| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (C) 2008, 2009 Intel Corporation | 
 | 3 |  * Authors: Andi Kleen, Fengguang Wu | 
 | 4 |  * | 
 | 5 |  * This software may be redistributed and/or modified under the terms of | 
 | 6 |  * the GNU General Public License ("GPL") version 2 only as published by the | 
 | 7 |  * Free Software Foundation. | 
 | 8 |  * | 
 | 9 |  * High level machine check handler. Handles pages reported by the | 
 | 10 |  * hardware as being corrupted usually due to a 2bit ECC memory or cache | 
 | 11 |  * failure. | 
 | 12 |  * | 
 | 13 |  * Handles page cache pages in various states.	The tricky part | 
 | 14 |  * here is that we can access any page asynchronous to other VM | 
 | 15 |  * users, because memory failures could happen anytime and anywhere, | 
 | 16 |  * possibly violating some of their assumptions. This is why this code | 
 | 17 |  * has to be extremely careful. Generally it tries to use normal locking | 
 | 18 |  * rules, as in get the standard locks, even if that means the | 
 | 19 |  * error handling takes potentially a long time. | 
 | 20 |  * | 
 | 21 |  * The operation to map back from RMAP chains to processes has to walk | 
 | 22 |  * the complete process list and has non linear complexity with the number | 
 | 23 |  * mappings. In short it can be quite slow. But since memory corruptions | 
 | 24 |  * are rare we hope to get away with this. | 
 | 25 |  */ | 
 | 26 |  | 
 | 27 | /* | 
 | 28 |  * Notebook: | 
 | 29 |  * - hugetlb needs more code | 
 | 30 |  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages | 
 | 31 |  * - pass bad pages to kdump next kernel | 
 | 32 |  */ | 
 | 33 | #define DEBUG 1		/* remove me in 2.6.34 */ | 
 | 34 | #include <linux/kernel.h> | 
 | 35 | #include <linux/mm.h> | 
 | 36 | #include <linux/page-flags.h> | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 37 | #include <linux/kernel-page-flags.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 38 | #include <linux/sched.h> | 
| Hugh Dickins | 01e00f8 | 2009-10-13 15:02:11 +0100 | [diff] [blame] | 39 | #include <linux/ksm.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 40 | #include <linux/rmap.h> | 
 | 41 | #include <linux/pagemap.h> | 
 | 42 | #include <linux/swap.h> | 
 | 43 | #include <linux/backing-dev.h> | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 44 | #include <linux/migrate.h> | 
 | 45 | #include <linux/page-isolation.h> | 
 | 46 | #include <linux/suspend.h> | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 47 | #include <linux/slab.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 48 | #include "internal.h" | 
 | 49 |  | 
 | 50 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 
 | 51 |  | 
 | 52 | int sysctl_memory_failure_recovery __read_mostly = 1; | 
 | 53 |  | 
 | 54 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); | 
 | 55 |  | 
| Andi Kleen | 27df506 | 2009-12-21 19:56:42 +0100 | [diff] [blame] | 56 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) | 
 | 57 |  | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 58 | u32 hwpoison_filter_enable = 0; | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 59 | u32 hwpoison_filter_dev_major = ~0U; | 
 | 60 | u32 hwpoison_filter_dev_minor = ~0U; | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 61 | u64 hwpoison_filter_flags_mask; | 
 | 62 | u64 hwpoison_filter_flags_value; | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 63 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 64 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); | 
 | 65 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 66 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); | 
 | 67 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 68 |  | 
 | 69 | static int hwpoison_filter_dev(struct page *p) | 
 | 70 | { | 
 | 71 | 	struct address_space *mapping; | 
 | 72 | 	dev_t dev; | 
 | 73 |  | 
 | 74 | 	if (hwpoison_filter_dev_major == ~0U && | 
 | 75 | 	    hwpoison_filter_dev_minor == ~0U) | 
 | 76 | 		return 0; | 
 | 77 |  | 
 | 78 | 	/* | 
 | 79 | 	 * page_mapping() does not accept slab page | 
 | 80 | 	 */ | 
 | 81 | 	if (PageSlab(p)) | 
 | 82 | 		return -EINVAL; | 
 | 83 |  | 
 | 84 | 	mapping = page_mapping(p); | 
 | 85 | 	if (mapping == NULL || mapping->host == NULL) | 
 | 86 | 		return -EINVAL; | 
 | 87 |  | 
 | 88 | 	dev = mapping->host->i_sb->s_dev; | 
 | 89 | 	if (hwpoison_filter_dev_major != ~0U && | 
 | 90 | 	    hwpoison_filter_dev_major != MAJOR(dev)) | 
 | 91 | 		return -EINVAL; | 
 | 92 | 	if (hwpoison_filter_dev_minor != ~0U && | 
 | 93 | 	    hwpoison_filter_dev_minor != MINOR(dev)) | 
 | 94 | 		return -EINVAL; | 
 | 95 |  | 
 | 96 | 	return 0; | 
 | 97 | } | 
 | 98 |  | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 99 | static int hwpoison_filter_flags(struct page *p) | 
 | 100 | { | 
 | 101 | 	if (!hwpoison_filter_flags_mask) | 
 | 102 | 		return 0; | 
 | 103 |  | 
 | 104 | 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | 
 | 105 | 				    hwpoison_filter_flags_value) | 
 | 106 | 		return 0; | 
 | 107 | 	else | 
 | 108 | 		return -EINVAL; | 
 | 109 | } | 
 | 110 |  | 
| Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 111 | /* | 
 | 112 |  * This allows stress tests to limit test scope to a collection of tasks | 
 | 113 |  * by putting them under some memcg. This prevents killing unrelated/important | 
 | 114 |  * processes such as /sbin/init. Note that the target task may share clean | 
 | 115 |  * pages with init (eg. libc text), which is harmless. If the target task | 
 | 116 |  * share _dirty_ pages with another task B, the test scheme must make sure B | 
 | 117 |  * is also included in the memcg. At last, due to race conditions this filter | 
 | 118 |  * can only guarantee that the page either belongs to the memcg tasks, or is | 
 | 119 |  * a freed page. | 
 | 120 |  */ | 
 | 121 | #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 | 122 | u64 hwpoison_filter_memcg; | 
 | 123 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | 
 | 124 | static int hwpoison_filter_task(struct page *p) | 
 | 125 | { | 
 | 126 | 	struct mem_cgroup *mem; | 
 | 127 | 	struct cgroup_subsys_state *css; | 
 | 128 | 	unsigned long ino; | 
 | 129 |  | 
 | 130 | 	if (!hwpoison_filter_memcg) | 
 | 131 | 		return 0; | 
 | 132 |  | 
 | 133 | 	mem = try_get_mem_cgroup_from_page(p); | 
 | 134 | 	if (!mem) | 
 | 135 | 		return -EINVAL; | 
 | 136 |  | 
 | 137 | 	css = mem_cgroup_css(mem); | 
 | 138 | 	/* root_mem_cgroup has NULL dentries */ | 
 | 139 | 	if (!css->cgroup->dentry) | 
 | 140 | 		return -EINVAL; | 
 | 141 |  | 
 | 142 | 	ino = css->cgroup->dentry->d_inode->i_ino; | 
 | 143 | 	css_put(css); | 
 | 144 |  | 
 | 145 | 	if (ino != hwpoison_filter_memcg) | 
 | 146 | 		return -EINVAL; | 
 | 147 |  | 
 | 148 | 	return 0; | 
 | 149 | } | 
 | 150 | #else | 
 | 151 | static int hwpoison_filter_task(struct page *p) { return 0; } | 
 | 152 | #endif | 
 | 153 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 154 | int hwpoison_filter(struct page *p) | 
