| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2001-2003 Red Hat, Inc. | 
|  | 5 | * | 
|  | 6 | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | 7 | * | 
|  | 8 | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | 9 | * | 
|  | 10 | * $Id: gc.c,v 1.144 2004/12/21 11:18:50 dwmw2 Exp $ | 
|  | 11 | * | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/kernel.h> | 
|  | 15 | #include <linux/mtd/mtd.h> | 
|  | 16 | #include <linux/slab.h> | 
|  | 17 | #include <linux/pagemap.h> | 
|  | 18 | #include <linux/crc32.h> | 
|  | 19 | #include <linux/compiler.h> | 
|  | 20 | #include <linux/stat.h> | 
|  | 21 | #include "nodelist.h" | 
|  | 22 | #include "compr.h" | 
|  | 23 |  | 
|  | 24 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, | 
|  | 25 | struct jffs2_inode_cache *ic, | 
|  | 26 | struct jffs2_raw_node_ref *raw); | 
|  | 27 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 28 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); | 
|  | 29 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 30 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); | 
|  | 31 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 32 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); | 
|  | 33 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 34 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | 35 | uint32_t start, uint32_t end); | 
|  | 36 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 37 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | 38 | uint32_t start, uint32_t end); | 
|  | 39 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb, | 
|  | 40 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); | 
|  | 41 |  | 
|  | 42 | /* Called with erase_completion_lock held */ | 
|  | 43 | static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) | 
|  | 44 | { | 
|  | 45 | struct jffs2_eraseblock *ret; | 
|  | 46 | struct list_head *nextlist = NULL; | 
|  | 47 | int n = jiffies % 128; | 
|  | 48 |  | 
|  | 49 | /* Pick an eraseblock to garbage collect next. This is where we'll | 
|  | 50 | put the clever wear-levelling algorithms. Eventually.  */ | 
|  | 51 | /* We possibly want to favour the dirtier blocks more when the | 
|  | 52 | number of free blocks is low. */ | 
|  | 53 | if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { | 
|  | 54 | D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); | 
|  | 55 | nextlist = &c->bad_used_list; | 
|  | 56 | } else if (n < 50 && !list_empty(&c->erasable_list)) { | 
|  | 57 | /* Note that most of them will have gone directly to be erased. | 
|  | 58 | So don't favour the erasable_list _too_ much. */ | 
|  | 59 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); | 
|  | 60 | nextlist = &c->erasable_list; | 
|  | 61 | } else if (n < 110 && !list_empty(&c->very_dirty_list)) { | 
|  | 62 | /* Most of the time, pick one off the very_dirty list */ | 
|  | 63 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); | 
|  | 64 | nextlist = &c->very_dirty_list; | 
|  | 65 | } else if (n < 126 && !list_empty(&c->dirty_list)) { | 
|  | 66 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); | 
|  | 67 | nextlist = &c->dirty_list; | 
|  | 68 | } else if (!list_empty(&c->clean_list)) { | 
|  | 69 | D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); | 
|  | 70 | nextlist = &c->clean_list; | 
|  | 71 | } else if (!list_empty(&c->dirty_list)) { | 
|  | 72 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); | 
|  | 73 |  | 
|  | 74 | nextlist = &c->dirty_list; | 
|  | 75 | } else if (!list_empty(&c->very_dirty_list)) { | 
|  | 76 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); | 
|  | 77 | nextlist = &c->very_dirty_list; | 
|  | 78 | } else if (!list_empty(&c->erasable_list)) { | 
|  | 79 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); | 
|  | 80 |  | 
|  | 81 | nextlist = &c->erasable_list; | 
|  | 82 | } else { | 
|  | 83 | /* Eep. All were empty */ | 
|  | 84 | D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); | 
|  | 85 | return NULL; | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); | 
|  | 89 | list_del(&ret->list); | 
|  | 90 | c->gcblock = ret; | 
|  | 91 | ret->gc_node = ret->first_node; | 
|  | 92 | if (!ret->gc_node) { | 
|  | 93 | printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); | 
|  | 94 | BUG(); | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | /* Have we accidentally picked a clean block with wasted space ? */ | 
|  | 98 | if (ret->wasted_size) { | 
|  | 99 | D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); | 
|  | 100 | ret->dirty_size += ret->wasted_size; | 
|  | 101 | c->wasted_size -= ret->wasted_size; | 
|  | 102 | c->dirty_size += ret->wasted_size; | 
|  | 103 | ret->wasted_size = 0; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | D2(jffs2_dump_block_lists(c)); | 
|  | 107 | return ret; | 
|  | 108 | } | 
|  | 109 |  | 
|  | 110 | /* jffs2_garbage_collect_pass | 
|  | 111 | * Make a single attempt to progress GC. Move one node, and possibly | 
|  | 112 | * start erasing one eraseblock. | 
|  | 113 | */ | 
|  | 114 | int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) | 
|  | 115 | { | 
|  | 116 | struct jffs2_inode_info *f; | 
|  | 117 | struct jffs2_inode_cache *ic; | 
|  | 118 | struct jffs2_eraseblock *jeb; | 
|  | 119 | struct jffs2_raw_node_ref *raw; | 
|  | 120 | int ret = 0, inum, nlink; | 
|  | 121 |  | 
|  | 122 | if (down_interruptible(&c->alloc_sem)) | 
|  | 123 | return -EINTR; | 
|  | 124 |  | 
|  | 125 | for (;;) { | 
|  | 126 | spin_lock(&c->erase_completion_lock); | 
|  | 127 | if (!c->unchecked_size) | 
|  | 128 | break; | 
|  | 129 |  | 
|  | 130 | /* We can't start doing GC yet. We haven't finished checking | 
|  | 131 | the node CRCs etc. Do it now. */ | 
|  | 132 |  | 
|  | 133 | /* checked_ino is protected by the alloc_sem */ | 
|  | 134 | if (c->checked_ino > c->highest_ino) { | 
|  | 135 | printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", | 
|  | 136 | c->unchecked_size); | 
|  | 137 | D2(jffs2_dump_block_lists(c)); | 
|  | 138 | spin_unlock(&c->erase_completion_lock); | 
|  | 139 | BUG(); | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | spin_unlock(&c->erase_completion_lock); | 
|  | 143 |  | 
|  | 144 | spin_lock(&c->inocache_lock); | 
|  | 145 |  | 
|  | 146 | ic = jffs2_get_ino_cache(c, c->checked_ino++); | 
|  | 147 |  | 
|  | 148 | if (!ic) { | 
|  | 149 | spin_unlock(&c->inocache_lock); | 
|  | 150 | continue; | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | if (!ic->nlink) { | 
