| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/drivers/char/vt_ioctl.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 1992 obz under the linux copyright | 
|  | 5 | * | 
|  | 6 | *  Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 | 
|  | 7 | *  Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 | 
|  | 8 | *  Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 | 
|  | 9 | *  Some code moved for less code duplication - Andi Kleen - Mar 1997 | 
|  | 10 | *  Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | #include <linux/config.h> | 
|  | 14 | #include <linux/types.h> | 
|  | 15 | #include <linux/errno.h> | 
|  | 16 | #include <linux/sched.h> | 
|  | 17 | #include <linux/tty.h> | 
|  | 18 | #include <linux/timer.h> | 
|  | 19 | #include <linux/kernel.h> | 
|  | 20 | #include <linux/kd.h> | 
|  | 21 | #include <linux/vt.h> | 
|  | 22 | #include <linux/string.h> | 
|  | 23 | #include <linux/slab.h> | 
|  | 24 | #include <linux/major.h> | 
|  | 25 | #include <linux/fs.h> | 
|  | 26 | #include <linux/console.h> | 
| Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 27 | #include <linux/signal.h> | 
| Emmanuel Colbus | bcc8ca0 | 2005-06-28 20:44:49 -0700 | [diff] [blame] | 28 | #include <linux/timex.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 29 |  | 
|  | 30 | #include <asm/io.h> | 
|  | 31 | #include <asm/uaccess.h> | 
|  | 32 |  | 
|  | 33 | #include <linux/kbd_kern.h> | 
|  | 34 | #include <linux/vt_kern.h> | 
|  | 35 | #include <linux/kbd_diacr.h> | 
|  | 36 | #include <linux/selection.h> | 
|  | 37 |  | 
|  | 38 | static char vt_dont_switch; | 
|  | 39 | extern struct tty_driver *console_driver; | 
|  | 40 |  | 
|  | 41 | #define VT_IS_IN_USE(i)	(console_driver->ttys[i] && console_driver->ttys[i]->count) | 
|  | 42 | #define VT_BUSY(i)	(VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons) | 
|  | 43 |  | 
|  | 44 | /* | 
|  | 45 | * Console (vt and kd) routines, as defined by USL SVR4 manual, and by | 
|  | 46 | * experimentation and study of X386 SYSV handling. | 
|  | 47 | * | 
|  | 48 | * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and | 
|  | 49 | * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, | 
|  | 50 | * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will | 
|  | 51 | * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to | 
|  | 52 | * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using | 
|  | 53 | * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing | 
|  | 54 | * to the current console is done by the main ioctl code. | 
|  | 55 | */ | 
|  | 56 |  | 
|  | 57 | #ifdef CONFIG_X86 | 
|  | 58 | #include <linux/syscalls.h> | 
|  | 59 | #endif | 
|  | 60 |  | 
|  | 61 | static void complete_change_console(struct vc_data *vc); | 
|  | 62 |  | 
|  | 63 | /* | 
|  | 64 | * these are the valid i/o ports we're allowed to change. they map all the | 
|  | 65 | * video ports | 
|  | 66 | */ | 
|  | 67 | #define GPFIRST 0x3b4 | 
|  | 68 | #define GPLAST 0x3df | 
|  | 69 | #define GPNUM (GPLAST - GPFIRST + 1) | 
|  | 70 |  | 
|  | 71 | #define i (tmp.kb_index) | 
|  | 72 | #define s (tmp.kb_table) | 
|  | 73 | #define v (tmp.kb_value) | 
|  | 74 | static inline int | 
|  | 75 | do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd) | 
|  | 76 | { | 
|  | 77 | struct kbentry tmp; | 
|  | 78 | ushort *key_map, val, ov; | 
|  | 79 |  | 
|  | 80 | if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) | 
|  | 81 | return -EFAULT; | 
|  | 82 |  | 
|  | 83 | switch (cmd) { | 
|  | 84 | case KDGKBENT: | 
|  | 85 | key_map = key_maps[s]; | 
|  | 86 | if (key_map) { | 
|  | 87 | val = U(key_map[i]); | 
|  | 88 | if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) | 
|  | 89 | val = K_HOLE; | 
|  | 90 | } else | 
|  | 91 | val = (i ? K_HOLE : K_NOSUCHMAP); | 
|  | 92 | return put_user(val, &user_kbe->kb_value); | 
|  | 93 | case KDSKBENT: | 
|  | 94 | if (!perm) | 
|  | 95 | return -EPERM; | 
|  | 96 | if (!i && v == K_NOSUCHMAP) { | 
|  | 97 | /* disallocate map */ | 
|  | 98 | key_map = key_maps[s]; | 
|  | 99 | if (s && key_map) { | 
|  | 100 | key_maps[s] = NULL; | 
|  | 101 | if (key_map[0] == U(K_ALLOCATED)) { | 
|  | 102 | kfree(key_map); | 
|  | 103 | keymap_count--; | 
|  | 104 | } | 
|  | 105 | } | 
|  | 106 | break; | 
|  | 107 | } | 
|  | 108 |  | 
|  | 109 | if (KTYP(v) < NR_TYPES) { | 
|  | 110 | if (KVAL(v) > max_vals[KTYP(v)]) | 
|  | 111 | return -EINVAL; | 
|  | 112 | } else | 
|  | 113 | if (kbd->kbdmode != VC_UNICODE) | 
|  | 114 | return -EINVAL; | 
|  | 115 |  | 
|  | 116 | /* ++Geert: non-PC keyboards may generate keycode zero */ | 
|  | 117 | #if !defined(__mc68000__) && !defined(__powerpc__) | 
|  | 118 | /* assignment to entry 0 only tests validity of args */ | 
|  | 119 | if (!i) | 
|  | 120 | break; | 
|  | 121 | #endif | 
|  | 122 |  | 
|  | 123 | if (!(key_map = key_maps[s])) { | 
|  | 124 | int j; | 
|  | 125 |  | 
|  | 126 | if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && | 
|  | 127 | !capable(CAP_SYS_RESOURCE)) | 
|  | 128 | return -EPERM; | 
|  | 129 |  | 
|  | 130 | key_map = (ushort *) kmalloc(sizeof(plain_map), | 
|  | 131 | GFP_KERNEL); | 
|  | 132 | if (!key_map) | 
|  | 133 | return -ENOMEM; | 
|  | 134 | key_maps[s] = key_map; | 
|  | 135 | key_map[0] = U(K_ALLOCATED); | 
|  | 136 | for (j = 1; j < NR_KEYS; j++) | 
|  | 137 | key_map[j] = U(K_HOLE); | 
|  | 138 | keymap_count++; | 
|  | 139 | } | 
