| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | 3 | */ | 
|  | 4 |  | 
|  | 5 |  | 
|  | 6 | #include <linux/time.h> | 
|  | 7 | #include <linux/reiserfs_fs.h> | 
|  | 8 | #include <linux/reiserfs_acl.h> | 
|  | 9 | #include <linux/reiserfs_xattr.h> | 
|  | 10 | #include <linux/smp_lock.h> | 
|  | 11 | #include <asm/uaccess.h> | 
|  | 12 | #include <linux/pagemap.h> | 
|  | 13 | #include <linux/swap.h> | 
|  | 14 | #include <linux/writeback.h> | 
|  | 15 | #include <linux/blkdev.h> | 
|  | 16 | #include <linux/buffer_head.h> | 
|  | 17 | #include <linux/quotaops.h> | 
|  | 18 |  | 
|  | 19 | /* | 
|  | 20 | ** We pack the tails of files on file close, not at the time they are written. | 
|  | 21 | ** This implies an unnecessary copy of the tail and an unnecessary indirect item | 
|  | 22 | ** insertion/balancing, for files that are written in one write. | 
|  | 23 | ** It avoids unnecessary tail packings (balances) for files that are written in | 
|  | 24 | ** multiple writes and are small enough to have tails. | 
|  | 25 | ** | 
|  | 26 | ** file_release is called by the VFS layer when the file is closed.  If | 
|  | 27 | ** this is the last open file descriptor, and the file | 
|  | 28 | ** small enough to have a tail, and the tail is currently in an | 
|  | 29 | ** unformatted node, the tail is converted back into a direct item. | 
|  | 30 | ** | 
|  | 31 | ** We use reiserfs_truncate_file to pack the tail, since it already has | 
|  | 32 | ** all the conditions coded. | 
|  | 33 | */ | 
|  | 34 | static int reiserfs_file_release (struct inode * inode, struct file * filp) | 
|  | 35 | { | 
|  | 36 |  | 
|  | 37 | struct reiserfs_transaction_handle th ; | 
|  | 38 | int err; | 
|  | 39 | int jbegin_failure = 0; | 
|  | 40 |  | 
|  | 41 | if (!S_ISREG (inode->i_mode)) | 
|  | 42 | BUG (); | 
|  | 43 |  | 
|  | 44 | /* fast out for when nothing needs to be done */ | 
|  | 45 | if ((atomic_read(&inode->i_count) > 1 || | 
|  | 46 | !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || | 
|  | 47 | !tail_has_to_be_packed(inode))       && | 
|  | 48 | REISERFS_I(inode)->i_prealloc_count <= 0) { | 
|  | 49 | return 0; | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | reiserfs_write_lock(inode->i_sb); | 
|  | 53 | down (&inode->i_sem); | 
|  | 54 | /* freeing preallocation only involves relogging blocks that | 
|  | 55 | * are already in the current transaction.  preallocation gets | 
|  | 56 | * freed at the end of each transaction, so it is impossible for | 
|  | 57 | * us to log any additional blocks (including quota blocks) | 
|  | 58 | */ | 
|  | 59 | err = journal_begin(&th, inode->i_sb, 1); | 
|  | 60 | if (err) { | 
|  | 61 | /* uh oh, we can't allow the inode to go away while there | 
|  | 62 | * is still preallocation blocks pending.  Try to join the | 
|  | 63 | * aborted transaction | 
|  | 64 | */ | 
|  | 65 | jbegin_failure = err; | 
|  | 66 | err = journal_join_abort(&th, inode->i_sb, 1); | 
|  | 67 |  | 
|  | 68 | if (err) { | 
|  | 69 | /* hmpf, our choices here aren't good.  We can pin the inode | 
|  | 70 | * which will disallow unmount from every happening, we can | 
|  | 71 | * do nothing, which will corrupt random memory on unmount, | 
|  | 72 | * or we can forcibly remove the file from the preallocation | 
|  | 73 | * list, which will leak blocks on disk.  Lets pin the inode | 
|  | 74 | * and let the admin know what is going on. | 
|  | 75 | */ | 
|  | 76 | igrab(inode); | 
|  | 77 | reiserfs_warning(inode->i_sb, "pinning inode %lu because the " | 
|  | 78 | "preallocation can't be freed"); | 
|  | 79 | goto out; | 
|  | 80 | } | 
|  | 81 | } | 
|  | 82 | reiserfs_update_inode_transaction(inode) ; | 
|  | 83 |  | 
|  | 84 | #ifdef REISERFS_PREALLOCATE | 
|  | 85 | reiserfs_discard_prealloc (&th, inode); | 
|  | 86 | #endif | 
|  | 87 | err = journal_end(&th, inode->i_sb, 1); | 
|  | 88 |  | 
|  | 89 | /* copy back the error code from journal_begin */ | 
|  | 90 | if (!err) | 
|  | 91 | err = jbegin_failure; | 
|  | 92 |  | 
|  | 93 | if (!err && atomic_read(&inode->i_count) <= 1 && | 
|  | 94 | (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && | 
|  | 95 | tail_has_to_be_packed (inode)) { | 
|  | 96 | /* if regular file is released by last holder and it has been | 
|  | 97 | appended (we append by unformatted node only) or its direct | 
|  | 98 | item(s) had to be converted, then it may have to be | 
|  | 99 | indirect2direct converted */ | 
|  | 100 | err = reiserfs_truncate_file(inode, 0) ; | 
|  | 101 | } | 
|  | 102 | out: | 
|  | 103 | up (&inode->i_sem); | 
|  | 104 | reiserfs_write_unlock(inode->i_sb); | 
|  | 105 | return err; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | static void reiserfs_vfs_truncate_file(struct inode *inode) { | 
|  | 109 | reiserfs_truncate_file(inode, 1) ; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | /* Sync a reiserfs file. */ | 
|  | 113 |  | 
|  | 114 | /* | 
|  | 115 | * FIXME: sync_mapping_buffers() never has anything to sync.  Can | 
|  | 116 | * be removed... | 
|  | 117 | */ | 
|  | 118 |  | 
|  | 119 | static int reiserfs_sync_file( | 
|  | 120 | struct file   * p_s_filp, | 
|  | 121 | struct dentry * p_s_dentry, | 
|  | 122 | int datasync | 
|  | 123 | ) { | 
|  | 124 | struct inode * p_s_inode = p_s_dentry->d_inode; | 
|  | 125 | int n_err; | 
|  | 126 | int barrier_done; | 
|  | 127 |  | 
|  | 128 | if (!S_ISREG(p_s_inode->i_mode)) | 
|  | 129 | BUG (); | 
|  | 130 | n_err = sync_mapping_buffers(p_s_inode->i_mapping) ; | 
|  | 131 | reiserfs_write_lock(p_s_inode->i_sb); | 
|  | 132 | barrier_done = reiserfs_commit_for_inode(p_s_inode); | 
|  | 133 | reiserfs_write_unlock(p_s_inode->i_sb); | 
|  | 134 | if (barrier_done != 1) | 
|  | 135 | blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); | 
|  | 136 | if (barrier_done < 0) | 
|  | 137 | return barrier_done; | 
|  | 138 | return ( n_err < 0 ) ? -EIO : 0; | 
|  | 139 | } | 
|  | 140 |  | 
|  | 141 | /* I really do not want to play with memory shortage right now, so | 
|  | 142 | to simplify the code, we are not going to write more than this much pages at | 
|  | 143 | a time. This still should considerably improve performance compared to 4k | 
|  | 144 | at a time case. This is 32 pages of 4k size. */ | 
|  | 145 | #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE | 
|  | 146 |  | 
|  | 147 | /* Allocates blocks for a file to fulfil write request. | 
|  | 148 | Maps all unmapped but prepared pages from the list. | 
|  | 149 | Updates metadata with newly allocated blocknumbers as needed */ | 
|  | 150 | static int reiserfs_allocate_blocks_for_region( | 
|  | 151 | struct reiserfs_transaction_handle *th, | 
|  | 152 | struct inode *inode, /* Inode we work with */ | 
|  | 153 | loff_t pos, /* Writing position */ | 
|  | 154 | int num_pages, /* number of pages write going | 
|  | 155 | to touch */ | 
|  | 156 | int write_bytes, /* amount of bytes to write */ | 
|  | 157 | struct page **prepared_pages, /* array of | 
|  | 158 | prepared pages | 
|  | 159 | */ | 
|  | 160 | int blocks_to_allocate /* Amount of blocks we | 
|  | 161 | need to allocate to | 
|  | 162 | fit the data into file | 
|  | 163 | */ | 
|  | 164 | ) | 
|  | 165 | { | 
|  | 166 | struct cpu_key key; // cpu key of item that we are going to deal with | 
|  | 167 | struct item_head *ih; // pointer to item head that we are going to deal with | 
|  | 168 | struct buffer_head *bh; // Buffer head that contains items that we are going to deal with | 
| Al Viro | 3e8962b | 2005-05-01 08:59:18 -0700 | [diff] [blame] | 169 | __le32 * item; // pointer to item we are going to deal with | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 170 | INITIALIZE_PATH(path); // path to item, that we are going to deal with. | 
|  | 171 | b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. | 
|  | 172 | reiserfs_blocknr_hint_t hint; // hint structure for block allocator. | 
|  | 173 | size_t res; // return value of various functions that we call. | 
|  | 174 | int curr_block; // current block used to keep track of unmapped blocks. | 
|  | 175 | int i; // loop counter | 
|  | 176 | int itempos; // position in item | 
|  | 177 | unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in | 
|  | 178 | // first page | 
|  | 179 | unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ | 
|  | 180 | __u64 hole_size ; // amount of blocks for a file hole, if it needed to be created. | 