|  | 154 | D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n", | 
|  | 155 | ic->ino)); | 
|  | 156 | spin_unlock(&c->inocache_lock); | 
|  | 157 | continue; | 
|  | 158 | } | 
|  | 159 | switch(ic->state) { | 
|  | 160 | case INO_STATE_CHECKEDABSENT: | 
|  | 161 | case INO_STATE_PRESENT: | 
|  | 162 | D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); | 
|  | 163 | spin_unlock(&c->inocache_lock); | 
|  | 164 | continue; | 
|  | 165 |  | 
|  | 166 | case INO_STATE_GC: | 
|  | 167 | case INO_STATE_CHECKING: | 
|  | 168 | printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); | 
|  | 169 | spin_unlock(&c->inocache_lock); | 
|  | 170 | BUG(); | 
|  | 171 |  | 
|  | 172 | case INO_STATE_READING: | 
|  | 173 | /* We need to wait for it to finish, lest we move on | 
|  | 174 | and trigger the BUG() above while we haven't yet | 
|  | 175 | finished checking all its nodes */ | 
|  | 176 | D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); | 
|  | 177 | up(&c->alloc_sem); | 
|  | 178 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | 
|  | 179 | return 0; | 
|  | 180 |  | 
|  | 181 | default: | 
|  | 182 | BUG(); | 
|  | 183 |  | 
|  | 184 | case INO_STATE_UNCHECKED: | 
|  | 185 | ; | 
|  | 186 | } | 
|  | 187 | ic->state = INO_STATE_CHECKING; | 
|  | 188 | spin_unlock(&c->inocache_lock); | 
|  | 189 |  | 
|  | 190 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); | 
|  | 191 |  | 
|  | 192 | ret = jffs2_do_crccheck_inode(c, ic); | 
|  | 193 | if (ret) | 
|  | 194 | printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); | 
|  | 195 |  | 
|  | 196 | jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); | 
|  | 197 | up(&c->alloc_sem); | 
|  | 198 | return ret; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | /* First, work out which block we're garbage-collecting */ | 
|  | 202 | jeb = c->gcblock; | 
|  | 203 |  | 
|  | 204 | if (!jeb) | 
|  | 205 | jeb = jffs2_find_gc_block(c); | 
|  | 206 |  | 
|  | 207 | if (!jeb) { | 
|  | 208 | D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); | 
|  | 209 | spin_unlock(&c->erase_completion_lock); | 
|  | 210 | up(&c->alloc_sem); | 
|  | 211 | return -EIO; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); | 
|  | 215 | D1(if (c->nextblock) | 
|  | 216 | printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); | 
|  | 217 |  | 
|  | 218 | if (!jeb->used_size) { | 
|  | 219 | up(&c->alloc_sem); | 
|  | 220 | goto eraseit; | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | raw = jeb->gc_node; | 
|  | 224 |  | 
|  | 225 | while(ref_obsolete(raw)) { | 
|  | 226 | D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); | 
|  | 227 | raw = raw->next_phys; | 
|  | 228 | if (unlikely(!raw)) { | 
|  | 229 | printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); | 
|  | 230 | printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", | 
|  | 231 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); | 
|  | 232 | jeb->gc_node = raw; | 
|  | 233 | spin_unlock(&c->erase_completion_lock); | 
|  | 234 | up(&c->alloc_sem); | 
|  | 235 | BUG(); | 
|  | 236 | } | 
|  | 237 | } | 
|  | 238 | jeb->gc_node = raw; | 
|  | 239 |  | 
|  | 240 | D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); | 
|  | 241 |  | 
|  | 242 | if (!raw->next_in_ino) { | 
|  | 243 | /* Inode-less node. Clean marker, snapshot or something like that */ | 
|  | 244 | /* FIXME: If it's something that needs to be copied, including something | 
|  | 245 | we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */ | 
|  | 246 | spin_unlock(&c->erase_completion_lock); | 
|  | 247 | jffs2_mark_node_obsolete(c, raw); | 
|  | 248 | up(&c->alloc_sem); | 
|  | 249 | goto eraseit_lock; | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | ic = jffs2_raw_ref_to_ic(raw); | 
|  | 253 |  | 
|  | 254 | /* We need to hold the inocache. Either the erase_completion_lock or | 
|  | 255 | the inocache_lock are sufficient; we trade down since the inocache_lock | 
|  | 256 | causes less contention. */ | 
|  | 257 | spin_lock(&c->inocache_lock); | 
|  | 258 |  | 
|  | 259 | spin_unlock(&c->erase_completion_lock); | 
|  | 260 |  | 
|  | 261 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); | 
|  | 262 |  | 
|  | 263 | /* Three possibilities: | 
|  | 264 | 1. Inode is already in-core. We must iget it and do proper | 
|  | 265 | updating to its fragtree, etc. | 
|  | 266 | 2. Inode is not in-core, node is REF_PRISTINE. We lock the | 
|  | 267 | inocache to prevent a read_inode(), copy the node intact. | 
|  | 268 | 3. Inode is not in-core, node is not pristine. We must iget() | 
|  | 269 | and take the slow path. | 
|  | 270 | */ | 
|  | 271 |  | 
|  | 272 | switch(ic->state) { | 
|  | 273 | case INO_STATE_CHECKEDABSENT: | 
|  | 274 | /* It's been checked, but it's not currently in-core. | 
|  | 275 | We can just copy any pristine nodes, but have | 
|  | 276 | to prevent anyone else from doing read_inode() while | 
|  | 277 | we're at it, so we set the state accordingly */ | 
|  | 278 | if (ref_flags(raw) == REF_PRISTINE) | 
|  | 279 | ic->state = INO_STATE_GC; | 
|  | 280 | else { | 
|  | 281 | D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", | 
|  | 282 | ic->ino)); | 
|  | 283 | } | 
|  | 284 | break; | 
|  | 285 |  | 
|  | 286 | case INO_STATE_PRESENT: | 
|  | 287 | /* It's in-core. GC must iget() it. */ | 
|  | 288 | break; | 
|  | 289 |  | 
|  | 290 | case INO_STATE_UNCHECKED: | 
|  | 291 | case INO_STATE_CHECKING: | 
|  | 292 | case INO_STATE_GC: | 
|  | 293 | /* Should never happen. We should have finished checking | 
|  | 294 | by the time we actually start doing any GC, and since | 
|  | 295 | we're holding the alloc_sem, no other garbage collection | 
|  | 296 | can happen. | 
|  | 297 | */ | 
|  | 298 | printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", | 
|  | 299 | ic->ino, ic->state); | 
|  | 300 | up(&c->alloc_sem); | 
|  | 301 | spin_unlock(&c->inocache_lock); | 
|  | 302 | BUG(); | 
|  | 303 |  | 
|  | 304 | case INO_STATE_READING: | 
|  | 305 | /* Someone's currently trying to read it. We must wait for | 
|  | 306 | them to finish and then go through the full iget() route | 
|  | 307 | to do the GC. However, sometimes read_inode() needs to get | 
|  | 308 | the alloc_sem() (for marking nodes invalid) so we must | 
|  | 309 | drop the alloc_sem before sleeping. */ | 
|  | 310 |  | 
|  | 311 | up(&c->alloc_sem); | 
|  | 312 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", | 
|  | 313 | ic->ino, ic->state)); | 