|  | 140 | ov = U(key_map[i]); | 
|  | 141 | if (v == ov) | 
|  | 142 | break;	/* nothing to do */ | 
|  | 143 | /* | 
|  | 144 | * Attention Key. | 
|  | 145 | */ | 
|  | 146 | if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) | 
|  | 147 | return -EPERM; | 
|  | 148 | key_map[i] = U(v); | 
|  | 149 | if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) | 
|  | 150 | compute_shiftstate(); | 
|  | 151 | break; | 
|  | 152 | } | 
|  | 153 | return 0; | 
|  | 154 | } | 
|  | 155 | #undef i | 
|  | 156 | #undef s | 
|  | 157 | #undef v | 
|  | 158 |  | 
|  | 159 | static inline int | 
|  | 160 | do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm) | 
|  | 161 | { | 
|  | 162 | struct kbkeycode tmp; | 
|  | 163 | int kc = 0; | 
|  | 164 |  | 
|  | 165 | if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) | 
|  | 166 | return -EFAULT; | 
|  | 167 | switch (cmd) { | 
|  | 168 | case KDGETKEYCODE: | 
|  | 169 | kc = getkeycode(tmp.scancode); | 
|  | 170 | if (kc >= 0) | 
|  | 171 | kc = put_user(kc, &user_kbkc->keycode); | 
|  | 172 | break; | 
|  | 173 | case KDSETKEYCODE: | 
|  | 174 | if (!perm) | 
|  | 175 | return -EPERM; | 
|  | 176 | kc = setkeycode(tmp.scancode, tmp.keycode); | 
|  | 177 | break; | 
|  | 178 | } | 
|  | 179 | return kc; | 
|  | 180 | } | 
|  | 181 |  | 
|  | 182 | static inline int | 
|  | 183 | do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) | 
|  | 184 | { | 
|  | 185 | struct kbsentry *kbs; | 
|  | 186 | char *p; | 
|  | 187 | u_char *q; | 
|  | 188 | u_char __user *up; | 
|  | 189 | int sz; | 
|  | 190 | int delta; | 
|  | 191 | char *first_free, *fj, *fnw; | 
|  | 192 | int i, j, k; | 
|  | 193 | int ret; | 
|  | 194 |  | 
|  | 195 | kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); | 
|  | 196 | if (!kbs) { | 
|  | 197 | ret = -ENOMEM; | 
|  | 198 | goto reterr; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | /* we mostly copy too much here (512bytes), but who cares ;) */ | 
|  | 202 | if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { | 
|  | 203 | ret = -EFAULT; | 
|  | 204 | goto reterr; | 
|  | 205 | } | 
|  | 206 | kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; | 
|  | 207 | i = kbs->kb_func; | 
|  | 208 |  | 
|  | 209 | switch (cmd) { | 
|  | 210 | case KDGKBSENT: | 
|  | 211 | sz = sizeof(kbs->kb_string) - 1; /* sz should have been | 
|  | 212 | a struct member */ | 
|  | 213 | up = user_kdgkb->kb_string; | 
|  | 214 | p = func_table[i]; | 
|  | 215 | if(p) | 
|  | 216 | for ( ; *p && sz; p++, sz--) | 
|  | 217 | if (put_user(*p, up++)) { | 
|  | 218 | ret = -EFAULT; | 
|  | 219 | goto reterr; | 
|  | 220 | } | 
|  | 221 | if (put_user('\0', up)) { | 
|  | 222 | ret = -EFAULT; | 
|  | 223 | goto reterr; | 
|  | 224 | } | 
|  | 225 | kfree(kbs); | 
|  | 226 | return ((p && *p) ? -EOVERFLOW : 0); | 
|  | 227 | case KDSKBSENT: | 
|  | 228 | if (!perm) { | 
|  | 229 | ret = -EPERM; | 
|  | 230 | goto reterr; | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | q = func_table[i]; | 
|  | 234 | first_free = funcbufptr + (funcbufsize - funcbufleft); | 
|  | 235 | for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) | 
|  | 236 | ; | 
|  | 237 | if (j < MAX_NR_FUNC) | 
|  | 238 | fj = func_table[j]; | 
|  | 239 | else | 
|  | 240 | fj = first_free; | 
|  | 241 |  | 
|  | 242 | delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); | 
|  | 243 | if (delta <= funcbufleft) { 	/* it fits in current buf */ | 
|  | 244 | if (j < MAX_NR_FUNC) { | 
|  | 245 | memmove(fj + delta, fj, first_free - fj); | 
|  | 246 | for (k = j; k < MAX_NR_FUNC; k++) | 
|  | 247 | if (func_table[k]) | 
|  | 248 | func_table[k] += delta; | 
|  | 249 | } | 
|  | 250 | if (!q) | 
|  | 251 | func_table[i] = fj; | 
|  | 252 | funcbufleft -= delta; | 
|  | 253 | } else {			/* allocate a larger buffer */ | 
|  | 254 | sz = 256; | 
|  | 255 | while (sz < funcbufsize - funcbufleft + delta) | 
|  | 256 | sz <<= 1; | 
|  | 257 | fnw = (char *) kmalloc(sz, GFP_KERNEL); | 
|  | 258 | if(!fnw) { | 
|  | 259 | ret = -ENOMEM; | 
|  | 260 | goto reterr; | 
|  | 261 | } | 
|  | 262 |  | 
|  | 263 | if (!q) | 
|  | 264 | func_table[i] = fj; | 
|  | 265 | if (fj > funcbufptr) | 
|  | 266 | memmove(fnw, funcbufptr, fj - funcbufptr); | 
|  | 267 | for (k = 0; k < j; k++) | 
|  | 268 | if (func_table[k]) | 
|  | 269 | func_table[k] = fnw + (func_table[k] - funcbufptr); | 
|  | 270 |  | 
|  | 271 | if (first_free > fj) { | 
|  | 272 | memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); | 
|  | 273 | for (k = j; k < MAX_NR_FUNC; k++) | 
|  | 274 | if (func_table[k]) | 
|  | 275 | func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; | 
|  | 276 | } | 
|  | 277 | if (funcbufptr != func_buf) | 
|  | 278 | kfree(funcbufptr); | 
|  | 279 | funcbufptr = fnw; | 
|  | 280 | funcbufleft = funcbufleft - delta + sz - funcbufsize; | 
|  | 281 | funcbufsize = sz; | 
|  | 282 | } | 
|  | 283 | strcpy(func_table[i], kbs->kb_string); | 
|  | 284 | break; | 
|  | 285 | } | 
|  | 286 | ret = 0; | 
|  | 287 | reterr: | 
|  | 288 | kfree(kbs); | 
|  | 289 | return ret; | 
|  | 290 | } | 
|  | 291 |  | 
|  | 292 | static inline int | 
|  | 293 | do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op) | 
|  | 294 | { | 
|  | 295 | struct consolefontdesc cfdarg; | 
|  | 296 | int i; | 
|  | 297 |  | 
|  | 298 | if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) | 
|  | 299 | return -EFAULT; | 
|  | 300 |  | 