|  | 181 | int modifying_this_item = 0; // Flag for items traversal code to keep track | 
|  | 182 | // of the fact that we already prepared | 
|  | 183 | // current block for journal | 
|  | 184 | int will_prealloc = 0; | 
|  | 185 | RFALSE(!blocks_to_allocate, "green-9004: tried to allocate zero blocks?"); | 
|  | 186 |  | 
|  | 187 | /* only preallocate if this is a small write */ | 
|  | 188 | if (REISERFS_I(inode)->i_prealloc_count || | 
|  | 189 | (!(write_bytes & (inode->i_sb->s_blocksize -1)) && | 
|  | 190 | blocks_to_allocate < | 
|  | 191 | REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) | 
|  | 192 | will_prealloc = REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; | 
|  | 193 |  | 
|  | 194 | allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * | 
|  | 195 | sizeof(b_blocknr_t), GFP_NOFS); | 
|  | 196 |  | 
|  | 197 | /* First we compose a key to point at the writing position, we want to do | 
|  | 198 | that outside of any locking region. */ | 
|  | 199 | make_cpu_key (&key, inode, pos+1, TYPE_ANY, 3/*key length*/); | 
|  | 200 |  | 
|  | 201 | /* If we came here, it means we absolutely need to open a transaction, | 
|  | 202 | since we need to allocate some blocks */ | 
|  | 203 | reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. | 
| Jan Kara | 556a2a4 | 2005-06-23 22:01:06 -0700 | [diff] [blame] | 204 | res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 205 | if (res) | 
|  | 206 | goto error_exit; | 
|  | 207 | reiserfs_update_inode_transaction(inode) ; | 
|  | 208 |  | 
|  | 209 | /* Look for the in-tree position of our write, need path for block allocator */ | 
|  | 210 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 211 | if ( res == IO_ERROR ) { | 
|  | 212 | res = -EIO; | 
|  | 213 | goto error_exit; | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 | /* Allocate blocks */ | 
|  | 217 | /* First fill in "hint" structure for block allocator */ | 
|  | 218 | hint.th = th; // transaction handle. | 
|  | 219 | hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. | 
|  | 220 | hint.inode = inode; // Inode is needed by block allocator too. | 
|  | 221 | hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. | 
|  | 222 | hint.key = key.on_disk_key; // on disk key of file. | 
|  | 223 | hint.block = inode->i_blocks>>(inode->i_sb->s_blocksize_bits-9); // Number of disk blocks this file occupies already. | 
|  | 224 | hint.formatted_node = 0; // We are allocating blocks for unformatted node. | 
|  | 225 | hint.preallocate = will_prealloc; | 
|  | 226 |  | 
|  | 227 | /* Call block allocator to allocate blocks */ | 
|  | 228 | res = reiserfs_allocate_blocknrs(&hint, allocated_blocks, blocks_to_allocate, blocks_to_allocate); | 
|  | 229 | if ( res != CARRY_ON ) { | 
|  | 230 | if ( res == NO_DISK_SPACE ) { | 
|  | 231 | /* We flush the transaction in case of no space. This way some | 
|  | 232 | blocks might become free */ | 
|  | 233 | SB_JOURNAL(inode->i_sb)->j_must_wait = 1; | 
|  | 234 | res = restart_transaction(th, inode, &path); | 
|  | 235 | if (res) | 
|  | 236 | goto error_exit; | 
|  | 237 |  | 
|  | 238 | /* We might have scheduled, so search again */ | 
|  | 239 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 240 | if ( res == IO_ERROR ) { | 
|  | 241 | res = -EIO; | 
|  | 242 | goto error_exit; | 
|  | 243 | } | 
|  | 244 |  | 
|  | 245 | /* update changed info for hint structure. */ | 
|  | 246 | res = reiserfs_allocate_blocknrs(&hint, allocated_blocks, blocks_to_allocate, blocks_to_allocate); | 
|  | 247 | if ( res != CARRY_ON ) { | 
|  | 248 | res = -ENOSPC; | 
|  | 249 | pathrelse(&path); | 
|  | 250 | goto error_exit; | 
|  | 251 | } | 
|  | 252 | } else { | 
|  | 253 | res = -ENOSPC; | 
|  | 254 | pathrelse(&path); | 
|  | 255 | goto error_exit; | 
|  | 256 | } | 
|  | 257 | } | 
|  | 258 |  | 
|  | 259 | #ifdef __BIG_ENDIAN | 
|  | 260 | // Too bad, I have not found any way to convert a given region from | 
|  | 261 | // cpu format to little endian format | 
|  | 262 | { | 
|  | 263 | int i; | 
|  | 264 | for ( i = 0; i < blocks_to_allocate ; i++) | 
|  | 265 | allocated_blocks[i]=cpu_to_le32(allocated_blocks[i]); | 
|  | 266 | } | 
|  | 267 | #endif | 
|  | 268 |  | 
|  | 269 | /* Blocks allocating well might have scheduled and tree might have changed, | 
|  | 270 | let's search the tree again */ | 
|  | 271 | /* find where in the tree our write should go */ | 
|  | 272 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 273 | if ( res == IO_ERROR ) { | 
|  | 274 | res = -EIO; | 
|  | 275 | goto error_exit_free_blocks; | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | bh = get_last_bh( &path ); // Get a bufferhead for last element in path. | 
|  | 279 | ih = get_ih( &path );      // Get a pointer to last item head in path. | 
|  | 280 | item = get_item( &path );  // Get a pointer to last item in path | 
|  | 281 |  | 
|  | 282 | /* Let's see what we have found */ | 
|  | 283 | if ( res != POSITION_FOUND ) { /* position not found, this means that we | 
|  | 284 | might need to append file with holes | 
|  | 285 | first */ | 
|  | 286 | // Since we are writing past the file's end, we need to find out if | 
|  | 287 | // there is a hole that needs to be inserted before our writing | 
|  | 288 | // position, and how many blocks it is going to cover (we need to | 
|  | 289 | //  populate pointers to file blocks representing the hole with zeros) | 
|  | 290 |  | 
|  | 291 | { | 
|  | 292 | int item_offset = 1; | 
|  | 293 | /* | 
|  | 294 | * if ih is stat data, its offset is 0 and we don't want to | 
|  | 295 | * add 1 to pos in the hole_size calculation | 
|  | 296 | */ | 
|  | 297 | if (is_statdata_le_ih(ih)) | 
|  | 298 | item_offset = 0; | 
|  | 299 | hole_size = (pos + item_offset - | 
|  | 300 | (le_key_k_offset( get_inode_item_key_version(inode), | 
|  | 301 | &(ih->ih_key)) + | 
|  | 302 | op_bytes_number(ih, inode->i_sb->s_blocksize))) >> | 
|  | 303 | inode->i_sb->s_blocksize_bits; | 
|  | 304 | } | 
|  | 305 |  | 
|  | 306 | if ( hole_size > 0 ) { | 
|  | 307 | int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize)/UNFM_P_SIZE ); // How much data to insert first time. | 
|  | 308 | /* area filled with zeroes, to supply as list of zero blocknumbers | 
|  | 309 | We allocate it outside of loop just in case loop would spin for | 
|  | 310 | several iterations. */ | 
|  | 311 | char *zeros = kmalloc(to_paste*UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway. | 
|  | 312 | if ( !zeros ) { | 
|  | 313 | res = -ENOMEM; | 
|  | 314 | goto error_exit_free_blocks; | 
|  | 315 | } | 
|  | 316 | memset ( zeros, 0, to_paste*UNFM_P_SIZE); | 
|  | 317 | do { | 
|  | 318 | to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize)/UNFM_P_SIZE ); | 
|  | 319 | if ( is_indirect_le_ih(ih) ) { | 
|  | 320 | /* Ok, there is existing indirect item already. Need to append it */ | 
|  | 321 | /* Calculate position past inserted item */ | 
|  | 322 | make_cpu_key( &key, inode, le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize), TYPE_INDIRECT, 3); | 
|  | 323 | res = reiserfs_paste_into_item( th, &path, &key, inode, (char *)zeros, UNFM_P_SIZE*to_paste); | 
|  | 324 | if ( res ) { | 
|  | 325 | kfree(zeros); | 
|  | 326 | goto error_exit_free_blocks; | 
|  | 327 | } | 
|  | 328 | } else if ( is_statdata_le_ih(ih) ) { | 
|  | 329 | /* No existing item, create it */ | 
|  | 330 | /* item head for new item */ | 
|  | 331 | struct item_head ins_ih; | 
|  | 332 |  | 
|  | 333 | /* create a key for our new item */ | 
|  | 334 | make_cpu_key( &key, inode, 1, TYPE_INDIRECT, 3); | 
|  | 335 |  | 
|  | 336 | /* Create new item head for our new item */ | 
|  | 337 | make_le_item_head (&ins_ih, &key, key.version, 1, | 
|  | 338 | TYPE_INDIRECT, to_paste*UNFM_P_SIZE, | 
|  | 339 | 0 /* free space */); | 
|  | 340 |  | 
|  | 341 | /* Find where such item should live in the tree */ | 
|  | 342 | res = search_item (inode->i_sb, &key, &path); | 
|  | 343 | if ( res != ITEM_NOT_FOUND ) { | 
|  | 344 | /* item should not exist, otherwise we have error */ | 
|  | 345 | if ( res != -ENOSPC ) { | 
|  | 346 | reiserfs_warning (inode->i_sb, | 
|  | 347 | "green-9008: search_by_key (%K) returned %d", | 
|  | 348 | &key, res); | 
|  | 349 | } | 
|  | 350 | res = -EIO; | 
|  | 351 | kfree(zeros); | 
|  | 352 | goto error_exit_free_blocks; | 
|  | 353 | } | 
|  | 354 | res = reiserfs_insert_item( th, &path, &key, &ins_ih, inode, (char *)zeros); | 
|  | 355 | } else { | 
