| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved. | 
|  | 3 | * Copyright (c) 2001 Intel Corp. | 
|  | 4 | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> | 
|  | 5 | * Copyright (c) 2002 NEC Corp. | 
|  | 6 | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> | 
|  | 7 | * Copyright (c) 2004 Silicon Graphics, Inc | 
|  | 8 | *	Russ Anderson <rja@sgi.com> | 
|  | 9 | *	Jesse Barnes <jbarnes@sgi.com> | 
|  | 10 | *	Jack Steiner <steiner@sgi.com> | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | * Platform initialization for Discontig Memory | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #include <linux/kernel.h> | 
|  | 18 | #include <linux/mm.h> | 
|  | 19 | #include <linux/swap.h> | 
|  | 20 | #include <linux/bootmem.h> | 
|  | 21 | #include <linux/acpi.h> | 
|  | 22 | #include <linux/efi.h> | 
|  | 23 | #include <linux/nodemask.h> | 
|  | 24 | #include <asm/pgalloc.h> | 
|  | 25 | #include <asm/tlb.h> | 
|  | 26 | #include <asm/meminit.h> | 
|  | 27 | #include <asm/numa.h> | 
|  | 28 | #include <asm/sections.h> | 
|  | 29 |  | 
|  | 30 | /* | 
|  | 31 | * Track per-node information needed to setup the boot memory allocator, the | 
|  | 32 | * per-node areas, and the real VM. | 
|  | 33 | */ | 
|  | 34 | struct early_node_data { | 
|  | 35 | struct ia64_node_data *node_data; | 
|  | 36 | pg_data_t *pgdat; | 
|  | 37 | unsigned long pernode_addr; | 
|  | 38 | unsigned long pernode_size; | 
|  | 39 | struct bootmem_data bootmem_data; | 
|  | 40 | unsigned long num_physpages; | 
|  | 41 | unsigned long num_dma_physpages; | 
|  | 42 | unsigned long min_pfn; | 
|  | 43 | unsigned long max_pfn; | 
|  | 44 | }; | 
|  | 45 |  | 
|  | 46 | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; | 
|  | 47 |  | 
|  | 48 | /** | 
|  | 49 | * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node | 
|  | 50 | * | 
|  | 51 | * This function will move nodes with only CPUs (no memory) | 
|  | 52 | * to a node with memory which is at the minimum numa_slit distance. | 
|  | 53 | * Any reassigments will result in the compression of the nodes | 
|  | 54 | * and renumbering the nid values where appropriate. | 
|  | 55 | * The static declarations below are to avoid large stack size which | 
|  | 56 | * makes the code not re-entrant. | 
|  | 57 | */ | 
|  | 58 | static void __init reassign_cpu_only_nodes(void) | 
|  | 59 | { | 
|  | 60 | struct node_memblk_s *p; | 
|  | 61 | int i, j, k, nnode, nid, cpu, cpunid, pxm; | 
|  | 62 | u8 cslit, slit; | 
|  | 63 | static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; | 
|  | 64 | static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; | 
|  | 65 | static int node_flip[MAX_NUMNODES] __initdata; | 
|  | 66 | static int old_nid_map[NR_CPUS] __initdata; | 
|  | 67 |  | 
|  | 68 | for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | 
|  | 69 | if (!test_bit(p->nid, (void *) nodes_with_mem)) { | 
|  | 70 | set_bit(p->nid, (void *) nodes_with_mem); | 
|  | 71 | nnode++; | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | /* | 
|  | 75 | * All nids with memory. | 
|  | 76 | */ | 
|  | 77 | if (nnode == num_online_nodes()) | 
|  | 78 | return; | 
|  | 79 |  | 
|  | 80 | /* | 
|  | 81 | * Change nids and attempt to migrate CPU-only nodes | 
|  | 82 | * to the best numa_slit (closest neighbor) possible. | 
|  | 83 | * For reassigned CPU nodes a nid can't be arrived at | 
|  | 84 | * until after this loop because the target nid's new | 
|  | 85 | * identity might not have been established yet. So | 
|  | 86 | * new nid values are fabricated above num_online_nodes() and | 
|  | 87 | * mapped back later to their true value. | 
|  | 88 | */ | 
|  | 89 | /* MCD - This code is a bit complicated, but may be unnecessary now. | 
|  | 90 | * We can now handle much more interesting node-numbering. | 
|  | 91 | * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES | 
