| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 2001 Russell King | 
 | 5 |  * | 
 | 6 |  *  $Id: cpu-sa1110.c,v 1.9 2002/07/06 16:53:18 rmk Exp $ | 
 | 7 |  * | 
 | 8 |  * This program is free software; you can redistribute it and/or modify | 
 | 9 |  * it under the terms of the GNU General Public License version 2 as | 
 | 10 |  * published by the Free Software Foundation. | 
 | 11 |  * | 
 | 12 |  * Note: there are two erratas that apply to the SA1110 here: | 
 | 13 |  *  7 - SDRAM auto-power-up failure (rev A0) | 
 | 14 |  * 13 - Corruption of internal register reads/writes following | 
 | 15 |  *      SDRAM reads (rev A0, B0, B1) | 
 | 16 |  * | 
 | 17 |  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. | 
 | 18 |  */ | 
 | 19 | #include <linux/types.h> | 
 | 20 | #include <linux/kernel.h> | 
 | 21 | #include <linux/sched.h> | 
 | 22 | #include <linux/cpufreq.h> | 
 | 23 | #include <linux/delay.h> | 
 | 24 | #include <linux/init.h> | 
 | 25 |  | 
 | 26 | #include <asm/hardware.h> | 
 | 27 | #include <asm/mach-types.h> | 
 | 28 | #include <asm/io.h> | 
 | 29 | #include <asm/system.h> | 
 | 30 |  | 
 | 31 | #include "generic.h" | 
 | 32 |  | 
 | 33 | #undef DEBUG | 
 | 34 |  | 
 | 35 | static struct cpufreq_driver sa1110_driver; | 
 | 36 |  | 
 | 37 | struct sdram_params { | 
 | 38 | 	u_char  rows;		/* bits				 */ | 
 | 39 | 	u_char  cas_latency;	/* cycles			 */ | 
 | 40 | 	u_char  tck;		/* clock cycle time (ns)	 */ | 
 | 41 | 	u_char  trcd;		/* activate to r/w (ns)		 */ | 
 | 42 | 	u_char  trp;		/* precharge to activate (ns)	 */ | 
 | 43 | 	u_char  twr;		/* write recovery time (ns)	 */ | 
 | 44 | 	u_short refresh;	/* refresh time for array (us)	 */ | 
 | 45 | }; | 
 | 46 |  | 
 | 47 | struct sdram_info { | 
 | 48 | 	u_int	mdcnfg; | 
 | 49 | 	u_int	mdrefr; | 
 | 50 | 	u_int	mdcas[3]; | 
 | 51 | }; | 
 | 52 |  | 
 | 53 | static struct sdram_params tc59sm716_cl2_params __initdata = { | 
 | 54 | 	.rows			= 12, | 
 | 55 | 	.tck			= 10, | 
 | 56 | 	.trcd			= 20, | 
 | 57 | 	.trp			= 20, | 
 | 58 | 	.twr			= 10, | 
 | 59 | 	.refresh		= 64000, | 
 | 60 | 	.cas_latency		= 2, | 
 | 61 | }; | 
 | 62 |  | 
 | 63 | static struct sdram_params tc59sm716_cl3_params __initdata = { | 
 | 64 | 	.rows			= 12, | 
 | 65 | 	.tck			= 8, | 
 | 66 | 	.trcd			= 20, | 
 | 67 | 	.trp			= 20, | 
 | 68 | 	.twr			= 8, | 
 | 69 | 	.refresh		= 64000, | 
 | 70 | 	.cas_latency		= 3, | 
 | 71 | }; | 
 | 72 |  | 
 | 73 | static struct sdram_params samsung_k4s641632d_tc75 __initdata = { | 
 | 74 | 	.rows			= 14, | 
 | 75 | 	.tck			= 9, | 
 | 76 | 	.trcd			= 27, | 
 | 77 | 	.trp			= 20, | 
 | 78 | 	.twr			= 9, | 
 | 79 | 	.refresh		= 64000, | 
 | 80 | 	.cas_latency		= 3, | 
 | 81 | }; | 
 | 82 |  | 
 | 83 | static struct sdram_params samsung_km416s4030ct __initdata = { | 
 | 84 | 	.rows			= 13, | 
 | 85 | 	.tck			= 8, | 
 | 86 | 	.trcd			= 24,	/* 3 CLKs */ | 
 | 87 | 	.trp			= 24,	/* 3 CLKs */ | 
 | 88 | 	.twr			= 16,	/* Trdl: 2 CLKs */ | 
 | 89 | 	.refresh		= 64000, | 
 | 90 | 	.cas_latency		= 3, | 
 | 91 | }; | 
 | 92 |  | 
 | 93 | static struct sdram_params wbond_w982516ah75l_cl3_params __initdata = { | 
 | 94 | 	.rows			= 16, | 
 | 95 | 	.tck			= 8, | 
 | 96 | 	.trcd			= 20, | 
 | 97 | 	.trp			= 20, | 
 | 98 | 	.twr			= 8, | 
 | 99 | 	.refresh		= 64000, | 
