|  | 5865 | sg->cpu_power = 0; | 
|  | 5866 | sg->cpumask = nodemask; | 
|  | 5867 | cpus_or(covered, covered, nodemask); | 
|  | 5868 | prev = sg; | 
|  | 5869 |  | 
|  | 5870 | for (j = 0; j < MAX_NUMNODES; j++) { | 
|  | 5871 | cpumask_t tmp, notcovered; | 
|  | 5872 | int n = (i + j) % MAX_NUMNODES; | 
|  | 5873 |  | 
|  | 5874 | cpus_complement(notcovered, covered); | 
|  | 5875 | cpus_and(tmp, notcovered, *cpu_map); | 
|  | 5876 | cpus_and(tmp, tmp, domainspan); | 
|  | 5877 | if (cpus_empty(tmp)) | 
|  | 5878 | break; | 
|  | 5879 |  | 
|  | 5880 | nodemask = node_to_cpumask(n); | 
|  | 5881 | cpus_and(tmp, tmp, nodemask); | 
|  | 5882 | if (cpus_empty(tmp)) | 
|  | 5883 | continue; | 
|  | 5884 |  | 
|  | 5885 | sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); | 
|  | 5886 | if (!sg) { | 
|  | 5887 | printk(KERN_WARNING | 
|  | 5888 | "Can not alloc domain group for node %d\n", j); | 
|  | 5889 | break; | 
|  | 5890 | } | 
|  | 5891 | sg->cpu_power = 0; | 
|  | 5892 | sg->cpumask = tmp; | 
|  | 5893 | cpus_or(covered, covered, tmp); | 
|  | 5894 | prev->next = sg; | 
|  | 5895 | prev = sg; | 
|  | 5896 | } | 
|  | 5897 | prev->next = sched_group_nodes[i]; | 
|  | 5898 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5899 | #endif | 
|  | 5900 |  | 
|  | 5901 | /* Calculate CPU power for physical packages and nodes */ | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5902 | for_each_cpu_mask(i, *cpu_map) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5903 | int power; | 
|  | 5904 | struct sched_domain *sd; | 
|  | 5905 | #ifdef CONFIG_SCHED_SMT | 
|  | 5906 | sd = &per_cpu(cpu_domains, i); | 
|  | 5907 | power = SCHED_LOAD_SCALE; | 
|  | 5908 | sd->groups->cpu_power = power; | 
|  | 5909 | #endif | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5910 | #ifdef CONFIG_SCHED_MC | 
|  | 5911 | sd = &per_cpu(core_domains, i); | 
|  | 5912 | power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1) | 
|  | 5913 | * SCHED_LOAD_SCALE / 10; | 
|  | 5914 | sd->groups->cpu_power = power; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5915 |  | 
|  | 5916 | sd = &per_cpu(phys_domains, i); | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5917 |  | 
|  | 5918 | /* | 
|  | 5919 | * This has to be < 2 * SCHED_LOAD_SCALE | 
|  | 5920 | * Lets keep it SCHED_LOAD_SCALE, so that | 
|  | 5921 | * while calculating NUMA group's cpu_power | 
|  | 5922 | * we can simply do | 
|  | 5923 | *  numa_group->cpu_power += phys_group->cpu_power; | 
|  | 5924 | * | 
|  | 5925 | * See "only add power once for each physical pkg" | 
|  | 5926 | * comment below | 
|  | 5927 | */ | 
|  | 5928 | sd->groups->cpu_power = SCHED_LOAD_SCALE; | 
|  | 5929 | #else | 
|  | 5930 | sd = &per_cpu(phys_domains, i); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5931 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 
|  | 5932 | (cpus_weight(sd->groups->cpumask)-1) / 10; | 
|  | 5933 | sd->groups->cpu_power = power; | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5934 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5935 | } | 
|  | 5936 |  | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5937 | #ifdef CONFIG_NUMA | 
| Siddha, Suresh B | 0806903 | 2006-03-27 01:15:23 -0800 | [diff] [blame] | 5938 | for (i = 0; i < MAX_NUMNODES; i++) | 
|  | 5939 | init_numa_sched_groups_power(sched_group_nodes[i]); | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5940 |  | 
| Siddha, Suresh B | 0806903 | 2006-03-27 01:15:23 -0800 | [diff] [blame] | 5941 | init_numa_sched_groups_power(sched_group_allnodes); | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5942 | #endif | 
