blob: 0aafe85362fd0b02098198b841e8667e70acb033 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200292/*
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
295 */
296static void
297list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298{
299 struct perf_event *group_leader = event->group_leader;
300
301 /*
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
305 */
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
311 }
312
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
317}
318
319/*
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
322 */
323static void
324list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325{
326 struct perf_event *sibling, *tmp;
327
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
333
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
336
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
339
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100340 update_event_times(event);
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100341 event->state = PERF_EVENT_STATE_OFF;
342
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349
350 list_move_tail(&sibling->group_entry, &ctx->group_list);
351 sibling->group_leader = sibling;
352 }
353}
354
355static void
356event_sched_out(struct perf_event *event,
357 struct perf_cpu_context *cpuctx,
358 struct perf_event_context *ctx)
359{
360 if (event->state != PERF_EVENT_STATE_ACTIVE)
361 return;
362
363 event->state = PERF_EVENT_STATE_INACTIVE;
364 if (event->pending_disable) {
365 event->pending_disable = 0;
366 event->state = PERF_EVENT_STATE_OFF;
367 }
368 event->tstamp_stopped = ctx->time;
369 event->pmu->disable(event);
370 event->oncpu = -1;
371
372 if (!is_software_event(event))
373 cpuctx->active_oncpu--;
374 ctx->nr_active--;
375 if (event->attr.exclusive || !cpuctx->active_oncpu)
376 cpuctx->exclusive = 0;
377}
378
379static void
380group_sched_out(struct perf_event *group_event,
381 struct perf_cpu_context *cpuctx,
382 struct perf_event_context *ctx)
383{
384 struct perf_event *event;
385
386 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
387 return;
388
389 event_sched_out(group_event, cpuctx, ctx);
390
391 /*
392 * Schedule out siblings (if any):
393 */
394 list_for_each_entry(event, &group_event->sibling_list, group_entry)
395 event_sched_out(event, cpuctx, ctx);
396
397 if (group_event->attr.exclusive)
398 cpuctx->exclusive = 0;
399}
400
401/*
402 * Cross CPU call to remove a performance event
403 *
404 * We disable the event on the hardware level first. After that we
405 * remove it from the context list.
406 */
407static void __perf_event_remove_from_context(void *info)
408{
409 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
410 struct perf_event *event = info;
411 struct perf_event_context *ctx = event->ctx;
412
413 /*
414 * If this is a task context, we need to check whether it is
415 * the current task context of this cpu. If not it has been
416 * scheduled out before the smp call arrived.
417 */
418 if (ctx->task && cpuctx->task_ctx != ctx)
419 return;
420
421 spin_lock(&ctx->lock);
422 /*
423 * Protect the list operation against NMI by disabling the
424 * events on a global level.
425 */
426 perf_disable();
427
428 event_sched_out(event, cpuctx, ctx);
429
430 list_del_event(event, ctx);
431
432 if (!ctx->task) {
433 /*
434 * Allow more per task events with respect to the
435 * reservation:
436 */
437 cpuctx->max_pertask =
438 min(perf_max_events - ctx->nr_events,
439 perf_max_events - perf_reserved_percpu);
440 }
441
442 perf_enable();
443 spin_unlock(&ctx->lock);
444}
445
446
447/*
448 * Remove the event from a task's (or a CPU's) list of events.
449 *
450 * Must be called with ctx->mutex held.
451 *
452 * CPU events are removed with a smp call. For task events we only
453 * call when the task is on a CPU.
454 *
455 * If event->ctx is a cloned context, callers must make sure that
456 * every task struct that event->ctx->task could possibly point to
457 * remains valid. This is OK when called from perf_release since
458 * that only calls us on the top-level context, which can't be a clone.
459 * When called from perf_event_exit_task, it's OK because the
460 * context has been detached from its task.
461 */
462static void perf_event_remove_from_context(struct perf_event *event)
463{
464 struct perf_event_context *ctx = event->ctx;
465 struct task_struct *task = ctx->task;
466
467 if (!task) {
468 /*
469 * Per cpu events are removed via an smp call and
470 * the removal is always sucessful.
471 */
472 smp_call_function_single(event->cpu,
473 __perf_event_remove_from_context,
474 event, 1);
475 return;
476 }
477
478retry:
479 task_oncpu_function_call(task, __perf_event_remove_from_context,
480 event);
481
482 spin_lock_irq(&ctx->lock);
483 /*
484 * If the context is active we need to retry the smp call.