|  | 301 | switch (cmd) { | 
|  | 302 | case PIO_FONTX: | 
|  | 303 | if (!perm) | 
|  | 304 | return -EPERM; | 
|  | 305 | op->op = KD_FONT_OP_SET; | 
|  | 306 | op->flags = KD_FONT_FLAG_OLD; | 
|  | 307 | op->width = 8; | 
|  | 308 | op->height = cfdarg.charheight; | 
|  | 309 | op->charcount = cfdarg.charcount; | 
|  | 310 | op->data = cfdarg.chardata; | 
|  | 311 | return con_font_op(vc_cons[fg_console].d, op); | 
|  | 312 | case GIO_FONTX: { | 
|  | 313 | op->op = KD_FONT_OP_GET; | 
|  | 314 | op->flags = KD_FONT_FLAG_OLD; | 
|  | 315 | op->width = 8; | 
|  | 316 | op->height = cfdarg.charheight; | 
|  | 317 | op->charcount = cfdarg.charcount; | 
|  | 318 | op->data = cfdarg.chardata; | 
|  | 319 | i = con_font_op(vc_cons[fg_console].d, op); | 
|  | 320 | if (i) | 
|  | 321 | return i; | 
|  | 322 | cfdarg.charheight = op->height; | 
|  | 323 | cfdarg.charcount = op->charcount; | 
|  | 324 | if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) | 
|  | 325 | return -EFAULT; | 
|  | 326 | return 0; | 
|  | 327 | } | 
|  | 328 | } | 
|  | 329 | return -EINVAL; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | static inline int | 
|  | 333 | do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc) | 
|  | 334 | { | 
|  | 335 | struct unimapdesc tmp; | 
|  | 336 |  | 
|  | 337 | if (copy_from_user(&tmp, user_ud, sizeof tmp)) | 
|  | 338 | return -EFAULT; | 
|  | 339 | if (tmp.entries) | 
|  | 340 | if (!access_ok(VERIFY_WRITE, tmp.entries, | 
|  | 341 | tmp.entry_ct*sizeof(struct unipair))) | 
|  | 342 | return -EFAULT; | 
|  | 343 | switch (cmd) { | 
|  | 344 | case PIO_UNIMAP: | 
|  | 345 | if (!perm) | 
|  | 346 | return -EPERM; | 
|  | 347 | return con_set_unimap(vc, tmp.entry_ct, tmp.entries); | 
|  | 348 | case GIO_UNIMAP: | 
|  | 349 | if (!perm && fg_console != vc->vc_num) | 
|  | 350 | return -EPERM; | 
|  | 351 | return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); | 
|  | 352 | } | 
|  | 353 | return 0; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | /* | 
|  | 357 | * We handle the console-specific ioctl's here.  We allow the | 
|  | 358 | * capability to modify any console, not just the fg_console. | 
|  | 359 | */ | 
|  | 360 | int vt_ioctl(struct tty_struct *tty, struct file * file, | 
|  | 361 | unsigned int cmd, unsigned long arg) | 
|  | 362 | { | 
|  | 363 | struct vc_data *vc = (struct vc_data *)tty->driver_data; | 
|  | 364 | struct console_font_op op;	/* used in multiple places here */ | 
|  | 365 | struct kbd_struct * kbd; | 
|  | 366 | unsigned int console; | 
|  | 367 | unsigned char ucval; | 
|  | 368 | void __user *up = (void __user *)arg; | 
|  | 369 | int i, perm; | 
|  | 370 |  | 
|  | 371 | console = vc->vc_num; | 
|  | 372 |  | 
|  | 373 | if (!vc_cons_allocated(console)) 	/* impossible? */ | 
|  | 374 | return -ENOIOCTLCMD; | 
|  | 375 |  | 
|  | 376 | /* | 
|  | 377 | * To have permissions to do most of the vt ioctls, we either have | 
|  | 378 | * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. | 
|  | 379 | */ | 
|  | 380 | perm = 0; | 
|  | 381 | if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) | 
|  | 382 | perm = 1; | 
|  | 383 |  | 
|  | 384 | kbd = kbd_table + console; | 
|  | 385 | switch (cmd) { | 
|  | 386 | case KIOCSOUND: | 
|  | 387 | if (!perm) | 
|  | 388 | return -EPERM; | 
|  | 389 | if (arg) | 
| Emmanuel Colbus | bcc8ca0 | 2005-06-28 20:44:49 -0700 | [diff] [blame] | 390 | arg = CLOCK_TICK_RATE / arg; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 391 | kd_mksound(arg, 0); | 
|  | 392 | return 0; | 
|  | 393 |  | 
|  | 394 | case KDMKTONE: | 
|  | 395 | if (!perm) | 
|  | 396 | return -EPERM; | 
|  | 397 | { | 
|  | 398 | unsigned int ticks, count; | 
|  | 399 |  | 
|  | 400 | /* | 
|  | 401 | * Generate the tone for the appropriate number of ticks. | 
|  | 402 | * If the time is zero, turn off sound ourselves. | 
|  | 403 | */ | 
|  | 404 | ticks = HZ * ((arg >> 16) & 0xffff) / 1000; | 
|  | 405 | count = ticks ? (arg & 0xffff) : 0; | 
|  | 406 | if (count) | 
| Emmanuel Colbus | bcc8ca0 | 2005-06-28 20:44:49 -0700 | [diff] [blame] | 407 | count = CLOCK_TICK_RATE / count; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 408 | kd_mksound(count, ticks); | 
|  | 409 | return 0; | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | case KDGKBTYPE: | 
|  | 413 | /* | 
|  | 414 | * this is naive. | 
|  | 415 | */ | 
|  | 416 | ucval = KB_101; | 
|  | 417 | goto setchar; | 
|  | 418 |  | 
|  | 419 | /* | 
|  | 420 | * These cannot be implemented on any machine that implements | 
|  | 421 | * ioperm() in user level (such as Alpha PCs) or not at all. | 
|  | 422 | * | 
|  | 423 | * XXX: you should never use these, just call ioperm directly.. | 
|  | 424 | */ | 
|  | 425 | #ifdef CONFIG_X86 | 
|  | 426 | case KDADDIO: | 
|  | 427 | case KDDELIO: | 
|  | 428 | /* | 
|  | 429 | * KDADDIO and KDDELIO may be able to add ports beyond what | 
|  | 430 | * we reject here, but to be safe... | 
|  | 431 | */ | 
|  | 432 | if (arg < GPFIRST || arg > GPLAST) | 
|  | 433 | return -EINVAL; | 
|  | 434 | return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; | 
|  | 435 |  | 
|  | 436 | case KDENABIO: | 
|  | 437 | case KDDISABIO: | 
|  | 438 | return sys_ioperm(GPFIRST, GPNUM, | 
|  | 439 | (cmd == KDENABIO)) ? -ENXIO : 0; | 
|  | 440 | #endif | 
|  | 441 |  | 
|  | 442 | /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ | 
|  | 443 |  | 
|  | 444 | case KDKBDREP: | 