 | 155 | { | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 156 | 	if (!hwpoison_filter_enable) | 
 | 157 | 		return 0; | 
 | 158 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 159 | 	if (hwpoison_filter_dev(p)) | 
 | 160 | 		return -EINVAL; | 
 | 161 |  | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 162 | 	if (hwpoison_filter_flags(p)) | 
 | 163 | 		return -EINVAL; | 
 | 164 |  | 
| Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 165 | 	if (hwpoison_filter_task(p)) | 
 | 166 | 		return -EINVAL; | 
 | 167 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 168 | 	return 0; | 
 | 169 | } | 
| Andi Kleen | 27df506 | 2009-12-21 19:56:42 +0100 | [diff] [blame] | 170 | #else | 
 | 171 | int hwpoison_filter(struct page *p) | 
 | 172 | { | 
 | 173 | 	return 0; | 
 | 174 | } | 
 | 175 | #endif | 
 | 176 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 177 | EXPORT_SYMBOL_GPL(hwpoison_filter); | 
 | 178 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 179 | /* | 
 | 180 |  * Send all the processes who have the page mapped an ``action optional'' | 
 | 181 |  * signal. | 
 | 182 |  */ | 
 | 183 | static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, | 
 | 184 | 			unsigned long pfn) | 
 | 185 | { | 
 | 186 | 	struct siginfo si; | 
 | 187 | 	int ret; | 
 | 188 |  | 
 | 189 | 	printk(KERN_ERR | 
 | 190 | 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", | 
 | 191 | 		pfn, t->comm, t->pid); | 
 | 192 | 	si.si_signo = SIGBUS; | 
 | 193 | 	si.si_errno = 0; | 
 | 194 | 	si.si_code = BUS_MCEERR_AO; | 
 | 195 | 	si.si_addr = (void *)addr; | 
 | 196 | #ifdef __ARCH_SI_TRAPNO | 
 | 197 | 	si.si_trapno = trapno; | 
 | 198 | #endif | 
 | 199 | 	si.si_addr_lsb = PAGE_SHIFT; | 
 | 200 | 	/* | 
 | 201 | 	 * Don't use force here, it's convenient if the signal | 
 | 202 | 	 * can be temporarily blocked. | 
 | 203 | 	 * This could cause a loop when the user sets SIGBUS | 
 | 204 | 	 * to SIG_IGN, but hopefully noone will do that? | 
 | 205 | 	 */ | 
 | 206 | 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */ | 
 | 207 | 	if (ret < 0) | 
 | 208 | 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", | 
 | 209 | 		       t->comm, t->pid, ret); | 
 | 210 | 	return ret; | 
 | 211 | } | 
 | 212 |  | 
 | 213 | /* | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 214 |  * When a unknown page type is encountered drain as many buffers as possible | 
 | 215 |  * in the hope to turn the page into a LRU or free page, which we can handle. | 
 | 216 |  */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 217 | void shake_page(struct page *p, int access) | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 218 | { | 
 | 219 | 	if (!PageSlab(p)) { | 
 | 220 | 		lru_add_drain_all(); | 
 | 221 | 		if (PageLRU(p)) | 
 | 222 | 			return; | 
 | 223 | 		drain_all_pages(); | 
 | 224 | 		if (PageLRU(p) || is_free_buddy_page(p)) | 
 | 225 | 			return; | 
 | 226 | 	} | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 227 |  | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 228 | 	/* | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 229 | 	 * Only all shrink_slab here (which would also | 
 | 230 | 	 * shrink other caches) if access is not potentially fatal. | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 231 | 	 */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 232 | 	if (access) { | 
 | 233 | 		int nr; | 
 | 234 | 		do { | 
 | 235 | 			nr = shrink_slab(1000, GFP_KERNEL, 1000); | 
 | 236 | 			if (page_count(p) == 0) | 
 | 237 | 				break; | 
 | 238 | 		} while (nr > 10); | 
 | 239 | 	} | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 240 | } | 
 | 241 | EXPORT_SYMBOL_GPL(shake_page); | 
 | 242 |  | 
 | 243 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 244 |  * Kill all processes that have a poisoned page mapped and then isolate | 
 | 245 |  * the page. | 
 | 246 |  * | 
 | 247 |  * General strategy: | 
 | 248 |  * Find all processes having the page mapped and kill them. | 
 | 249 |  * But we keep a page reference around so that the page is not | 
 | 250 |  * actually freed yet. | 
 | 251 |  * Then stash the page away | 
 | 252 |  * | 
 | 253 |  * There's no convenient way to get back to mapped processes | 
 | 254 |  * from the VMAs. So do a brute-force search over all | 
 | 255 |  * running processes. | 
 | 256 |  * | 
 | 257 |  * Remember that machine checks are not common (or rather | 
 | 258 |  * if they are common you have other problems), so this shouldn't | 
 | 259 |  * be a performance issue. | 
 | 260 |  * | 
 | 261 |  * Also there are some races possible while we get from the | 
 | 262 |  * error detection to actually handle it. | 
 | 263 |  */ | 
 | 264 |  | 
 | 265 | struct to_kill { | 
 | 266 | 	struct list_head nd; | 
 | 267 | 	struct task_struct *tsk; | 
 | 268 | 	unsigned long addr; | 
 | 269 | 	unsigned addr_valid:1; | 
 | 270 | }; | 
 | 271 |  | 
 | 272 | /* | 
 | 273 |  * Failure handling: if we can't find or can't kill a process there's | 
 | 274 |  * not much we can do.	We just print a message and ignore otherwise. | 
 | 275 |  */ | 
 | 276 |  | 
 | 277 | /* | 
 | 278 |  * Schedule a process for later kill. | 
 | 279 |  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | 
 | 280 |  * TBD would GFP_NOIO be enough? | 
 | 281 |  */ | 
 | 282 | static void add_to_kill(struct task_struct *tsk, struct page *p, | 
 | 283 | 		       struct vm_area_struct *vma, | 
 | 284 | 		       struct list_head *to_kill, | 
 | 285 | 		       struct to_kill **tkc) | 
 | 286 | { | 
 | 287 | 	struct to_kill *tk; | 
 | 288 |  | 
 | 289 | 	if (*tkc) { | 
 | 290 | 		tk = *tkc; | 
 | 291 | 		*tkc = NULL; | 
 | 292 | 	} else { | 
 | 293 | 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | 
 | 294 | 		if (!tk) { | 
 | 295 | 			printk(KERN_ERR | 
 | 296 | 		"MCE: Out of memory while machine check handling\n"); | 
 | 297 | 			return; | 
 | 298 | 		} | 
 | 299 | 	} | 
 | 300 | 	tk->addr = page_address_in_vma(p, vma); | 
 | 301 | 	tk->addr_valid = 1; | 
 | 302 |  | 
 | 303 | 	/* | 
 | 304 | 	 * In theory we don't have to kill when the page was | 
 | 305 | 	 * munmaped. But it could be also a mremap. Since that's | 
 | 306 | 	 * likely very rare kill anyways just out of paranoia, but use | 
 | 307 | 	 * a SIGKILL because the error is not contained anymore. | 
 | 308 | 	 */ | 
 | 309 | 	if (tk->addr == -EFAULT) { | 
 | 310 | 		pr_debug("MCE: Unable to find user space address %lx in %s\n", | 
 | 311 | 			page_to_pfn(p), tsk->comm); | 
 | 312 | 		tk->addr_valid = 0; | 
 | 313 | 	} | 
 | 314 | 	get_task_struct(tsk); | 
 | 315 | 	tk->tsk = tsk; | 
 | 316 | 	list_add_tail(&tk->nd, to_kill); | 
 | 317 | } | 
 | 318 |  | 
 | 319 | /* | 
 | 320 |  * Kill the processes that have been collected earlier. | 
 | 321 |  * | 
 | 322 |  * Only do anything when DOIT is set, otherwise just free the list | 
 | 323 |  * (this is used for clean pages which do not need killing) | 