485 */
486 if (ctx->nr_active && !list_empty(&event->group_entry)) {
487 spin_unlock_irq(&ctx->lock);
488 goto retry;
489 }
490
491 /*
492 * The lock prevents that this context is scheduled in so we
493 * can remove the event safely, if the call above did not
494 * succeed.
495 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100496 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200497 list_del_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 spin_unlock_irq(&ctx->lock);
499}
500
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200501/*
502 * Update total_time_enabled and total_time_running for all events in a group.
503 */
504static void update_group_times(struct perf_event *leader)
505{
506 struct perf_event *event;
507
508 update_event_times(leader);
509 list_for_each_entry(event, &leader->sibling_list, group_entry)
510 update_event_times(event);
511}
512
513/*
514 * Cross CPU call to disable a performance event
515 */
516static void __perf_event_disable(void *info)
517{
518 struct perf_event *event = info;
519 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
520 struct perf_event_context *ctx = event->ctx;
521
522 /*
523 * If this is a per-task event, need to check whether this
524 * event's task is the current task on this cpu.
525 */
526 if (ctx->task && cpuctx->task_ctx != ctx)
527 return;
528
529 spin_lock(&ctx->lock);
530
531 /*
532 * If the event is on, turn it off.
533 * If it is in error state, leave it in error state.
534 */
535 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
536 update_context_time(ctx);
537 update_group_times(event);
538 if (event == event->group_leader)
539 group_sched_out(event, cpuctx, ctx);
540 else
541 event_sched_out(event, cpuctx, ctx);
542 event->state = PERF_EVENT_STATE_OFF;
543 }
544
545 spin_unlock(&ctx->lock);
546}
547
548/*
549 * Disable a event.
550 *
551 * If event->ctx is a cloned context, callers must make sure that
552 * every task struct that event->ctx->task could possibly point to
553 * remains valid. This condition is satisifed when called through
554 * perf_event_for_each_child or perf_event_for_each because they
555 * hold the top-level event's child_mutex, so any descendant that
556 * goes to exit will block in sync_child_event.
557 * When called from perf_pending_event it's OK because event->ctx
558 * is the current context on this CPU and preemption is disabled,
559 * hence we can't get into perf_event_task_sched_out for this context.
560 */
561static void perf_event_disable(struct perf_event *event)
562{
563 struct perf_event_context *ctx = event->ctx;
564 struct task_struct *task = ctx->task;
565
566 if (!task) {
567 /*
568 * Disable the event on the cpu that it's on
569 */
570 smp_call_function_single(event->cpu, __perf_event_disable,
571 event, 1);
572 return;
573 }
574
575 retry:
576 task_oncpu_function_call(task, __perf_event_disable, event);
577
578 spin_lock_irq(&ctx->lock);
579 /*
580 * If the event is still active, we need to retry the cross-call.
581 */
582 if (event->state == PERF_EVENT_STATE_ACTIVE) {
583 spin_unlock_irq(&ctx->lock);
584 goto retry;
585 }
586
587 /*
588 * Since we have the lock this context can't be scheduled
589 * in, so we can change the state safely.