 | 100 | 	.cas_latency		= 3, | 
 | 101 | }; | 
 | 102 |  | 
 | 103 | static struct sdram_params sdram_params; | 
 | 104 |  | 
 | 105 | /* | 
 | 106 |  * Given a period in ns and frequency in khz, calculate the number of | 
 | 107 |  * cycles of frequency in period.  Note that we round up to the next | 
 | 108 |  * cycle, even if we are only slightly over. | 
 | 109 |  */ | 
 | 110 | static inline u_int ns_to_cycles(u_int ns, u_int khz) | 
 | 111 | { | 
 | 112 | 	return (ns * khz + 999999) / 1000000; | 
 | 113 | } | 
 | 114 |  | 
 | 115 | /* | 
 | 116 |  * Create the MDCAS register bit pattern. | 
 | 117 |  */ | 
 | 118 | static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) | 
 | 119 | { | 
 | 120 | 	u_int shift; | 
 | 121 |  | 
 | 122 | 	rcd = 2 * rcd - 1; | 
 | 123 | 	shift = delayed + 1 + rcd; | 
 | 124 |  | 
 | 125 | 	mdcas[0]  = (1 << rcd) - 1; | 
 | 126 | 	mdcas[0] |= 0x55555555 << shift; | 
 | 127 | 	mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1); | 
 | 128 | } | 
 | 129 |  | 
 | 130 | static void | 
 | 131 | sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, | 
 | 132 | 		       struct sdram_params *sdram) | 
 | 133 | { | 
 | 134 | 	u_int mem_khz, sd_khz, trp, twr; | 
 | 135 |  | 
 | 136 | 	mem_khz = cpu_khz / 2; | 
 | 137 | 	sd_khz = mem_khz; | 
 | 138 |  | 
 | 139 | 	/* | 
 | 140 | 	 * If SDCLK would invalidate the SDRAM timings, | 
 | 141 | 	 * run SDCLK at half speed. | 
 | 142 | 	 * | 
 | 143 | 	 * CPU steppings prior to B2 must either run the memory at | 
 | 144 | 	 * half speed or use delayed read latching (errata 13). | 
 | 145 | 	 */ | 
 | 146 | 	if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || | 
 | 147 | 	    (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000)) | 
 | 148 | 		sd_khz /= 2; | 
 | 149 |  | 
 | 150 | 	sd->mdcnfg = MDCNFG & 0x007f007f; | 
 | 151 |  | 
 | 152 | 	twr = ns_to_cycles(sdram->twr, mem_khz); | 
 | 153 |  | 
 | 154 | 	/* trp should always be >1 */ | 
 | 155 | 	trp = ns_to_cycles(sdram->trp, mem_khz) - 1; | 
 | 156 | 	if (trp < 1) | 
 | 157 | 		trp = 1; | 
 | 158 |  | 
 | 159 | 	sd->mdcnfg |= trp << 8; | 
 | 160 | 	sd->mdcnfg |= trp << 24; | 
 | 161 | 	sd->mdcnfg |= sdram->cas_latency << 12; | 
 | 162 | 	sd->mdcnfg |= sdram->cas_latency << 28; | 
 | 163 | 	sd->mdcnfg |= twr << 14; | 
 | 164 | 	sd->mdcnfg |= twr << 30; | 
 | 165 |  | 
 | 166 | 	sd->mdrefr = MDREFR & 0xffbffff0; | 
 | 167 | 	sd->mdrefr |= 7; | 
 | 168 |  | 
 | 169 | 	if (sd_khz != mem_khz) | 
 | 170 | 		sd->mdrefr |= MDREFR_K1DB2; | 
 | 171 |  | 
 | 172 | 	/* initial number of '1's in MDCAS + 1 */ | 
 | 173 | 	set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz)); | 
 | 174 |  | 
 | 175 | #ifdef DEBUG | 
 | 176 | 	printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", | 
 | 177 | 		sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]); | 
 | 178 | #endif | 
 | 179 | } | 
 | 180 |  | 
 | 181 | /* | 
 | 182 |  * Set the SDRAM refresh rate. | 
 | 183 |  */ | 
 | 184 | static inline void sdram_set_refresh(u_int dri) | 
 | 185 | { | 
 | 186 | 	MDREFR = (MDREFR & 0xffff000f) | (dri << 4); | 
 | 187 | 	(void) MDREFR; | 
 | 188 | } | 
 | 189 |  | 
 | 190 | /* | 
 | 191 |  * Update the refresh period.  We do this such that we always refresh | 
 | 192 |  * the SDRAMs within their permissible period.  The refresh period is | 