|  | 5943 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5944 | /* Attach the domains */ | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5945 | for_each_cpu_mask(i, *cpu_map) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5946 | struct sched_domain *sd; | 
|  | 5947 | #ifdef CONFIG_SCHED_SMT | 
|  | 5948 | sd = &per_cpu(cpu_domains, i); | 
| Siddha, Suresh B | 1e9f28f | 2006-03-27 01:15:22 -0800 | [diff] [blame] | 5949 | #elif defined(CONFIG_SCHED_MC) | 
|  | 5950 | sd = &per_cpu(core_domains, i); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5951 | #else | 
|  | 5952 | sd = &per_cpu(phys_domains, i); | 
|  | 5953 | #endif | 
|  | 5954 | cpu_attach_domain(sd, i); | 
|  | 5955 | } | 
| akpm@osdl.org | 198e2f1 | 2006-01-12 01:05:30 -0800 | [diff] [blame] | 5956 | /* | 
|  | 5957 | * Tune cache-hot values: | 
|  | 5958 | */ | 
|  | 5959 | calibrate_migration_costs(cpu_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5960 | } | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5961 | /* | 
|  | 5962 | * Set up scheduler domains and groups.  Callers must hold the hotplug lock. | 
|  | 5963 | */ | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5964 | static void arch_init_sched_domains(const cpumask_t *cpu_map) | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5965 | { | 
|  | 5966 | cpumask_t cpu_default_map; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5967 |  | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 5968 | /* | 
|  | 5969 | * Setup mask for cpus without special case scheduling requirements. | 
|  | 5970 | * For now this just excludes isolated cpus, but could be used to | 
|  | 5971 | * exclude other special cases in the future. | 
|  | 5972 | */ | 
|  | 5973 | cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | 
|  | 5974 |  | 
|  | 5975 | build_sched_domains(&cpu_default_map); | 
|  | 5976 | } | 
|  | 5977 |  | 
|  | 5978 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5979 | { | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5980 | #ifdef CONFIG_NUMA | 
|  | 5981 | int i; | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5982 | int cpu; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5983 |  | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5984 | for_each_cpu_mask(cpu, *cpu_map) { | 
|  | 5985 | struct sched_group *sched_group_allnodes | 
|  | 5986 | = sched_group_allnodes_bycpu[cpu]; | 
|  | 5987 | struct sched_group **sched_group_nodes | 
|  | 5988 | = sched_group_nodes_bycpu[cpu]; | 
|  | 5989 |  | 
|  | 5990 | if (sched_group_allnodes) { | 
|  | 5991 | kfree(sched_group_allnodes); | 
|  | 5992 | sched_group_allnodes_bycpu[cpu] = NULL; | 
|  | 5993 | } | 
|  | 5994 |  | 
|  | 5995 | if (!sched_group_nodes) | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5996 | continue; | 
|  | 5997 |  | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 5998 | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | 5999 | cpumask_t nodemask = node_to_cpumask(i); | 
|  | 6000 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 
|  | 6001 |  | 
|  | 6002 | cpus_and(nodemask, nodemask, *cpu_map); | 
|  | 6003 | if (cpus_empty(nodemask)) | 
|  | 6004 | continue; | 
|  | 6005 |  | 
|  | 6006 | if (sg == NULL) | 
|  | 6007 | continue; | 
|  | 6008 | sg = sg->next; | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 6009 | next_sg: | 
| John Hawkes | d1b5513 | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 6010 | oldsg = sg; | 
|  | 6011 | sg = sg->next; | 
|  | 6012 | kfree(oldsg); | 
|  | 6013 | if (oldsg != sched_group_nodes[i]) | 
|  | 6014 | goto next_sg; | 
|  | 6015 | } | 
|  | 6016 | kfree(sched_group_nodes); | 
|  | 6017 | sched_group_nodes_bycpu[cpu] = NULL; | 
| John Hawkes | 9c1cfda | 2005-09-06 15:18:14 -0700 | [diff] [blame] | 6018 | } | 