|  | 314 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | 
|  | 315 | /* And because we dropped the alloc_sem we must start again from the | 
|  | 316 | beginning. Ponder chance of livelock here -- we're returning success | 
|  | 317 | without actually making any progress. | 
|  | 318 |  | 
|  | 319 | Q: What are the chances that the inode is back in INO_STATE_READING | 
|  | 320 | again by the time we next enter this function? And that this happens | 
|  | 321 | enough times to cause a real delay? | 
|  | 322 |  | 
|  | 323 | A: Small enough that I don't care :) | 
|  | 324 | */ | 
|  | 325 | return 0; | 
|  | 326 | } | 
|  | 327 |  | 
|  | 328 | /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the | 
|  | 329 | node intact, and we don't have to muck about with the fragtree etc. | 
|  | 330 | because we know it's not in-core. If it _was_ in-core, we go through | 
|  | 331 | all the iget() crap anyway */ | 
|  | 332 |  | 
|  | 333 | if (ic->state == INO_STATE_GC) { | 
|  | 334 | spin_unlock(&c->inocache_lock); | 
|  | 335 |  | 
|  | 336 | ret = jffs2_garbage_collect_pristine(c, ic, raw); | 
|  | 337 |  | 
|  | 338 | spin_lock(&c->inocache_lock); | 
|  | 339 | ic->state = INO_STATE_CHECKEDABSENT; | 
|  | 340 | wake_up(&c->inocache_wq); | 
|  | 341 |  | 
|  | 342 | if (ret != -EBADFD) { | 
|  | 343 | spin_unlock(&c->inocache_lock); | 
|  | 344 | goto release_sem; | 
|  | 345 | } | 
|  | 346 |  | 
|  | 347 | /* Fall through if it wanted us to, with inocache_lock held */ | 
|  | 348 | } | 
|  | 349 |  | 
|  | 350 | /* Prevent the fairly unlikely race where the gcblock is | 
|  | 351 | entirely obsoleted by the final close of a file which had | 
|  | 352 | the only valid nodes in the block, followed by erasure, | 
|  | 353 | followed by freeing of the ic because the erased block(s) | 
|  | 354 | held _all_ the nodes of that inode.... never been seen but | 
|  | 355 | it's vaguely possible. */ | 
|  | 356 |  | 
|  | 357 | inum = ic->ino; | 
|  | 358 | nlink = ic->nlink; | 
|  | 359 | spin_unlock(&c->inocache_lock); | 
|  | 360 |  | 
|  | 361 | f = jffs2_gc_fetch_inode(c, inum, nlink); | 
|  | 362 | if (IS_ERR(f)) { | 
|  | 363 | ret = PTR_ERR(f); | 
|  | 364 | goto release_sem; | 
|  | 365 | } | 
|  | 366 | if (!f) { | 
|  | 367 | ret = 0; | 
|  | 368 | goto release_sem; | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | ret = jffs2_garbage_collect_live(c, jeb, raw, f); | 
|  | 372 |  | 
|  | 373 | jffs2_gc_release_inode(c, f); | 
|  | 374 |  | 
|  | 375 | release_sem: | 
|  | 376 | up(&c->alloc_sem); | 
|  | 377 |  | 
|  | 378 | eraseit_lock: | 
|  | 379 | /* If we've finished this block, start it erasing */ | 
|  | 380 | spin_lock(&c->erase_completion_lock); | 
|  | 381 |  | 
|  | 382 | eraseit: | 
|  | 383 | if (c->gcblock && !c->gcblock->used_size) { | 
|  | 384 | D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); | 
|  | 385 | /* We're GC'ing an empty block? */ | 
|  | 386 | list_add_tail(&c->gcblock->list, &c->erase_pending_list); | 
|  | 387 | c->gcblock = NULL; | 
|  | 388 | c->nr_erasing_blocks++; | 
|  | 389 | jffs2_erase_pending_trigger(c); | 
|  | 390 | } | 
|  | 391 | spin_unlock(&c->erase_completion_lock); | 
|  | 392 |  | 
|  | 393 | return ret; | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb, | 
|  | 397 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) | 
|  | 398 | { | 
|  | 399 | struct jffs2_node_frag *frag; | 
|  | 400 | struct jffs2_full_dnode *fn = NULL; | 
|  | 401 | struct jffs2_full_dirent *fd; | 
|  | 402 | uint32_t start = 0, end = 0, nrfrags = 0; | 
|  | 403 | int ret = 0; | 
|  | 404 |  | 
|  | 405 | down(&f->sem); | 
|  | 406 |  | 
|  | 407 | /* Now we have the lock for this inode. Check that it's still the one at the head | 
|  | 408 | of the list. */ | 
|  | 409 |  | 
|  | 410 | spin_lock(&c->erase_completion_lock); | 
|  | 411 |  | 
|  | 412 | if (c->gcblock != jeb) { | 
|  | 413 | spin_unlock(&c->erase_completion_lock); | 
|  | 414 | D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); | 
|  | 415 | goto upnout; | 
|  | 416 | } | 
|  | 417 | if (ref_obsolete(raw)) { | 
|  | 418 | spin_unlock(&c->erase_completion_lock); | 
|  | 419 | D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); | 
|  | 420 | /* They'll call again */ | 
|  | 421 | goto upnout; | 
|  | 422 | } | 
|  | 423 | spin_unlock(&c->erase_completion_lock); | 
|  | 424 |  | 
|  | 425 | /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ | 
|  | 426 | if (f->metadata && f->metadata->raw == raw) { | 
|  | 427 | fn = f->metadata; | 
|  | 428 | ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); | 
|  | 429 | goto upnout; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | /* FIXME. Read node and do lookup? */ | 
|  | 433 | for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { | 
|  | 434 | if (frag->node && frag->node->raw == raw) { | 
|  | 435 | fn = frag->node; | 
|  | 436 | end = frag->ofs + frag->size; | 
|  | 437 | if (!nrfrags++) | 
|  | 438 | start = frag->ofs; | 
|  | 439 | if (nrfrags == frag->node->frags) | 
|  | 440 | break; /* We've found them all */ | 
|  | 441 | } | 
|  | 442 | } | 
|  | 443 | if (fn) { | 
|  | 444 | if (ref_flags(raw) == REF_PRISTINE) { | 
|  | 445 | ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); | 
|  | 446 | if (!ret) { | 
|  | 447 | /* Urgh. Return it sensibly. */ | 
|  | 448 | frag->node->raw = f->inocache->nodes; | 
|  | 449 | } | 
|  | 450 | if (ret != -EBADFD) | 
|  | 451 | goto upnout; | 
|  | 452 | } | 
|  | 453 | /* We found a datanode. Do the GC */ | 
|  | 454 | if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { | 
|  | 455 | /* It crosses a page boundary. Therefore, it must be a hole. */ | 
|  | 456 | ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); | 
|  | 457 | } else { | 
|  | 458 | /* It could still be a hole. But we GC the page this way anyway */ | 
|  | 459 | ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); | 
|  | 460 | } | 
|  | 461 | goto upnout; | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | /* Wasn't a dnode. Try dirent */ | 
|  | 465 | for (fd = f->dents; fd; fd=fd->next) { | 
|  | 466 | if (fd->raw == raw) | 
|  | 467 | break; | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | if (fd && fd->ino) { | 
|  | 471 | ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); | 
|  | 472 | } else if (fd) { | 
|  | 473 | ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); | 
|  | 474 | } else { | 
|  | 475 | printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", | 