|  | 356 | reiserfs_panic(inode->i_sb, "green-9011: Unexpected key type %K\n", &key); | 
|  | 357 | } | 
|  | 358 | if ( res ) { | 
|  | 359 | kfree(zeros); | 
|  | 360 | goto error_exit_free_blocks; | 
|  | 361 | } | 
|  | 362 | /* Now we want to check if transaction is too full, and if it is | 
|  | 363 | we restart it. This will also free the path. */ | 
|  | 364 | if (journal_transaction_should_end(th, th->t_blocks_allocated)) { | 
|  | 365 | res = restart_transaction(th, inode, &path); | 
|  | 366 | if (res) { | 
|  | 367 | pathrelse (&path); | 
|  | 368 | kfree(zeros); | 
|  | 369 | goto error_exit; | 
|  | 370 | } | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | /* Well, need to recalculate path and stuff */ | 
|  | 374 | set_cpu_key_k_offset( &key, cpu_key_k_offset(&key) + (to_paste << inode->i_blkbits)); | 
|  | 375 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 376 | if ( res == IO_ERROR ) { | 
|  | 377 | res = -EIO; | 
|  | 378 | kfree(zeros); | 
|  | 379 | goto error_exit_free_blocks; | 
|  | 380 | } | 
|  | 381 | bh=get_last_bh(&path); | 
|  | 382 | ih=get_ih(&path); | 
|  | 383 | item = get_item(&path); | 
|  | 384 | hole_size -= to_paste; | 
|  | 385 | } while ( hole_size ); | 
|  | 386 | kfree(zeros); | 
|  | 387 | } | 
|  | 388 | } | 
|  | 389 |  | 
|  | 390 | // Go through existing indirect items first | 
|  | 391 | // replace all zeroes with blocknumbers from list | 
|  | 392 | // Note that if no corresponding item was found, by previous search, | 
|  | 393 | // it means there are no existing in-tree representation for file area | 
|  | 394 | // we are going to overwrite, so there is nothing to scan through for holes. | 
|  | 395 | for ( curr_block = 0, itempos = path.pos_in_item ; curr_block < blocks_to_allocate && res == POSITION_FOUND ; ) { | 
|  | 396 | retry: | 
|  | 397 |  | 
|  | 398 | if ( itempos >= ih_item_len(ih)/UNFM_P_SIZE ) { | 
|  | 399 | /* We run out of data in this indirect item, let's look for another | 
|  | 400 | one. */ | 
|  | 401 | /* First if we are already modifying current item, log it */ | 
|  | 402 | if ( modifying_this_item ) { | 
|  | 403 | journal_mark_dirty (th, inode->i_sb, bh); | 
|  | 404 | modifying_this_item = 0; | 
|  | 405 | } | 
|  | 406 | /* Then set the key to look for a new indirect item (offset of old | 
|  | 407 | item is added to old item length */ | 
|  | 408 | set_cpu_key_k_offset( &key, le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize)); | 
|  | 409 | /* Search ofor position of new key in the tree. */ | 
|  | 410 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 411 | if ( res == IO_ERROR) { | 
|  | 412 | res = -EIO; | 
|  | 413 | goto error_exit_free_blocks; | 
|  | 414 | } | 
|  | 415 | bh=get_last_bh(&path); | 
|  | 416 | ih=get_ih(&path); | 
|  | 417 | item = get_item(&path); | 
|  | 418 | itempos = path.pos_in_item; | 
|  | 419 | continue; // loop to check all kinds of conditions and so on. | 
|  | 420 | } | 
|  | 421 | /* Ok, we have correct position in item now, so let's see if it is | 
|  | 422 | representing file hole (blocknumber is zero) and fill it if needed */ | 
|  | 423 | if ( !item[itempos] ) { | 
|  | 424 | /* Ok, a hole. Now we need to check if we already prepared this | 
|  | 425 | block to be journaled */ | 
|  | 426 | while ( !modifying_this_item ) { // loop until succeed | 
|  | 427 | /* Well, this item is not journaled yet, so we must prepare | 
|  | 428 | it for journal first, before we can change it */ | 
|  | 429 | struct item_head tmp_ih; // We copy item head of found item, | 
|  | 430 | // here to detect if fs changed under | 
|  | 431 | // us while we were preparing for | 
|  | 432 | // journal. | 
|  | 433 | int fs_gen; // We store fs generation here to find if someone | 
|  | 434 | // changes fs under our feet | 
|  | 435 |  | 
|  | 436 | copy_item_head (&tmp_ih, ih); // Remember itemhead | 
|  | 437 | fs_gen = get_generation (inode->i_sb); // remember fs generation | 
|  | 438 | reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing. | 
|  | 439 | if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) { | 
|  | 440 | // Sigh, fs was changed under us, we need to look for new | 
|  | 441 | // location of item we are working with | 
|  | 442 |  | 
|  | 443 | /* unmark prepaerd area as journaled and search for it's | 
|  | 444 | new position */ | 
|  | 445 | reiserfs_restore_prepared_buffer(inode->i_sb, bh); | 
|  | 446 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 447 | if ( res == IO_ERROR) { | 
|  | 448 | res = -EIO; | 
|  | 449 | goto error_exit_free_blocks; | 
|  | 450 | } | 
|  | 451 | bh=get_last_bh(&path); | 
|  | 452 | ih=get_ih(&path); | 
|  | 453 | item = get_item(&path); | 
|  | 454 | itempos = path.pos_in_item; | 
|  | 455 | goto retry; | 
|  | 456 | } | 
|  | 457 | modifying_this_item = 1; | 
|  | 458 | } | 
|  | 459 | item[itempos] = allocated_blocks[curr_block]; // Assign new block | 
|  | 460 | curr_block++; | 
|  | 461 | } | 
|  | 462 | itempos++; | 
|  | 463 | } | 
|  | 464 |  | 
|  | 465 | if ( modifying_this_item ) { // We need to log last-accessed block, if it | 
|  | 466 | // was modified, but not logged yet. | 
|  | 467 | journal_mark_dirty (th, inode->i_sb, bh); | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | if ( curr_block < blocks_to_allocate ) { | 
|  | 471 | // Oh, well need to append to indirect item, or to create indirect item | 
|  | 472 | // if there weren't any | 
|  | 473 | if ( is_indirect_le_ih(ih) ) { | 
|  | 474 | // Existing indirect item - append. First calculate key for append | 
|  | 475 | // position. We do not need to recalculate path as it should | 
|  | 476 | // already point to correct place. | 
|  | 477 | make_cpu_key( &key, inode, le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize), TYPE_INDIRECT, 3); | 
|  | 478 | res = reiserfs_paste_into_item( th, &path, &key, inode, (char *)(allocated_blocks+curr_block), UNFM_P_SIZE*(blocks_to_allocate-curr_block)); | 
|  | 479 | if ( res ) { | 
|  | 480 | goto error_exit_free_blocks; | 
|  | 481 | } | 
|  | 482 | } else if (is_statdata_le_ih(ih) ) { | 
|  | 483 | // Last found item was statdata. That means we need to create indirect item. | 
|  | 484 | struct item_head ins_ih; /* itemhead for new item */ | 
|  | 485 |  | 
|  | 486 | /* create a key for our new item */ | 
|  | 487 | make_cpu_key( &key, inode, 1, TYPE_INDIRECT, 3); // Position one, | 
|  | 488 | // because that's | 
|  | 489 | // where first | 
|  | 490 | // indirect item | 
|  | 491 | // begins | 
|  | 492 | /* Create new item head for our new item */ | 
|  | 493 | make_le_item_head (&ins_ih, &key, key.version, 1, TYPE_INDIRECT, | 
|  | 494 | (blocks_to_allocate-curr_block)*UNFM_P_SIZE, | 
|  | 495 | 0 /* free space */); | 
|  | 496 | /* Find where such item should live in the tree */ | 
|  | 497 | res = search_item (inode->i_sb, &key, &path); | 
|  | 498 | if ( res != ITEM_NOT_FOUND ) { | 
|  | 499 | /* Well, if we have found such item already, or some error | 
|  | 500 | occured, we need to warn user and return error */ | 
|  | 501 | if ( res != -ENOSPC ) { | 
|  | 502 | reiserfs_warning (inode->i_sb, | 
|  | 503 | "green-9009: search_by_key (%K) " | 
|  | 504 | "returned %d", &key, res); | 
|  | 505 | } | 
|  | 506 | res = -EIO; | 
|  | 507 | goto error_exit_free_blocks; | 
|  | 508 | } | 
|  | 509 | /* Insert item into the tree with the data as its body */ | 
|  | 510 | res = reiserfs_insert_item( th, &path, &key, &ins_ih, inode, (char *)(allocated_blocks+curr_block)); | 
|  | 511 | } else { | 
|  | 512 | reiserfs_panic(inode->i_sb, "green-9010: unexpected item type for key %K\n",&key); | 
|  | 513 | } | 
|  | 514 | } | 
|  | 515 |  | 
|  | 516 | // the caller is responsible for closing the transaction | 
|  | 517 | // unless we return an error, they are also responsible for logging | 
|  | 518 | // the inode. | 
|  | 519 | // | 
|  | 520 | pathrelse(&path); | 
|  | 521 | /* | 
|  | 522 | * cleanup prellocation from previous writes | 
|  | 523 | * if this is a partial block write | 
|  | 524 | */ | 
|  | 525 | if (write_bytes & (inode->i_sb->s_blocksize -1)) | 
|  | 526 | reiserfs_discard_prealloc(th, inode); | 
|  | 527 | reiserfs_write_unlock(inode->i_sb); | 
|  | 528 |  | 
|  | 529 | // go through all the pages/buffers and map the buffers to newly allocated | 
|  | 530 | // blocks (so that system knows where to write these pages later). | 
|  | 531 | curr_block = 0; | 