|  | 445 | { | 
|  | 446 | struct kbd_repeat kbrep; | 
|  | 447 | int err; | 
|  | 448 |  | 
|  | 449 | if (!capable(CAP_SYS_TTY_CONFIG)) | 
|  | 450 | return -EPERM; | 
|  | 451 |  | 
|  | 452 | if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) | 
|  | 453 | return -EFAULT; | 
|  | 454 | err = kbd_rate(&kbrep); | 
|  | 455 | if (err) | 
|  | 456 | return err; | 
|  | 457 | if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat))) | 
|  | 458 | return -EFAULT; | 
|  | 459 | return 0; | 
|  | 460 | } | 
|  | 461 |  | 
|  | 462 | case KDSETMODE: | 
|  | 463 | /* | 
|  | 464 | * currently, setting the mode from KD_TEXT to KD_GRAPHICS | 
|  | 465 | * doesn't do a whole lot. i'm not sure if it should do any | 
|  | 466 | * restoration of modes or what... | 
|  | 467 | * | 
|  | 468 | * XXX It should at least call into the driver, fbdev's definitely | 
|  | 469 | * need to restore their engine state. --BenH | 
|  | 470 | */ | 
|  | 471 | if (!perm) | 
|  | 472 | return -EPERM; | 
|  | 473 | switch (arg) { | 
|  | 474 | case KD_GRAPHICS: | 
|  | 475 | break; | 
|  | 476 | case KD_TEXT0: | 
|  | 477 | case KD_TEXT1: | 
|  | 478 | arg = KD_TEXT; | 
|  | 479 | case KD_TEXT: | 
|  | 480 | break; | 
|  | 481 | default: | 
|  | 482 | return -EINVAL; | 
|  | 483 | } | 
|  | 484 | if (vc->vc_mode == (unsigned char) arg) | 
|  | 485 | return 0; | 
|  | 486 | vc->vc_mode = (unsigned char) arg; | 
|  | 487 | if (console != fg_console) | 
|  | 488 | return 0; | 
|  | 489 | /* | 
|  | 490 | * explicitly blank/unblank the screen if switching modes | 
|  | 491 | */ | 
|  | 492 | acquire_console_sem(); | 
|  | 493 | if (arg == KD_TEXT) | 
|  | 494 | do_unblank_screen(1); | 
|  | 495 | else | 
|  | 496 | do_blank_screen(1); | 
|  | 497 | release_console_sem(); | 
|  | 498 | return 0; | 
|  | 499 |  | 
|  | 500 | case KDGETMODE: | 
|  | 501 | ucval = vc->vc_mode; | 
|  | 502 | goto setint; | 
|  | 503 |  | 
|  | 504 | case KDMAPDISP: | 
|  | 505 | case KDUNMAPDISP: | 
|  | 506 | /* | 
|  | 507 | * these work like a combination of mmap and KDENABIO. | 
|  | 508 | * this could be easily finished. | 
|  | 509 | */ | 
|  | 510 | return -EINVAL; | 
|  | 511 |  | 
|  | 512 | case KDSKBMODE: | 
|  | 513 | if (!perm) | 
|  | 514 | return -EPERM; | 
|  | 515 | switch(arg) { | 
|  | 516 | case K_RAW: | 
|  | 517 | kbd->kbdmode = VC_RAW; | 
|  | 518 | break; | 
|  | 519 | case K_MEDIUMRAW: | 
|  | 520 | kbd->kbdmode = VC_MEDIUMRAW; | 
|  | 521 | break; | 
|  | 522 | case K_XLATE: | 
|  | 523 | kbd->kbdmode = VC_XLATE; | 
|  | 524 | compute_shiftstate(); | 
|  | 525 | break; | 
|  | 526 | case K_UNICODE: | 
|  | 527 | kbd->kbdmode = VC_UNICODE; | 
|  | 528 | compute_shiftstate(); | 
|  | 529 | break; | 
|  | 530 | default: | 
|  | 531 | return -EINVAL; | 
|  | 532 | } | 
|  | 533 | tty_ldisc_flush(tty); | 
|  | 534 | return 0; | 
|  | 535 |  | 
|  | 536 | case KDGKBMODE: | 
|  | 537 | ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW : | 
|  | 538 | (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : | 
|  | 539 | (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : | 
|  | 540 | K_XLATE); | 
|  | 541 | goto setint; | 
|  | 542 |  | 
|  | 543 | /* this could be folded into KDSKBMODE, but for compatibility | 
|  | 544 | reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ | 
|  | 545 | case KDSKBMETA: | 
|  | 546 | switch(arg) { | 
|  | 547 | case K_METABIT: | 
|  | 548 | clr_vc_kbd_mode(kbd, VC_META); | 
|  | 549 | break; | 
|  | 550 | case K_ESCPREFIX: | 
|  | 551 | set_vc_kbd_mode(kbd, VC_META); | 
|  | 552 | break; | 
|  | 553 | default: | 
|  | 554 | return -EINVAL; | 
|  | 555 | } | 
|  | 556 | return 0; | 
|  | 557 |  | 
|  | 558 | case KDGKBMETA: | 
|  | 559 | ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); | 
|  | 560 | setint: | 
|  | 561 | return put_user(ucval, (int __user *)arg); | 
|  | 562 |  | 
|  | 563 | case KDGETKEYCODE: | 
|  | 564 | case KDSETKEYCODE: | 
|  | 565 | if(!capable(CAP_SYS_TTY_CONFIG)) | 
|  | 566 | perm=0; | 
|  | 567 | return do_kbkeycode_ioctl(cmd, up, perm); | 
|  | 568 |  | 
|  | 569 | case KDGKBENT: | 
|  | 570 | case KDSKBENT: | 
|  | 571 | return do_kdsk_ioctl(cmd, up, perm, kbd); | 
|  | 572 |  | 
|  | 573 | case KDGKBSENT: | 
|  | 574 | case KDSKBSENT: | 
|  | 575 | return do_kdgkb_ioctl(cmd, up, perm); | 
|  | 576 |  | 
|  | 577 | case KDGKBDIACR: | 
|  | 578 | { | 
|  | 579 | struct kbdiacrs __user *a = up; | 
|  | 580 |  | 
|  | 581 | if (put_user(accent_table_size, &a->kb_cnt)) | 
|  | 582 | return -EFAULT; | 
|  | 583 | if (copy_to_user(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr))) | 
|  | 584 | return -EFAULT; | 
|  | 585 | return 0; | 
|  | 586 | } | 
|  | 587 |  | 
|  | 588 | case KDSKBDIACR: | 
|  | 589 | { | 
|  | 590 | struct kbdiacrs __user *a = up; | 
|  | 591 | unsigned int ct; | 
|  | 592 |  | 
|  | 593 | if (!perm) | 
|  | 594 | return -EPERM; | 
|  | 595 | if (get_user(ct,&a->kb_cnt)) | 
|  | 596 | return -EFAULT; | 
|  | 597 | if (ct >= MAX_DIACR) | 
|  | 598 | return -EINVAL; | 
|  | 599 | accent_table_size = ct; | 
|  | 600 | if (copy_from_user(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr))) | 
|  | 601 | return -EFAULT; | 
|  | 602 | return 0; | 
|  | 603 | } | 
|  | 604 |  | 
|  | 605 | /* the ioctls below read/set the flags usually shown in the leds */ | 
|  | 606 | /* don't use them - they will go away without warning */ | 
|  | 607 | case KDGKBLED: | 