|  | 6019 | #endif | 
|  | 6020 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6021 |  | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 6022 | /* | 
|  | 6023 | * Detach sched domains from a group of cpus specified in cpu_map | 
|  | 6024 | * These cpus will now be attached to the NULL domain | 
|  | 6025 | */ | 
| Arjan van de Ven | 858119e | 2006-01-14 13:20:43 -0800 | [diff] [blame] | 6026 | static void detach_destroy_domains(const cpumask_t *cpu_map) | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 6027 | { | 
|  | 6028 | int i; | 
|  | 6029 |  | 
|  | 6030 | for_each_cpu_mask(i, *cpu_map) | 
|  | 6031 | cpu_attach_domain(NULL, i); | 
|  | 6032 | synchronize_sched(); | 
|  | 6033 | arch_destroy_sched_domains(cpu_map); | 
|  | 6034 | } | 
|  | 6035 |  | 
|  | 6036 | /* | 
|  | 6037 | * Partition sched domains as specified by the cpumasks below. | 
|  | 6038 | * This attaches all cpus from the cpumasks to the NULL domain, | 
|  | 6039 | * waits for a RCU quiescent period, recalculates sched | 
|  | 6040 | * domain information and then attaches them back to the | 
|  | 6041 | * correct sched domains | 
|  | 6042 | * Call with hotplug lock held | 
|  | 6043 | */ | 
|  | 6044 | void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) | 
|  | 6045 | { | 
|  | 6046 | cpumask_t change_map; | 
|  | 6047 |  | 
|  | 6048 | cpus_and(*partition1, *partition1, cpu_online_map); | 
|  | 6049 | cpus_and(*partition2, *partition2, cpu_online_map); | 
|  | 6050 | cpus_or(change_map, *partition1, *partition2); | 
|  | 6051 |  | 
|  | 6052 | /* Detach sched domains from all of the affected cpus */ | 
|  | 6053 | detach_destroy_domains(&change_map); | 
|  | 6054 | if (!cpus_empty(*partition1)) | 
|  | 6055 | build_sched_domains(partition1); | 
|  | 6056 | if (!cpus_empty(*partition2)) | 
|  | 6057 | build_sched_domains(partition2); | 
|  | 6058 | } | 
|  | 6059 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6060 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 6061 | /* | 
|  | 6062 | * Force a reinitialization of the sched domains hierarchy.  The domains | 
|  | 6063 | * and groups cannot be updated in place without racing with the balancing | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 6064 | * code, so we temporarily attach all running cpus to the NULL domain | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6065 | * which will prevent rebalancing while the sched domains are recalculated. | 
|  | 6066 | */ | 
|  | 6067 | static int update_sched_domains(struct notifier_block *nfb, | 
|  | 6068 | unsigned long action, void *hcpu) | 
|  | 6069 | { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6070 | switch (action) { | 
|  | 6071 | case CPU_UP_PREPARE: | 
|  | 6072 | case CPU_DOWN_PREPARE: | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 6073 | detach_destroy_domains(&cpu_online_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6074 | return NOTIFY_OK; | 
|  | 6075 |  | 
|  | 6076 | case CPU_UP_CANCELED: | 
|  | 6077 | case CPU_DOWN_FAILED: | 
|  | 6078 | case CPU_ONLINE: | 
|  | 6079 | case CPU_DEAD: | 
|  | 6080 | /* | 
|  | 6081 | * Fall through and re-initialise the domains. | 
|  | 6082 | */ | 
|  | 6083 | break; | 
|  | 6084 | default: | 
|  | 6085 | return NOTIFY_DONE; | 
|  | 6086 | } | 
|  | 6087 |  | 
|  | 6088 | /* The hotplug lock is already held by cpu_up/cpu_down */ | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 6089 | arch_init_sched_domains(&cpu_online_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6090 |  | 
|  | 6091 | return NOTIFY_OK; | 
|  | 6092 | } | 
|  | 6093 | #endif | 
|  | 6094 |  | 
|  | 6095 | void __init sched_init_smp(void) | 