|  | 532 | for ( i = 0; i < num_pages ; i++ ) { | 
|  | 533 | struct page *page=prepared_pages[i]; //current page | 
|  | 534 | struct buffer_head *head = page_buffers(page);// first buffer for a page | 
|  | 535 | int block_start, block_end; // in-page offsets for buffers. | 
|  | 536 |  | 
|  | 537 | if (!page_buffers(page)) | 
|  | 538 | reiserfs_panic(inode->i_sb, "green-9005: No buffers for prepared page???"); | 
|  | 539 |  | 
|  | 540 | /* For each buffer in page */ | 
|  | 541 | for(bh = head, block_start = 0; bh != head || !block_start; | 
|  | 542 | block_start=block_end, bh = bh->b_this_page) { | 
|  | 543 | if (!bh) | 
|  | 544 | reiserfs_panic(inode->i_sb, "green-9006: Allocated but absent buffer for a page?"); | 
|  | 545 | block_end = block_start+inode->i_sb->s_blocksize; | 
|  | 546 | if (i == 0 && block_end <= from ) | 
|  | 547 | /* if this buffer is before requested data to map, skip it */ | 
|  | 548 | continue; | 
|  | 549 | if (i == num_pages - 1 && block_start >= to) | 
|  | 550 | /* If this buffer is after requested data to map, abort | 
|  | 551 | processing of current page */ | 
|  | 552 | break; | 
|  | 553 |  | 
|  | 554 | if ( !buffer_mapped(bh) ) { // Ok, unmapped buffer, need to map it | 
|  | 555 | map_bh( bh, inode->i_sb, le32_to_cpu(allocated_blocks[curr_block])); | 
|  | 556 | curr_block++; | 
|  | 557 | set_buffer_new(bh); | 
|  | 558 | } | 
|  | 559 | } | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | RFALSE( curr_block > blocks_to_allocate, "green-9007: Used too many blocks? weird"); | 
|  | 563 |  | 
|  | 564 | kfree(allocated_blocks); | 
|  | 565 | return 0; | 
|  | 566 |  | 
|  | 567 | // Need to deal with transaction here. | 
|  | 568 | error_exit_free_blocks: | 
|  | 569 | pathrelse(&path); | 
|  | 570 | // free blocks | 
|  | 571 | for( i = 0; i < blocks_to_allocate; i++ ) | 
|  | 572 | reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), 1); | 
|  | 573 |  | 
|  | 574 | error_exit: | 
|  | 575 | if (th->t_trans_id) { | 
|  | 576 | int err; | 
|  | 577 | // update any changes we made to blk count | 
|  | 578 | reiserfs_update_sd(th, inode); | 
| Jan Kara | 556a2a4 | 2005-06-23 22:01:06 -0700 | [diff] [blame] | 579 | err = journal_end(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 580 | if (err) | 
|  | 581 | res = err; | 
|  | 582 | } | 
|  | 583 | reiserfs_write_unlock(inode->i_sb); | 
|  | 584 | kfree(allocated_blocks); | 
|  | 585 |  | 
|  | 586 | return res; | 
|  | 587 | } | 
|  | 588 |  | 
|  | 589 | /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ | 
|  | 590 | static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */ | 
|  | 591 | size_t num_pages /* amount of pages */) { | 
|  | 592 | int i; // loop counter | 
|  | 593 |  | 
|  | 594 | for (i=0; i < num_pages ; i++) { | 
|  | 595 | struct page *page = prepared_pages[i]; | 
|  | 596 |  | 
|  | 597 | try_to_free_buffers(page); | 
|  | 598 | unlock_page(page); | 
|  | 599 | page_cache_release(page); | 
|  | 600 | } | 
|  | 601 | } | 
|  | 602 |  | 
|  | 603 | /* This function will copy data from userspace to specified pages within | 
|  | 604 | supplied byte range */ | 
|  | 605 | static int reiserfs_copy_from_user_to_file_region( | 
|  | 606 | loff_t pos, /* In-file position */ | 
|  | 607 | int num_pages, /* Number of pages affected */ | 
|  | 608 | int write_bytes, /* Amount of bytes to write */ | 
|  | 609 | struct page **prepared_pages, /* pointer to | 
|  | 610 | array to | 
|  | 611 | prepared pages | 
|  | 612 | */ | 
|  | 613 | const char __user *buf /* Pointer to user-supplied | 
|  | 614 | data*/ | 
|  | 615 | ) | 
|  | 616 | { | 
|  | 617 | long page_fault=0; // status of copy_from_user. | 
|  | 618 | int i; // loop counter. | 
|  | 619 | int offset; // offset in page | 
|  | 620 |  | 
|  | 621 | for ( i = 0, offset = (pos & (PAGE_CACHE_SIZE-1)); i < num_pages ; i++,offset=0) { | 
|  | 622 | size_t count = min_t(size_t,PAGE_CACHE_SIZE-offset,write_bytes); // How much of bytes to write to this page | 
|  | 623 | struct page *page=prepared_pages[i]; // Current page we process. | 
|  | 624 |  | 
|  | 625 | fault_in_pages_readable( buf, count); | 
|  | 626 |  | 
|  | 627 | /* Copy data from userspace to the current page */ | 
|  | 628 | kmap(page); | 
|  | 629 | page_fault = __copy_from_user(page_address(page)+offset, buf, count); // Copy the data. | 
|  | 630 | /* Flush processor's dcache for this page */ | 
|  | 631 | flush_dcache_page(page); | 
|  | 632 | kunmap(page); | 
|  | 633 | buf+=count; | 
|  | 634 | write_bytes-=count; | 
|  | 635 |  | 
|  | 636 | if (page_fault) | 
|  | 637 | break; // Was there a fault? abort. | 
|  | 638 | } | 
|  | 639 |  | 
|  | 640 | return page_fault?-EFAULT:0; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | /* taken fs/buffer.c:__block_commit_write */ | 
|  | 644 | int reiserfs_commit_page(struct inode *inode, struct page *page, | 
|  | 645 | unsigned from, unsigned to) | 
|  | 646 | { | 
|  | 647 | unsigned block_start, block_end; | 
|  | 648 | int partial = 0; | 
|  | 649 | unsigned blocksize; | 
|  | 650 | struct buffer_head *bh, *head; | 
|  | 651 | unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; | 
|  | 652 | int new; | 
|  | 653 | int logit = reiserfs_file_data_log(inode); | 
|  | 654 | struct super_block *s = inode->i_sb; | 
|  | 655 | int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; | 
|  | 656 | struct reiserfs_transaction_handle th; | 
|  | 657 | int ret = 0; | 
|  | 658 |  | 
|  | 659 | th.t_trans_id = 0; | 
|  | 660 | blocksize = 1 << inode->i_blkbits; | 
|  | 661 |  | 
|  | 662 | if (logit) { | 
|  | 663 | reiserfs_write_lock(s); | 
|  | 664 | ret = journal_begin(&th, s, bh_per_page + 1); | 
|  | 665 | if (ret) | 
|  | 666 | goto drop_write_lock; | 
|  | 667 | reiserfs_update_inode_transaction(inode); | 
|  | 668 | } | 
|  | 669 | for(bh = head = page_buffers(page), block_start = 0; | 
|  | 670 | bh != head || !block_start; | 
|  | 671 | block_start=block_end, bh = bh->b_this_page) | 
|  | 672 | { | 
|  | 673 |  | 
|  | 674 | new = buffer_new(bh); | 
|  | 675 | clear_buffer_new(bh); | 
|  | 676 | block_end = block_start + blocksize; | 
|  | 677 | if (block_end <= from || block_start >= to) { | 
|  | 678 | if (!buffer_uptodate(bh)) | 
|  | 679 | partial = 1; | 
|  | 680 | } else { | 
|  | 681 | set_buffer_uptodate(bh); | 
|  | 682 | if (logit) { | 
|  | 683 | reiserfs_prepare_for_journal(s, bh, 1); | 
|  | 684 | journal_mark_dirty(&th, s, bh); | 
|  | 685 | } else if (!buffer_dirty(bh)) { | 
|  | 686 | mark_buffer_dirty(bh); | 
|  | 687 | /* do data=ordered on any page past the end | 
|  | 688 | * of file and any buffer marked BH_New. | 
|  | 689 | */ | 
|  | 690 | if (reiserfs_data_ordered(inode->i_sb) && | 
|  | 691 | (new || page->index >= i_size_index)) { | 
|  | 692 | reiserfs_add_ordered_list(inode, bh); | 
|  | 693 | } | 
|  | 694 | } | 
|  | 695 | } | 
|  | 696 | } | 
|  | 697 | if (logit) { | 
|  | 698 | ret = journal_end(&th, s, bh_per_page + 1); | 
|  | 699 | drop_write_lock: | 
|  | 700 | reiserfs_write_unlock(s); | 
|  | 701 | } | 
|  | 702 | /* | 
|  | 703 | * If this is a partial write which happened to make all buffers | 
|  | 704 | * uptodate then we can optimize away a bogus readpage() for | 
|  | 705 | * the next read(). Here we 'discover' whether the page went | 
|  | 706 | * uptodate as a result of this (potentially partial) write. | 
|  | 707 | */ | 
|  | 708 | if (!partial) | 
|  | 709 | SetPageUptodate(page); | 
|  | 710 | return ret; | 
|  | 711 | } | 
|  | 712 |  | 
|  | 713 |  | 
|  | 714 | /* Submit pages for write. This was separated from actual file copying | 
|  | 715 | because we might want to allocate block numbers in-between. | 
|  | 716 | This function assumes that caller will adjust file size to correct value. */ | 
|  | 717 | static int reiserfs_submit_file_region_for_write( | 
|  | 718 | struct reiserfs_transaction_handle *th, | 
|  | 719 | struct inode *inode, | 
|  | 720 | loff_t pos, /* Writing position offset */ | 
|  | 721 | size_t num_pages, /* Number of pages to write */ | 
|  | 722 | size_t write_bytes, /* number of bytes to write */ | 
|  | 723 | struct page **prepared_pages /* list of pages */ | 
|  | 724 | ) | 
|  | 725 | { | 
|  | 726 | int status; // return status of block_commit_write. | 
|  | 727 | int retval = 0; // Return value we are going to return. | 
|  | 728 | int i; // loop counter | 
|  | 729 | int offset; // Writing offset in page. | 
|  | 730 | int orig_write_bytes = write_bytes; | 