|  | 608 | ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); | 
|  | 609 | goto setchar; | 
|  | 610 |  | 
|  | 611 | case KDSKBLED: | 
|  | 612 | if (!perm) | 
|  | 613 | return -EPERM; | 
|  | 614 | if (arg & ~0x77) | 
|  | 615 | return -EINVAL; | 
|  | 616 | kbd->ledflagstate = (arg & 7); | 
|  | 617 | kbd->default_ledflagstate = ((arg >> 4) & 7); | 
|  | 618 | set_leds(); | 
|  | 619 | return 0; | 
|  | 620 |  | 
|  | 621 | /* the ioctls below only set the lights, not the functions */ | 
|  | 622 | /* for those, see KDGKBLED and KDSKBLED above */ | 
|  | 623 | case KDGETLED: | 
|  | 624 | ucval = getledstate(); | 
|  | 625 | setchar: | 
|  | 626 | return put_user(ucval, (char __user *)arg); | 
|  | 627 |  | 
|  | 628 | case KDSETLED: | 
|  | 629 | if (!perm) | 
|  | 630 | return -EPERM; | 
|  | 631 | setledstate(kbd, arg); | 
|  | 632 | return 0; | 
|  | 633 |  | 
|  | 634 | /* | 
|  | 635 | * A process can indicate its willingness to accept signals | 
|  | 636 | * generated by pressing an appropriate key combination. | 
|  | 637 | * Thus, one can have a daemon that e.g. spawns a new console | 
|  | 638 | * upon a keypress and then changes to it. | 
|  | 639 | * See also the kbrequest field of inittab(5). | 
|  | 640 | */ | 
|  | 641 | case KDSIGACCEPT: | 
|  | 642 | { | 
|  | 643 | extern int spawnpid, spawnsig; | 
|  | 644 | if (!perm || !capable(CAP_KILL)) | 
|  | 645 | return -EPERM; | 
| Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 646 | if (!valid_signal(arg) || arg < 1 || arg == SIGKILL) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 647 | return -EINVAL; | 
|  | 648 | spawnpid = current->pid; | 
|  | 649 | spawnsig = arg; | 
|  | 650 | return 0; | 
|  | 651 | } | 
|  | 652 |  | 
|  | 653 | case VT_SETMODE: | 
|  | 654 | { | 
|  | 655 | struct vt_mode tmp; | 
|  | 656 |  | 
|  | 657 | if (!perm) | 
|  | 658 | return -EPERM; | 
|  | 659 | if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) | 
|  | 660 | return -EFAULT; | 
|  | 661 | if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) | 
|  | 662 | return -EINVAL; | 
|  | 663 | acquire_console_sem(); | 
|  | 664 | vc->vt_mode = tmp; | 
|  | 665 | /* the frsig is ignored, so we set it to 0 */ | 
|  | 666 | vc->vt_mode.frsig = 0; | 
|  | 667 | vc->vt_pid = current->pid; | 
|  | 668 | /* no switch is required -- saw@shade.msu.ru */ | 
|  | 669 | vc->vt_newvt = -1; | 
|  | 670 | release_console_sem(); | 
|  | 671 | return 0; | 
|  | 672 | } | 
|  | 673 |  | 
|  | 674 | case VT_GETMODE: | 
|  | 675 | { | 
|  | 676 | struct vt_mode tmp; | 
|  | 677 | int rc; | 
|  | 678 |  | 
|  | 679 | acquire_console_sem(); | 
|  | 680 | memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode)); | 
|  | 681 | release_console_sem(); | 
|  | 682 |  | 
|  | 683 | rc = copy_to_user(up, &tmp, sizeof(struct vt_mode)); | 
|  | 684 | return rc ? -EFAULT : 0; | 
|  | 685 | } | 
|  | 686 |  | 
|  | 687 | /* | 
|  | 688 | * Returns global vt state. Note that VT 0 is always open, since | 
|  | 689 | * it's an alias for the current VT, and people can't use it here. | 
|  | 690 | * We cannot return state for more than 16 VTs, since v_state is short. | 
|  | 691 | */ | 
|  | 692 | case VT_GETSTATE: | 
|  | 693 | { | 
|  | 694 | struct vt_stat __user *vtstat = up; | 
|  | 695 | unsigned short state, mask; | 
|  | 696 |  | 
|  | 697 | if (put_user(fg_console + 1, &vtstat->v_active)) | 
|  | 698 | return -EFAULT; | 
|  | 699 | state = 1;	/* /dev/tty0 is always open */ | 
|  | 700 | for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1) | 
|  | 701 | if (VT_IS_IN_USE(i)) | 
|  | 702 | state |= mask; | 
|  | 703 | return put_user(state, &vtstat->v_state); | 
|  | 704 | } | 
|  | 705 |  | 
|  | 706 | /* | 
|  | 707 | * Returns the first available (non-opened) console. | 
|  | 708 | */ | 
|  | 709 | case VT_OPENQRY: | 
|  | 710 | for (i = 0; i < MAX_NR_CONSOLES; ++i) | 
|  | 711 | if (! VT_IS_IN_USE(i)) | 
|  | 712 | break; | 
|  | 713 | ucval = i < MAX_NR_CONSOLES ? (i+1) : -1; | 
|  | 714 | goto setint; | 
|  | 715 |  | 
|  | 716 | /* | 
|  | 717 | * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, | 
|  | 718 | * with num >= 1 (switches to vt 0, our console, are not allowed, just | 
|  | 719 | * to preserve sanity). | 
|  | 720 | */ | 
|  | 721 | case VT_ACTIVATE: | 
|  | 722 | if (!perm) | 
|  | 723 | return -EPERM; | 
|  | 724 | if (arg == 0 || arg > MAX_NR_CONSOLES) | 
|  | 725 | return -ENXIO; | 
|  | 726 | arg--; | 
|  | 727 | acquire_console_sem(); | 
|  | 728 | i = vc_allocate(arg); | 
|  | 729 | release_console_sem(); | 
|  | 730 | if (i) | 
|  | 731 | return i; | 
|  | 732 | set_console(arg); | 
|  | 733 | return 0; | 
|  | 734 |  | 
|  | 735 | /* | 
|  | 736 | * wait until the specified VT has been activated | 
|  | 737 | */ | 
|  | 738 | case VT_WAITACTIVE: | 
|  | 739 | if (!perm) | 
|  | 740 | return -EPERM; | 
|  | 741 | if (arg == 0 || arg > MAX_NR_CONSOLES) | 
|  | 742 | return -ENXIO; | 
|  | 743 | return vt_waitactive(arg-1); | 
|  | 744 |  | 
|  | 745 | /* | 
|  | 746 | * If a vt is under process control, the kernel will not switch to it | 
|  | 747 | * immediately, but postpone the operation until the process calls this | 
|  | 748 | * ioctl, allowing the switch to complete. | 
|  | 749 | * | 
|  | 750 | * According to the X sources this is the behavior: | 
|  | 751 | *	0:	pending switch-from not OK | 
|  | 752 | *	1:	pending switch-from OK | 