|  | 476 | ref_offset(raw), f->inocache->ino); | 
|  | 477 | if (ref_obsolete(raw)) { | 
|  | 478 | printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); | 
|  | 479 | } else { | 
|  | 480 | ret = -EIO; | 
|  | 481 | } | 
|  | 482 | } | 
|  | 483 | upnout: | 
|  | 484 | up(&f->sem); | 
|  | 485 |  | 
|  | 486 | return ret; | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, | 
|  | 490 | struct jffs2_inode_cache *ic, | 
|  | 491 | struct jffs2_raw_node_ref *raw) | 
|  | 492 | { | 
|  | 493 | union jffs2_node_union *node; | 
|  | 494 | struct jffs2_raw_node_ref *nraw; | 
|  | 495 | size_t retlen; | 
|  | 496 | int ret; | 
|  | 497 | uint32_t phys_ofs, alloclen; | 
|  | 498 | uint32_t crc, rawlen; | 
|  | 499 | int retried = 0; | 
|  | 500 |  | 
|  | 501 | D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); | 
|  | 502 |  | 
|  | 503 | rawlen = ref_totlen(c, c->gcblock, raw); | 
|  | 504 |  | 
|  | 505 | /* Ask for a small amount of space (or the totlen if smaller) because we | 
|  | 506 | don't want to force wastage of the end of a block if splitting would | 
|  | 507 | work. */ | 
|  | 508 | ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN, | 
|  | 509 | rawlen), &phys_ofs, &alloclen); | 
|  | 510 | if (ret) | 
|  | 511 | return ret; | 
|  | 512 |  | 
|  | 513 | if (alloclen < rawlen) { | 
|  | 514 | /* Doesn't fit untouched. We'll go the old route and split it */ | 
|  | 515 | return -EBADFD; | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | node = kmalloc(rawlen, GFP_KERNEL); | 
|  | 519 | if (!node) | 
|  | 520 | return -ENOMEM; | 
|  | 521 |  | 
|  | 522 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); | 
|  | 523 | if (!ret && retlen != rawlen) | 
|  | 524 | ret = -EIO; | 
|  | 525 | if (ret) | 
|  | 526 | goto out_node; | 
|  | 527 |  | 
|  | 528 | crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); | 
|  | 529 | if (je32_to_cpu(node->u.hdr_crc) != crc) { | 
|  | 530 | printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | 531 | ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); | 
|  | 532 | goto bail; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | switch(je16_to_cpu(node->u.nodetype)) { | 
|  | 536 | case JFFS2_NODETYPE_INODE: | 
|  | 537 | crc = crc32(0, node, sizeof(node->i)-8); | 
|  | 538 | if (je32_to_cpu(node->i.node_crc) != crc) { | 
|  | 539 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | 540 | ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); | 
|  | 541 | goto bail; | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | if (je32_to_cpu(node->i.dsize)) { | 
|  | 545 | crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); | 
|  | 546 | if (je32_to_cpu(node->i.data_crc) != crc) { | 
|  | 547 | printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | 548 | ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); | 
|  | 549 | goto bail; | 
|  | 550 | } | 
|  | 551 | } | 
|  | 552 | break; | 
|  | 553 |  | 
|  | 554 | case JFFS2_NODETYPE_DIRENT: | 
|  | 555 | crc = crc32(0, node, sizeof(node->d)-8); | 
|  | 556 | if (je32_to_cpu(node->d.node_crc) != crc) { | 
|  | 557 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | 558 | ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); | 
|  | 559 | goto bail; | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | if (node->d.nsize) { | 
|  | 563 | crc = crc32(0, node->d.name, node->d.nsize); | 
|  | 564 | if (je32_to_cpu(node->d.name_crc) != crc) { | 
|  | 565 | printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | 566 | ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); | 
|  | 567 | goto bail; | 
|  | 568 | } | 
|  | 569 | } | 
|  | 570 | break; | 
|  | 571 | default: | 
|  | 572 | printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", | 
|  | 573 | ref_offset(raw), je16_to_cpu(node->u.nodetype)); | 
|  | 574 | goto bail; | 
|  | 575 | } | 
|  | 576 |  | 
|  | 577 | nraw = jffs2_alloc_raw_node_ref(); | 
|  | 578 | if (!nraw) { | 
|  | 579 | ret = -ENOMEM; | 
|  | 580 | goto out_node; | 
|  | 581 | } | 
|  | 582 |  | 
|  | 583 | /* OK, all the CRCs are good; this node can just be copied as-is. */ | 
|  | 584 | retry: | 
|  | 585 | nraw->flash_offset = phys_ofs; | 
|  | 586 | nraw->__totlen = rawlen; | 
|  | 587 | nraw->next_phys = NULL; | 
|  | 588 |  | 
|  | 589 | ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); | 
|  | 590 |  | 
|  | 591 | if (ret || (retlen != rawlen)) { | 
|  | 592 | printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", | 
|  | 593 | rawlen, phys_ofs, ret, retlen); | 
|  | 594 | if (retlen) { | 
|  | 595 | /* Doesn't belong to any inode */ | 
|  | 596 | nraw->next_in_ino = NULL; | 
|  | 597 |  | 
|  | 598 | nraw->flash_offset |= REF_OBSOLETE; | 
|  | 599 | jffs2_add_physical_node_ref(c, nraw); | 
|  | 600 | jffs2_mark_node_obsolete(c, nraw); | 
|  | 601 | } else { | 
|  | 602 | printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset); | 
|  | 603 | jffs2_free_raw_node_ref(nraw); | 
|  | 604 | } | 
|  | 605 | if (!retried && (nraw = jffs2_alloc_raw_node_ref())) { | 
|  | 606 | /* Try to reallocate space and retry */ | 
|  | 607 | uint32_t dummy; | 
|  | 608 | struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; | 
|  | 609 |  | 
|  | 610 | retried = 1; | 
|  | 611 |  | 
|  | 612 | D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); | 
|  | 613 |  | 
|  | 614 | ACCT_SANITY_CHECK(c,jeb); | 
|  | 615 | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  | 616 |  | 
|  | 617 | ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy); | 
|  | 618 |  | 
|  | 619 | if (!ret) { | 
|  | 620 | D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); | 
|  | 621 |  | 
|  | 622 | ACCT_SANITY_CHECK(c,jeb); | 
|  | 623 | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  | 624 |  | 
|  | 625 | goto retry; | 
|  | 626 | } | 
|  | 627 | D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); | 
|  | 628 | jffs2_free_raw_node_ref(nraw); | 
|  | 629 | } | 
|  | 630 |  | 
|  | 631 | jffs2_free_raw_node_ref(nraw); | 
|  | 632 | if (!ret) | 
|  | 633 | ret = -EIO; | 
|  | 634 | goto out_node; | 
|  | 635 | } | 
|  | 636 | nraw->flash_offset |= REF_PRISTINE; | 
|  | 637 | jffs2_add_physical_node_ref(c, nraw); | 
|  | 638 |  | 
|  | 639 | /* Link into per-inode list. This is safe because of the ic | 
|  | 640 | state being INO_STATE_GC. Note that if we're doing this | 
|  | 641 | for an inode which is in-core, the 'nraw' pointer is then | 
|  | 642 | going to be fetched from ic->nodes by our caller. */ | 