|  | 92 | * and that there be no holes in the numbering 0..numnodes | 
|  | 93 | * has become simply 0 <= nid <= MAX_NUMNODES. | 
|  | 94 | */ | 
|  | 95 | nid = 0; | 
|  | 96 | for_each_online_node(i)  { | 
|  | 97 | if (test_bit(i, (void *) nodes_with_mem)) { | 
|  | 98 | /* | 
|  | 99 | * Save original nid value for numa_slit | 
|  | 100 | * fixup and node_cpuid reassignments. | 
|  | 101 | */ | 
|  | 102 | node_flip[nid] = i; | 
|  | 103 |  | 
|  | 104 | if (i == nid) { | 
|  | 105 | nid++; | 
|  | 106 | continue; | 
|  | 107 | } | 
|  | 108 |  | 
|  | 109 | for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | 
|  | 110 | if (p->nid == i) | 
|  | 111 | p->nid = nid; | 
|  | 112 |  | 
|  | 113 | cpunid = nid; | 
|  | 114 | nid++; | 
|  | 115 | } else | 
|  | 116 | cpunid = MAX_NUMNODES; | 
|  | 117 |  | 
|  | 118 | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | 119 | if (node_cpuid[cpu].nid == i) { | 
|  | 120 | /* | 
|  | 121 | * For nodes not being reassigned just | 
|  | 122 | * fix the cpu's nid and reverse pxm map | 
|  | 123 | */ | 
|  | 124 | if (cpunid < MAX_NUMNODES) { | 
|  | 125 | pxm = nid_to_pxm_map[i]; | 
|  | 126 | pxm_to_nid_map[pxm] = | 
|  | 127 | node_cpuid[cpu].nid = cpunid; | 
|  | 128 | continue; | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 | /* | 
|  | 132 | * For nodes being reassigned, find best node by | 
|  | 133 | * numa_slit information and then make a temporary | 
|  | 134 | * nid value based on current nid and num_online_nodes(). | 
|  | 135 | */ | 
|  | 136 | slit = 0xff; | 
|  | 137 | k = 2*num_online_nodes(); | 
|  | 138 | for_each_online_node(j) { | 
|  | 139 | if (i == j) | 
|  | 140 | continue; | 
|  | 141 | else if (test_bit(j, (void *) nodes_with_mem)) { | 
|  | 142 | cslit = numa_slit[i * num_online_nodes() + j]; | 
|  | 143 | if (cslit < slit) { | 
|  | 144 | k = num_online_nodes() + j; | 
|  | 145 | slit = cslit; | 
|  | 146 | } | 
|  | 147 | } | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | /* save old nid map so we can update the pxm */ | 
|  | 151 | old_nid_map[cpu] = node_cpuid[cpu].nid; | 
|  | 152 | node_cpuid[cpu].nid = k; | 
|  | 153 | } | 
|  | 154 | } | 
|  | 155 |  | 
|  | 156 | /* | 
|  | 157 | * Fixup temporary nid values for CPU-only nodes. | 
|  | 158 | */ | 
|  | 159 | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | 160 | if (node_cpuid[cpu].nid == (2*num_online_nodes())) { | 
|  | 161 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | 
|  | 162 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; | 
|  | 163 | } else { | 
|  | 164 | for (i = 0; i < nnode; i++) { | 
|  | 165 | if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) | 
|  | 166 | continue; | 
|  | 167 |  | 
|  | 168 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | 
|  | 169 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; | 
|  | 170 | break; | 
|  | 171 | } | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | /* | 
|  | 175 | * Fix numa_slit by compressing from larger | 
|  | 176 | * nid array to reduced nid array. | 
|  | 177 | */ | 
|  | 178 | for (i = 0; i < nnode; i++) | 
|  | 179 | for (j = 0; j < nnode; j++) | 
|  | 180 | numa_slit_fix[i * nnode + j] = | 
|  | 181 | numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; | 
|  | 182 |  | 
|  | 183 | memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); | 
|  | 184 |  | 
|  | 185 | nodes_clear(node_online_map); | 
|  | 186 | for (i = 0; i < nnode; i++) | 
|  | 187 | node_set_online(i); | 
|  | 188 |  | 
|  | 189 | return; | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | /* | 
|  | 193 | * To prevent cache aliasing effects, align per-node structures so that they | 
|  | 194 | * start at addresses that are strided by node number. | 
|  | 195 | */ | 
|  | 196 | #define NODEDATA_ALIGN(addr, node)						\ | 
|  | 197 | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) | 