 | 324 |  * Also when FAIL is set do a force kill because something went | 
 | 325 |  * wrong earlier. | 
 | 326 |  */ | 
 | 327 | static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, | 
 | 328 | 			  int fail, unsigned long pfn) | 
 | 329 | { | 
 | 330 | 	struct to_kill *tk, *next; | 
 | 331 |  | 
 | 332 | 	list_for_each_entry_safe (tk, next, to_kill, nd) { | 
 | 333 | 		if (doit) { | 
 | 334 | 			/* | 
| André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 335 | 			 * In case something went wrong with munmapping | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 336 | 			 * make sure the process doesn't catch the | 
 | 337 | 			 * signal and then access the memory. Just kill it. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 338 | 			 */ | 
 | 339 | 			if (fail || tk->addr_valid == 0) { | 
 | 340 | 				printk(KERN_ERR | 
 | 341 | 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | 
 | 342 | 					pfn, tk->tsk->comm, tk->tsk->pid); | 
 | 343 | 				force_sig(SIGKILL, tk->tsk); | 
 | 344 | 			} | 
 | 345 |  | 
 | 346 | 			/* | 
 | 347 | 			 * In theory the process could have mapped | 
 | 348 | 			 * something else on the address in-between. We could | 
 | 349 | 			 * check for that, but we need to tell the | 
 | 350 | 			 * process anyways. | 
 | 351 | 			 */ | 
 | 352 | 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno, | 
 | 353 | 					      pfn) < 0) | 
 | 354 | 				printk(KERN_ERR | 
 | 355 | 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", | 
 | 356 | 					pfn, tk->tsk->comm, tk->tsk->pid); | 
 | 357 | 		} | 
 | 358 | 		put_task_struct(tk->tsk); | 
 | 359 | 		kfree(tk); | 
 | 360 | 	} | 
 | 361 | } | 
 | 362 |  | 
 | 363 | static int task_early_kill(struct task_struct *tsk) | 
 | 364 | { | 
 | 365 | 	if (!tsk->mm) | 
 | 366 | 		return 0; | 
 | 367 | 	if (tsk->flags & PF_MCE_PROCESS) | 
 | 368 | 		return !!(tsk->flags & PF_MCE_EARLY); | 
 | 369 | 	return sysctl_memory_failure_early_kill; | 
 | 370 | } | 
 | 371 |  | 
 | 372 | /* | 
 | 373 |  * Collect processes when the error hit an anonymous page. | 
 | 374 |  */ | 
 | 375 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | 
 | 376 | 			      struct to_kill **tkc) | 
 | 377 | { | 
 | 378 | 	struct vm_area_struct *vma; | 
 | 379 | 	struct task_struct *tsk; | 
 | 380 | 	struct anon_vma *av; | 
 | 381 |  | 
 | 382 | 	read_lock(&tasklist_lock); | 
 | 383 | 	av = page_lock_anon_vma(page); | 
 | 384 | 	if (av == NULL)	/* Not actually mapped anymore */ | 
 | 385 | 		goto out; | 
 | 386 | 	for_each_process (tsk) { | 
| Rik van Riel | 5beb493 | 2010-03-05 13:42:07 -0800 | [diff] [blame] | 387 | 		struct anon_vma_chain *vmac; | 
 | 388 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 389 | 		if (!task_early_kill(tsk)) | 
 | 390 | 			continue; | 
| Rik van Riel | 5beb493 | 2010-03-05 13:42:07 -0800 | [diff] [blame] | 391 | 		list_for_each_entry(vmac, &av->head, same_anon_vma) { | 
 | 392 | 			vma = vmac->vma; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 393 | 			if (!page_mapped_in_vma(page, vma)) | 
 | 394 | 				continue; | 
 | 395 | 			if (vma->vm_mm == tsk->mm) | 
 | 396 | 				add_to_kill(tsk, page, vma, to_kill, tkc); | 
 | 397 | 		} | 
 | 398 | 	} | 
 | 399 | 	page_unlock_anon_vma(av); | 
 | 400 | out: | 
 | 401 | 	read_unlock(&tasklist_lock); | 
 | 402 | } | 
 | 403 |  | 
 | 404 | /* | 
 | 405 |  * Collect processes when the error hit a file mapped page. | 
 | 406 |  */ | 
 | 407 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | 
 | 408 | 			      struct to_kill **tkc) | 
 | 409 | { | 
 | 410 | 	struct vm_area_struct *vma; | 
 | 411 | 	struct task_struct *tsk; | 
 | 412 | 	struct prio_tree_iter iter; | 
 | 413 | 	struct address_space *mapping = page->mapping; | 
 | 414 |  | 
 | 415 | 	/* | 
 | 416 | 	 * A note on the locking order between the two locks. | 
 | 417 | 	 * We don't rely on this particular order. | 
 | 418 | 	 * If you have some other code that needs a different order | 
 | 419 | 	 * feel free to switch them around. Or add a reverse link | 
 | 420 | 	 * from mm_struct to task_struct, then this could be all | 
 | 421 | 	 * done without taking tasklist_lock and looping over all tasks. | 
 | 422 | 	 */ | 
 | 423 |  | 
 | 424 | 	read_lock(&tasklist_lock); | 
 | 425 | 	spin_lock(&mapping->i_mmap_lock); | 
 | 426 | 	for_each_process(tsk) { | 
 | 427 | 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
 | 428 |  | 
 | 429 | 		if (!task_early_kill(tsk)) | 
 | 430 | 			continue; | 
 | 431 |  | 
 | 432 | 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, | 
 | 433 | 				      pgoff) { | 
 | 434 | 			/* | 
 | 435 | 			 * Send early kill signal to tasks where a vma covers | 
 | 436 | 			 * the page but the corrupted page is not necessarily | 
 | 437 | 			 * mapped it in its pte. | 
 | 438 | 			 * Assume applications who requested early kill want | 
 | 439 | 			 * to be informed of all such data corruptions. | 
 | 440 | 			 */ | 
 | 441 | 			if (vma->vm_mm == tsk->mm) | 
 | 442 | 				add_to_kill(tsk, page, vma, to_kill, tkc); | 
 | 443 | 		} | 
 | 444 | 	} | 
 | 445 | 	spin_unlock(&mapping->i_mmap_lock); | 
 | 446 | 	read_unlock(&tasklist_lock); | 
 | 447 | } | 
 | 448 |  | 
 | 449 | /* | 
 | 450 |  * Collect the processes who have the corrupted page mapped to kill. | 
 | 451 |  * This is done in two steps for locking reasons. | 
 | 452 |  * First preallocate one tokill structure outside the spin locks, | 
 | 453 |  * so that we can kill at least one process reasonably reliable. | 
 | 454 |  */ | 
 | 455 | static void collect_procs(struct page *page, struct list_head *tokill) | 
 | 456 | { | 
 | 457 | 	struct to_kill *tk; | 
 | 458 |  | 
 | 459 | 	if (!page->mapping) | 
 | 460 | 		return; | 
 | 461 |  | 
 | 462 | 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | 
 | 463 | 	if (!tk) | 
 | 464 | 		return; | 
 | 465 | 	if (PageAnon(page)) | 
 | 466 | 		collect_procs_anon(page, tokill, &tk); | 
 | 467 | 	else | 
 | 468 | 		collect_procs_file(page, tokill, &tk); | 
 | 469 | 	kfree(tk); | 
 | 470 | } | 
 | 471 |  | 
 | 472 | /* | 
 | 473 |  * Error handlers for various types of pages. | 
 | 474 |  */ | 
 | 475 |  | 
 | 476 | enum outcome { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 477 | 	IGNORED,	/* Error: cannot be handled */ | 
 | 478 | 	FAILED,		/* Error: handling failed */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 479 | 	DELAYED,	/* Will be handled later */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 480 | 	RECOVERED,	/* Successfully recovered */ | 
 | 481 | }; | 
 | 482 |  | 
 | 483 | static const char *action_name[] = { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 484 | 	[IGNORED] = "Ignored", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 485 | 	[FAILED] = "Failed", | 
 | 486 | 	[DELAYED] = "Delayed", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 487 | 	[RECOVERED] = "Recovered", | 
 | 488 | }; | 
 | 489 |  | 
 | 490 | /* | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 491 |  * XXX: It is possible that a page is isolated from LRU cache, | 