|  | 6096 | { | 
|  | 6097 | lock_cpu_hotplug(); | 
| Dinakar Guniguntala | 1a20ff2 | 2005-06-25 14:57:33 -0700 | [diff] [blame] | 6098 | arch_init_sched_domains(&cpu_online_map); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6099 | unlock_cpu_hotplug(); | 
|  | 6100 | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 
|  | 6101 | hotcpu_notifier(update_sched_domains, 0); | 
|  | 6102 | } | 
|  | 6103 | #else | 
|  | 6104 | void __init sched_init_smp(void) | 
|  | 6105 | { | 
|  | 6106 | } | 
|  | 6107 | #endif /* CONFIG_SMP */ | 
|  | 6108 |  | 
|  | 6109 | int in_sched_functions(unsigned long addr) | 
|  | 6110 | { | 
|  | 6111 | /* Linker adds these: start and end of __sched functions */ | 
|  | 6112 | extern char __sched_text_start[], __sched_text_end[]; | 
|  | 6113 | return in_lock_functions(addr) || | 
|  | 6114 | (addr >= (unsigned long)__sched_text_start | 
|  | 6115 | && addr < (unsigned long)__sched_text_end); | 
|  | 6116 | } | 
|  | 6117 |  | 
|  | 6118 | void __init sched_init(void) | 
|  | 6119 | { | 
|  | 6120 | runqueue_t *rq; | 
|  | 6121 | int i, j, k; | 
|  | 6122 |  | 
| KAMEZAWA Hiroyuki | 0a94502 | 2006-03-28 01:56:37 -0800 | [diff] [blame] | 6123 | for_each_possible_cpu(i) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6124 | prio_array_t *array; | 
|  | 6125 |  | 
|  | 6126 | rq = cpu_rq(i); | 
|  | 6127 | spin_lock_init(&rq->lock); | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 6128 | rq->nr_running = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6129 | rq->active = rq->arrays; | 
|  | 6130 | rq->expired = rq->arrays + 1; | 
|  | 6131 | rq->best_expired_prio = MAX_PRIO; | 
|  | 6132 |  | 
|  | 6133 | #ifdef CONFIG_SMP | 
| Nick Piggin | 41c7ce9 | 2005-06-25 14:57:24 -0700 | [diff] [blame] | 6134 | rq->sd = NULL; | 
| Nick Piggin | 7897986 | 2005-06-25 14:57:13 -0700 | [diff] [blame] | 6135 | for (j = 1; j < 3; j++) | 
|  | 6136 | rq->cpu_load[j] = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6137 | rq->active_balance = 0; | 
|  | 6138 | rq->push_cpu = 0; | 
|  | 6139 | rq->migration_thread = NULL; | 
|  | 6140 | INIT_LIST_HEAD(&rq->migration_queue); | 
| Anton Blanchard | e9028b0 | 2006-03-23 02:59:20 -0800 | [diff] [blame] | 6141 | rq->cpu = i; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6142 | #endif | 
|  | 6143 | atomic_set(&rq->nr_iowait, 0); | 
|  | 6144 |  | 
|  | 6145 | for (j = 0; j < 2; j++) { | 
|  | 6146 | array = rq->arrays + j; | 
|  | 6147 | for (k = 0; k < MAX_PRIO; k++) { | 
|  | 6148 | INIT_LIST_HEAD(array->queue + k); | 
|  | 6149 | __clear_bit(k, array->bitmap); | 
|  | 6150 | } | 
|  | 6151 | // delimiter for bitsearch | 
|  | 6152 | __set_bit(MAX_PRIO, array->bitmap); | 
|  | 6153 | } | 
|  | 6154 | } | 
|  | 6155 |  | 
|  | 6156 | /* | 
|  | 6157 | * The boot idle thread does lazy MMU switching as well: | 
|  | 6158 | */ | 
|  | 6159 | atomic_inc(&init_mm.mm_count); | 
|  | 6160 | enter_lazy_tlb(&init_mm, current); | 
|  | 6161 |  | 
|  | 6162 | /* | 
|  | 6163 | * Make us the idle thread. Technically, schedule() should not be | 
|  | 6164 | * called from this thread, however somewhere below it might be, | 
|  | 6165 | * but because we are the idle thread, we just pick up running again | 
|  | 6166 | * when this runqueue becomes "idle". | 
|  | 6167 | */ | 
|  | 6168 | init_idle(current, smp_processor_id()); | 
|  | 6169 | } | 
|  | 6170 |  | 
|  | 6171 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | 6172 | void __might_sleep(char *file, int line) | 
|  | 6173 | { | 
|  | 6174 | #if defined(in_atomic) | 
|  | 6175 | static unsigned long prev_jiffy;	/* ratelimiting */ | 
|  | 6176 |  | 
|  | 6177 | if ((in_atomic() || irqs_disabled()) && | 