|  | 198 |  | 
|  | 199 | /** | 
|  | 200 | * build_node_maps - callback to setup bootmem structs for each node | 
|  | 201 | * @start: physical start of range | 
|  | 202 | * @len: length of range | 
|  | 203 | * @node: node where this range resides | 
|  | 204 | * | 
|  | 205 | * We allocate a struct bootmem_data for each piece of memory that we wish to | 
|  | 206 | * treat as a virtually contiguous block (i.e. each node). Each such block | 
|  | 207 | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down | 
|  | 208 | * if necessary.  Any non-existent pages will simply be part of the virtual | 
|  | 209 | * memmap.  We also update min_low_pfn and max_low_pfn here as we receive | 
|  | 210 | * memory ranges from the caller. | 
|  | 211 | */ | 
|  | 212 | static int __init build_node_maps(unsigned long start, unsigned long len, | 
|  | 213 | int node) | 
|  | 214 | { | 
|  | 215 | unsigned long cstart, epfn, end = start + len; | 
|  | 216 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | 
|  | 217 |  | 
|  | 218 | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; | 
|  | 219 | cstart = GRANULEROUNDDOWN(start); | 
|  | 220 |  | 
|  | 221 | if (!bdp->node_low_pfn) { | 
|  | 222 | bdp->node_boot_start = cstart; | 
|  | 223 | bdp->node_low_pfn = epfn; | 
|  | 224 | } else { | 
|  | 225 | bdp->node_boot_start = min(cstart, bdp->node_boot_start); | 
|  | 226 | bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); | 
|  | 227 | } | 
|  | 228 |  | 
|  | 229 | min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); | 
|  | 230 | max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); | 
|  | 231 |  | 
|  | 232 | return 0; | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | /** | 
|  | 236 | * early_nr_phys_cpus_node - return number of physical cpus on a given node | 
|  | 237 | * @node: node to check | 
|  | 238 | * | 
|  | 239 | * Count the number of physical cpus on @node.  These are cpus that actually | 
|  | 240 | * exist.  We can't use nr_cpus_node() yet because | 
|  | 241 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | 
|  | 242 | * called yet. | 
|  | 243 | */ | 
|  | 244 | static int early_nr_phys_cpus_node(int node) | 
|  | 245 | { | 
|  | 246 | int cpu, n = 0; | 
|  | 247 |  | 
|  | 248 | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | 249 | if (node == node_cpuid[cpu].nid) | 
|  | 250 | if ((cpu == 0) || node_cpuid[cpu].phys_id) | 
|  | 251 | n++; | 
|  | 252 |  | 
|  | 253 | return n; | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 |  | 
|  | 257 | /** | 
|  | 258 | * early_nr_cpus_node - return number of cpus on a given node | 
|  | 259 | * @node: node to check | 
|  | 260 | * | 
|  | 261 | * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because | 
|  | 262 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | 
|  | 263 | * called yet.  Note that node 0 will also count all non-existent cpus. | 
|  | 264 | */ | 
|  | 265 | static int early_nr_cpus_node(int node) | 
|  | 266 | { | 
|  | 267 | int cpu, n = 0; | 
|  | 268 |  | 
|  | 269 | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | 270 | if (node == node_cpuid[cpu].nid) | 
|  | 271 | n++; | 
|  | 272 |  | 
|  | 273 | return n; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | /** | 
|  | 277 | * find_pernode_space - allocate memory for memory map and per-node structures | 
|  | 278 | * @start: physical start of range | 
|  | 279 | * @len: length of range | 
|  | 280 | * @node: node where this range resides | 
|  | 281 | * | 
|  | 282 | * This routine reserves space for the per-cpu data struct, the list of | 
|  | 283 | * pg_data_ts and the per-node data struct.  Each node will have something like | 
|  | 284 | * the following in the first chunk of addr. space large enough to hold it. | 
|  | 285 | * | 
|  | 286 | *    ________________________ | 
|  | 287 | *   |                        | | 