 | 193 |  * always a multiple of the memory clock (fixed at cpu_clock / 2). | 
 | 194 |  * | 
 | 195 |  * FIXME: we don't currently take account of burst accesses here, | 
 | 196 |  * but neither do Intels DM nor Angel. | 
 | 197 |  */ | 
 | 198 | static void | 
 | 199 | sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) | 
 | 200 | { | 
 | 201 | 	u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; | 
 | 202 | 	u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; | 
 | 203 |  | 
 | 204 | #ifdef DEBUG | 
 | 205 | 	mdelay(250); | 
 | 206 | 	printk("new dri value = %d\n", dri); | 
 | 207 | #endif | 
 | 208 |  | 
 | 209 | 	sdram_set_refresh(dri); | 
 | 210 | } | 
 | 211 |  | 
 | 212 | /* | 
 | 213 |  * Ok, set the CPU frequency.   | 
 | 214 |  */ | 
 | 215 | static int sa1110_target(struct cpufreq_policy *policy, | 
 | 216 | 			 unsigned int target_freq, | 
 | 217 | 			 unsigned int relation) | 
 | 218 | { | 
 | 219 | 	struct sdram_params *sdram = &sdram_params; | 
 | 220 | 	struct cpufreq_freqs freqs; | 
 | 221 | 	struct sdram_info sd; | 
 | 222 | 	unsigned long flags; | 
 | 223 | 	unsigned int ppcr, unused; | 
 | 224 |  | 
 | 225 | 	switch(relation){ | 
 | 226 | 	case CPUFREQ_RELATION_L: | 
 | 227 | 		ppcr = sa11x0_freq_to_ppcr(target_freq); | 
 | 228 | 		if (sa11x0_ppcr_to_freq(ppcr) > policy->max) | 
 | 229 | 			ppcr--; | 
 | 230 | 		break; | 
 | 231 | 	case CPUFREQ_RELATION_H: | 
 | 232 | 		ppcr = sa11x0_freq_to_ppcr(target_freq); | 
 | 233 | 		if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) && | 
 | 234 | 		    (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min)) | 
 | 235 | 			ppcr--; | 
 | 236 | 		break; | 
 | 237 | 	default: | 
 | 238 | 		return -EINVAL; | 
 | 239 | 	} | 
 | 240 |  | 
 | 241 | 	freqs.old = sa11x0_getspeed(0); | 
 | 242 | 	freqs.new = sa11x0_ppcr_to_freq(ppcr); | 
 | 243 | 	freqs.cpu = 0; | 
 | 244 |  | 
 | 245 | 	sdram_calculate_timing(&sd, freqs.new, sdram); | 
 | 246 |  | 
 | 247 | #if 0 | 
 | 248 | 	/* | 
 | 249 | 	 * These values are wrong according to the SA1110 documentation | 
 | 250 | 	 * and errata, but they seem to work.  Need to get a storage | 
 | 251 | 	 * scope on to the SDRAM signals to work out why. | 
 | 252 | 	 */ | 
 | 253 | 	if (policy->max < 147500) { | 
 | 254 | 		sd.mdrefr |= MDREFR_K1DB2; | 
 | 255 | 		sd.mdcas[0] = 0xaaaaaa7f; | 
 | 256 | 	} else { | 
 | 257 | 		sd.mdrefr &= ~MDREFR_K1DB2; | 
 | 258 | 		sd.mdcas[0] = 0xaaaaaa9f; | 
 | 259 | 	} | 
 | 260 | 	sd.mdcas[1] = 0xaaaaaaaa; | 
 | 261 | 	sd.mdcas[2] = 0xaaaaaaaa; | 
 | 262 | #endif | 
 | 263 |  | 
 | 264 | 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | 
 | 265 |  | 
 | 266 | 	/* | 
 | 267 | 	 * The clock could be going away for some time.  Set the SDRAMs | 
 | 268 | 	 * to refresh rapidly (every 64 memory clock cycles).  To get | 
 | 269 | 	 * through the whole array, we need to wait 262144 mclk cycles. | 
 | 270 | 	 * We wait 20ms to be safe. | 
 | 271 | 	 */ | 
 | 272 | 	sdram_set_refresh(2); | 
 | 273 | 	if (!irqs_disabled()) { | 
| Nishanth Aravamudan | db57955 | 2005-07-01 12:11:51 +0100 | [diff] [blame] | 274 | 		msleep(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 275 | 	} else { | 
 | 276 | 		mdelay(20); | 
 | 277 | 	} | 
 | 278 |  | 
 | 279 | 	/* | 