|  | 731 | int sd_update = 0; | 
|  | 732 |  | 
|  | 733 | for ( i = 0, offset = (pos & (PAGE_CACHE_SIZE-1)); i < num_pages ; i++,offset=0) { | 
|  | 734 | int count = min_t(int,PAGE_CACHE_SIZE-offset,write_bytes); // How much of bytes to write to this page | 
|  | 735 | struct page *page=prepared_pages[i]; // Current page we process. | 
|  | 736 |  | 
|  | 737 | status = reiserfs_commit_page(inode, page, offset, offset+count); | 
|  | 738 | if ( status ) | 
|  | 739 | retval = status; // To not overcomplicate matters We are going to | 
|  | 740 | // submit all the pages even if there was error. | 
|  | 741 | // we only remember error status to report it on | 
|  | 742 | // exit. | 
|  | 743 | write_bytes-=count; | 
|  | 744 | } | 
|  | 745 | /* now that we've gotten all the ordered buffers marked dirty, | 
|  | 746 | * we can safely update i_size and close any running transaction | 
|  | 747 | */ | 
|  | 748 | if ( pos + orig_write_bytes > inode->i_size) { | 
|  | 749 | inode->i_size = pos + orig_write_bytes; // Set new size | 
|  | 750 | /* If the file have grown so much that tail packing is no | 
|  | 751 | * longer possible, reset "need to pack" flag */ | 
|  | 752 | if ( (have_large_tails (inode->i_sb) && | 
|  | 753 | inode->i_size > i_block_size (inode)*4) || | 
|  | 754 | (have_small_tails (inode->i_sb) && | 
|  | 755 | inode->i_size > i_block_size(inode)) ) | 
|  | 756 | REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask ; | 
|  | 757 | else if ( (have_large_tails (inode->i_sb) && | 
|  | 758 | inode->i_size < i_block_size (inode)*4) || | 
|  | 759 | (have_small_tails (inode->i_sb) && | 
|  | 760 | inode->i_size < i_block_size(inode)) ) | 
|  | 761 | REISERFS_I(inode)->i_flags |= i_pack_on_close_mask ; | 
|  | 762 |  | 
|  | 763 | if (th->t_trans_id) { | 
|  | 764 | reiserfs_write_lock(inode->i_sb); | 
|  | 765 | reiserfs_update_sd(th, inode); // And update on-disk metadata | 
|  | 766 | reiserfs_write_unlock(inode->i_sb); | 
|  | 767 | } else | 
|  | 768 | inode->i_sb->s_op->dirty_inode(inode); | 
|  | 769 |  | 
|  | 770 | sd_update = 1; | 
|  | 771 | } | 
|  | 772 | if (th->t_trans_id) { | 
|  | 773 | reiserfs_write_lock(inode->i_sb); | 
|  | 774 | if (!sd_update) | 
|  | 775 | reiserfs_update_sd(th, inode); | 
|  | 776 | status = journal_end(th, th->t_super, th->t_blocks_allocated); | 
|  | 777 | if (status) | 
|  | 778 | retval = status; | 
|  | 779 | reiserfs_write_unlock(inode->i_sb); | 
|  | 780 | } | 
|  | 781 | th->t_trans_id = 0; | 
|  | 782 |  | 
|  | 783 | /* | 
|  | 784 | * we have to unlock the pages after updating i_size, otherwise | 
|  | 785 | * we race with writepage | 
|  | 786 | */ | 
|  | 787 | for ( i = 0; i < num_pages ; i++) { | 
|  | 788 | struct page *page=prepared_pages[i]; | 
|  | 789 | unlock_page(page); | 
|  | 790 | mark_page_accessed(page); | 
|  | 791 | page_cache_release(page); | 
|  | 792 | } | 
|  | 793 | return retval; | 
|  | 794 | } | 
|  | 795 |  | 
|  | 796 | /* Look if passed writing region is going to touch file's tail | 
|  | 797 | (if it is present). And if it is, convert the tail to unformatted node */ | 
|  | 798 | static int reiserfs_check_for_tail_and_convert( struct inode *inode, /* inode to deal with */ | 
|  | 799 | loff_t pos, /* Writing position */ | 
|  | 800 | int write_bytes /* amount of bytes to write */ | 
|  | 801 | ) | 
|  | 802 | { | 
|  | 803 | INITIALIZE_PATH(path); // needed for search_for_position | 
|  | 804 | struct cpu_key key; // Key that would represent last touched writing byte. | 
|  | 805 | struct item_head *ih; // item header of found block; | 
|  | 806 | int res; // Return value of various functions we call. | 
|  | 807 | int cont_expand_offset; // We will put offset for generic_cont_expand here | 
|  | 808 | // This can be int just because tails are created | 
|  | 809 | // only for small files. | 
|  | 810 |  | 
|  | 811 | /* this embodies a dependency on a particular tail policy */ | 
|  | 812 | if ( inode->i_size >= inode->i_sb->s_blocksize*4 ) { | 
|  | 813 | /* such a big files do not have tails, so we won't bother ourselves | 
|  | 814 | to look for tails, simply return */ | 
|  | 815 | return 0; | 
|  | 816 | } | 
|  | 817 |  | 
|  | 818 | reiserfs_write_lock(inode->i_sb); | 
|  | 819 | /* find the item containing the last byte to be written, or if | 
|  | 820 | * writing past the end of the file then the last item of the | 
|  | 821 | * file (and then we check its type). */ | 
|  | 822 | make_cpu_key (&key, inode, pos+write_bytes+1, TYPE_ANY, 3/*key length*/); | 
|  | 823 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 824 | if ( res == IO_ERROR ) { | 
|  | 825 | reiserfs_write_unlock(inode->i_sb); | 
|  | 826 | return -EIO; | 
|  | 827 | } | 
|  | 828 | ih = get_ih(&path); | 
|  | 829 | res = 0; | 
|  | 830 | if ( is_direct_le_ih(ih) ) { | 
|  | 831 | /* Ok, closest item is file tail (tails are stored in "direct" | 
|  | 832 | * items), so we need to unpack it. */ | 
|  | 833 | /* To not overcomplicate matters, we just call generic_cont_expand | 
|  | 834 | which will in turn call other stuff and finally will boil down to | 
|  | 835 | reiserfs_get_block() that would do necessary conversion. */ | 
|  | 836 | cont_expand_offset = le_key_k_offset(get_inode_item_key_version(inode), &(ih->ih_key)); | 
|  | 837 | pathrelse(&path); | 
|  | 838 | res = generic_cont_expand( inode, cont_expand_offset); | 
|  | 839 | } else | 
|  | 840 | pathrelse(&path); | 
|  | 841 |  | 
|  | 842 | reiserfs_write_unlock(inode->i_sb); | 
|  | 843 | return res; | 
|  | 844 | } | 
|  | 845 |  | 
|  | 846 | /* This function locks pages starting from @pos for @inode. | 
|  | 847 | @num_pages pages are locked and stored in | 
|  | 848 | @prepared_pages array. Also buffers are allocated for these pages. | 
|  | 849 | First and last page of the region is read if it is overwritten only | 
|  | 850 | partially. If last page did not exist before write (file hole or file | 
|  | 851 | append), it is zeroed, then. | 
|  | 852 | Returns number of unallocated blocks that should be allocated to cover | 
|  | 853 | new file data.*/ | 
|  | 854 | static int reiserfs_prepare_file_region_for_write( | 
|  | 855 | struct inode *inode /* Inode of the file */, | 
|  | 856 | loff_t pos, /* position in the file */ | 
|  | 857 | size_t num_pages, /* number of pages to | 
|  | 858 | prepare */ | 
|  | 859 | size_t write_bytes, /* Amount of bytes to be | 
|  | 860 | overwritten from | 
|  | 861 | @pos */ | 
|  | 862 | struct page **prepared_pages /* pointer to array | 
|  | 863 | where to store | 
|  | 864 | prepared pages */ | 
|  | 865 | ) | 
|  | 866 | { | 
|  | 867 | int res=0; // Return values of different functions we call. | 
|  | 868 | unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages. | 
|  | 869 | int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page | 
|  | 870 | int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; | 
|  | 871 | /* offset of last modified byte in last | 
|  | 872 | page */ | 
|  | 873 | struct address_space *mapping = inode->i_mapping; // Pages are mapped here. | 
|  | 874 | int i; // Simple counter | 
|  | 875 | int blocks = 0; /* Return value (blocks that should be allocated) */ | 
|  | 876 | struct buffer_head *bh, *head; // Current bufferhead and first bufferhead | 
|  | 877 | // of a page. | 
|  | 878 | unsigned block_start, block_end; // Starting and ending offsets of current | 
|  | 879 | // buffer in the page. | 
|  | 880 | struct buffer_head *wait[2], **wait_bh=wait; // Buffers for page, if | 
|  | 881 | // Page appeared to be not up | 
|  | 882 | // to date. Note how we have | 
|  | 883 | // at most 2 buffers, this is | 
|  | 884 | // because we at most may | 
|  | 885 | // partially overwrite two | 
|  | 886 | // buffers for one page. One at                                                 // the beginning of write area | 
|  | 887 | // and one at the end. | 
|  | 888 | // Everything inthe middle gets                                                 // overwritten totally. | 
|  | 889 |  | 
|  | 890 | struct cpu_key key; // cpu key of item that we are going to deal with | 
|  | 891 | struct item_head *ih = NULL; // pointer to item head that we are going to deal with | 
|  | 892 | struct buffer_head *itembuf=NULL; // Buffer head that contains items that we are going to deal with | 
|  | 893 | INITIALIZE_PATH(path); // path to item, that we are going to deal with. | 