|  | 288 | *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first | 
|  | 289 | *   |    PERCPU_PAGE_SIZE *  |     start and length big enough | 
|  | 290 | *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus. | 
|  | 291 | *   |------------------------| | 
|  | 292 | *   |   local pg_data_t *    | | 
|  | 293 | *   |------------------------| | 
|  | 294 | *   |  local ia64_node_data  | | 
|  | 295 | *   |------------------------| | 
|  | 296 | *   |          ???           | | 
|  | 297 | *   |________________________| | 
|  | 298 | * | 
|  | 299 | * Once this space has been set aside, the bootmem maps are initialized.  We | 
|  | 300 | * could probably move the allocation of the per-cpu and ia64_node_data space | 
|  | 301 | * outside of this function and use alloc_bootmem_node(), but doing it here | 
|  | 302 | * is straightforward and we get the alignments we want so... | 
|  | 303 | */ | 
|  | 304 | static int __init find_pernode_space(unsigned long start, unsigned long len, | 
|  | 305 | int node) | 
|  | 306 | { | 
|  | 307 | unsigned long epfn, cpu, cpus, phys_cpus; | 
|  | 308 | unsigned long pernodesize = 0, pernode, pages, mapsize; | 
|  | 309 | void *cpu_data; | 
|  | 310 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | 
|  | 311 |  | 
|  | 312 | epfn = (start + len) >> PAGE_SHIFT; | 
|  | 313 |  | 
|  | 314 | pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); | 
|  | 315 | mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | 
|  | 316 |  | 
|  | 317 | /* | 
|  | 318 | * Make sure this memory falls within this node's usable memory | 
|  | 319 | * since we may have thrown some away in build_maps(). | 
|  | 320 | */ | 
|  | 321 | if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) | 
|  | 322 | return 0; | 
|  | 323 |  | 
|  | 324 | /* Don't setup this node's local space twice... */ | 
|  | 325 | if (mem_data[node].pernode_addr) | 
|  | 326 | return 0; | 
|  | 327 |  | 
|  | 328 | /* | 
|  | 329 | * Calculate total size needed, incl. what's necessary | 
|  | 330 | * for good alignment and alias prevention. | 
|  | 331 | */ | 
|  | 332 | cpus = early_nr_cpus_node(node); | 
|  | 333 | phys_cpus = early_nr_phys_cpus_node(node); | 
|  | 334 | pernodesize += PERCPU_PAGE_SIZE * cpus; | 
|  | 335 | pernodesize += node * L1_CACHE_BYTES; | 
|  | 336 | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  | 337 | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | 
|  | 338 | pernodesize = PAGE_ALIGN(pernodesize); | 
|  | 339 | pernode = NODEDATA_ALIGN(start, node); | 
|  | 340 |  | 
|  | 341 | /* Is this range big enough for what we want to store here? */ | 
|  | 342 | if (start + len > (pernode + pernodesize + mapsize)) { | 
|  | 343 | mem_data[node].pernode_addr = pernode; | 
|  | 344 | mem_data[node].pernode_size = pernodesize; | 
|  | 345 | memset(__va(pernode), 0, pernodesize); | 
|  | 346 |  | 
|  | 347 | cpu_data = (void *)pernode; | 
|  | 348 | pernode += PERCPU_PAGE_SIZE * cpus; | 
|  | 349 | pernode += node * L1_CACHE_BYTES; | 
|  | 350 |  | 
|  | 351 | mem_data[node].pgdat = __va(pernode); | 
|  | 352 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  | 353 |  | 
|  | 354 | mem_data[node].node_data = __va(pernode); | 
|  | 355 | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | 
|  | 356 |  | 
|  | 357 | mem_data[node].pgdat->bdata = bdp; | 
|  | 358 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  | 359 |  | 
|  | 360 | /* | 
|  | 361 | * Copy the static per-cpu data into the region we | 
|  | 362 | * just set aside and then setup __per_cpu_offset | 
|  | 363 | * for each CPU on this node. | 
|  | 364 | */ | 
|  | 365 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | 366 | if (node == node_cpuid[cpu].nid) { | 
|  | 367 | memcpy(__va(cpu_data), __phys_per_cpu_start, | 
|  | 368 | __per_cpu_end - __per_cpu_start); | 