|  | 643 | spin_lock(&c->erase_completion_lock); | 
|  | 644 | nraw->next_in_ino = ic->nodes; | 
|  | 645 | ic->nodes = nraw; | 
|  | 646 | spin_unlock(&c->erase_completion_lock); | 
|  | 647 |  | 
|  | 648 | jffs2_mark_node_obsolete(c, raw); | 
|  | 649 | D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); | 
|  | 650 |  | 
|  | 651 | out_node: | 
|  | 652 | kfree(node); | 
|  | 653 | return ret; | 
|  | 654 | bail: | 
|  | 655 | ret = -EBADFD; | 
|  | 656 | goto out_node; | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 660 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) | 
|  | 661 | { | 
|  | 662 | struct jffs2_full_dnode *new_fn; | 
|  | 663 | struct jffs2_raw_inode ri; | 
|  | 664 | jint16_t dev; | 
|  | 665 | char *mdata = NULL, mdatalen = 0; | 
|  | 666 | uint32_t alloclen, phys_ofs; | 
|  | 667 | int ret; | 
|  | 668 |  | 
|  | 669 | if (S_ISBLK(JFFS2_F_I_MODE(f)) || | 
|  | 670 | S_ISCHR(JFFS2_F_I_MODE(f)) ) { | 
|  | 671 | /* For these, we don't actually need to read the old node */ | 
|  | 672 | /* FIXME: for minor or major > 255. */ | 
|  | 673 | dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) | | 
|  | 674 | JFFS2_F_I_RDEV_MIN(f))); | 
|  | 675 | mdata = (char *)&dev; | 
|  | 676 | mdatalen = sizeof(dev); | 
|  | 677 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); | 
|  | 678 | } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { | 
|  | 679 | mdatalen = fn->size; | 
|  | 680 | mdata = kmalloc(fn->size, GFP_KERNEL); | 
|  | 681 | if (!mdata) { | 
|  | 682 | printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); | 
|  | 683 | return -ENOMEM; | 
|  | 684 | } | 
|  | 685 | ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); | 
|  | 686 | if (ret) { | 
|  | 687 | printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); | 
|  | 688 | kfree(mdata); | 
|  | 689 | return ret; | 
|  | 690 | } | 
|  | 691 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); | 
|  | 692 |  | 
|  | 693 | } | 
|  | 694 |  | 
|  | 695 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen); | 
|  | 696 | if (ret) { | 
|  | 697 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", | 
|  | 698 | sizeof(ri)+ mdatalen, ret); | 
|  | 699 | goto out; | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | memset(&ri, 0, sizeof(ri)); | 
|  | 703 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | 704 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | 
|  | 705 | ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); | 
|  | 706 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | 
|  | 707 |  | 
|  | 708 | ri.ino = cpu_to_je32(f->inocache->ino); | 
|  | 709 | ri.version = cpu_to_je32(++f->highest_version); | 
|  | 710 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | 
|  | 711 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | 
|  | 712 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | 
|  | 713 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | 
|  | 714 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | 
|  | 715 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | 
|  | 716 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | 717 | ri.offset = cpu_to_je32(0); | 
|  | 718 | ri.csize = cpu_to_je32(mdatalen); | 
|  | 719 | ri.dsize = cpu_to_je32(mdatalen); | 
|  | 720 | ri.compr = JFFS2_COMPR_NONE; | 
|  | 721 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | 
|  | 722 | ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); | 
|  | 723 |  | 
|  | 724 | new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC); | 
|  | 725 |  | 
|  | 726 | if (IS_ERR(new_fn)) { | 
|  | 727 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | 
|  | 728 | ret = PTR_ERR(new_fn); | 
|  | 729 | goto out; | 
|  | 730 | } | 
|  | 731 | jffs2_mark_node_obsolete(c, fn->raw); | 
|  | 732 | jffs2_free_full_dnode(fn); | 
|  | 733 | f->metadata = new_fn; | 
|  | 734 | out: | 
|  | 735 | if (S_ISLNK(JFFS2_F_I_MODE(f))) | 
|  | 736 | kfree(mdata); | 
|  | 737 | return ret; | 
|  | 738 | } | 
|  | 739 |  | 
|  | 740 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 741 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) | 
|  | 742 | { | 
|  | 743 | struct jffs2_full_dirent *new_fd; | 
|  | 744 | struct jffs2_raw_dirent rd; | 
|  | 745 | uint32_t alloclen, phys_ofs; | 
|  | 746 | int ret; | 
|  | 747 |  | 
|  | 748 | rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | 749 | rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); | 
|  | 750 | rd.nsize = strlen(fd->name); | 
|  | 751 | rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); | 
|  | 752 | rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); | 
|  | 753 |  | 
|  | 754 | rd.pino = cpu_to_je32(f->inocache->ino); | 
|  | 755 | rd.version = cpu_to_je32(++f->highest_version); | 
|  | 756 | rd.ino = cpu_to_je32(fd->ino); | 
|  | 757 | rd.mctime = cpu_to_je32(max(JFFS2_F_I_MTIME(f), JFFS2_F_I_CTIME(f))); | 
|  | 758 | rd.type = fd->type; | 
|  | 759 | rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); | 
|  | 760 | rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); | 
|  | 761 |  | 
|  | 762 | ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen); | 
|  | 763 | if (ret) { | 
|  | 764 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", | 
|  | 765 | sizeof(rd)+rd.nsize, ret); | 
|  | 766 | return ret; | 
|  | 767 | } | 
|  | 768 | new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC); | 
|  | 769 |  | 
|  | 770 | if (IS_ERR(new_fd)) { | 
|  | 771 | printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); | 
|  | 772 | return PTR_ERR(new_fd); | 
|  | 773 | } | 
|  | 774 | jffs2_add_fd_to_list(c, new_fd, &f->dents); | 
|  | 775 | return 0; | 
|  | 776 | } | 
|  | 777 |  | 
|  | 778 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 779 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) | 
|  | 780 | { | 
|  | 781 | struct jffs2_full_dirent **fdp = &f->dents; | 
|  | 782 | int found = 0; | 
|  | 783 |  | 
|  | 784 | /* On a medium where we can't actually mark nodes obsolete | 
|  | 785 | pernamently, such as NAND flash, we need to work out | 
|  | 786 | whether this deletion dirent is still needed to actively | 
|  | 787 | delete a 'real' dirent with the same name that's still | 
|  | 788 | somewhere else on the flash. */ | 
|  | 789 | if (!jffs2_can_mark_obsolete(c)) { | 
|  | 790 | struct jffs2_raw_dirent *rd; | 
|  | 791 | struct jffs2_raw_node_ref *raw; | 
|  | 792 | int ret; | 
|  | 793 | size_t retlen; | 