590 */
591 if (event->state == PERF_EVENT_STATE_INACTIVE) {
592 update_group_times(event);
593 event->state = PERF_EVENT_STATE_OFF;
594 }
595
596 spin_unlock_irq(&ctx->lock);
597}
598
599static int
600event_sched_in(struct perf_event *event,
601 struct perf_cpu_context *cpuctx,
602 struct perf_event_context *ctx,
603 int cpu)
604{
605 if (event->state <= PERF_EVENT_STATE_OFF)
606 return 0;
607
608 event->state = PERF_EVENT_STATE_ACTIVE;
609 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
610 /*
611 * The new state must be visible before we turn it on in the hardware:
612 */
613 smp_wmb();
614
615 if (event->pmu->enable(event)) {
616 event->state = PERF_EVENT_STATE_INACTIVE;
617 event->oncpu = -1;
618 return -EAGAIN;
619 }
620
621 event->tstamp_running += ctx->time - event->tstamp_stopped;
622
623 if (!is_software_event(event))
624 cpuctx->active_oncpu++;
625 ctx->nr_active++;
626
627 if (event->attr.exclusive)
628 cpuctx->exclusive = 1;
629
630 return 0;
631}
632
633static int
634group_sched_in(struct perf_event *group_event,
635 struct perf_cpu_context *cpuctx,
636 struct perf_event_context *ctx,
637 int cpu)
638{
639 struct perf_event *event, *partial_group;
640 int ret;
641
642 if (group_event->state == PERF_EVENT_STATE_OFF)
643 return 0;
644
645 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
646 if (ret)
647 return ret < 0 ? ret : 0;
648
649 if (event_sched_in(group_event, cpuctx, ctx, cpu))
650 return -EAGAIN;
651
652 /*
653 * Schedule in siblings as one group (if any):
654 */
655 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
656 if (event_sched_in(event, cpuctx, ctx, cpu)) {
657 partial_group = event;
658 goto group_error;
659 }
660 }
661
662 return 0;
663
664group_error:
665 /*
666 * Groups can be scheduled in as one unit only, so undo any
667 * partial group before returning:
668 */
669 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
670 if (event == partial_group)
671 break;
672 event_sched_out(event, cpuctx, ctx);
673 }
674 event_sched_out(group_event, cpuctx, ctx);
675
676 return -EAGAIN;
677}
678
679/*
680 * Return 1 for a group consisting entirely of software events,
681 * 0 if the group contains any hardware events.
682 */
683static int is_software_only_group(struct perf_event *leader)
684{
685 struct perf_event *event;
686
687 if (!is_software_event(leader))
688 return 0;
689
690 list_for_each_entry(event, &leader->sibling_list, group_entry)
691 if (!is_software_event(event))
692 return 0;
693
694 return 1;
695}
696
697/*
698 * Work out whether we can put this event group on the CPU now.
699 */
700static int group_can_go_on(struct perf_event *event,
701 struct perf_cpu_context *cpuctx,
702 int can_add_hw)
703{
704 /*
705 * Groups consisting entirely of software events can always go on.
706 */
707 if (is_software_only_group(event))
708 return 1;
709 /*
710 * If an exclusive group is already on, no other hardware
711 * events can go on.
712 */
713 if (cpuctx->exclusive)
714 return 0;
715 /*
716 * If this group is exclusive and there are already
717 * events on the CPU, it can't go on.
718 */
719 if (event->attr.exclusive && cpuctx->active_oncpu)
720 return 0;
721 /*
722 * Otherwise, try to add it if all previous groups were able
723 * to go on.
724 */
725 return can_add_hw;
726}
727
728static void add_event_to_ctx(struct perf_event *event,
729 struct perf_event_context *ctx)
730{
731 list_add_event(event, ctx);
732 event->tstamp_enabled = ctx->time;
733 event->tstamp_running = ctx->time;
734 event->tstamp_stopped = ctx->time;
735}
736
737/*
738 * Cross CPU call to install and enable a performance event
739 *
740 * Must be called with ctx->mutex held
741 */
742static void __perf_install_in_context(void *info)
743{
744 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
745 struct perf_event *event = info;
746 struct perf_event_context *ctx = event->ctx;
747 struct perf_event *leader = event->group_leader;
748 int cpu = smp_processor_id();
749 int err;
750
751 /*
752 * If this is a task context, we need to check whether it is
753 * the current task context of this cpu. If not it has been
754 * scheduled out before the smp call arrived.
755 * Or possibly this is the right context but it isn't
756 * on this cpu because it had no events.
757 */
758 if (ctx->task && cpuctx->task_ctx != ctx) {
759 if (cpuctx->task_ctx || ctx->task != current)
760 return;
761 cpuctx->task_ctx = ctx;
762 }
763
764 spin_lock(&ctx->lock);
765 ctx->is_active = 1;
766 update_context_time(ctx);
767
768 /*
769 * Protect the list operation against NMI by disabling the
770 * events on a global level. NOP for non NMI based events.
771 */
772 perf_disable();
773
774 add_event_to_ctx(event, ctx);
775
776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
792 err = event_sched_in(event, cpuctx, ctx, cpu);
793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
814 spin_unlock(&ctx->lock);
815}
816
817/*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829static void
830perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833{
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
839 * the install is always sucessful.