|  | 753 | *	2:	completed switch-to OK | 
|  | 754 | */ | 
|  | 755 | case VT_RELDISP: | 
|  | 756 | if (!perm) | 
|  | 757 | return -EPERM; | 
|  | 758 | if (vc->vt_mode.mode != VT_PROCESS) | 
|  | 759 | return -EINVAL; | 
|  | 760 |  | 
|  | 761 | /* | 
|  | 762 | * Switching-from response | 
|  | 763 | */ | 
|  | 764 | if (vc->vt_newvt >= 0) { | 
|  | 765 | if (arg == 0) | 
|  | 766 | /* | 
|  | 767 | * Switch disallowed, so forget we were trying | 
|  | 768 | * to do it. | 
|  | 769 | */ | 
|  | 770 | vc->vt_newvt = -1; | 
|  | 771 |  | 
|  | 772 | else { | 
|  | 773 | /* | 
|  | 774 | * The current vt has been released, so | 
|  | 775 | * complete the switch. | 
|  | 776 | */ | 
|  | 777 | int newvt; | 
|  | 778 | acquire_console_sem(); | 
|  | 779 | newvt = vc->vt_newvt; | 
|  | 780 | vc->vt_newvt = -1; | 
|  | 781 | i = vc_allocate(newvt); | 
|  | 782 | if (i) { | 
|  | 783 | release_console_sem(); | 
|  | 784 | return i; | 
|  | 785 | } | 
|  | 786 | /* | 
|  | 787 | * When we actually do the console switch, | 
|  | 788 | * make sure we are atomic with respect to | 
|  | 789 | * other console switches.. | 
|  | 790 | */ | 
|  | 791 | complete_change_console(vc_cons[newvt].d); | 
|  | 792 | release_console_sem(); | 
|  | 793 | } | 
|  | 794 | } | 
|  | 795 |  | 
|  | 796 | /* | 
|  | 797 | * Switched-to response | 
|  | 798 | */ | 
|  | 799 | else | 
|  | 800 | { | 
|  | 801 | /* | 
|  | 802 | * If it's just an ACK, ignore it | 
|  | 803 | */ | 
|  | 804 | if (arg != VT_ACKACQ) | 
|  | 805 | return -EINVAL; | 
|  | 806 | } | 
|  | 807 |  | 
|  | 808 | return 0; | 
|  | 809 |  | 
|  | 810 | /* | 
|  | 811 | * Disallocate memory associated to VT (but leave VT1) | 
|  | 812 | */ | 
|  | 813 | case VT_DISALLOCATE: | 
|  | 814 | if (arg > MAX_NR_CONSOLES) | 
|  | 815 | return -ENXIO; | 
|  | 816 | if (arg == 0) { | 
|  | 817 | /* disallocate all unused consoles, but leave 0 */ | 
|  | 818 | acquire_console_sem(); | 
|  | 819 | for (i=1; i<MAX_NR_CONSOLES; i++) | 
|  | 820 | if (! VT_BUSY(i)) | 
|  | 821 | vc_disallocate(i); | 
|  | 822 | release_console_sem(); | 
|  | 823 | } else { | 
|  | 824 | /* disallocate a single console, if possible */ | 
|  | 825 | arg--; | 
|  | 826 | if (VT_BUSY(arg)) | 
|  | 827 | return -EBUSY; | 
|  | 828 | if (arg) {			      /* leave 0 */ | 
|  | 829 | acquire_console_sem(); | 
|  | 830 | vc_disallocate(arg); | 
|  | 831 | release_console_sem(); | 
|  | 832 | } | 
|  | 833 | } | 
|  | 834 | return 0; | 
|  | 835 |  | 
|  | 836 | case VT_RESIZE: | 
|  | 837 | { | 
|  | 838 | struct vt_sizes __user *vtsizes = up; | 
|  | 839 | ushort ll,cc; | 
|  | 840 | if (!perm) | 
|  | 841 | return -EPERM; | 
|  | 842 | if (get_user(ll, &vtsizes->v_rows) || | 
|  | 843 | get_user(cc, &vtsizes->v_cols)) | 
|  | 844 | return -EFAULT; | 
|  | 845 | for (i = 0; i < MAX_NR_CONSOLES; i++) { | 
|  | 846 | acquire_console_sem(); | 
|  | 847 | vc_resize(vc_cons[i].d, cc, ll); | 
|  | 848 | release_console_sem(); | 
|  | 849 | } | 
|  | 850 | return 0; | 
|  | 851 | } | 
|  | 852 |  | 
|  | 853 | case VT_RESIZEX: | 
|  | 854 | { | 
|  | 855 | struct vt_consize __user *vtconsize = up; | 
|  | 856 | ushort ll,cc,vlin,clin,vcol,ccol; | 
|  | 857 | if (!perm) | 
|  | 858 | return -EPERM; | 
|  | 859 | if (!access_ok(VERIFY_READ, vtconsize, | 
|  | 860 | sizeof(struct vt_consize))) | 
|  | 861 | return -EFAULT; | 
|  | 862 | __get_user(ll, &vtconsize->v_rows); | 
|  | 863 | __get_user(cc, &vtconsize->v_cols); | 
|  | 864 | __get_user(vlin, &vtconsize->v_vlin); | 
|  | 865 | __get_user(clin, &vtconsize->v_clin); | 
|  | 866 | __get_user(vcol, &vtconsize->v_vcol); | 
|  | 867 | __get_user(ccol, &vtconsize->v_ccol); | 
|  | 868 | vlin = vlin ? vlin : vc->vc_scan_lines; | 
|  | 869 | if (clin) { | 
|  | 870 | if (ll) { | 
|  | 871 | if (ll != vlin/clin) | 
|  | 872 | return -EINVAL; /* Parameters don't add up */ | 
|  | 873 | } else | 
|  | 874 | ll = vlin/clin; | 
|  | 875 | } | 
|  | 876 | if (vcol && ccol) { | 
|  | 877 | if (cc) { | 
|  | 878 | if (cc != vcol/ccol) | 
|  | 879 | return -EINVAL; | 
|  | 880 | } else | 
|  | 881 | cc = vcol/ccol; | 
|  | 882 | } | 
|  | 883 |  | 
|  | 884 | if (clin > 32) | 
|  | 885 | return -EINVAL; | 
|  | 886 |  | 
|  | 887 | for (i = 0; i < MAX_NR_CONSOLES; i++) { | 
|  | 888 | if (!vc_cons[i].d) | 
|  | 889 | continue; | 
|  | 890 | acquire_console_sem(); | 
|  | 891 | if (vlin) | 
|  | 892 | vc_cons[i].d->vc_scan_lines = vlin; | 
|  | 893 | if (clin) | 
|  | 894 | vc_cons[i].d->vc_font.height = clin; | 
|  | 895 | vc_resize(vc_cons[i].d, cc, ll); | 
|  | 896 | release_console_sem(); | 
|  | 897 | } | 
|  | 898 | return 0; | 
|  | 899 | } | 
|  | 900 |  | 
|  | 901 | case PIO_FONT: { | 
|  | 902 | if (!perm) | 
|  | 903 | return -EPERM; | 
|  | 904 | op.op = KD_FONT_OP_SET; | 
|  | 905 | op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC;	/* Compatibility */ | 
|  | 906 | op.width = 8; | 
|  | 907 | op.height = 0; | 
|  | 908 | op.charcount = 256; | 
|  | 909 | op.data = up; | 
|  | 910 | return con_font_op(vc_cons[fg_console].d, &op); | 
|  | 911 | } | 
|  | 912 |  | 
|  | 913 | case GIO_FONT: { | 
|  | 914 | op.op = KD_FONT_OP_GET; | 
|  | 915 | op.flags = KD_FONT_FLAG_OLD; | 
|  | 916 | op.width = 8; | 
|  | 917 | op.height = 32; | 
|  | 918 | op.charcount = 256; | 
|  | 919 | op.data = up; | 
|  | 920 | return con_font_op(vc_cons[fg_console].d, &op); | 
|  | 921 | } | 
|  | 922 |  | 
|  | 923 | case PIO_CMAP: | 