|  | 794 | int name_len = strlen(fd->name); | 
|  | 795 | uint32_t name_crc = crc32(0, fd->name, name_len); | 
|  | 796 | uint32_t rawlen = ref_totlen(c, jeb, fd->raw); | 
|  | 797 |  | 
|  | 798 | rd = kmalloc(rawlen, GFP_KERNEL); | 
|  | 799 | if (!rd) | 
|  | 800 | return -ENOMEM; | 
|  | 801 |  | 
|  | 802 | /* Prevent the erase code from nicking the obsolete node refs while | 
|  | 803 | we're looking at them. I really don't like this extra lock but | 
|  | 804 | can't see any alternative. Suggestions on a postcard to... */ | 
|  | 805 | down(&c->erase_free_sem); | 
|  | 806 |  | 
|  | 807 | for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { | 
|  | 808 |  | 
|  | 809 | /* We only care about obsolete ones */ | 
|  | 810 | if (!(ref_obsolete(raw))) | 
|  | 811 | continue; | 
|  | 812 |  | 
|  | 813 | /* Any dirent with the same name is going to have the same length... */ | 
|  | 814 | if (ref_totlen(c, NULL, raw) != rawlen) | 
|  | 815 | continue; | 
|  | 816 |  | 
|  | 817 | /* Doesn't matter if there's one in the same erase block. We're going to | 
|  | 818 | delete it too at the same time. */ | 
|  | 819 | if ((raw->flash_offset & ~(c->sector_size-1)) == | 
|  | 820 | (fd->raw->flash_offset & ~(c->sector_size-1))) | 
|  | 821 | continue; | 
|  | 822 |  | 
|  | 823 | D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); | 
|  | 824 |  | 
|  | 825 | /* This is an obsolete node belonging to the same directory, and it's of the right | 
|  | 826 | length. We need to take a closer look...*/ | 
|  | 827 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); | 
|  | 828 | if (ret) { | 
|  | 829 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); | 
|  | 830 | /* If we can't read it, we don't need to continue to obsolete it. Continue */ | 
|  | 831 | continue; | 
|  | 832 | } | 
|  | 833 | if (retlen != rawlen) { | 
|  | 834 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", | 
|  | 835 | retlen, rawlen, ref_offset(raw)); | 
|  | 836 | continue; | 
|  | 837 | } | 
|  | 838 |  | 
|  | 839 | if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) | 
|  | 840 | continue; | 
|  | 841 |  | 
|  | 842 | /* If the name CRC doesn't match, skip */ | 
|  | 843 | if (je32_to_cpu(rd->name_crc) != name_crc) | 
|  | 844 | continue; | 
|  | 845 |  | 
|  | 846 | /* If the name length doesn't match, or it's another deletion dirent, skip */ | 
|  | 847 | if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) | 
|  | 848 | continue; | 
|  | 849 |  | 
|  | 850 | /* OK, check the actual name now */ | 
|  | 851 | if (memcmp(rd->name, fd->name, name_len)) | 
|  | 852 | continue; | 
|  | 853 |  | 
|  | 854 | /* OK. The name really does match. There really is still an older node on | 
|  | 855 | the flash which our deletion dirent obsoletes. So we have to write out | 
|  | 856 | a new deletion dirent to replace it */ | 
|  | 857 | up(&c->erase_free_sem); | 
|  | 858 |  | 
|  | 859 | D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", | 
|  | 860 | ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); | 
|  | 861 | kfree(rd); | 
|  | 862 |  | 
|  | 863 | return jffs2_garbage_collect_dirent(c, jeb, f, fd); | 
|  | 864 | } | 
|  | 865 |  | 
|  | 866 | up(&c->erase_free_sem); | 
|  | 867 | kfree(rd); | 
|  | 868 | } | 
|  | 869 |  | 
|  | 870 | /* No need for it any more. Just mark it obsolete and remove it from the list */ | 
|  | 871 | while (*fdp) { | 
|  | 872 | if ((*fdp) == fd) { | 
|  | 873 | found = 1; | 
|  | 874 | *fdp = fd->next; | 
|  | 875 | break; | 
|  | 876 | } | 
|  | 877 | fdp = &(*fdp)->next; | 
|  | 878 | } | 
|  | 879 | if (!found) { | 
|  | 880 | printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); | 
|  | 881 | } | 
|  | 882 | jffs2_mark_node_obsolete(c, fd->raw); | 
|  | 883 | jffs2_free_full_dirent(fd); | 
|  | 884 | return 0; | 
|  | 885 | } | 
|  | 886 |  | 
|  | 887 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 888 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | 889 | uint32_t start, uint32_t end) | 
|  | 890 | { | 
|  | 891 | struct jffs2_raw_inode ri; | 
|  | 892 | struct jffs2_node_frag *frag; | 
|  | 893 | struct jffs2_full_dnode *new_fn; | 
|  | 894 | uint32_t alloclen, phys_ofs; | 
|  | 895 | int ret; | 
|  | 896 |  | 
|  | 897 | D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", | 
|  | 898 | f->inocache->ino, start, end)); | 
|  | 899 |  | 
|  | 900 | memset(&ri, 0, sizeof(ri)); | 
|  | 901 |  | 
|  | 902 | if(fn->frags > 1) { | 
|  | 903 | size_t readlen; | 
|  | 904 | uint32_t crc; | 
|  | 905 | /* It's partially obsoleted by a later write. So we have to | 
|  | 906 | write it out again with the _same_ version as before */ | 
|  | 907 | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); | 
|  | 908 | if (readlen != sizeof(ri) || ret) { | 
|  | 909 | printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); | 
|  | 910 | goto fill; | 
|  | 911 | } | 
|  | 912 | if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { | 
|  | 913 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", | 
|  | 914 | ref_offset(fn->raw), | 
|  | 915 | je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); | 
|  | 916 | return -EIO; | 
|  | 917 | } | 
|  | 918 | if (je32_to_cpu(ri.totlen) != sizeof(ri)) { | 
|  | 919 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", | 
|  | 920 | ref_offset(fn->raw), | 
|  | 921 | je32_to_cpu(ri.totlen), sizeof(ri)); | 
|  | 922 | return -EIO; | 
|  | 923 | } | 
|  | 924 | crc = crc32(0, &ri, sizeof(ri)-8); | 
|  | 925 | if (crc != je32_to_cpu(ri.node_crc)) { | 
|  | 926 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", | 
|  | 927 | ref_offset(fn->raw), | 
|  | 928 | je32_to_cpu(ri.node_crc), crc); | 
|  | 929 | /* FIXME: We could possibly deal with this by writing new holes for each frag */ | 
|  | 930 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", | 
|  | 931 | start, end, f->inocache->ino); | 
|  | 932 | goto fill; | 
|  | 933 | } | 
|  | 934 | if (ri.compr != JFFS2_COMPR_ZERO) { | 
|  | 935 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); | 
|  | 936 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", | 
|  | 937 | start, end, f->inocache->ino); | 
|  | 938 | goto fill; | 
|  | 939 | } | 
|  | 940 | } else { | 
|  | 941 | fill: | 
|  | 942 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | 943 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | 
|  | 944 | ri.totlen = cpu_to_je32(sizeof(ri)); | 
|  | 945 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | 
|  | 946 |  | 