840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
850 spin_lock_irq(&ctx->lock);
851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
855 spin_unlock_irq(&ctx->lock);
856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
866 spin_unlock_irq(&ctx->lock);
867}
868
869/*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879{
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888}
889
890/*
891 * Cross CPU call to enable a performance event
892 */
893static void __perf_event_enable(void *info)
894{
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
911 spin_lock(&ctx->lock);
912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
919 /*
920 * If the event is in a group and isn't the group leader,
921 * then don't put it on unless the group is on.
922 */
923 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
924 goto unlock;
925
926 if (!group_can_go_on(event, cpuctx, 1)) {
927 err = -EEXIST;
928 } else {
929 perf_disable();
930 if (event == leader)
931 err = group_sched_in(event, cpuctx, ctx,
932 smp_processor_id());
933 else
934 err = event_sched_in(event, cpuctx, ctx,
935 smp_processor_id());
936 perf_enable();
937 }
938
939 if (err) {
940 /*
941 * If this event can't go on and it's part of a
942 * group, then the whole group has to come off.
943 */
944 if (leader != event)
945 group_sched_out(leader, cpuctx, ctx);
946 if (leader->attr.pinned) {
947 update_group_times(leader);
948 leader->state = PERF_EVENT_STATE_ERROR;
949 }
950 }
951
952 unlock:
953 spin_unlock(&ctx->lock);
954}
955
956/*
957 * Enable a event.
958 *
959 * If event->ctx is a cloned context, callers must make sure that
960 * every task struct that event->ctx->task could possibly point to
961 * remains valid. This condition is satisfied when called through
962 * perf_event_for_each_child or perf_event_for_each as described
963 * for perf_event_disable.
964 */
965static void perf_event_enable(struct perf_event *event)
966{
967 struct perf_event_context *ctx = event->ctx;
968 struct task_struct *task = ctx->task;
969
970 if (!task) {
971 /*
972 * Enable the event on the cpu that it's on
973 */
974 smp_call_function_single(event->cpu, __perf_event_enable,
975 event, 1);
976 return;
977 }
978
979 spin_lock_irq(&ctx->lock);
980 if (event->state >= PERF_EVENT_STATE_INACTIVE)
981 goto out;
982
983 /*
984 * If the event is in error state, clear that first.
985 * That way, if we see the event in error state below, we
986 * know that it has gone back into error state, as distinct
987 * from the task having been scheduled away before the
988 * cross-call arrived.
989 */
990 if (event->state == PERF_EVENT_STATE_ERROR)
991 event->state = PERF_EVENT_STATE_OFF;
992
993 retry:
994 spin_unlock_irq(&ctx->lock);
995 task_oncpu_function_call(task, __perf_event_enable, event);
996
997 spin_lock_irq(&ctx->lock);
998
999 /*
1000 * If the context is active and the event is still off,
1001 * we need to retry the cross-call.
1002 */
1003 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1004 goto retry;
1005
1006 /*
1007 * Since we have the lock this context can't be scheduled
1008 * in, so we can change the state safely.
1009 */
1010 if (event->state == PERF_EVENT_STATE_OFF)
1011 __perf_event_mark_enabled(event, ctx);
1012
1013 out:
1014 spin_unlock_irq(&ctx->lock);
1015}
1016
1017static int perf_event_refresh(struct perf_event *event, int refresh)
1018{
1019 /*
1020 * not supported on inherited events
1021 */
1022 if (event->attr.inherit)
1023 return -EINVAL;
1024
1025 atomic_add(refresh, &event->event_limit);
1026 perf_event_enable(event);
1027
1028 return 0;
1029}
1030
1031void __perf_event_sched_out(struct perf_event_context *ctx,
1032 struct perf_cpu_context *cpuctx)
1033{
1034 struct perf_event *event;
1035
1036 spin_lock(&ctx->lock);
1037 ctx->is_active = 0;
1038 if (likely(!ctx->nr_events))
1039 goto out;
1040 update_context_time(ctx);
1041
1042 perf_disable();
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001043 if (ctx->nr_active) {
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001044 list_for_each_entry(event, &ctx->group_list, group_entry)
1045 group_sched_out(event, cpuctx, ctx);
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001046 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001047 perf_enable();
1048 out:
1049 spin_unlock(&ctx->lock);
1050}
1051
1052/*
1053 * Test whether two contexts are equivalent, i.e. whether they
1054 * have both been cloned from the same version of the same context
1055 * and they both have the same number of enabled events.