 | 492 |  * and then kept in swap cache or failed to remove from page cache. | 
 | 493 |  * The page count will stop it from being freed by unpoison. | 
 | 494 |  * Stress tests should be aware of this memory leak problem. | 
 | 495 |  */ | 
 | 496 | static int delete_from_lru_cache(struct page *p) | 
 | 497 | { | 
 | 498 | 	if (!isolate_lru_page(p)) { | 
 | 499 | 		/* | 
 | 500 | 		 * Clear sensible page flags, so that the buddy system won't | 
 | 501 | 		 * complain when the page is unpoison-and-freed. | 
 | 502 | 		 */ | 
 | 503 | 		ClearPageActive(p); | 
 | 504 | 		ClearPageUnevictable(p); | 
 | 505 | 		/* | 
 | 506 | 		 * drop the page count elevated by isolate_lru_page() | 
 | 507 | 		 */ | 
 | 508 | 		page_cache_release(p); | 
 | 509 | 		return 0; | 
 | 510 | 	} | 
 | 511 | 	return -EIO; | 
 | 512 | } | 
 | 513 |  | 
 | 514 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 515 |  * Error hit kernel page. | 
 | 516 |  * Do nothing, try to be lucky and not touch this instead. For a few cases we | 
 | 517 |  * could be more sophisticated. | 
 | 518 |  */ | 
 | 519 | static int me_kernel(struct page *p, unsigned long pfn) | 
 | 520 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 521 | 	return IGNORED; | 
 | 522 | } | 
 | 523 |  | 
 | 524 | /* | 
 | 525 |  * Page in unknown state. Do nothing. | 
 | 526 |  */ | 
 | 527 | static int me_unknown(struct page *p, unsigned long pfn) | 
 | 528 | { | 
 | 529 | 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); | 
 | 530 | 	return FAILED; | 
 | 531 | } | 
 | 532 |  | 
 | 533 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 534 |  * Clean (or cleaned) page cache page. | 
 | 535 |  */ | 
 | 536 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | 
 | 537 | { | 
 | 538 | 	int err; | 
 | 539 | 	int ret = FAILED; | 
 | 540 | 	struct address_space *mapping; | 
 | 541 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 542 | 	delete_from_lru_cache(p); | 
 | 543 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 544 | 	/* | 
 | 545 | 	 * For anonymous pages we're done the only reference left | 
 | 546 | 	 * should be the one m_f() holds. | 
 | 547 | 	 */ | 
 | 548 | 	if (PageAnon(p)) | 
 | 549 | 		return RECOVERED; | 
 | 550 |  | 
 | 551 | 	/* | 
 | 552 | 	 * Now truncate the page in the page cache. This is really | 
 | 553 | 	 * more like a "temporary hole punch" | 
 | 554 | 	 * Don't do this for block devices when someone else | 
 | 555 | 	 * has a reference, because it could be file system metadata | 
 | 556 | 	 * and that's not safe to truncate. | 
 | 557 | 	 */ | 
 | 558 | 	mapping = page_mapping(p); | 
 | 559 | 	if (!mapping) { | 
 | 560 | 		/* | 
 | 561 | 		 * Page has been teared down in the meanwhile | 
 | 562 | 		 */ | 
 | 563 | 		return FAILED; | 
 | 564 | 	} | 
 | 565 |  | 
 | 566 | 	/* | 
 | 567 | 	 * Truncation is a bit tricky. Enable it per file system for now. | 
 | 568 | 	 * | 
 | 569 | 	 * Open: to take i_mutex or not for this? Right now we don't. | 
 | 570 | 	 */ | 
 | 571 | 	if (mapping->a_ops->error_remove_page) { | 
 | 572 | 		err = mapping->a_ops->error_remove_page(mapping, p); | 
 | 573 | 		if (err != 0) { | 
 | 574 | 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", | 
 | 575 | 					pfn, err); | 
 | 576 | 		} else if (page_has_private(p) && | 
 | 577 | 				!try_to_release_page(p, GFP_NOIO)) { | 
 | 578 | 			pr_debug("MCE %#lx: failed to release buffers\n", pfn); | 
 | 579 | 		} else { | 
 | 580 | 			ret = RECOVERED; | 
 | 581 | 		} | 
 | 582 | 	} else { | 
 | 583 | 		/* | 
 | 584 | 		 * If the file system doesn't support it just invalidate | 
 | 585 | 		 * This fails on dirty or anything with private pages | 
 | 586 | 		 */ | 
 | 587 | 		if (invalidate_inode_page(p)) | 
 | 588 | 			ret = RECOVERED; | 
 | 589 | 		else | 
 | 590 | 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", | 
 | 591 | 				pfn); | 
 | 592 | 	} | 
 | 593 | 	return ret; | 
 | 594 | } | 
 | 595 |  | 
 | 596 | /* | 
 | 597 |  * Dirty cache page page | 
 | 598 |  * Issues: when the error hit a hole page the error is not properly | 
 | 599 |  * propagated. | 
 | 600 |  */ | 
 | 601 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | 
 | 602 | { | 
 | 603 | 	struct address_space *mapping = page_mapping(p); | 
 | 604 |  | 
 | 605 | 	SetPageError(p); | 
 | 606 | 	/* TBD: print more information about the file. */ | 
 | 607 | 	if (mapping) { | 
 | 608 | 		/* | 
 | 609 | 		 * IO error will be reported by write(), fsync(), etc. | 
 | 610 | 		 * who check the mapping. | 
 | 611 | 		 * This way the application knows that something went | 
 | 612 | 		 * wrong with its dirty file data. | 
 | 613 | 		 * | 
 | 614 | 		 * There's one open issue: | 
 | 615 | 		 * | 
 | 616 | 		 * The EIO will be only reported on the next IO | 
 | 617 | 		 * operation and then cleared through the IO map. | 
 | 618 | 		 * Normally Linux has two mechanisms to pass IO error | 
 | 619 | 		 * first through the AS_EIO flag in the address space | 
 | 620 | 		 * and then through the PageError flag in the page. | 
 | 621 | 		 * Since we drop pages on memory failure handling the | 
 | 622 | 		 * only mechanism open to use is through AS_AIO. | 
 | 623 | 		 * | 
 | 624 | 		 * This has the disadvantage that it gets cleared on | 
 | 625 | 		 * the first operation that returns an error, while | 
 | 626 | 		 * the PageError bit is more sticky and only cleared | 
 | 627 | 		 * when the page is reread or dropped.  If an | 
 | 628 | 		 * application assumes it will always get error on | 
 | 629 | 		 * fsync, but does other operations on the fd before | 
 | 630 | 		 * and the page is dropped inbetween then the error | 
 | 631 | 		 * will not be properly reported. | 
 | 632 | 		 * | 
 | 633 | 		 * This can already happen even without hwpoisoned | 
 | 634 | 		 * pages: first on metadata IO errors (which only | 
 | 635 | 		 * report through AS_EIO) or when the page is dropped | 
 | 636 | 		 * at the wrong time. | 
 | 637 | 		 * | 
 | 638 | 		 * So right now we assume that the application DTRT on | 
 | 639 | 		 * the first EIO, but we're not worse than other parts | 
 | 640 | 		 * of the kernel. | 
 | 641 | 		 */ | 
 | 642 | 		mapping_set_error(mapping, EIO); | 
 | 643 | 	} | 
 | 644 |  | 
 | 645 | 	return me_pagecache_clean(p, pfn); | 
 | 646 | } | 
 | 647 |  | 
 | 648 | /* | 
 | 649 |  * Clean and dirty swap cache. | 
 | 650 |  * | 
 | 651 |  * Dirty swap cache page is tricky to handle. The page could live both in page | 
 | 652 |  * cache and swap cache(ie. page is freshly swapped in). So it could be | 
 | 653 |  * referenced concurrently by 2 types of PTEs: | 
 | 654 |  * normal PTEs and swap PTEs. We try to handle them consistently by calling | 
 | 655 |  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | 
 | 656 |  * and then | 
 | 657 |  *      - clear dirty bit to prevent IO | 
 | 658 |  *      - remove from LRU | 
 | 659 |  *      - but keep in the swap cache, so that when we return to it on | 