|  | 369 | __per_cpu_offset[cpu] = (char*)__va(cpu_data) - | 
|  | 370 | __per_cpu_start; | 
|  | 371 | cpu_data += PERCPU_PAGE_SIZE; | 
|  | 372 | } | 
|  | 373 | } | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | return 0; | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | /** | 
|  | 380 | * free_node_bootmem - free bootmem allocator memory for use | 
|  | 381 | * @start: physical start of range | 
|  | 382 | * @len: length of range | 
|  | 383 | * @node: node where this range resides | 
|  | 384 | * | 
|  | 385 | * Simply calls the bootmem allocator to free the specified ranged from | 
|  | 386 | * the given pg_data_t's bdata struct.  After this function has been called | 
|  | 387 | * for all the entries in the EFI memory map, the bootmem allocator will | 
|  | 388 | * be ready to service allocation requests. | 
|  | 389 | */ | 
|  | 390 | static int __init free_node_bootmem(unsigned long start, unsigned long len, | 
|  | 391 | int node) | 
|  | 392 | { | 
|  | 393 | free_bootmem_node(mem_data[node].pgdat, start, len); | 
|  | 394 |  | 
|  | 395 | return 0; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | /** | 
|  | 399 | * reserve_pernode_space - reserve memory for per-node space | 
|  | 400 | * | 
|  | 401 | * Reserve the space used by the bootmem maps & per-node space in the boot | 
|  | 402 | * allocator so that when we actually create the real mem maps we don't | 
|  | 403 | * use their memory. | 
|  | 404 | */ | 
|  | 405 | static void __init reserve_pernode_space(void) | 
|  | 406 | { | 
|  | 407 | unsigned long base, size, pages; | 
|  | 408 | struct bootmem_data *bdp; | 
|  | 409 | int node; | 
|  | 410 |  | 
|  | 411 | for_each_online_node(node) { | 
|  | 412 | pg_data_t *pdp = mem_data[node].pgdat; | 
|  | 413 |  | 
|  | 414 | bdp = pdp->bdata; | 
|  | 415 |  | 
|  | 416 | /* First the bootmem_map itself */ | 
|  | 417 | pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); | 
|  | 418 | size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | 
|  | 419 | base = __pa(bdp->node_bootmem_map); | 
|  | 420 | reserve_bootmem_node(pdp, base, size); | 
|  | 421 |  | 
|  | 422 | /* Now the per-node space */ | 
|  | 423 | size = mem_data[node].pernode_size; | 
|  | 424 | base = __pa(mem_data[node].pernode_addr); | 
|  | 425 | reserve_bootmem_node(pdp, base, size); | 
|  | 426 | } | 
|  | 427 | } | 
|  | 428 |  | 
|  | 429 | /** | 
|  | 430 | * initialize_pernode_data - fixup per-cpu & per-node pointers | 
|  | 431 | * | 
|  | 432 | * Each node's per-node area has a copy of the global pg_data_t list, so | 
|  | 433 | * we copy that to each node here, as well as setting the per-cpu pointer | 
|  | 434 | * to the local node data structure.  The active_cpus field of the per-node | 
|  | 435 | * structure gets setup by the platform_cpu_init() function later. | 
|  | 436 | */ | 
|  | 437 | static void __init initialize_pernode_data(void) | 
|  | 438 | { | 
|  | 439 | int cpu, node; | 
|  | 440 | pg_data_t *pgdat_list[MAX_NUMNODES]; | 
|  | 441 |  | 
|  | 442 | for_each_online_node(node) | 
|  | 443 | pgdat_list[node] = mem_data[node].pgdat; | 
|  | 444 |  | 
|  | 445 | /* Copy the pg_data_t list to each node and init the node field */ | 
|  | 446 | for_each_online_node(node) { | 
|  | 447 | memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, | 
|  | 448 | sizeof(pgdat_list)); | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | /* Set the node_data pointer for each per-cpu struct */ | 
|  | 452 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | 453 | node = node_cpuid[cpu].nid; | 
|  | 454 | per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; | 
|  | 455 | } | 
|  | 456 | } | 
|  | 457 |  | 
|  | 458 | /** | 
|  | 459 | * find_memory - walk the EFI memory map and setup the bootmem allocator | 
|  | 460 | * | 
|  | 461 | * Called early in boot to setup the bootmem allocator, and to | 