1056 * If the number of enabled events is the same, then the set
1057 * of enabled events should be the same, because these are both
1058 * inherited contexts, therefore we can't access individual events
1059 * in them directly with an fd; we can only enable/disable all
1060 * events via prctl, or enable/disable all events in a family
1061 * via ioctl, which will have the same effect on both contexts.
1062 */
1063static int context_equiv(struct perf_event_context *ctx1,
1064 struct perf_event_context *ctx2)
1065{
1066 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1067 && ctx1->parent_gen == ctx2->parent_gen
1068 && !ctx1->pin_count && !ctx2->pin_count;
1069}
1070
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001071static void __perf_event_sync_stat(struct perf_event *event,
1072 struct perf_event *next_event)
1073{
1074 u64 value;
1075
1076 if (!event->attr.inherit_stat)
1077 return;
1078
1079 /*
1080 * Update the event value, we cannot use perf_event_read()
1081 * because we're in the middle of a context switch and have IRQs
1082 * disabled, which upsets smp_call_function_single(), however
1083 * we know the event must be on the current CPU, therefore we
1084 * don't need to use it.
1085 */
1086 switch (event->state) {
1087 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001088 event->pmu->read(event);
1089 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001090
1091 case PERF_EVENT_STATE_INACTIVE:
1092 update_event_times(event);
1093 break;
1094
1095 default:
1096 break;
1097 }
1098
1099 /*
1100 * In order to keep per-task stats reliable we need to flip the event
1101 * values when we flip the contexts.
1102 */
1103 value = atomic64_read(&next_event->count);
1104 value = atomic64_xchg(&event->count, value);
1105 atomic64_set(&next_event->count, value);
1106
1107 swap(event->total_time_enabled, next_event->total_time_enabled);
1108 swap(event->total_time_running, next_event->total_time_running);
1109
1110 /*
1111 * Since we swizzled the values, update the user visible data too.
1112 */
1113 perf_event_update_userpage(event);
1114 perf_event_update_userpage(next_event);
1115}
1116
1117#define list_next_entry(pos, member) \
1118 list_entry(pos->member.next, typeof(*pos), member)
1119
1120static void perf_event_sync_stat(struct perf_event_context *ctx,
1121 struct perf_event_context *next_ctx)
1122{
1123 struct perf_event *event, *next_event;
1124
1125 if (!ctx->nr_stat)
1126 return;
1127
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001128 update_context_time(ctx);
1129
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001130 event = list_first_entry(&ctx->event_list,
1131 struct perf_event, event_entry);
1132
1133 next_event = list_first_entry(&next_ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 while (&event->event_entry != &ctx->event_list &&
1137 &next_event->event_entry != &next_ctx->event_list) {
1138
1139 __perf_event_sync_stat(event, next_event);
1140
1141 event = list_next_entry(event, event_entry);
1142 next_event = list_next_entry(next_event, event_entry);
1143 }
1144}
1145
1146/*
1147 * Called from scheduler to remove the events of the current task,
1148 * with interrupts disabled.
1149 *
1150 * We stop each event and update the event value in event->count.
1151 *
1152 * This does not protect us against NMI, but disable()
1153 * sets the disabled bit in the control field of event _before_
1154 * accessing the event control register. If a NMI hits, then it will
1155 * not restart the event.
1156 */
1157void perf_event_task_sched_out(struct task_struct *task,
1158 struct task_struct *next, int cpu)
1159{
1160 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1161 struct perf_event_context *ctx = task->perf_event_ctxp;
1162 struct perf_event_context *next_ctx;
1163 struct perf_event_context *parent;
1164 struct pt_regs *regs;
1165 int do_switch = 1;
1166
1167 regs = task_pt_regs(task);
1168 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1169
1170 if (likely(!ctx || !cpuctx->task_ctx))
1171 return;
1172
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001173 rcu_read_lock();
1174 parent = rcu_dereference(ctx->parent_ctx);
1175 next_ctx = next->perf_event_ctxp;
1176 if (parent && next_ctx &&
1177 rcu_dereference(next_ctx->parent_ctx) == parent) {
1178 /*
1179 * Looks like the two contexts are clones, so we might be
1180 * able to optimize the context switch. We lock both
1181 * contexts and check that they are clones under the
1182 * lock (including re-checking that neither has been
1183 * uncloned in the meantime). It doesn't matter which
1184 * order we take the locks because no other cpu could
1185 * be trying to lock both of these tasks.