 | 660 |  *        a later page fault, we know the application is accessing | 
 | 661 |  *        corrupted data and shall be killed (we installed simple | 
 | 662 |  *        interception code in do_swap_page to catch it). | 
 | 663 |  * | 
 | 664 |  * Clean swap cache pages can be directly isolated. A later page fault will | 
 | 665 |  * bring in the known good data from disk. | 
 | 666 |  */ | 
 | 667 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | 
 | 668 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 669 | 	ClearPageDirty(p); | 
 | 670 | 	/* Trigger EIO in shmem: */ | 
 | 671 | 	ClearPageUptodate(p); | 
 | 672 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 673 | 	if (!delete_from_lru_cache(p)) | 
 | 674 | 		return DELAYED; | 
 | 675 | 	else | 
 | 676 | 		return FAILED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 677 | } | 
 | 678 |  | 
 | 679 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | 
 | 680 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 681 | 	delete_from_swap_cache(p); | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 682 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 683 | 	if (!delete_from_lru_cache(p)) | 
 | 684 | 		return RECOVERED; | 
 | 685 | 	else | 
 | 686 | 		return FAILED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 687 | } | 
 | 688 |  | 
 | 689 | /* | 
 | 690 |  * Huge pages. Needs work. | 
 | 691 |  * Issues: | 
 | 692 |  * No rmap support so we cannot find the original mapper. In theory could walk | 
 | 693 |  * all MMs and look for the mappings, but that would be non atomic and racy. | 
 | 694 |  * Need rmap for hugepages for this. Alternatively we could employ a heuristic, | 
 | 695 |  * like just walking the current process and hoping it has it mapped (that | 
 | 696 |  * should be usually true for the common "shared database cache" case) | 
 | 697 |  * Should handle free huge pages and dequeue them too, but this needs to | 
 | 698 |  * handle huge page accounting correctly. | 
 | 699 |  */ | 
 | 700 | static int me_huge_page(struct page *p, unsigned long pfn) | 
 | 701 | { | 
 | 702 | 	return FAILED; | 
 | 703 | } | 
 | 704 |  | 
 | 705 | /* | 
 | 706 |  * Various page states we can handle. | 
 | 707 |  * | 
 | 708 |  * A page state is defined by its current page->flags bits. | 
 | 709 |  * The table matches them in order and calls the right handler. | 
 | 710 |  * | 
 | 711 |  * This is quite tricky because we can access page at any time | 
 | 712 |  * in its live cycle, so all accesses have to be extremly careful. | 
 | 713 |  * | 
 | 714 |  * This is not complete. More states could be added. | 
 | 715 |  * For any missing state don't attempt recovery. | 
 | 716 |  */ | 
 | 717 |  | 
 | 718 | #define dirty		(1UL << PG_dirty) | 
 | 719 | #define sc		(1UL << PG_swapcache) | 
 | 720 | #define unevict		(1UL << PG_unevictable) | 
 | 721 | #define mlock		(1UL << PG_mlocked) | 
 | 722 | #define writeback	(1UL << PG_writeback) | 
 | 723 | #define lru		(1UL << PG_lru) | 
 | 724 | #define swapbacked	(1UL << PG_swapbacked) | 
 | 725 | #define head		(1UL << PG_head) | 
 | 726 | #define tail		(1UL << PG_tail) | 
 | 727 | #define compound	(1UL << PG_compound) | 
 | 728 | #define slab		(1UL << PG_slab) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 729 | #define reserved	(1UL << PG_reserved) | 
 | 730 |  | 
 | 731 | static struct page_state { | 
 | 732 | 	unsigned long mask; | 
 | 733 | 	unsigned long res; | 
 | 734 | 	char *msg; | 
 | 735 | 	int (*action)(struct page *p, unsigned long pfn); | 
 | 736 | } error_states[] = { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 737 | 	{ reserved,	reserved,	"reserved kernel",	me_kernel }, | 
| Wu Fengguang | 95d01fc | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 738 | 	/* | 
 | 739 | 	 * free pages are specially detected outside this table: | 
 | 740 | 	 * PG_buddy pages only make a small fraction of all free pages. | 
 | 741 | 	 */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 742 |  | 
 | 743 | 	/* | 
 | 744 | 	 * Could in theory check if slab page is free or if we can drop | 
 | 745 | 	 * currently unused objects without touching them. But just | 
 | 746 | 	 * treat it as standard kernel for now. | 
 | 747 | 	 */ | 
 | 748 | 	{ slab,		slab,		"kernel slab",	me_kernel }, | 
 | 749 |  | 
 | 750 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | 
 | 751 | 	{ head,		head,		"huge",		me_huge_page }, | 
 | 752 | 	{ tail,		tail,		"huge",		me_huge_page }, | 
 | 753 | #else | 
 | 754 | 	{ compound,	compound,	"huge",		me_huge_page }, | 
 | 755 | #endif | 
 | 756 |  | 
 | 757 | 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty }, | 
 | 758 | 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean }, | 
 | 759 |  | 
 | 760 | 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty}, | 
 | 761 | 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean}, | 
 | 762 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 763 | 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty }, | 
 | 764 | 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean }, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 765 |  | 
 | 766 | 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty }, | 
 | 767 | 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean }, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 768 |  | 
 | 769 | 	/* | 
 | 770 | 	 * Catchall entry: must be at end. | 
 | 771 | 	 */ | 
 | 772 | 	{ 0,		0,		"unknown page state",	me_unknown }, | 
 | 773 | }; | 
 | 774 |  | 
| Andi Kleen | 2326c46 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 775 | #undef dirty | 
 | 776 | #undef sc | 
 | 777 | #undef unevict | 
 | 778 | #undef mlock | 
 | 779 | #undef writeback | 
 | 780 | #undef lru | 
 | 781 | #undef swapbacked | 
 | 782 | #undef head | 
 | 783 | #undef tail | 
 | 784 | #undef compound | 
 | 785 | #undef slab | 
 | 786 | #undef reserved | 
 | 787 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 788 | static void action_result(unsigned long pfn, char *msg, int result) | 
 | 789 | { | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 790 | 	struct page *page = pfn_to_page(pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 791 |  | 
 | 792 | 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", | 
 | 793 | 		pfn, | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 794 | 		PageDirty(page) ? "dirty " : "", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 795 | 		msg, action_name[result]); | 
 | 796 | } | 
 | 797 |  | 
 | 798 | static int page_action(struct page_state *ps, struct page *p, | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 799 | 			unsigned long pfn) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 800 | { | 
 | 801 | 	int result; | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 802 | 	int count; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 803 |  | 
 | 804 | 	result = ps->action(p, pfn); | 