|  | 924 | if (!perm) | 
|  | 925 | return -EPERM; | 
|  | 926 | return con_set_cmap(up); | 
|  | 927 |  | 
|  | 928 | case GIO_CMAP: | 
|  | 929 | return con_get_cmap(up); | 
|  | 930 |  | 
|  | 931 | case PIO_FONTX: | 
|  | 932 | case GIO_FONTX: | 
|  | 933 | return do_fontx_ioctl(cmd, up, perm, &op); | 
|  | 934 |  | 
|  | 935 | case PIO_FONTRESET: | 
|  | 936 | { | 
|  | 937 | if (!perm) | 
|  | 938 | return -EPERM; | 
|  | 939 |  | 
|  | 940 | #ifdef BROKEN_GRAPHICS_PROGRAMS | 
|  | 941 | /* With BROKEN_GRAPHICS_PROGRAMS defined, the default | 
|  | 942 | font is not saved. */ | 
|  | 943 | return -ENOSYS; | 
|  | 944 | #else | 
|  | 945 | { | 
|  | 946 | op.op = KD_FONT_OP_SET_DEFAULT; | 
|  | 947 | op.data = NULL; | 
|  | 948 | i = con_font_op(vc_cons[fg_console].d, &op); | 
|  | 949 | if (i) | 
|  | 950 | return i; | 
|  | 951 | con_set_default_unimap(vc_cons[fg_console].d); | 
|  | 952 | return 0; | 
|  | 953 | } | 
|  | 954 | #endif | 
|  | 955 | } | 
|  | 956 |  | 
|  | 957 | case KDFONTOP: { | 
|  | 958 | if (copy_from_user(&op, up, sizeof(op))) | 
|  | 959 | return -EFAULT; | 
|  | 960 | if (!perm && op.op != KD_FONT_OP_GET) | 
|  | 961 | return -EPERM; | 
|  | 962 | i = con_font_op(vc, &op); | 
|  | 963 | if (i) return i; | 
|  | 964 | if (copy_to_user(up, &op, sizeof(op))) | 
|  | 965 | return -EFAULT; | 
|  | 966 | return 0; | 
|  | 967 | } | 
|  | 968 |  | 
|  | 969 | case PIO_SCRNMAP: | 
|  | 970 | if (!perm) | 
|  | 971 | return -EPERM; | 
|  | 972 | return con_set_trans_old(up); | 
|  | 973 |  | 
|  | 974 | case GIO_SCRNMAP: | 
|  | 975 | return con_get_trans_old(up); | 
|  | 976 |  | 
|  | 977 | case PIO_UNISCRNMAP: | 
|  | 978 | if (!perm) | 
|  | 979 | return -EPERM; | 
|  | 980 | return con_set_trans_new(up); | 
|  | 981 |  | 
|  | 982 | case GIO_UNISCRNMAP: | 
|  | 983 | return con_get_trans_new(up); | 
|  | 984 |  | 
|  | 985 | case PIO_UNIMAPCLR: | 
|  | 986 | { struct unimapinit ui; | 
|  | 987 | if (!perm) | 
|  | 988 | return -EPERM; | 
|  | 989 | i = copy_from_user(&ui, up, sizeof(struct unimapinit)); | 
|  | 990 | if (i) return -EFAULT; | 
|  | 991 | con_clear_unimap(vc, &ui); | 
|  | 992 | return 0; | 
|  | 993 | } | 
|  | 994 |  | 
|  | 995 | case PIO_UNIMAP: | 
|  | 996 | case GIO_UNIMAP: | 
|  | 997 | return do_unimap_ioctl(cmd, up, perm, vc); | 
|  | 998 |  | 
|  | 999 | case VT_LOCKSWITCH: | 
|  | 1000 | if (!capable(CAP_SYS_TTY_CONFIG)) | 
|  | 1001 | return -EPERM; | 
|  | 1002 | vt_dont_switch = 1; | 
|  | 1003 | return 0; | 
|  | 1004 | case VT_UNLOCKSWITCH: | 
|  | 1005 | if (!capable(CAP_SYS_TTY_CONFIG)) | 
|  | 1006 | return -EPERM; | 
|  | 1007 | vt_dont_switch = 0; | 
|  | 1008 | return 0; | 
|  | 1009 | default: | 
|  | 1010 | return -ENOIOCTLCMD; | 
|  | 1011 | } | 
|  | 1012 | } | 
|  | 1013 |  | 
|  | 1014 | /* | 
|  | 1015 | * Sometimes we want to wait until a particular VT has been activated. We | 
|  | 1016 | * do it in a very simple manner. Everybody waits on a single queue and | 
|  | 1017 | * get woken up at once. Those that are satisfied go on with their business, | 
|  | 1018 | * while those not ready go back to sleep. Seems overkill to add a wait | 
|  | 1019 | * to each vt just for this - usually this does nothing! | 
|  | 1020 | */ | 
|  | 1021 | static DECLARE_WAIT_QUEUE_HEAD(vt_activate_queue); | 
|  | 1022 |  | 
|  | 1023 | /* | 
|  | 1024 | * Sleeps until a vt is activated, or the task is interrupted. Returns | 
|  | 1025 | * 0 if activation, -EINTR if interrupted. | 
|  | 1026 | */ | 
|  | 1027 | int vt_waitactive(int vt) | 
|  | 1028 | { | 
|  | 1029 | int retval; | 
|  | 1030 | DECLARE_WAITQUEUE(wait, current); | 
|  | 1031 |  | 
|  | 1032 | add_wait_queue(&vt_activate_queue, &wait); | 
|  | 1033 | for (;;) { | 
|  | 1034 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1035 | retval = 0; | 
|  | 1036 | if (vt == fg_console) | 
|  | 1037 | break; | 
|  | 1038 | retval = -EINTR; | 
|  | 1039 | if (signal_pending(current)) | 
|  | 1040 | break; | 
|  | 1041 | schedule(); | 
|  | 1042 | } | 
|  | 1043 | remove_wait_queue(&vt_activate_queue, &wait); | 
|  | 1044 | current->state = TASK_RUNNING; | 
|  | 1045 | return retval; | 
|  | 1046 | } | 
|  | 1047 |  | 
|  | 1048 | #define vt_wake_waitactive() wake_up(&vt_activate_queue) | 
|  | 1049 |  | 
|  | 1050 | void reset_vc(struct vc_data *vc) | 
|  | 1051 | { | 
|  | 1052 | vc->vc_mode = KD_TEXT; | 
|  | 1053 | kbd_table[vc->vc_num].kbdmode = VC_XLATE; | 
|  | 1054 | vc->vt_mode.mode = VT_AUTO; | 
|  | 1055 | vc->vt_mode.waitv = 0; | 
|  | 1056 | vc->vt_mode.relsig = 0; | 
|  | 1057 | vc->vt_mode.acqsig = 0; | 
|  | 1058 | vc->vt_mode.frsig = 0; | 
|  | 1059 | vc->vt_pid = -1; | 
|  | 1060 | vc->vt_newvt = -1; | 
|  | 1061 | if (!in_interrupt())    /* Via keyboard.c:SAK() - akpm */ | 
|  | 1062 | reset_palette(vc); | 
|  | 1063 | } | 
|  | 1064 |  | 
|  | 1065 | /* | 
|  | 1066 | * Performs the back end of a vt switch | 
|  | 1067 | */ | 
|  | 1068 | static void complete_change_console(struct vc_data *vc) | 
|  | 1069 | { | 
|  | 1070 | unsigned char old_vc_mode; | 
|  | 1071 |  | 
|  | 1072 | last_console = fg_console; | 
|  | 1073 |  | 
|  | 1074 | /* | 
|  | 1075 | * If we're switching, we could be going from KD_GRAPHICS to | 
|  | 1076 | * KD_TEXT mode or vice versa, which means we need to blank or | 
|  | 1077 | * unblank the screen later. | 
|  | 1078 | */ | 
|  | 1079 | old_vc_mode = vc_cons[fg_console].d->vc_mode; | 