| Al Viro | 3e8962b | 2005-05-01 08:59:18 -0700 | [diff] [blame] | 894 | __le32 * item=NULL; // pointer to item we are going to deal with | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 895 | int item_pos=-1; /* Position in indirect item */ | 
|  | 896 |  | 
|  | 897 |  | 
|  | 898 | if ( num_pages < 1 ) { | 
|  | 899 | reiserfs_warning (inode->i_sb, | 
|  | 900 | "green-9001: reiserfs_prepare_file_region_for_write " | 
|  | 901 | "called with zero number of pages to process"); | 
|  | 902 | return -EFAULT; | 
|  | 903 | } | 
|  | 904 |  | 
|  | 905 | /* We have 2 loops for pages. In first loop we grab and lock the pages, so | 
|  | 906 | that nobody would touch these until we release the pages. Then | 
|  | 907 | we'd start to deal with mapping buffers to blocks. */ | 
|  | 908 | for ( i = 0; i < num_pages; i++) { | 
|  | 909 | prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page | 
|  | 910 | if ( !prepared_pages[i]) { | 
|  | 911 | res = -ENOMEM; | 
|  | 912 | goto failed_page_grabbing; | 
|  | 913 | } | 
|  | 914 | if (!page_has_buffers(prepared_pages[i])) | 
|  | 915 | create_empty_buffers(prepared_pages[i], inode->i_sb->s_blocksize, 0); | 
|  | 916 | } | 
|  | 917 |  | 
|  | 918 | /* Let's count amount of blocks for a case where all the blocks | 
|  | 919 | overwritten are new (we will substract already allocated blocks later)*/ | 
|  | 920 | if ( num_pages > 2 ) | 
|  | 921 | /* These are full-overwritten pages so we count all the blocks in | 
|  | 922 | these pages are counted as needed to be allocated */ | 
|  | 923 | blocks = (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  | 924 |  | 
|  | 925 | /* count blocks needed for first page (possibly partially written) */ | 
|  | 926 | blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + | 
|  | 927 | !!(from & (inode->i_sb->s_blocksize-1)); /* roundup */ | 
|  | 928 |  | 
|  | 929 | /* Now we account for last page. If last page == first page (we | 
|  | 930 | overwrite only one page), we substract all the blocks past the | 
|  | 931 | last writing position in a page out of already calculated number | 
|  | 932 | of blocks */ | 
|  | 933 | blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT-inode->i_blkbits)) - | 
|  | 934 | ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); | 
|  | 935 | /* Note how we do not roundup here since partial blocks still | 
|  | 936 | should be allocated */ | 
|  | 937 |  | 
|  | 938 | /* Now if all the write area lies past the file end, no point in | 
|  | 939 | maping blocks, since there is none, so we just zero out remaining | 
|  | 940 | parts of first and last pages in write area (if needed) */ | 
|  | 941 | if ( (pos & ~((loff_t)PAGE_CACHE_SIZE - 1)) > inode->i_size ) { | 
|  | 942 | if ( from != 0 ) {/* First page needs to be partially zeroed */ | 
|  | 943 | char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); | 
|  | 944 | memset(kaddr, 0, from); | 
|  | 945 | kunmap_atomic( kaddr, KM_USER0); | 
|  | 946 | } | 
|  | 947 | if ( to != PAGE_CACHE_SIZE ) { /* Last page needs to be partially zeroed */ | 
|  | 948 | char *kaddr = kmap_atomic(prepared_pages[num_pages-1], KM_USER0); | 
|  | 949 | memset(kaddr+to, 0, PAGE_CACHE_SIZE - to); | 
|  | 950 | kunmap_atomic( kaddr, KM_USER0); | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | /* Since all blocks are new - use already calculated value */ | 
|  | 954 | return blocks; | 
|  | 955 | } | 
|  | 956 |  | 
|  | 957 | /* Well, since we write somewhere into the middle of a file, there is | 
|  | 958 | possibility we are writing over some already allocated blocks, so | 
|  | 959 | let's map these blocks and substract number of such blocks out of blocks | 
|  | 960 | we need to allocate (calculated above) */ | 
|  | 961 | /* Mask write position to start on blocksize, we do it out of the | 
|  | 962 | loop for performance reasons */ | 
|  | 963 | pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); | 
|  | 964 | /* Set cpu key to the starting position in a file (on left block boundary)*/ | 
|  | 965 | make_cpu_key (&key, inode, 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), TYPE_ANY, 3/*key length*/); | 
|  | 966 |  | 
|  | 967 | reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key() | 
|  | 968 | for ( i = 0; i < num_pages ; i++ ) { | 
|  | 969 |  | 
|  | 970 | head = page_buffers(prepared_pages[i]); | 
|  | 971 | /* For each buffer in the page */ | 
|  | 972 | for(bh = head, block_start = 0; bh != head || !block_start; | 
|  | 973 | block_start=block_end, bh = bh->b_this_page) { | 
|  | 974 | if (!bh) | 
|  | 975 | reiserfs_panic(inode->i_sb, "green-9002: Allocated but absent buffer for a page?"); | 
|  | 976 | /* Find where this buffer ends */ | 
|  | 977 | block_end = block_start+inode->i_sb->s_blocksize; | 
|  | 978 | if (i == 0 && block_end <= from ) | 
|  | 979 | /* if this buffer is before requested data to map, skip it*/ | 
|  | 980 | continue; | 
|  | 981 |  | 
|  | 982 | if (i == num_pages - 1 && block_start >= to) { | 
|  | 983 | /* If this buffer is after requested data to map, abort | 
|  | 984 | processing of current page */ | 
|  | 985 | break; | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | if ( buffer_mapped(bh) && bh->b_blocknr !=0 ) { | 
|  | 989 | /* This is optimisation for a case where buffer is mapped | 
|  | 990 | and have blocknumber assigned. In case significant amount | 
|  | 991 | of such buffers are present, we may avoid some amount | 
|  | 992 | of search_by_key calls. | 
|  | 993 | Probably it would be possible to move parts of this code | 
|  | 994 | out of BKL, but I afraid that would overcomplicate code | 
|  | 995 | without any noticeable benefit. | 
|  | 996 | */ | 
|  | 997 | item_pos++; | 
|  | 998 | /* Update the key */ | 
|  | 999 | set_cpu_key_k_offset( &key, cpu_key_k_offset(&key) + inode->i_sb->s_blocksize); | 
|  | 1000 | blocks--; // Decrease the amount of blocks that need to be | 
|  | 1001 | // allocated | 
|  | 1002 | continue; // Go to the next buffer | 
|  | 1003 | } | 
|  | 1004 |  | 
|  | 1005 | if ( !itembuf || /* if first iteration */ | 
|  | 1006 | item_pos >= ih_item_len(ih)/UNFM_P_SIZE) | 
|  | 1007 | { /* or if we progressed past the | 
|  | 1008 | current unformatted_item */ | 
|  | 1009 | /* Try to find next item */ | 
|  | 1010 | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | 1011 | /* Abort if no more items */ | 
|  | 1012 | if ( res != POSITION_FOUND ) { | 
|  | 1013 | /* make sure later loops don't use this item */ | 
|  | 1014 | itembuf = NULL; | 
|  | 1015 | item = NULL; | 
|  | 1016 | break; | 
|  | 1017 | } | 
|  | 1018 |  | 
|  | 1019 | /* Update information about current indirect item */ | 
|  | 1020 | itembuf = get_last_bh( &path ); | 
|  | 1021 | ih = get_ih( &path ); | 
|  | 1022 | item = get_item( &path ); | 
|  | 1023 | item_pos = path.pos_in_item; | 
|  | 1024 |  | 
|  | 1025 | RFALSE( !is_indirect_le_ih (ih), "green-9003: indirect item expected"); | 
|  | 1026 | } | 
|  | 1027 |  | 
|  | 1028 | /* See if there is some block associated with the file | 
|  | 1029 | at that position, map the buffer to this block */ | 
|  | 1030 | if ( get_block_num(item,item_pos) ) { | 
|  | 1031 | map_bh(bh, inode->i_sb, get_block_num(item,item_pos)); | 
|  | 1032 | blocks--; // Decrease the amount of blocks that need to be | 
|  | 1033 | // allocated | 
|  | 1034 | } | 
|  | 1035 | item_pos++; | 
|  | 1036 | /* Update the key */ | 
|  | 1037 | set_cpu_key_k_offset( &key, cpu_key_k_offset(&key) + inode->i_sb->s_blocksize); | 
|  | 1038 | } | 
|  | 1039 | } | 
|  | 1040 | pathrelse(&path); // Free the path | 
|  | 1041 | reiserfs_write_unlock(inode->i_sb); | 
|  | 1042 |  | 
|  | 1043 | /* Now zero out unmappend buffers for the first and last pages of | 
|  | 1044 | write area or issue read requests if page is mapped. */ | 
|  | 1045 | /* First page, see if it is not uptodate */ | 
|  | 1046 | if ( !PageUptodate(prepared_pages[0]) ) { | 
|  | 1047 | head = page_buffers(prepared_pages[0]); | 
|  | 1048 |  | 
|  | 1049 | /* For each buffer in page */ | 
|  | 1050 | for(bh = head, block_start = 0; bh != head || !block_start; | 
|  | 1051 | block_start=block_end, bh = bh->b_this_page) { | 
|  | 1052 |  | 
|  | 1053 | if (!bh) | 
|  | 1054 | reiserfs_panic(inode->i_sb, "green-9002: Allocated but absent buffer for a page?"); | 
|  | 1055 | /* Find where this buffer ends */ | 
|  | 1056 | block_end = block_start+inode->i_sb->s_blocksize; | 
|  | 1057 | if ( block_end <= from ) | 