 | 805 | 	action_result(pfn, ps->msg, result); | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 806 |  | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 807 | 	count = page_count(p) - 1; | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 808 | 	if (ps->action == me_swapcache_dirty && result == DELAYED) | 
 | 809 | 		count--; | 
 | 810 | 	if (count != 0) { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 811 | 		printk(KERN_ERR | 
 | 812 | 		       "MCE %#lx: %s page still referenced by %d users\n", | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 813 | 		       pfn, ps->msg, count); | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 814 | 		result = FAILED; | 
 | 815 | 	} | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 816 |  | 
 | 817 | 	/* Could do more checks here if page looks ok */ | 
 | 818 | 	/* | 
 | 819 | 	 * Could adjust zone counters here to correct for the missing page. | 
 | 820 | 	 */ | 
 | 821 |  | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 822 | 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 823 | } | 
 | 824 |  | 
 | 825 | #define N_UNMAP_TRIES 5 | 
 | 826 |  | 
 | 827 | /* | 
 | 828 |  * Do all that is necessary to remove user space mappings. Unmap | 
 | 829 |  * the pages and send SIGBUS to the processes if the data was dirty. | 
 | 830 |  */ | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 831 | static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 832 | 				  int trapno) | 
 | 833 | { | 
 | 834 | 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | 
 | 835 | 	struct address_space *mapping; | 
 | 836 | 	LIST_HEAD(tokill); | 
 | 837 | 	int ret; | 
 | 838 | 	int i; | 
 | 839 | 	int kill = 1; | 
 | 840 |  | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 841 | 	if (PageReserved(p) || PageSlab(p)) | 
 | 842 | 		return SWAP_SUCCESS; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 843 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 844 | 	/* | 
 | 845 | 	 * This check implies we don't kill processes if their pages | 
 | 846 | 	 * are in the swap cache early. Those are always late kills. | 
 | 847 | 	 */ | 
 | 848 | 	if (!page_mapped(p)) | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 849 | 		return SWAP_SUCCESS; | 
 | 850 |  | 
 | 851 | 	if (PageCompound(p) || PageKsm(p)) | 
 | 852 | 		return SWAP_FAIL; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 853 |  | 
 | 854 | 	if (PageSwapCache(p)) { | 
 | 855 | 		printk(KERN_ERR | 
 | 856 | 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn); | 
 | 857 | 		ttu |= TTU_IGNORE_HWPOISON; | 
 | 858 | 	} | 
 | 859 |  | 
 | 860 | 	/* | 
 | 861 | 	 * Propagate the dirty bit from PTEs to struct page first, because we | 
 | 862 | 	 * need this to decide if we should kill or just drop the page. | 
| Wu Fengguang | db0480b | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 863 | 	 * XXX: the dirty test could be racy: set_page_dirty() may not always | 
 | 864 | 	 * be called inside page lock (it's recommended but not enforced). | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 865 | 	 */ | 
 | 866 | 	mapping = page_mapping(p); | 
 | 867 | 	if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { | 
 | 868 | 		if (page_mkclean(p)) { | 
 | 869 | 			SetPageDirty(p); | 
 | 870 | 		} else { | 
 | 871 | 			kill = 0; | 
 | 872 | 			ttu |= TTU_IGNORE_HWPOISON; | 
 | 873 | 			printk(KERN_INFO | 
 | 874 | 	"MCE %#lx: corrupted page was clean: dropped without side effects\n", | 
 | 875 | 				pfn); | 
 | 876 | 		} | 
 | 877 | 	} | 
 | 878 |  | 
 | 879 | 	/* | 
 | 880 | 	 * First collect all the processes that have the page | 
 | 881 | 	 * mapped in dirty form.  This has to be done before try_to_unmap, | 
 | 882 | 	 * because ttu takes the rmap data structures down. | 
 | 883 | 	 * | 
 | 884 | 	 * Error handling: We ignore errors here because | 
 | 885 | 	 * there's nothing that can be done. | 
 | 886 | 	 */ | 
 | 887 | 	if (kill) | 
 | 888 | 		collect_procs(p, &tokill); | 
 | 889 |  | 
 | 890 | 	/* | 
 | 891 | 	 * try_to_unmap can fail temporarily due to races. | 
 | 892 | 	 * Try a few times (RED-PEN better strategy?) | 
 | 893 | 	 */ | 
 | 894 | 	for (i = 0; i < N_UNMAP_TRIES; i++) { | 
 | 895 | 		ret = try_to_unmap(p, ttu); | 
 | 896 | 		if (ret == SWAP_SUCCESS) | 
 | 897 | 			break; | 
 | 898 | 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret); | 
 | 899 | 	} | 
 | 900 |  | 
 | 901 | 	if (ret != SWAP_SUCCESS) | 
 | 902 | 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | 
 | 903 | 				pfn, page_mapcount(p)); | 
 | 904 |  | 
 | 905 | 	/* | 
 | 906 | 	 * Now that the dirty bit has been propagated to the | 
 | 907 | 	 * struct page and all unmaps done we can decide if | 
 | 908 | 	 * killing is needed or not.  Only kill when the page | 
 | 909 | 	 * was dirty, otherwise the tokill list is merely | 
 | 910 | 	 * freed.  When there was a problem unmapping earlier | 
 | 911 | 	 * use a more force-full uncatchable kill to prevent | 
 | 912 | 	 * any accesses to the poisoned memory. | 
 | 913 | 	 */ | 
 | 914 | 	kill_procs_ao(&tokill, !!PageDirty(p), trapno, | 
 | 915 | 		      ret != SWAP_SUCCESS, pfn); | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 916 |  | 
 | 917 | 	return ret; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 918 | } | 
 | 919 |  | 
| Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 920 | int __memory_failure(unsigned long pfn, int trapno, int flags) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 921 | { | 
 | 922 | 	struct page_state *ps; | 
 | 923 | 	struct page *p; | 
 | 924 | 	int res; | 
 | 925 |  | 
 | 926 | 	if (!sysctl_memory_failure_recovery) | 
 | 927 | 		panic("Memory failure from trap %d on page %lx", trapno, pfn); | 
 | 928 |  | 
 | 929 | 	if (!pfn_valid(pfn)) { | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 930 | 		printk(KERN_ERR | 
 | 931 | 		       "MCE %#lx: memory outside kernel control\n", | 
 | 932 | 		       pfn); | 
 | 933 | 		return -ENXIO; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 934 | 	} | 
 | 935 |  | 
 | 936 | 	p = pfn_to_page(pfn); | 
 | 937 | 	if (TestSetPageHWPoison(p)) { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 938 | 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 939 | 		return 0; | 
 | 940 | 	} | 
 | 941 |  | 
 | 942 | 	atomic_long_add(1, &mce_bad_pages); | 
 | 943 |  | 
 | 944 | 	/* | 
 | 945 | 	 * We need/can do nothing about count=0 pages. | 
 | 946 | 	 * 1) it's a free page, and therefore in safe hand: | 
 | 947 | 	 *    prep_new_page() will be the gate keeper. | 
 | 948 | 	 * 2) it's part of a non-compound high order page. | 
 | 949 | 	 *    Implies some kernel user: cannot stop them from | 
 | 950 | 	 *    R/W the page; let's pray that the page has been | 
 | 951 | 	 *    used and will be freed some time later. | 
 | 952 | 	 * In fact it's dangerous to directly bump up page count from 0, | 
 | 953 | 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | 
 | 954 | 	 */ | 
| Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 955 | 	if (!(flags & MF_COUNT_INCREASED) && | 
 | 956 | 		!get_page_unless_zero(compound_head(p))) { | 