1186 */
1187 spin_lock(&ctx->lock);
1188 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1189 if (context_equiv(ctx, next_ctx)) {
1190 /*
1191 * XXX do we need a memory barrier of sorts
1192 * wrt to rcu_dereference() of perf_event_ctxp
1193 */
1194 task->perf_event_ctxp = next_ctx;
1195 next->perf_event_ctxp = ctx;
1196 ctx->task = next;
1197 next_ctx->task = task;
1198 do_switch = 0;
1199
1200 perf_event_sync_stat(ctx, next_ctx);
1201 }
1202 spin_unlock(&next_ctx->lock);
1203 spin_unlock(&ctx->lock);
1204 }
1205 rcu_read_unlock();
1206
1207 if (do_switch) {
1208 __perf_event_sched_out(ctx, cpuctx);
1209 cpuctx->task_ctx = NULL;
1210 }
1211}
1212
1213/*
1214 * Called with IRQs disabled
1215 */
1216static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1217{
1218 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1219
1220 if (!cpuctx->task_ctx)
1221 return;
1222
1223 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1224 return;
1225
1226 __perf_event_sched_out(ctx, cpuctx);
1227 cpuctx->task_ctx = NULL;
1228}
1229
1230/*
1231 * Called with IRQs disabled
1232 */
1233static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1234{
1235 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1236}
1237
1238static void
1239__perf_event_sched_in(struct perf_event_context *ctx,
1240 struct perf_cpu_context *cpuctx, int cpu)
1241{
1242 struct perf_event *event;
1243 int can_add_hw = 1;
1244
1245 spin_lock(&ctx->lock);
1246 ctx->is_active = 1;
1247 if (likely(!ctx->nr_events))
1248 goto out;
1249
1250 ctx->timestamp = perf_clock();
1251
1252 perf_disable();
1253
1254 /*
1255 * First go through the list and put on any pinned groups
1256 * in order to give them the best chance of going on.
1257 */
1258 list_for_each_entry(event, &ctx->group_list, group_entry) {
1259 if (event->state <= PERF_EVENT_STATE_OFF ||
1260 !event->attr.pinned)
1261 continue;
1262 if (event->cpu != -1 && event->cpu != cpu)
1263 continue;
1264
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001265 if (group_can_go_on(event, cpuctx, 1))
1266 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001267
1268 /*
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1271 */
1272 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1273 update_group_times(event);
1274 event->state = PERF_EVENT_STATE_ERROR;
1275 }
1276 }
1277
1278 list_for_each_entry(event, &ctx->group_list, group_entry) {
1279 /*
1280 * Ignore events in OFF or ERROR state, and
1281 * ignore pinned events since we did them already.
1282 */
1283 if (event->state <= PERF_EVENT_STATE_OFF ||
1284 event->attr.pinned)
1285 continue;
1286
1287 /*
1288 * Listen to the 'cpu' scheduling filter constraint
1289 * of events:
1290 */
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, can_add_hw))
1295 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001297 }
1298 perf_enable();
1299 out:
1300 spin_unlock(&ctx->lock);
1301}
1302
1303/*
1304 * Called from scheduler to add the events of the current task
1305 * with interrupts disabled.
1306 *
1307 * We restore the event value and then enable it.
1308 *
1309 * This does not protect us against NMI, but enable()
1310 * sets the enabled bit in the control field of event _before_
1311 * accessing the event control register. If a NMI hits, then it will
1312 * keep the event running.