|  | 462 | * allocate the per-cpu and per-node structures. | 
|  | 463 | */ | 
|  | 464 | void __init find_memory(void) | 
|  | 465 | { | 
|  | 466 | int node; | 
|  | 467 |  | 
|  | 468 | reserve_memory(); | 
|  | 469 |  | 
|  | 470 | if (num_online_nodes() == 0) { | 
|  | 471 | printk(KERN_ERR "node info missing!\n"); | 
|  | 472 | node_set_online(0); | 
|  | 473 | } | 
|  | 474 |  | 
|  | 475 | min_low_pfn = -1; | 
|  | 476 | max_low_pfn = 0; | 
|  | 477 |  | 
|  | 478 | if (num_online_nodes() > 1) | 
|  | 479 | reassign_cpu_only_nodes(); | 
|  | 480 |  | 
|  | 481 | /* These actually end up getting called by call_pernode_memory() */ | 
|  | 482 | efi_memmap_walk(filter_rsvd_memory, build_node_maps); | 
|  | 483 | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); | 
|  | 484 |  | 
|  | 485 | /* | 
|  | 486 | * Initialize the boot memory maps in reverse order since that's | 
|  | 487 | * what the bootmem allocator expects | 
|  | 488 | */ | 
|  | 489 | for (node = MAX_NUMNODES - 1; node >= 0; node--) { | 
|  | 490 | unsigned long pernode, pernodesize, map; | 
|  | 491 | struct bootmem_data *bdp; | 
|  | 492 |  | 
|  | 493 | if (!node_online(node)) | 
|  | 494 | continue; | 
|  | 495 |  | 
|  | 496 | bdp = &mem_data[node].bootmem_data; | 
|  | 497 | pernode = mem_data[node].pernode_addr; | 
|  | 498 | pernodesize = mem_data[node].pernode_size; | 
|  | 499 | map = pernode + pernodesize; | 
|  | 500 |  | 
|  | 501 | /* Sanity check... */ | 
|  | 502 | if (!pernode) | 
|  | 503 | panic("pernode space for node %d " | 
|  | 504 | "could not be allocated!", node); | 
|  | 505 |  | 
|  | 506 | init_bootmem_node(mem_data[node].pgdat, | 
|  | 507 | map>>PAGE_SHIFT, | 
|  | 508 | bdp->node_boot_start>>PAGE_SHIFT, | 
|  | 509 | bdp->node_low_pfn); | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); | 
|  | 513 |  | 
|  | 514 | reserve_pernode_space(); | 
|  | 515 | initialize_pernode_data(); | 
|  | 516 |  | 
|  | 517 | max_pfn = max_low_pfn; | 
|  | 518 |  | 
|  | 519 | find_initrd(); | 
|  | 520 | } | 
|  | 521 |  | 
|  | 522 | /** | 
|  | 523 | * per_cpu_init - setup per-cpu variables | 
|  | 524 | * | 
|  | 525 | * find_pernode_space() does most of this already, we just need to set | 
|  | 526 | * local_per_cpu_offset | 
|  | 527 | */ | 
|  | 528 | void *per_cpu_init(void) | 
|  | 529 | { | 
|  | 530 | int cpu; | 
|  | 531 |  | 
|  | 532 | if (smp_processor_id() == 0) { | 
|  | 533 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | 534 | per_cpu(local_per_cpu_offset, cpu) = | 
|  | 535 | __per_cpu_offset[cpu]; | 
|  | 536 | } | 
|  | 537 | } | 
|  | 538 |  | 
|  | 539 | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | /** | 
|  | 543 | * show_mem - give short summary of memory stats | 
|  | 544 | * | 
|  | 545 | * Shows a simple page count of reserved and used pages in the system. | 
|  | 546 | * For discontig machines, it does this on a per-pgdat basis. | 
|  | 547 | */ | 
|  | 548 | void show_mem(void) | 
|  | 549 | { | 
|  | 550 | int i, total_reserved = 0; | 
|  | 551 | int total_shared = 0, total_cached = 0; | 
|  | 552 | unsigned long total_present = 0; | 
|  | 553 | pg_data_t *pgdat; | 
|  | 554 |  | 
|  | 555 | printk("Mem-info:\n"); | 
|  | 556 | show_free_areas(); | 
|  | 557 | printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | 
|  | 558 | for_each_pgdat(pgdat) { | 
|  | 559 | unsigned long present = pgdat->node_present_pages; | 
|  | 560 | int shared = 0, cached = 0, reserved = 0; | 
|  | 561 | printk("Node ID: %d\n", pgdat->node_id); | 
|  | 562 | for(i = 0; i < pgdat->node_spanned_pages; i++) { | 
| Dave Hansen | 408fde8 | 2005-06-23 00:07:37 -0700 | [diff] [blame] | 563 | struct page *page = pgdat_page_nr(pgdat, i); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 564 | if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) | 
|  | 565 | continue; | 