|  | 6178 | system_state == SYSTEM_RUNNING && !oops_in_progress) { | 
|  | 6179 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | 6180 | return; | 
|  | 6181 | prev_jiffy = jiffies; | 
| Ingo Molnar | 91368d7 | 2006-03-23 03:00:54 -0800 | [diff] [blame] | 6182 | printk(KERN_ERR "BUG: sleeping function called from invalid" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6183 | " context at %s:%d\n", file, line); | 
|  | 6184 | printk("in_atomic():%d, irqs_disabled():%d\n", | 
|  | 6185 | in_atomic(), irqs_disabled()); | 
|  | 6186 | dump_stack(); | 
|  | 6187 | } | 
|  | 6188 | #endif | 
|  | 6189 | } | 
|  | 6190 | EXPORT_SYMBOL(__might_sleep); | 
|  | 6191 | #endif | 
|  | 6192 |  | 
|  | 6193 | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | 6194 | void normalize_rt_tasks(void) | 
|  | 6195 | { | 
|  | 6196 | struct task_struct *p; | 
|  | 6197 | prio_array_t *array; | 
|  | 6198 | unsigned long flags; | 
|  | 6199 | runqueue_t *rq; | 
|  | 6200 |  | 
|  | 6201 | read_lock_irq(&tasklist_lock); | 
|  | 6202 | for_each_process (p) { | 
|  | 6203 | if (!rt_task(p)) | 
|  | 6204 | continue; | 
|  | 6205 |  | 
|  | 6206 | rq = task_rq_lock(p, &flags); | 
|  | 6207 |  | 
|  | 6208 | array = p->array; | 
|  | 6209 | if (array) | 
|  | 6210 | deactivate_task(p, task_rq(p)); | 
|  | 6211 | __setscheduler(p, SCHED_NORMAL, 0); | 
|  | 6212 | if (array) { | 
|  | 6213 | __activate_task(p, task_rq(p)); | 
|  | 6214 | resched_task(rq->curr); | 
|  | 6215 | } | 
|  | 6216 |  | 
|  | 6217 | task_rq_unlock(rq, &flags); | 
|  | 6218 | } | 
|  | 6219 | read_unlock_irq(&tasklist_lock); | 
|  | 6220 | } | 
|  | 6221 |  | 
|  | 6222 | #endif /* CONFIG_MAGIC_SYSRQ */ | 
| Linus Torvalds | 1df5c10 | 2005-09-12 07:59:21 -0700 | [diff] [blame] | 6223 |  | 
|  | 6224 | #ifdef CONFIG_IA64 | 
|  | 6225 | /* | 
|  | 6226 | * These functions are only useful for the IA64 MCA handling. | 
|  | 6227 | * | 
|  | 6228 | * They can only be called when the whole system has been | 
|  | 6229 | * stopped - every CPU needs to be quiescent, and no scheduling | 
|  | 6230 | * activity can take place. Using them for anything else would | 
|  | 6231 | * be a serious bug, and as a result, they aren't even visible | 
|  | 6232 | * under any other configuration. | 
|  | 6233 | */ | 
|  | 6234 |  | 
|  | 6235 | /** | 
|  | 6236 | * curr_task - return the current task for a given cpu. | 
|  | 6237 | * @cpu: the processor in question. | 
|  | 6238 | * | 
|  | 6239 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | 6240 | */ | 
|  | 6241 | task_t *curr_task(int cpu) | 
|  | 6242 | { | 
|  | 6243 | return cpu_curr(cpu); | 
|  | 6244 | } | 
|  | 6245 |  | 
|  | 6246 | /** | 
|  | 6247 | * set_curr_task - set the current task for a given cpu. | 
|  | 6248 | * @cpu: the processor in question. | 
|  | 6249 | * @p: the task pointer to set. | 
|  | 6250 | * | 
|  | 6251 | * Description: This function must only be used when non-maskable interrupts | 
|  | 6252 | * are serviced on a separate stack.  It allows the architecture to switch the | 
|  | 6253 | * notion of the current task on a cpu in a non-blocking manner.  This function | 
|  | 6254 | * must be called with all CPU's synchronized, and interrupts disabled, the | 
|  | 6255 | * and caller must save the original value of the current task (see | 
|  | 6256 | * curr_task() above) and restore that value before reenabling interrupts and | 
|  | 6257 | * re-starting the system. | 
|  | 6258 | * | 
|  | 6259 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | 6260 | */ | 
|  | 6261 | void set_curr_task(int cpu, task_t *p) | 
|  | 6262 | { | 
|  | 6263 | cpu_curr(cpu) = p; | 
|  | 6264 | } | 
|  | 6265 |  | 
|  | 6266 | #endif |