| Wu Fengguang | 8d22ba1 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 957 | 		if (is_free_buddy_page(p)) { | 
 | 958 | 			action_result(pfn, "free buddy", DELAYED); | 
 | 959 | 			return 0; | 
 | 960 | 		} else { | 
 | 961 | 			action_result(pfn, "high order kernel", IGNORED); | 
 | 962 | 			return -EBUSY; | 
 | 963 | 		} | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 964 | 	} | 
 | 965 |  | 
 | 966 | 	/* | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 967 | 	 * We ignore non-LRU pages for good reasons. | 
 | 968 | 	 * - PG_locked is only well defined for LRU pages and a few others | 
 | 969 | 	 * - to avoid races with __set_page_locked() | 
 | 970 | 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | 
 | 971 | 	 * The check (unnecessarily) ignores LRU pages being isolated and | 
 | 972 | 	 * walked by the page reclaim code, however that's not a big loss. | 
 | 973 | 	 */ | 
 | 974 | 	if (!PageLRU(p)) | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 975 | 		shake_page(p, 0); | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 976 | 	if (!PageLRU(p)) { | 
| Andi Kleen | 0474a60 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 977 | 		/* | 
 | 978 | 		 * shake_page could have turned it free. | 
 | 979 | 		 */ | 
 | 980 | 		if (is_free_buddy_page(p)) { | 
 | 981 | 			action_result(pfn, "free buddy, 2nd try", DELAYED); | 
 | 982 | 			return 0; | 
 | 983 | 		} | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 984 | 		action_result(pfn, "non LRU", IGNORED); | 
 | 985 | 		put_page(p); | 
 | 986 | 		return -EBUSY; | 
 | 987 | 	} | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 988 |  | 
 | 989 | 	/* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 990 | 	 * Lock the page and wait for writeback to finish. | 
 | 991 | 	 * It's very difficult to mess with pages currently under IO | 
 | 992 | 	 * and in many cases impossible, so we just avoid it here. | 
 | 993 | 	 */ | 
 | 994 | 	lock_page_nosync(p); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 995 |  | 
 | 996 | 	/* | 
 | 997 | 	 * unpoison always clear PG_hwpoison inside page lock | 
 | 998 | 	 */ | 
 | 999 | 	if (!PageHWPoison(p)) { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1000 | 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1001 | 		res = 0; | 
 | 1002 | 		goto out; | 
 | 1003 | 	} | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 1004 | 	if (hwpoison_filter(p)) { | 
 | 1005 | 		if (TestClearPageHWPoison(p)) | 
 | 1006 | 			atomic_long_dec(&mce_bad_pages); | 
 | 1007 | 		unlock_page(p); | 
 | 1008 | 		put_page(p); | 
 | 1009 | 		return 0; | 
 | 1010 | 	} | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1011 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1012 | 	wait_on_page_writeback(p); | 
 | 1013 |  | 
 | 1014 | 	/* | 
 | 1015 | 	 * Now take care of user space mappings. | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1016 | 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1017 | 	 */ | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1018 | 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { | 
 | 1019 | 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); | 
 | 1020 | 		res = -EBUSY; | 
 | 1021 | 		goto out; | 
 | 1022 | 	} | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1023 |  | 
 | 1024 | 	/* | 
 | 1025 | 	 * Torn down by someone else? | 
 | 1026 | 	 */ | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1027 | 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1028 | 		action_result(pfn, "already truncated LRU", IGNORED); | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1029 | 		res = -EBUSY; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1030 | 		goto out; | 
 | 1031 | 	} | 
 | 1032 |  | 
 | 1033 | 	res = -EBUSY; | 
 | 1034 | 	for (ps = error_states;; ps++) { | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1035 | 		if ((p->flags & ps->mask) == ps->res) { | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 1036 | 			res = page_action(ps, p, pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1037 | 			break; | 
 | 1038 | 		} | 
 | 1039 | 	} | 
 | 1040 | out: | 
 | 1041 | 	unlock_page(p); | 
 | 1042 | 	return res; | 
 | 1043 | } | 
 | 1044 | EXPORT_SYMBOL_GPL(__memory_failure); | 
 | 1045 |  | 
 | 1046 | /** | 
 | 1047 |  * memory_failure - Handle memory failure of a page. | 
 | 1048 |  * @pfn: Page Number of the corrupted page | 
 | 1049 |  * @trapno: Trap number reported in the signal to user space. | 
 | 1050 |  * | 
 | 1051 |  * This function is called by the low level machine check code | 
 | 1052 |  * of an architecture when it detects hardware memory corruption | 
 | 1053 |  * of a page. It tries its best to recover, which includes | 
 | 1054 |  * dropping pages, killing processes etc. | 
 | 1055 |  * | 
 | 1056 |  * The function is primarily of use for corruptions that | 
 | 1057 |  * happen outside the current execution context (e.g. when | 
 | 1058 |  * detected by a background scrubber) | 
 | 1059 |  * | 
 | 1060 |  * Must run in process context (e.g. a work queue) with interrupts | 
 | 1061 |  * enabled and no spinlocks hold. | 
 | 1062 |  */ | 
 | 1063 | void memory_failure(unsigned long pfn, int trapno) | 
 | 1064 | { | 
 | 1065 | 	__memory_failure(pfn, trapno, 0); | 
 | 1066 | } | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1067 |  | 
 | 1068 | /** | 
 | 1069 |  * unpoison_memory - Unpoison a previously poisoned page | 
 | 1070 |  * @pfn: Page number of the to be unpoisoned page | 
 | 1071 |  * | 
 | 1072 |  * Software-unpoison a page that has been poisoned by | 
 | 1073 |  * memory_failure() earlier. | 
 | 1074 |  * | 
 | 1075 |  * This is only done on the software-level, so it only works | 
 | 1076 |  * for linux injected failures, not real hardware failures | 
 | 1077 |  * | 
 | 1078 |  * Returns 0 for success, otherwise -errno. | 
 | 1079 |  */ | 
 | 1080 | int unpoison_memory(unsigned long pfn) | 
 | 1081 | { | 
 | 1082 | 	struct page *page; | 
 | 1083 | 	struct page *p; | 
 | 1084 | 	int freeit = 0; | 
 | 1085 |  | 
 | 1086 | 	if (!pfn_valid(pfn)) | 
 | 1087 | 		return -ENXIO; | 
 | 1088 |  | 
 | 1089 | 	p = pfn_to_page(pfn); | 
 | 1090 | 	page = compound_head(p); | 
 | 1091 |  | 
 | 1092 | 	if (!PageHWPoison(p)) { | 
 | 1093 | 		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); | 
 | 1094 | 		return 0; | 
 | 1095 | 	} | 
 | 1096 |  | 
 | 1097 | 	if (!get_page_unless_zero(page)) { | 
 | 1098 | 		if (TestClearPageHWPoison(p)) | 
 | 1099 | 			atomic_long_dec(&mce_bad_pages); | 
 | 1100 | 		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); | 
 | 1101 | 		return 0; | 
 | 1102 | 	} | 
 | 1103 |  | 
 | 1104 | 	lock_page_nosync(page); | 
 | 1105 | 	/* | 
 | 1106 | 	 * This test is racy because PG_hwpoison is set outside of page lock. | 
 | 1107 | 	 * That's acceptable because that won't trigger kernel panic. Instead, | 
 | 1108 | 	 * the PG_hwpoison page will be caught and isolated on the entrance to | 