|  | 1058 | /* if this buffer is before requested data to map, skip it*/ | 
|  | 1059 | continue; | 
|  | 1060 | if ( block_start < from ) { /* Aha, our partial buffer */ | 
|  | 1061 | if ( buffer_mapped(bh) ) { /* If it is mapped, we need to | 
|  | 1062 | issue READ request for it to | 
|  | 1063 | not loose data */ | 
|  | 1064 | ll_rw_block(READ, 1, &bh); | 
|  | 1065 | *wait_bh++=bh; | 
|  | 1066 | } else { /* Not mapped, zero it */ | 
|  | 1067 | char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); | 
|  | 1068 | memset(kaddr+block_start, 0, from-block_start); | 
|  | 1069 | kunmap_atomic( kaddr, KM_USER0); | 
|  | 1070 | set_buffer_uptodate(bh); | 
|  | 1071 | } | 
|  | 1072 | } | 
|  | 1073 | } | 
|  | 1074 | } | 
|  | 1075 |  | 
|  | 1076 | /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ | 
|  | 1077 | if ( !PageUptodate(prepared_pages[num_pages-1]) || | 
|  | 1078 | ((pos+write_bytes)>>PAGE_CACHE_SHIFT) > (inode->i_size>>PAGE_CACHE_SHIFT) ) { | 
|  | 1079 | head = page_buffers(prepared_pages[num_pages-1]); | 
|  | 1080 |  | 
|  | 1081 | /* for each buffer in page */ | 
|  | 1082 | for(bh = head, block_start = 0; bh != head || !block_start; | 
|  | 1083 | block_start=block_end, bh = bh->b_this_page) { | 
|  | 1084 |  | 
|  | 1085 | if (!bh) | 
|  | 1086 | reiserfs_panic(inode->i_sb, "green-9002: Allocated but absent buffer for a page?"); | 
|  | 1087 | /* Find where this buffer ends */ | 
|  | 1088 | block_end = block_start+inode->i_sb->s_blocksize; | 
|  | 1089 | if ( block_start >= to ) | 
|  | 1090 | /* if this buffer is after requested data to map, skip it*/ | 
|  | 1091 | break; | 
|  | 1092 | if ( block_end > to ) { /* Aha, our partial buffer */ | 
|  | 1093 | if ( buffer_mapped(bh) ) { /* If it is mapped, we need to | 
|  | 1094 | issue READ request for it to | 
|  | 1095 | not loose data */ | 
|  | 1096 | ll_rw_block(READ, 1, &bh); | 
|  | 1097 | *wait_bh++=bh; | 
|  | 1098 | } else { /* Not mapped, zero it */ | 
|  | 1099 | char *kaddr = kmap_atomic(prepared_pages[num_pages-1], KM_USER0); | 
|  | 1100 | memset(kaddr+to, 0, block_end-to); | 
|  | 1101 | kunmap_atomic( kaddr, KM_USER0); | 
|  | 1102 | set_buffer_uptodate(bh); | 
|  | 1103 | } | 
|  | 1104 | } | 
|  | 1105 | } | 
|  | 1106 | } | 
|  | 1107 |  | 
|  | 1108 | /* Wait for read requests we made to happen, if necessary */ | 
|  | 1109 | while(wait_bh > wait) { | 
|  | 1110 | wait_on_buffer(*--wait_bh); | 
|  | 1111 | if (!buffer_uptodate(*wait_bh)) { | 
|  | 1112 | res = -EIO; | 
|  | 1113 | goto failed_read; | 
|  | 1114 | } | 
|  | 1115 | } | 
|  | 1116 |  | 
|  | 1117 | return blocks; | 
|  | 1118 | failed_page_grabbing: | 
|  | 1119 | num_pages = i; | 
|  | 1120 | failed_read: | 
|  | 1121 | reiserfs_unprepare_pages(prepared_pages, num_pages); | 
|  | 1122 | return res; | 
|  | 1123 | } | 
|  | 1124 |  | 
|  | 1125 | /* Write @count bytes at position @ppos in a file indicated by @file | 
|  | 1126 | from the buffer @buf. | 
|  | 1127 |  | 
|  | 1128 | generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want | 
|  | 1129 | something simple that works.  It is not for serious use by general purpose filesystems, excepting the one that it was | 
|  | 1130 | written for (ext2/3).  This is for several reasons: | 
|  | 1131 |  | 
|  | 1132 | * It has no understanding of any filesystem specific optimizations. | 
|  | 1133 |  | 
|  | 1134 | * It enters the filesystem repeatedly for each page that is written. | 
|  | 1135 |  | 
|  | 1136 | * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key | 
|  | 1137 | * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time | 
|  | 1138 | * to reiserfs which allows for fewer tree traversals. | 
|  | 1139 |  | 
|  | 1140 | * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. | 
|  | 1141 |  | 
|  | 1142 | * Asking the block allocation code for blocks one at a time is slightly less efficient. | 
|  | 1143 |  | 
|  | 1144 | All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to | 
|  | 1145 | use it, but we were in a hurry to make code freeze, and so it couldn't be revised then.  This new code should make | 
|  | 1146 | things right finally. | 
|  | 1147 |  | 
|  | 1148 | Future Features: providing search_by_key with hints. | 
|  | 1149 |  | 
|  | 1150 | */ | 
|  | 1151 | static ssize_t reiserfs_file_write( struct file *file, /* the file we are going to write into */ | 
|  | 1152 | const char __user *buf, /*  pointer to user supplied data | 
|  | 1153 | (in userspace) */ | 
|  | 1154 | size_t count, /* amount of bytes to write */ | 
|  | 1155 | loff_t *ppos /* pointer to position in file that we start writing at. Should be updated to | 
|  | 1156 | * new current position before returning. */ ) | 
|  | 1157 | { | 
|  | 1158 | size_t already_written = 0; // Number of bytes already written to the file. | 
|  | 1159 | loff_t pos; // Current position in the file. | 
|  | 1160 | ssize_t res; // return value of various functions that we call. | 
|  | 1161 | int err = 0; | 
|  | 1162 | struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to. | 
|  | 1163 | /* To simplify coding at this time, we store | 
|  | 1164 | locked pages in array for now */ | 
|  | 1165 | struct page * prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; | 
|  | 1166 | struct reiserfs_transaction_handle th; | 
|  | 1167 | th.t_trans_id = 0; | 
|  | 1168 |  | 
|  | 1169 | if ( file->f_flags & O_DIRECT) { // Direct IO needs treatment | 
|  | 1170 | ssize_t result, after_file_end = 0; | 
|  | 1171 | if ( (*ppos + count >= inode->i_size) || (file->f_flags & O_APPEND) ) { | 
|  | 1172 | /* If we are appending a file, we need to put this savelink in here. | 
|  | 1173 | If we will crash while doing direct io, finish_unfinished will | 
|  | 1174 | cut the garbage from the file end. */ | 
|  | 1175 | reiserfs_write_lock(inode->i_sb); | 
|  | 1176 | err = journal_begin(&th, inode->i_sb,  JOURNAL_PER_BALANCE_CNT ); | 
|  | 1177 | if (err) { | 
|  | 1178 | reiserfs_write_unlock (inode->i_sb); | 
|  | 1179 | return err; | 
|  | 1180 | } | 
|  | 1181 | reiserfs_update_inode_transaction(inode); | 
|  | 1182 | add_save_link (&th, inode, 1 /* Truncate */); | 
|  | 1183 | after_file_end = 1; | 
|  | 1184 | err = journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT ); | 
|  | 1185 | reiserfs_write_unlock(inode->i_sb); | 
|  | 1186 | if (err) | 
|  | 1187 | return err; | 
|  | 1188 | } | 
|  | 1189 | result = generic_file_write(file, buf, count, ppos); | 
|  | 1190 |  | 
|  | 1191 | if ( after_file_end ) { /* Now update i_size and remove the savelink */ | 
|  | 1192 | struct reiserfs_transaction_handle th; | 
|  | 1193 | reiserfs_write_lock(inode->i_sb); | 
|  | 1194 | err = journal_begin(&th, inode->i_sb, 1); | 
|  | 1195 | if (err) { | 
|  | 1196 | reiserfs_write_unlock (inode->i_sb); | 
|  | 1197 | return err; | 
|  | 1198 | } | 
|  | 1199 | reiserfs_update_inode_transaction(inode); | 
|  | 1200 | reiserfs_update_sd(&th, inode); | 
|  | 1201 | err = journal_end(&th, inode->i_sb, 1); | 
|  | 1202 | if (err) { | 
|  | 1203 | reiserfs_write_unlock (inode->i_sb); | 
|  | 1204 | return err; | 
|  | 1205 | } | 
|  | 1206 | err = remove_save_link (inode, 1/* truncate */); | 
|  | 1207 | reiserfs_write_unlock(inode->i_sb); | 
|  | 1208 | if (err) | 
|  | 1209 | return err; | 
|  | 1210 | } | 
|  | 1211 |  | 
|  | 1212 | return result; | 
|  | 1213 | } | 
|  | 1214 |  | 
|  | 1215 | if ( unlikely((ssize_t) count < 0 )) | 
|  | 1216 | return -EINVAL; | 
|  | 1217 |  | 
|  | 1218 | if (unlikely(!access_ok(VERIFY_READ, buf, count))) | 
|  | 1219 | return -EFAULT; | 
|  | 1220 |  | 
|  | 1221 | down(&inode->i_sem); // locks the entire file for just us | 
|  | 1222 |  | 
|  | 1223 | pos = *ppos; | 
|  | 1224 |  | 
|  | 1225 | /* Check if we can write to specified region of file, file | 
|  | 1226 | is not overly big and this kind of stuff. Adjust pos and | 
|  | 1227 | count, if needed */ | 
|  | 1228 | res = generic_write_checks(file, &pos, &count, 0); | 
|  | 1229 | if (res) | 
|  | 1230 | goto out; | 
|  | 1231 |  | 
|  | 1232 | if ( count == 0 ) | 
|  | 1233 | goto out; | 
|  | 1234 |  | 
|  | 1235 | res = remove_suid(file->f_dentry); | 
|  | 1236 | if (res) | 
|  | 1237 | goto out; | 
|  | 1238 |  | 
|  | 1239 | inode_update_time(inode, 1); /* Both mtime and ctime */ | 
|  | 1240 |  | 
|  | 1241 | // Ok, we are done with all the checks. | 
|  | 1242 |  | 
|  | 1243 | // Now we should start real work | 