|  | 947 | ri.ino = cpu_to_je32(f->inocache->ino); | 
|  | 948 | ri.version = cpu_to_je32(++f->highest_version); | 
|  | 949 | ri.offset = cpu_to_je32(start); | 
|  | 950 | ri.dsize = cpu_to_je32(end - start); | 
|  | 951 | ri.csize = cpu_to_je32(0); | 
|  | 952 | ri.compr = JFFS2_COMPR_ZERO; | 
|  | 953 | } | 
|  | 954 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | 
|  | 955 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | 
|  | 956 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | 
|  | 957 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | 
|  | 958 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | 
|  | 959 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | 
|  | 960 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | 961 | ri.data_crc = cpu_to_je32(0); | 
|  | 962 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | 
|  | 963 |  | 
|  | 964 | ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen); | 
|  | 965 | if (ret) { | 
|  | 966 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", | 
|  | 967 | sizeof(ri), ret); | 
|  | 968 | return ret; | 
|  | 969 | } | 
|  | 970 | new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC); | 
|  | 971 |  | 
|  | 972 | if (IS_ERR(new_fn)) { | 
|  | 973 | printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); | 
|  | 974 | return PTR_ERR(new_fn); | 
|  | 975 | } | 
|  | 976 | if (je32_to_cpu(ri.version) == f->highest_version) { | 
|  | 977 | jffs2_add_full_dnode_to_inode(c, f, new_fn); | 
|  | 978 | if (f->metadata) { | 
|  | 979 | jffs2_mark_node_obsolete(c, f->metadata->raw); | 
|  | 980 | jffs2_free_full_dnode(f->metadata); | 
|  | 981 | f->metadata = NULL; | 
|  | 982 | } | 
|  | 983 | return 0; | 
|  | 984 | } | 
|  | 985 |  | 
|  | 986 | /* | 
|  | 987 | * We should only get here in the case where the node we are | 
|  | 988 | * replacing had more than one frag, so we kept the same version | 
|  | 989 | * number as before. (Except in case of error -- see 'goto fill;' | 
|  | 990 | * above.) | 
|  | 991 | */ | 
|  | 992 | D1(if(unlikely(fn->frags <= 1)) { | 
|  | 993 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", | 
|  | 994 | fn->frags, je32_to_cpu(ri.version), f->highest_version, | 
|  | 995 | je32_to_cpu(ri.ino)); | 
|  | 996 | }); | 
|  | 997 |  | 
|  | 998 | /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ | 
|  | 999 | mark_ref_normal(new_fn->raw); | 
|  | 1000 |  | 
|  | 1001 | for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); | 
|  | 1002 | frag; frag = frag_next(frag)) { | 
|  | 1003 | if (frag->ofs > fn->size + fn->ofs) | 
|  | 1004 | break; | 
|  | 1005 | if (frag->node == fn) { | 
|  | 1006 | frag->node = new_fn; | 
|  | 1007 | new_fn->frags++; | 
|  | 1008 | fn->frags--; | 
|  | 1009 | } | 
|  | 1010 | } | 
|  | 1011 | if (fn->frags) { | 
|  | 1012 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); | 
|  | 1013 | BUG(); | 
|  | 1014 | } | 
|  | 1015 | if (!new_fn->frags) { | 
|  | 1016 | printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); | 
|  | 1017 | BUG(); | 
|  | 1018 | } | 
|  | 1019 |  | 
|  | 1020 | jffs2_mark_node_obsolete(c, fn->raw); | 
|  | 1021 | jffs2_free_full_dnode(fn); | 
|  | 1022 |  | 
|  | 1023 | return 0; | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | 1027 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | 1028 | uint32_t start, uint32_t end) | 
|  | 1029 | { | 
|  | 1030 | struct jffs2_full_dnode *new_fn; | 
|  | 1031 | struct jffs2_raw_inode ri; | 
|  | 1032 | uint32_t alloclen, phys_ofs, offset, orig_end, orig_start; | 
|  | 1033 | int ret = 0; | 
|  | 1034 | unsigned char *comprbuf = NULL, *writebuf; | 
|  | 1035 | unsigned long pg; | 
|  | 1036 | unsigned char *pg_ptr; | 
|  | 1037 |  | 
|  | 1038 | memset(&ri, 0, sizeof(ri)); | 
|  | 1039 |  | 
|  | 1040 | D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", | 
|  | 1041 | f->inocache->ino, start, end)); | 
|  | 1042 |  | 
|  | 1043 | orig_end = end; | 
|  | 1044 | orig_start = start; | 
|  | 1045 |  | 
|  | 1046 | if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { | 
|  | 1047 | /* Attempt to do some merging. But only expand to cover logically | 
|  | 1048 | adjacent frags if the block containing them is already considered | 
|  | 1049 | to be dirty. Otherwise we end up with GC just going round in | 
|  | 1050 | circles dirtying the nodes it already wrote out, especially | 
|  | 1051 | on NAND where we have small eraseblocks and hence a much higher | 
|  | 1052 | chance of nodes having to be split to cross boundaries. */ | 
|  | 1053 |  | 
|  | 1054 | struct jffs2_node_frag *frag; | 
|  | 1055 | uint32_t min, max; | 
|  | 1056 |  | 
|  | 1057 | min = start & ~(PAGE_CACHE_SIZE-1); | 
|  | 1058 | max = min + PAGE_CACHE_SIZE; | 
|  | 1059 |  | 
|  | 1060 | frag = jffs2_lookup_node_frag(&f->fragtree, start); | 
|  | 1061 |  | 
|  | 1062 | /* BUG_ON(!frag) but that'll happen anyway... */ | 
|  | 1063 |  | 
|  | 1064 | BUG_ON(frag->ofs != start); | 
|  | 1065 |  | 
|  | 1066 | /* First grow down... */ | 
|  | 1067 | while((frag = frag_prev(frag)) && frag->ofs >= min) { | 
|  | 1068 |  | 
|  | 1069 | /* If the previous frag doesn't even reach the beginning, there's | 
|  | 1070 | excessive fragmentation. Just merge. */ | 
|  | 1071 | if (frag->ofs > min) { | 
|  | 1072 | D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", | 
|  | 1073 | frag->ofs, frag->ofs+frag->size)); | 
|  | 1074 | start = frag->ofs; | 
|  | 1075 | continue; | 
|  | 1076 | } | 
|  | 1077 | /* OK. This frag holds the first byte of the page. */ | 
|  | 1078 | if (!frag->node || !frag->node->raw) { | 
|  | 1079 | D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", | 
|  | 1080 | frag->ofs, frag->ofs+frag->size)); | 
|  | 1081 | break; | 
|  | 1082 | } else { | 
|  | 1083 |  | 
|  | 1084 | /* OK, it's a frag which extends to the beginning of the page. Does it live | 
|  | 1085 | in a block which is still considered clean? If so, don't obsolete it. | 
|  | 1086 | If not, cover it anyway. */ | 
|  | 1087 |  | 
|  | 1088 | struct jffs2_raw_node_ref *raw = frag->node->raw; | 
|  | 1089 | struct jffs2_eraseblock *jeb; | 
|  | 1090 |  | 
|  | 1091 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | 
|  | 1092 |  | 
|  | 1093 | if (jeb == c->gcblock) { | 
|  | 1094 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", | 
|  | 1095 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | 
|  | 1096 | start = frag->ofs; | 
|  | 1097 | break; | 
|  | 1098 | } | 
|  | 1099 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | 