1313 */
1314void perf_event_task_sched_in(struct task_struct *task, int cpu)
1315{
1316 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1317 struct perf_event_context *ctx = task->perf_event_ctxp;
1318
1319 if (likely(!ctx))
1320 return;
1321 if (cpuctx->task_ctx == ctx)
1322 return;
1323 __perf_event_sched_in(ctx, cpuctx, cpu);
1324 cpuctx->task_ctx = ctx;
1325}
1326
1327static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1328{
1329 struct perf_event_context *ctx = &cpuctx->ctx;
1330
1331 __perf_event_sched_in(ctx, cpuctx, cpu);
1332}
1333
1334#define MAX_INTERRUPTS (~0ULL)
1335
1336static void perf_log_throttle(struct perf_event *event, int enable);
1337
1338static void perf_adjust_period(struct perf_event *event, u64 events)
1339{
1340 struct hw_perf_event *hwc = &event->hw;
1341 u64 period, sample_period;
1342 s64 delta;
1343
1344 events *= hwc->sample_period;
1345 period = div64_u64(events, event->attr.sample_freq);
1346
1347 delta = (s64)(period - hwc->sample_period);
1348 delta = (delta + 7) / 8; /* low pass filter */
1349
1350 sample_period = hwc->sample_period + delta;
1351
1352 if (!sample_period)
1353 sample_period = 1;
1354
1355 hwc->sample_period = sample_period;
1356}
1357
1358static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1359{
1360 struct perf_event *event;
1361 struct hw_perf_event *hwc;
1362 u64 interrupts, freq;
1363
1364 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001365 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001366 if (event->state != PERF_EVENT_STATE_ACTIVE)
1367 continue;
1368
1369 hwc = &event->hw;
1370
1371 interrupts = hwc->interrupts;
1372 hwc->interrupts = 0;
1373
1374 /*
1375 * unthrottle events on the tick
1376 */
1377 if (interrupts == MAX_INTERRUPTS) {
1378 perf_log_throttle(event, 1);
1379 event->pmu->unthrottle(event);
1380 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1381 }
1382
1383 if (!event->attr.freq || !event->attr.sample_freq)
1384 continue;
1385
1386 /*
1387 * if the specified freq < HZ then we need to skip ticks
1388 */
1389 if (event->attr.sample_freq < HZ) {
1390 freq = event->attr.sample_freq;
1391
1392 hwc->freq_count += freq;
1393 hwc->freq_interrupts += interrupts;
1394
1395 if (hwc->freq_count < HZ)
1396 continue;
1397
1398 interrupts = hwc->freq_interrupts;
1399 hwc->freq_interrupts = 0;
1400 hwc->freq_count -= HZ;
1401 } else
1402 freq = HZ;
1403
1404 perf_adjust_period(event, freq * interrupts);
1405
1406 /*
1407 * In order to avoid being stalled by an (accidental) huge
1408 * sample period, force reset the sample period if we didn't
1409 * get any events in this freq period.
1410 */
1411 if (!interrupts) {
1412 perf_disable();
1413 event->pmu->disable(event);
1414 atomic64_set(&hwc->period_left, 0);
1415 event->pmu->enable(event);
1416 perf_enable();
1417 }
1418 }
1419 spin_unlock(&ctx->lock);
1420}
1421
1422/*
1423 * Round-robin a context's events:
1424 */
1425static void rotate_ctx(struct perf_event_context *ctx)
1426{
1427 struct perf_event *event;
1428
1429 if (!ctx->nr_events)
1430 return;
1431
1432 spin_lock(&ctx->lock);
1433 /*
1434 * Rotate the first entry last (works just fine for group events too):
1435 */
1436 perf_disable();
1437 list_for_each_entry(event, &ctx->group_list, group_entry) {
1438 list_move_tail(&event->group_entry, &ctx->group_list);
1439 break;
1440 }
1441 perf_enable();
1442
1443 spin_unlock(&ctx->lock);
1444}
1445
1446void perf_event_task_tick(struct task_struct *curr, int cpu)
1447{
1448 struct perf_cpu_context *cpuctx;
1449 struct perf_event_context *ctx;
1450
1451 if (!atomic_read(&nr_events))
1452 return;
1453
1454 cpuctx = &per_cpu(perf_cpu_context, cpu);
1455 ctx = curr->perf_event_ctxp;
1456
1457 perf_ctx_adjust_freq(&cpuctx->ctx);
1458 if (ctx)
1459 perf_ctx_adjust_freq(ctx);
1460
1461 perf_event_cpu_sched_out(cpuctx);
1462 if (ctx)
1463 __perf_event_task_sched_out(ctx);
1464
1465 rotate_ctx(&cpuctx->ctx);
1466 if (ctx)
1467 rotate_ctx(ctx);
1468
1469 perf_event_cpu_sched_in(cpuctx, cpu);
1470 if (ctx)
1471 perf_event_task_sched_in(curr, cpu);
1472}
1473
1474/*
1475 * Enable all of a task's events that have been marked enable-on-exec.