| Dave Hansen | 408fde8 | 2005-06-23 00:07:37 -0700 | [diff] [blame] | 566 | if (PageReserved(page)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 567 | reserved++; | 
| Dave Hansen | 408fde8 | 2005-06-23 00:07:37 -0700 | [diff] [blame] | 568 | else if (PageSwapCache(page)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 569 | cached++; | 
| Dave Hansen | 408fde8 | 2005-06-23 00:07:37 -0700 | [diff] [blame] | 570 | else if (page_count(page)) | 
|  | 571 | shared += page_count(page)-1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 572 | } | 
|  | 573 | total_present += present; | 
|  | 574 | total_reserved += reserved; | 
|  | 575 | total_cached += cached; | 
|  | 576 | total_shared += shared; | 
|  | 577 | printk("\t%ld pages of RAM\n", present); | 
|  | 578 | printk("\t%d reserved pages\n", reserved); | 
|  | 579 | printk("\t%d pages shared\n", shared); | 
|  | 580 | printk("\t%d pages swap cached\n", cached); | 
|  | 581 | } | 
|  | 582 | printk("%ld pages of RAM\n", total_present); | 
|  | 583 | printk("%d reserved pages\n", total_reserved); | 
|  | 584 | printk("%d pages shared\n", total_shared); | 
|  | 585 | printk("%d pages swap cached\n", total_cached); | 
| Robin Holt | fde740e | 2005-04-25 13:13:16 -0700 | [diff] [blame] | 586 | printk("Total of %ld pages in page table cache\n", | 
|  | 587 | pgtable_quicklist_total_size()); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 588 | printk("%d free buffer pages\n", nr_free_buffer_pages()); | 
|  | 589 | } | 
|  | 590 |  | 
|  | 591 | /** | 
|  | 592 | * call_pernode_memory - use SRAT to call callback functions with node info | 
|  | 593 | * @start: physical start of range | 
|  | 594 | * @len: length of range | 
|  | 595 | * @arg: function to call for each range | 
|  | 596 | * | 
|  | 597 | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find | 
|  | 598 | * out to which node a block of memory belongs.  Ignore memory that we cannot | 
|  | 599 | * identify, and split blocks that run across multiple nodes. | 
|  | 600 | * | 
|  | 601 | * Take this opportunity to round the start address up and the end address | 
|  | 602 | * down to page boundaries. | 
|  | 603 | */ | 
|  | 604 | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) | 
|  | 605 | { | 
|  | 606 | unsigned long rs, re, end = start + len; | 
|  | 607 | void (*func)(unsigned long, unsigned long, int); | 
|  | 608 | int i; | 
|  | 609 |  | 
|  | 610 | start = PAGE_ALIGN(start); | 
|  | 611 | end &= PAGE_MASK; | 
|  | 612 | if (start >= end) | 
|  | 613 | return; | 
|  | 614 |  | 
|  | 615 | func = arg; | 
|  | 616 |  | 
|  | 617 | if (!num_node_memblks) { | 
|  | 618 | /* No SRAT table, so assume one node (node 0) */ | 
|  | 619 | if (start < end) | 
|  | 620 | (*func)(start, end - start, 0); | 
|  | 621 | return; | 
|  | 622 | } | 
|  | 623 |  | 
|  | 624 | for (i = 0; i < num_node_memblks; i++) { | 
|  | 625 | rs = max(start, node_memblk[i].start_paddr); | 
|  | 626 | re = min(end, node_memblk[i].start_paddr + | 
|  | 627 | node_memblk[i].size); | 
|  | 628 |  | 
|  | 629 | if (rs < re) | 
|  | 630 | (*func)(rs, re - rs, node_memblk[i].nid); | 
|  | 631 |  | 
|  | 632 | if (re == end) | 
|  | 633 | break; | 
|  | 634 | } | 
|  | 635 | } | 
|  | 636 |  | 
|  | 637 | /** | 
|  | 638 | * count_node_pages - callback to build per-node memory info structures | 
|  | 639 | * @start: physical start of range | 
|  | 640 | * @len: length of range | 
|  | 641 | * @node: node where this range resides | 
|  | 642 | * | 
|  | 643 | * Each node has it's own number of physical pages, DMAable pages, start, and | 
|  | 644 | * end page frame number.  This routine will be called by call_pernode_memory() | 
|  | 645 | * for each piece of usable memory and will setup these values for each node. | 
|  | 646 | * Very similar to build_maps(). | 
|  | 647 | */ | 
|  | 648 | static __init int count_node_pages(unsigned long start, unsigned long len, int node) | 