|  | 1244 |  | 
|  | 1245 | /* If we are going to write past the file's packed tail or if we are going | 
|  | 1246 | to overwrite part of the tail, we need that tail to be converted into | 
|  | 1247 | unformatted node */ | 
|  | 1248 | res = reiserfs_check_for_tail_and_convert( inode, pos, count); | 
|  | 1249 | if (res) | 
|  | 1250 | goto out; | 
|  | 1251 |  | 
|  | 1252 | while ( count > 0) { | 
|  | 1253 | /* This is the main loop in which we running until some error occures | 
|  | 1254 | or until we write all of the data. */ | 
|  | 1255 | size_t num_pages;/* amount of pages we are going to write this iteration */ | 
|  | 1256 | size_t write_bytes; /* amount of bytes to write during this iteration */ | 
|  | 1257 | size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */ | 
|  | 1258 |  | 
|  | 1259 | /*  (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos*/ | 
|  | 1260 | num_pages = !!((pos+count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial | 
|  | 1261 | pages */ | 
|  | 1262 | ((count + (pos & (PAGE_CACHE_SIZE-1))) >> PAGE_CACHE_SHIFT); | 
|  | 1263 | /* convert size to amount of | 
|  | 1264 | pages */ | 
|  | 1265 | reiserfs_write_lock(inode->i_sb); | 
|  | 1266 | if ( num_pages > REISERFS_WRITE_PAGES_AT_A_TIME | 
|  | 1267 | || num_pages > reiserfs_can_fit_pages(inode->i_sb) ) { | 
|  | 1268 | /* If we were asked to write more data than we want to or if there | 
|  | 1269 | is not that much space, then we shorten amount of data to write | 
|  | 1270 | for this iteration. */ | 
|  | 1271 | num_pages = min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, reiserfs_can_fit_pages(inode->i_sb)); | 
|  | 1272 | /* Also we should not forget to set size in bytes accordingly */ | 
|  | 1273 | write_bytes = (num_pages << PAGE_CACHE_SHIFT) - | 
|  | 1274 | (pos & (PAGE_CACHE_SIZE-1)); | 
|  | 1275 | /* If position is not on the | 
|  | 1276 | start of the page, we need | 
|  | 1277 | to substract the offset | 
|  | 1278 | within page */ | 
|  | 1279 | } else | 
|  | 1280 | write_bytes = count; | 
|  | 1281 |  | 
|  | 1282 | /* reserve the blocks to be allocated later, so that later on | 
|  | 1283 | we still have the space to write the blocks to */ | 
|  | 1284 | reiserfs_claim_blocks_to_be_allocated(inode->i_sb, num_pages << (PAGE_CACHE_SHIFT - inode->i_blkbits)); | 
|  | 1285 | reiserfs_write_unlock(inode->i_sb); | 
|  | 1286 |  | 
| Jan Kara | 127144d | 2005-05-01 08:59:07 -0700 | [diff] [blame] | 1287 | if ( !num_pages ) { /* If we do not have enough space even for a single page... */ | 
|  | 1288 | if ( pos > inode->i_size+inode->i_sb->s_blocksize-(pos & (inode->i_sb->s_blocksize-1))) { | 
|  | 1289 | res = -ENOSPC; | 
|  | 1290 | break; // In case we are writing past the end of the last file block, break. | 
|  | 1291 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1292 | // Otherwise we are possibly overwriting the file, so | 
|  | 1293 | // let's set write size to be equal or less than blocksize. | 
|  | 1294 | // This way we get it correctly for file holes. | 
|  | 1295 | // But overwriting files on absolutelly full volumes would not | 
|  | 1296 | // be very efficient. Well, people are not supposed to fill | 
|  | 1297 | // 100% of disk space anyway. | 
|  | 1298 | write_bytes = min_t(size_t, count, inode->i_sb->s_blocksize - (pos & (inode->i_sb->s_blocksize - 1))); | 
|  | 1299 | num_pages = 1; | 
|  | 1300 | // No blocks were claimed before, so do it now. | 
|  | 1301 | reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1 << (PAGE_CACHE_SHIFT - inode->i_blkbits)); | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | /* Prepare for writing into the region, read in all the | 
|  | 1305 | partially overwritten pages, if needed. And lock the pages, | 
|  | 1306 | so that nobody else can access these until we are done. | 
|  | 1307 | We get number of actual blocks needed as a result.*/ | 
|  | 1308 | blocks_to_allocate = reiserfs_prepare_file_region_for_write(inode, pos, num_pages, write_bytes, prepared_pages); | 
|  | 1309 | if ( blocks_to_allocate < 0 ) { | 
|  | 1310 | res = blocks_to_allocate; | 
|  | 1311 | reiserfs_release_claimed_blocks(inode->i_sb, num_pages << (PAGE_CACHE_SHIFT - inode->i_blkbits)); | 
|  | 1312 | break; | 
|  | 1313 | } | 
|  | 1314 |  | 
|  | 1315 | /* First we correct our estimate of how many blocks we need */ | 
|  | 1316 | reiserfs_release_claimed_blocks(inode->i_sb, (num_pages << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits)) - blocks_to_allocate ); | 
|  | 1317 |  | 
|  | 1318 | if ( blocks_to_allocate > 0) {/*We only allocate blocks if we need to*/ | 
|  | 1319 | /* Fill in all the possible holes and append the file if needed */ | 
|  | 1320 | res = reiserfs_allocate_blocks_for_region(&th, inode, pos, num_pages, write_bytes, prepared_pages, blocks_to_allocate); | 
|  | 1321 | } | 
|  | 1322 |  | 
|  | 1323 | /* well, we have allocated the blocks, so it is time to free | 
|  | 1324 | the reservation we made earlier. */ | 
|  | 1325 | reiserfs_release_claimed_blocks(inode->i_sb, blocks_to_allocate); | 
|  | 1326 | if ( res ) { | 
|  | 1327 | reiserfs_unprepare_pages(prepared_pages, num_pages); | 
|  | 1328 | break; | 
|  | 1329 | } | 
|  | 1330 |  | 
|  | 1331 | /* NOTE that allocating blocks and filling blocks can be done in reverse order | 
|  | 1332 | and probably we would do that just to get rid of garbage in files after a | 
|  | 1333 | crash */ | 
|  | 1334 |  | 
|  | 1335 | /* Copy data from user-supplied buffer to file's pages */ | 
|  | 1336 | res = reiserfs_copy_from_user_to_file_region(pos, num_pages, write_bytes, prepared_pages, buf); | 
|  | 1337 | if ( res ) { | 
|  | 1338 | reiserfs_unprepare_pages(prepared_pages, num_pages); | 
|  | 1339 | break; | 
|  | 1340 | } | 
|  | 1341 |  | 
|  | 1342 | /* Send the pages to disk and unlock them. */ | 
|  | 1343 | res = reiserfs_submit_file_region_for_write(&th, inode, pos, num_pages, | 
|  | 1344 | write_bytes,prepared_pages); | 
|  | 1345 | if ( res ) | 
|  | 1346 | break; | 
|  | 1347 |  | 
|  | 1348 | already_written += write_bytes; | 
|  | 1349 | buf += write_bytes; | 
|  | 1350 | *ppos = pos += write_bytes; | 
|  | 1351 | count -= write_bytes; | 
|  | 1352 | balance_dirty_pages_ratelimited(inode->i_mapping); | 
|  | 1353 | } | 
|  | 1354 |  | 
|  | 1355 | /* this is only true on error */ | 
|  | 1356 | if (th.t_trans_id) { | 
|  | 1357 | reiserfs_write_lock(inode->i_sb); | 
|  | 1358 | err = journal_end(&th, th.t_super, th.t_blocks_allocated); | 
|  | 1359 | reiserfs_write_unlock(inode->i_sb); | 
|  | 1360 | if (err) { | 
|  | 1361 | res = err; | 
|  | 1362 | goto out; | 
|  | 1363 | } | 
|  | 1364 | } | 
|  | 1365 |  | 
|  | 1366 | if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) | 
|  | 1367 | res = generic_osync_inode(inode, file->f_mapping, OSYNC_METADATA|OSYNC_DATA); | 
|  | 1368 |  | 
|  | 1369 | up(&inode->i_sem); | 
|  | 1370 | reiserfs_async_progress_wait(inode->i_sb); | 
|  | 1371 | return (already_written != 0)?already_written:res; | 
|  | 1372 |  | 
|  | 1373 | out: | 
|  | 1374 | up(&inode->i_sem); // unlock the file on exit. | 
|  | 1375 | return res; | 
|  | 1376 | } | 
|  | 1377 |  | 
|  | 1378 | static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user *buf, | 
|  | 1379 | size_t count, loff_t pos) | 
|  | 1380 | { | 
|  | 1381 | return generic_file_aio_write(iocb, buf, count, pos); | 
|  | 1382 | } | 
|  | 1383 |  | 
|  | 1384 |  | 
|  | 1385 |  | 
|  | 1386 | struct file_operations reiserfs_file_operations = { | 
|  | 1387 | .read	= generic_file_read, | 
|  | 1388 | .write	= reiserfs_file_write, | 
|  | 1389 | .ioctl	= reiserfs_ioctl, | 
|  | 1390 | .mmap	= generic_file_mmap, | 
|  | 1391 | .release	= reiserfs_file_release, | 
|  | 1392 | .fsync	= reiserfs_sync_file, | 
|  | 1393 | .sendfile	= generic_file_sendfile, | 
|  | 1394 | .aio_read   = generic_file_aio_read, | 
|  | 1395 | .aio_write  = reiserfs_aio_write, | 
|  | 1396 | }; | 
|  | 1397 |  | 
|  | 1398 |  | 
|  | 1399 | struct  inode_operations reiserfs_file_inode_operations = { | 
|  | 1400 | .truncate	= reiserfs_vfs_truncate_file, | 
|  | 1401 | .setattr    = reiserfs_setattr, | 
|  | 1402 | .setxattr   = reiserfs_setxattr, | 
|  | 1403 | .getxattr   = reiserfs_getxattr, | 
|  | 1404 | .listxattr  = reiserfs_listxattr, | 
|  | 1405 | .removexattr = reiserfs_removexattr, | 
|  | 1406 | .permission = reiserfs_permission, | 
|  | 1407 | }; | 
|  | 1408 |  | 
|  | 1409 |  |