|  | 1080 | switch_screen(vc); | 
|  | 1081 |  | 
|  | 1082 | /* | 
|  | 1083 | * This can't appear below a successful kill_proc().  If it did, | 
|  | 1084 | * then the *blank_screen operation could occur while X, having | 
|  | 1085 | * received acqsig, is waking up on another processor.  This | 
|  | 1086 | * condition can lead to overlapping accesses to the VGA range | 
|  | 1087 | * and the framebuffer (causing system lockups). | 
|  | 1088 | * | 
|  | 1089 | * To account for this we duplicate this code below only if the | 
|  | 1090 | * controlling process is gone and we've called reset_vc. | 
|  | 1091 | */ | 
|  | 1092 | if (old_vc_mode != vc->vc_mode) { | 
|  | 1093 | if (vc->vc_mode == KD_TEXT) | 
|  | 1094 | do_unblank_screen(1); | 
|  | 1095 | else | 
|  | 1096 | do_blank_screen(1); | 
|  | 1097 | } | 
|  | 1098 |  | 
|  | 1099 | /* | 
|  | 1100 | * If this new console is under process control, send it a signal | 
|  | 1101 | * telling it that it has acquired. Also check if it has died and | 
|  | 1102 | * clean up (similar to logic employed in change_console()) | 
|  | 1103 | */ | 
|  | 1104 | if (vc->vt_mode.mode == VT_PROCESS) { | 
|  | 1105 | /* | 
|  | 1106 | * Send the signal as privileged - kill_proc() will | 
|  | 1107 | * tell us if the process has gone or something else | 
|  | 1108 | * is awry | 
|  | 1109 | */ | 
|  | 1110 | if (kill_proc(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) { | 
|  | 1111 | /* | 
|  | 1112 | * The controlling process has died, so we revert back to | 
|  | 1113 | * normal operation. In this case, we'll also change back | 
|  | 1114 | * to KD_TEXT mode. I'm not sure if this is strictly correct | 
|  | 1115 | * but it saves the agony when the X server dies and the screen | 
|  | 1116 | * remains blanked due to KD_GRAPHICS! It would be nice to do | 
|  | 1117 | * this outside of VT_PROCESS but there is no single process | 
|  | 1118 | * to account for and tracking tty count may be undesirable. | 
|  | 1119 | */ | 
|  | 1120 | reset_vc(vc); | 
|  | 1121 |  | 
|  | 1122 | if (old_vc_mode != vc->vc_mode) { | 
|  | 1123 | if (vc->vc_mode == KD_TEXT) | 
|  | 1124 | do_unblank_screen(1); | 
|  | 1125 | else | 
|  | 1126 | do_blank_screen(1); | 
|  | 1127 | } | 
|  | 1128 | } | 
|  | 1129 | } | 
|  | 1130 |  | 
|  | 1131 | /* | 
|  | 1132 | * Wake anyone waiting for their VT to activate | 
|  | 1133 | */ | 
|  | 1134 | vt_wake_waitactive(); | 
|  | 1135 | return; | 
|  | 1136 | } | 
|  | 1137 |  | 
|  | 1138 | /* | 
|  | 1139 | * Performs the front-end of a vt switch | 
|  | 1140 | */ | 
|  | 1141 | void change_console(struct vc_data *new_vc) | 
|  | 1142 | { | 
|  | 1143 | struct vc_data *vc; | 
|  | 1144 |  | 
|  | 1145 | if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch) | 
|  | 1146 | return; | 
|  | 1147 |  | 
|  | 1148 | /* | 
|  | 1149 | * If this vt is in process mode, then we need to handshake with | 
|  | 1150 | * that process before switching. Essentially, we store where that | 
|  | 1151 | * vt wants to switch to and wait for it to tell us when it's done | 
|  | 1152 | * (via VT_RELDISP ioctl). | 
|  | 1153 | * | 
|  | 1154 | * We also check to see if the controlling process still exists. | 
|  | 1155 | * If it doesn't, we reset this vt to auto mode and continue. | 
|  | 1156 | * This is a cheap way to track process control. The worst thing | 
|  | 1157 | * that can happen is: we send a signal to a process, it dies, and | 
|  | 1158 | * the switch gets "lost" waiting for a response; hopefully, the | 
|  | 1159 | * user will try again, we'll detect the process is gone (unless | 
|  | 1160 | * the user waits just the right amount of time :-) and revert the | 
|  | 1161 | * vt to auto control. | 
|  | 1162 | */ | 
|  | 1163 | vc = vc_cons[fg_console].d; | 
|  | 1164 | if (vc->vt_mode.mode == VT_PROCESS) { | 
|  | 1165 | /* | 
|  | 1166 | * Send the signal as privileged - kill_proc() will | 
|  | 1167 | * tell us if the process has gone or something else | 
|  | 1168 | * is awry | 
|  | 1169 | */ | 
|  | 1170 | if (kill_proc(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) { | 
|  | 1171 | /* | 
|  | 1172 | * It worked. Mark the vt to switch to and | 
|  | 1173 | * return. The process needs to send us a | 
|  | 1174 | * VT_RELDISP ioctl to complete the switch. | 
|  | 1175 | */ | 
|  | 1176 | vc->vt_newvt = new_vc->vc_num; | 
|  | 1177 | return; | 
|  | 1178 | } | 
|  | 1179 |  | 
|  | 1180 | /* | 
|  | 1181 | * The controlling process has died, so we revert back to | 
|  | 1182 | * normal operation. In this case, we'll also change back | 
|  | 1183 | * to KD_TEXT mode. I'm not sure if this is strictly correct | 
|  | 1184 | * but it saves the agony when the X server dies and the screen | 
|  | 1185 | * remains blanked due to KD_GRAPHICS! It would be nice to do | 
|  | 1186 | * this outside of VT_PROCESS but there is no single process | 
|  | 1187 | * to account for and tracking tty count may be undesirable. | 
|  | 1188 | */ | 
|  | 1189 | reset_vc(vc); | 
|  | 1190 |  | 
|  | 1191 | /* | 
|  | 1192 | * Fall through to normal (VT_AUTO) handling of the switch... | 
|  | 1193 | */ | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | /* | 
|  | 1197 | * Ignore all switches in KD_GRAPHICS+VT_AUTO mode | 
|  | 1198 | */ | 
|  | 1199 | if (vc->vc_mode == KD_GRAPHICS) | 
|  | 1200 | return; | 
|  | 1201 |  | 
|  | 1202 | complete_change_console(new_vc); | 
|  | 1203 | } |