 | 280 | 	 * Reprogram the DRAM timings with interrupts disabled, and | 
 | 281 | 	 * ensure that we are doing this within a complete cache line. | 
 | 282 | 	 * This means that we won't access SDRAM for the duration of | 
 | 283 | 	 * the programming. | 
 | 284 | 	 */ | 
 | 285 | 	local_irq_save(flags); | 
 | 286 | 	asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); | 
 | 287 | 	udelay(10); | 
 | 288 | 	__asm__ __volatile__("					\n\ | 
 | 289 | 		b	2f					\n\ | 
 | 290 | 		.align	5					\n\ | 
 | 291 | 1:		str	%3, [%1, #0]		@ MDCNFG	\n\ | 
 | 292 | 		str	%4, [%1, #28]		@ MDREFR	\n\ | 
 | 293 | 		str	%5, [%1, #4]		@ MDCAS0	\n\ | 
 | 294 | 		str	%6, [%1, #8]		@ MDCAS1	\n\ | 
 | 295 | 		str	%7, [%1, #12]		@ MDCAS2	\n\ | 
 | 296 | 		str	%8, [%2, #0]		@ PPCR		\n\ | 
 | 297 | 		ldr	%0, [%1, #0]				\n\ | 
 | 298 | 		b	3f					\n\ | 
 | 299 | 2:		b	1b					\n\ | 
 | 300 | 3:		nop						\n\ | 
 | 301 | 		nop" | 
 | 302 | 		: "=&r" (unused) | 
 | 303 | 		: "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), | 
 | 304 | 		  "r" (sd.mdrefr), "r" (sd.mdcas[0]), | 
 | 305 | 		  "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); | 
 | 306 | 	local_irq_restore(flags); | 
 | 307 |  | 
 | 308 | 	/* | 
 | 309 | 	 * Now, return the SDRAM refresh back to normal. | 
 | 310 | 	 */ | 
 | 311 | 	sdram_update_refresh(freqs.new, sdram); | 
 | 312 |  | 
 | 313 | 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | 
 | 314 |  | 
 | 315 | 	return 0; | 
 | 316 | } | 
 | 317 |  | 
 | 318 | static int __init sa1110_cpu_init(struct cpufreq_policy *policy) | 
 | 319 | { | 
 | 320 | 	if (policy->cpu != 0) | 
 | 321 | 		return -EINVAL; | 
 | 322 | 	policy->cur = policy->min = policy->max = sa11x0_getspeed(0); | 
 | 323 | 	policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | 
 | 324 | 	policy->cpuinfo.min_freq = 59000; | 
 | 325 | 	policy->cpuinfo.max_freq = 287000; | 
 | 326 | 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | 
 | 327 | 	return 0; | 
 | 328 | } | 
 | 329 |  | 
 | 330 | static struct cpufreq_driver sa1110_driver = { | 
 | 331 | 	.flags		= CPUFREQ_STICKY, | 
 | 332 | 	.verify		= sa11x0_verify_speed, | 
 | 333 | 	.target		= sa1110_target, | 
 | 334 | 	.get		= sa11x0_getspeed, | 
 | 335 | 	.init		= sa1110_cpu_init, | 
 | 336 | 	.name		= "sa1110", | 
 | 337 | }; | 
 | 338 |  | 
 | 339 | static int __init sa1110_clk_init(void) | 
 | 340 | { | 
 | 341 | 	struct sdram_params *sdram = NULL; | 
 | 342 |  | 
 | 343 | 	if (machine_is_assabet()) | 
 | 344 | 		sdram = &tc59sm716_cl3_params; | 
 | 345 |  | 
 | 346 | 	if (machine_is_pt_system3()) | 
 | 347 | 		sdram = &samsung_k4s641632d_tc75; | 
 | 348 |  | 
 | 349 | 	if (machine_is_h3100()) | 
 | 350 | 		sdram = &samsung_km416s4030ct; | 
 | 351 |  | 
 | 352 | 	if (sdram) { | 
 | 353 | 		printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" | 
 | 354 | 			" twr: %d refresh: %d cas_latency: %d\n", | 
 | 355 | 			sdram->tck, sdram->trcd, sdram->trp, | 
 | 356 | 			sdram->twr, sdram->refresh, sdram->cas_latency); | 
 | 357 |  | 
 | 358 | 		memcpy(&sdram_params, sdram, sizeof(sdram_params)); | 
 | 359 |  | 
 | 360 | 		return cpufreq_register_driver(&sa1110_driver); | 
 | 361 | 	} | 
 | 362 |  | 
 | 363 | 	return 0; | 
 | 364 | } | 
 | 365 |  | 
 | 366 | arch_initcall(sa1110_clk_init); |