|  | 1100 | D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", | 
|  | 1101 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | 1102 | break; | 
|  | 1103 | } | 
|  | 1104 |  | 
|  | 1105 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", | 
|  | 1106 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | 1107 | start = frag->ofs; | 
|  | 1108 | break; | 
|  | 1109 | } | 
|  | 1110 | } | 
|  | 1111 |  | 
|  | 1112 | /* ... then up */ | 
|  | 1113 |  | 
|  | 1114 | /* Find last frag which is actually part of the node we're to GC. */ | 
|  | 1115 | frag = jffs2_lookup_node_frag(&f->fragtree, end-1); | 
|  | 1116 |  | 
|  | 1117 | while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { | 
|  | 1118 |  | 
|  | 1119 | /* If the previous frag doesn't even reach the beginning, there's lots | 
|  | 1120 | of fragmentation. Just merge. */ | 
|  | 1121 | if (frag->ofs+frag->size < max) { | 
|  | 1122 | D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", | 
|  | 1123 | frag->ofs, frag->ofs+frag->size)); | 
|  | 1124 | end = frag->ofs + frag->size; | 
|  | 1125 | continue; | 
|  | 1126 | } | 
|  | 1127 |  | 
|  | 1128 | if (!frag->node || !frag->node->raw) { | 
|  | 1129 | D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", | 
|  | 1130 | frag->ofs, frag->ofs+frag->size)); | 
|  | 1131 | break; | 
|  | 1132 | } else { | 
|  | 1133 |  | 
|  | 1134 | /* OK, it's a frag which extends to the beginning of the page. Does it live | 
|  | 1135 | in a block which is still considered clean? If so, don't obsolete it. | 
|  | 1136 | If not, cover it anyway. */ | 
|  | 1137 |  | 
|  | 1138 | struct jffs2_raw_node_ref *raw = frag->node->raw; | 
|  | 1139 | struct jffs2_eraseblock *jeb; | 
|  | 1140 |  | 
|  | 1141 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | 
|  | 1142 |  | 
|  | 1143 | if (jeb == c->gcblock) { | 
|  | 1144 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", | 
|  | 1145 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | 
|  | 1146 | end = frag->ofs + frag->size; | 
|  | 1147 | break; | 
|  | 1148 | } | 
|  | 1149 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | 
|  | 1150 | D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", | 
|  | 1151 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | 1152 | break; | 
|  | 1153 | } | 
|  | 1154 |  | 
|  | 1155 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", | 
|  | 1156 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | 1157 | end = frag->ofs + frag->size; | 
|  | 1158 | break; | 
|  | 1159 | } | 
|  | 1160 | } | 
|  | 1161 | D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", | 
|  | 1162 | orig_start, orig_end, start, end)); | 
|  | 1163 |  | 
|  | 1164 | BUG_ON(end > JFFS2_F_I_SIZE(f)); | 
|  | 1165 | BUG_ON(end < orig_end); | 
|  | 1166 | BUG_ON(start > orig_start); | 
|  | 1167 | } | 
|  | 1168 |  | 
|  | 1169 | /* First, use readpage() to read the appropriate page into the page cache */ | 
|  | 1170 | /* Q: What happens if we actually try to GC the _same_ page for which commit_write() | 
|  | 1171 | *    triggered garbage collection in the first place? | 
|  | 1172 | * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the | 
|  | 1173 | *    page OK. We'll actually write it out again in commit_write, which is a little | 
|  | 1174 | *    suboptimal, but at least we're correct. | 
|  | 1175 | */ | 
|  | 1176 | pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); | 
|  | 1177 |  | 
|  | 1178 | if (IS_ERR(pg_ptr)) { | 
|  | 1179 | printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); | 
|  | 1180 | return PTR_ERR(pg_ptr); | 
|  | 1181 | } | 
|  | 1182 |  | 
|  | 1183 | offset = start; | 
|  | 1184 | while(offset < orig_end) { | 
|  | 1185 | uint32_t datalen; | 
|  | 1186 | uint32_t cdatalen; | 
|  | 1187 | uint16_t comprtype = JFFS2_COMPR_NONE; | 
|  | 1188 |  | 
|  | 1189 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen); | 
|  | 1190 |  | 
|  | 1191 | if (ret) { | 
|  | 1192 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", | 
|  | 1193 | sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); | 
|  | 1194 | break; | 
|  | 1195 | } | 
|  | 1196 | cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); | 
|  | 1197 | datalen = end - offset; | 
|  | 1198 |  | 
|  | 1199 | writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); | 
|  | 1200 |  | 
|  | 1201 | comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); | 
|  | 1202 |  | 
|  | 1203 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | 1204 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | 
|  | 1205 | ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); | 
|  | 1206 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | 
|  | 1207 |  | 
|  | 1208 | ri.ino = cpu_to_je32(f->inocache->ino); | 
|  | 1209 | ri.version = cpu_to_je32(++f->highest_version); | 
|  | 1210 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | 
|  | 1211 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | 
|  | 1212 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | 
|  | 1213 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | 
|  | 1214 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | 
|  | 1215 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | 
|  | 1216 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | 1217 | ri.offset = cpu_to_je32(offset); | 
|  | 1218 | ri.csize = cpu_to_je32(cdatalen); | 
|  | 1219 | ri.dsize = cpu_to_je32(datalen); | 
|  | 1220 | ri.compr = comprtype & 0xff; | 
|  | 1221 | ri.usercompr = (comprtype >> 8) & 0xff; | 
|  | 1222 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | 
|  | 1223 | ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); | 
|  | 1224 |  | 
|  | 1225 | new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC); | 
|  | 1226 |  | 
|  | 1227 | jffs2_free_comprbuf(comprbuf, writebuf); | 
|  | 1228 |  | 
|  | 1229 | if (IS_ERR(new_fn)) { | 
|  | 1230 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | 
|  | 1231 | ret = PTR_ERR(new_fn); | 
|  | 1232 | break; | 
|  | 1233 | } | 
|  | 1234 | ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); | 
|  | 1235 | offset += datalen; | 
|  | 1236 | if (f->metadata) { | 
|  | 1237 | jffs2_mark_node_obsolete(c, f->metadata->raw); | 
|  | 1238 | jffs2_free_full_dnode(f->metadata); | 
|  | 1239 | f->metadata = NULL; | 
|  | 1240 | } | 
|  | 1241 | } | 
|  | 1242 |  | 
|  | 1243 | jffs2_gc_release_page(c, pg_ptr, &pg); | 
|  | 1244 | return ret; | 
|  | 1245 | } | 
|  | 1246 |  |