|  | 649 | { | 
|  | 650 | unsigned long end = start + len; | 
|  | 651 |  | 
|  | 652 | mem_data[node].num_physpages += len >> PAGE_SHIFT; | 
|  | 653 | if (start <= __pa(MAX_DMA_ADDRESS)) | 
|  | 654 | mem_data[node].num_dma_physpages += | 
|  | 655 | (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; | 
|  | 656 | start = GRANULEROUNDDOWN(start); | 
|  | 657 | start = ORDERROUNDDOWN(start); | 
|  | 658 | end = GRANULEROUNDUP(end); | 
|  | 659 | mem_data[node].max_pfn = max(mem_data[node].max_pfn, | 
|  | 660 | end >> PAGE_SHIFT); | 
|  | 661 | mem_data[node].min_pfn = min(mem_data[node].min_pfn, | 
|  | 662 | start >> PAGE_SHIFT); | 
|  | 663 |  | 
|  | 664 | return 0; | 
|  | 665 | } | 
|  | 666 |  | 
|  | 667 | /** | 
|  | 668 | * paging_init - setup page tables | 
|  | 669 | * | 
|  | 670 | * paging_init() sets up the page tables for each node of the system and frees | 
|  | 671 | * the bootmem allocator memory for general use. | 
|  | 672 | */ | 
|  | 673 | void __init paging_init(void) | 
|  | 674 | { | 
|  | 675 | unsigned long max_dma; | 
|  | 676 | unsigned long zones_size[MAX_NR_ZONES]; | 
|  | 677 | unsigned long zholes_size[MAX_NR_ZONES]; | 
|  | 678 | unsigned long pfn_offset = 0; | 
|  | 679 | int node; | 
|  | 680 |  | 
|  | 681 | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  | 682 |  | 
|  | 683 | /* so min() will work in count_node_pages */ | 
|  | 684 | for_each_online_node(node) | 
|  | 685 | mem_data[node].min_pfn = ~0UL; | 
|  | 686 |  | 
|  | 687 | efi_memmap_walk(filter_rsvd_memory, count_node_pages); | 
|  | 688 |  | 
|  | 689 | for_each_online_node(node) { | 
|  | 690 | memset(zones_size, 0, sizeof(zones_size)); | 
|  | 691 | memset(zholes_size, 0, sizeof(zholes_size)); | 
|  | 692 |  | 
|  | 693 | num_physpages += mem_data[node].num_physpages; | 
|  | 694 |  | 
|  | 695 | if (mem_data[node].min_pfn >= max_dma) { | 
|  | 696 | /* All of this node's memory is above ZONE_DMA */ | 
|  | 697 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | 
|  | 698 | mem_data[node].min_pfn; | 
|  | 699 | zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - | 
|  | 700 | mem_data[node].min_pfn - | 
|  | 701 | mem_data[node].num_physpages; | 
|  | 702 | } else if (mem_data[node].max_pfn < max_dma) { | 
|  | 703 | /* All of this node's memory is in ZONE_DMA */ | 
|  | 704 | zones_size[ZONE_DMA] = mem_data[node].max_pfn - | 
|  | 705 | mem_data[node].min_pfn; | 
|  | 706 | zholes_size[ZONE_DMA] = mem_data[node].max_pfn - | 
|  | 707 | mem_data[node].min_pfn - | 
|  | 708 | mem_data[node].num_dma_physpages; | 
|  | 709 | } else { | 
|  | 710 | /* This node has memory in both zones */ | 
|  | 711 | zones_size[ZONE_DMA] = max_dma - | 
|  | 712 | mem_data[node].min_pfn; | 
|  | 713 | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - | 
|  | 714 | mem_data[node].num_dma_physpages; | 
|  | 715 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | 
|  | 716 | max_dma; | 
|  | 717 | zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - | 
|  | 718 | (mem_data[node].num_physpages - | 
|  | 719 | mem_data[node].num_dma_physpages); | 
|  | 720 | } | 
|  | 721 |  | 
|  | 722 | if (node == 0) { | 
|  | 723 | vmalloc_end -= | 
|  | 724 | PAGE_ALIGN(max_low_pfn * sizeof(struct page)); | 
|  | 725 | vmem_map = (struct page *) vmalloc_end; | 
|  | 726 |  | 
|  | 727 | efi_memmap_walk(create_mem_map_page_table, NULL); | 
|  | 728 | printk("Virtual mem_map starts at 0x%p\n", vmem_map); | 
|  | 729 | } | 
|  | 730 |  | 
|  | 731 | pfn_offset = mem_data[node].min_pfn; | 
|  | 732 |  | 
|  | 733 | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; | 
|  | 734 | free_area_init_node(node, NODE_DATA(node), zones_size, | 
|  | 735 | pfn_offset, zholes_size); | 
|  | 736 | } | 
|  | 737 |  | 
|  | 738 | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | 
|  | 739 | } |