 | 1109 | 	 * the free buddy page pool. | 
 | 1110 | 	 */ | 
 | 1111 | 	if (TestClearPageHWPoison(p)) { | 
 | 1112 | 		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); | 
 | 1113 | 		atomic_long_dec(&mce_bad_pages); | 
 | 1114 | 		freeit = 1; | 
 | 1115 | 	} | 
 | 1116 | 	unlock_page(page); | 
 | 1117 |  | 
 | 1118 | 	put_page(page); | 
 | 1119 | 	if (freeit) | 
 | 1120 | 		put_page(page); | 
 | 1121 |  | 
 | 1122 | 	return 0; | 
 | 1123 | } | 
 | 1124 | EXPORT_SYMBOL(unpoison_memory); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1125 |  | 
 | 1126 | static struct page *new_page(struct page *p, unsigned long private, int **x) | 
 | 1127 | { | 
| Andi Kleen | 12686d1 | 2009-12-16 12:20:01 +0100 | [diff] [blame] | 1128 | 	int nid = page_to_nid(p); | 
 | 1129 | 	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1130 | } | 
 | 1131 |  | 
 | 1132 | /* | 
 | 1133 |  * Safely get reference count of an arbitrary page. | 
 | 1134 |  * Returns 0 for a free page, -EIO for a zero refcount page | 
 | 1135 |  * that is not free, and 1 for any other page type. | 
 | 1136 |  * For 1 the page is returned with increased page count, otherwise not. | 
 | 1137 |  */ | 
 | 1138 | static int get_any_page(struct page *p, unsigned long pfn, int flags) | 
 | 1139 | { | 
 | 1140 | 	int ret; | 
 | 1141 |  | 
 | 1142 | 	if (flags & MF_COUNT_INCREASED) | 
 | 1143 | 		return 1; | 
 | 1144 |  | 
 | 1145 | 	/* | 
 | 1146 | 	 * The lock_system_sleep prevents a race with memory hotplug, | 
 | 1147 | 	 * because the isolation assumes there's only a single user. | 
 | 1148 | 	 * This is a big hammer, a better would be nicer. | 
 | 1149 | 	 */ | 
 | 1150 | 	lock_system_sleep(); | 
 | 1151 |  | 
 | 1152 | 	/* | 
 | 1153 | 	 * Isolate the page, so that it doesn't get reallocated if it | 
 | 1154 | 	 * was free. | 
 | 1155 | 	 */ | 
 | 1156 | 	set_migratetype_isolate(p); | 
 | 1157 | 	if (!get_page_unless_zero(compound_head(p))) { | 
 | 1158 | 		if (is_free_buddy_page(p)) { | 
 | 1159 | 			pr_debug("get_any_page: %#lx free buddy page\n", pfn); | 
 | 1160 | 			/* Set hwpoison bit while page is still isolated */ | 
 | 1161 | 			SetPageHWPoison(p); | 
 | 1162 | 			ret = 0; | 
 | 1163 | 		} else { | 
 | 1164 | 			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", | 
 | 1165 | 				pfn, p->flags); | 
 | 1166 | 			ret = -EIO; | 
 | 1167 | 		} | 
 | 1168 | 	} else { | 
 | 1169 | 		/* Not a free page */ | 
 | 1170 | 		ret = 1; | 
 | 1171 | 	} | 
 | 1172 | 	unset_migratetype_isolate(p); | 
 | 1173 | 	unlock_system_sleep(); | 
 | 1174 | 	return ret; | 
 | 1175 | } | 
 | 1176 |  | 
 | 1177 | /** | 
 | 1178 |  * soft_offline_page - Soft offline a page. | 
 | 1179 |  * @page: page to offline | 
 | 1180 |  * @flags: flags. Same as memory_failure(). | 
 | 1181 |  * | 
 | 1182 |  * Returns 0 on success, otherwise negated errno. | 
 | 1183 |  * | 
 | 1184 |  * Soft offline a page, by migration or invalidation, | 
 | 1185 |  * without killing anything. This is for the case when | 
 | 1186 |  * a page is not corrupted yet (so it's still valid to access), | 
 | 1187 |  * but has had a number of corrected errors and is better taken | 
 | 1188 |  * out. | 
 | 1189 |  * | 
 | 1190 |  * The actual policy on when to do that is maintained by | 
 | 1191 |  * user space. | 
 | 1192 |  * | 
 | 1193 |  * This should never impact any application or cause data loss, | 
 | 1194 |  * however it might take some time. | 
 | 1195 |  * | 
 | 1196 |  * This is not a 100% solution for all memory, but tries to be | 
 | 1197 |  * ``good enough'' for the majority of memory. | 
 | 1198 |  */ | 
 | 1199 | int soft_offline_page(struct page *page, int flags) | 
 | 1200 | { | 
 | 1201 | 	int ret; | 
 | 1202 | 	unsigned long pfn = page_to_pfn(page); | 
 | 1203 |  | 
 | 1204 | 	ret = get_any_page(page, pfn, flags); | 
 | 1205 | 	if (ret < 0) | 
 | 1206 | 		return ret; | 
 | 1207 | 	if (ret == 0) | 
 | 1208 | 		goto done; | 
 | 1209 |  | 
 | 1210 | 	/* | 
 | 1211 | 	 * Page cache page we can handle? | 
 | 1212 | 	 */ | 
 | 1213 | 	if (!PageLRU(page)) { | 
 | 1214 | 		/* | 
 | 1215 | 		 * Try to free it. | 
 | 1216 | 		 */ | 
 | 1217 | 		put_page(page); | 
 | 1218 | 		shake_page(page, 1); | 
 | 1219 |  | 
 | 1220 | 		/* | 
 | 1221 | 		 * Did it turn free? | 
 | 1222 | 		 */ | 
 | 1223 | 		ret = get_any_page(page, pfn, 0); | 
 | 1224 | 		if (ret < 0) | 
 | 1225 | 			return ret; | 
 | 1226 | 		if (ret == 0) | 
 | 1227 | 			goto done; | 
 | 1228 | 	} | 
 | 1229 | 	if (!PageLRU(page)) { | 
 | 1230 | 		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", | 
 | 1231 | 				pfn, page->flags); | 
 | 1232 | 		return -EIO; | 
 | 1233 | 	} | 
 | 1234 |  | 
 | 1235 | 	lock_page(page); | 
 | 1236 | 	wait_on_page_writeback(page); | 
 | 1237 |  | 
 | 1238 | 	/* | 
 | 1239 | 	 * Synchronized using the page lock with memory_failure() | 
 | 1240 | 	 */ | 
 | 1241 | 	if (PageHWPoison(page)) { | 
 | 1242 | 		unlock_page(page); | 
 | 1243 | 		put_page(page); | 
 | 1244 | 		pr_debug("soft offline: %#lx page already poisoned\n", pfn); | 
 | 1245 | 		return -EBUSY; | 
 | 1246 | 	} | 
 | 1247 |  | 
 | 1248 | 	/* | 
 | 1249 | 	 * Try to invalidate first. This should work for | 
 | 1250 | 	 * non dirty unmapped page cache pages. | 
 | 1251 | 	 */ | 
 | 1252 | 	ret = invalidate_inode_page(page); | 
 | 1253 | 	unlock_page(page); | 
 | 1254 |  | 
 | 1255 | 	/* | 
 | 1256 | 	 * Drop count because page migration doesn't like raised | 
 | 1257 | 	 * counts. The page could get re-allocated, but if it becomes | 
 | 1258 | 	 * LRU the isolation will just fail. | 
 | 1259 | 	 * RED-PEN would be better to keep it isolated here, but we | 
 | 1260 | 	 * would need to fix isolation locking first. | 
 | 1261 | 	 */ | 
 | 1262 | 	put_page(page); | 
 | 1263 | 	if (ret == 1) { | 
 | 1264 | 		ret = 0; | 
 | 1265 | 		pr_debug("soft_offline: %#lx: invalidated\n", pfn); | 
 | 1266 | 		goto done; | 
 | 1267 | 	} | 
 | 1268 |  | 
 | 1269 | 	/* | 
 | 1270 | 	 * Simple invalidation didn't work. | 
 | 1271 | 	 * Try to migrate to a new page instead. migrate.c | 
 | 1272 | 	 * handles a large number of cases for us. | 
 | 1273 | 	 */ | 
 | 1274 | 	ret = isolate_lru_page(page); | 
 | 1275 | 	if (!ret) { | 
 | 1276 | 		LIST_HEAD(pagelist); | 
 | 1277 |  | 
 | 1278 | 		list_add(&page->lru, &pagelist); | 
 | 1279 | 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | 
 | 1280 | 		if (ret) { | 
 | 1281 | 			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", | 
 | 1282 | 				pfn, ret, page->flags); | 
 | 1283 | 			if (ret > 0) | 
 | 1284 | 				ret = -EIO; | 
 | 1285 | 		} | 
 | 1286 | 	} else { | 
 | 1287 | 		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", | 
 | 1288 | 				pfn, ret, page_count(page), page->flags); | 
 | 1289 | 	} | 
 | 1290 | 	if (ret) | 
 | 1291 | 		return ret; | 
 | 1292 |  | 
 | 1293 | done: | 
 | 1294 | 	atomic_long_add(1, &mce_bad_pages); | 
 | 1295 | 	SetPageHWPoison(page); | 
 | 1296 | 	/* keep elevated page count for bad page */ | 
 | 1297 | 	return ret; | 
 | 1298 | } |