1476 * This expects task == current.
1477 */
1478static void perf_event_enable_on_exec(struct task_struct *task)
1479{
1480 struct perf_event_context *ctx;
1481 struct perf_event *event;
1482 unsigned long flags;
1483 int enabled = 0;
1484
1485 local_irq_save(flags);
1486 ctx = task->perf_event_ctxp;
1487 if (!ctx || !ctx->nr_events)
1488 goto out;
1489
1490 __perf_event_task_sched_out(ctx);
1491
1492 spin_lock(&ctx->lock);
1493
1494 list_for_each_entry(event, &ctx->group_list, group_entry) {
1495 if (!event->attr.enable_on_exec)
1496 continue;
1497 event->attr.enable_on_exec = 0;
1498 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1499 continue;
1500 __perf_event_mark_enabled(event, ctx);
1501 enabled = 1;
1502 }
1503
1504 /*
1505 * Unclone this context if we enabled any event.
1506 */
1507 if (enabled)
1508 unclone_ctx(ctx);
1509
1510 spin_unlock(&ctx->lock);
1511
1512 perf_event_task_sched_in(task, smp_processor_id());
1513 out:
1514 local_irq_restore(flags);
1515}
1516
1517/*
1518 * Cross CPU call to read the hardware event
1519 */
1520static void __perf_event_read(void *info)
1521{
1522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1523 struct perf_event *event = info;
1524 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001525
1526 /*
1527 * If this is a task context, we need to check whether it is
1528 * the current task context of this cpu. If not it has been
1529 * scheduled out before the smp call arrived. In that case
1530 * event->count would have been updated to a recent sample
1531 * when the event was scheduled out.
1532 */
1533 if (ctx->task && cpuctx->task_ctx != ctx)
1534 return;
1535
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001536 spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001537 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001538 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001539 spin_unlock(&ctx->lock);
1540
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001541 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001542}
1543
1544static u64 perf_event_read(struct perf_event *event)
1545{
1546 /*
1547 * If event is enabled and currently active on a CPU, update the
1548 * value in the event structure:
1549 */
1550 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1551 smp_call_function_single(event->oncpu,
1552 __perf_event_read, event, 1);
1553 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001554 struct perf_event_context *ctx = event->ctx;
1555 unsigned long flags;
1556
1557 spin_lock_irqsave(&ctx->lock, flags);
1558 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001560 spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561 }
1562
1563 return atomic64_read(&event->count);
1564}
1565
1566/*
1567 * Initialize the perf_event context in a task_struct:
1568 */
1569static void
1570__perf_event_init_context(struct perf_event_context *ctx,
1571 struct task_struct *task)
1572{
1573 memset(ctx, 0, sizeof(*ctx));
1574 spin_lock_init(&ctx->lock);
1575 mutex_init(&ctx->mutex);
1576 INIT_LIST_HEAD(&ctx->group_list);
1577 INIT_LIST_HEAD(&ctx->event_list);
1578 atomic_set(&ctx->refcount, 1);
1579 ctx->task = task;
1580}
1581
1582static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1583{
1584 struct perf_event_context *ctx;
1585 struct perf_cpu_context *cpuctx;
1586 struct task_struct *task;
1587 unsigned long flags;
1588 int err;
1589
1590 /*
1591 * If cpu is not a wildcard then this is a percpu event:
1592 */
1593 if (cpu != -1) {
1594 /* Must be root to operate on a CPU event: */
1595 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1596 return ERR_PTR(-EACCES);
1597
1598 if (cpu < 0 || cpu > num_possible_cpus())
1599 return ERR_PTR(-EINVAL);
1600
1601 /*
1602 * We could be clever and allow to attach a event to an
1603 * offline CPU and activate it when the CPU comes up, but
1604 * that's for later.
1605 */
1606 if (!cpu_isset(cpu, cpu_online_map))
1607 return ERR_PTR(-ENODEV);
1608
1609 cpuctx = &per_cpu(perf_cpu_context, cpu);
1610 ctx = &cpuctx->ctx;
1611 get_ctx(ctx);
1612
1613 return ctx;
1614 }
1615
1616 rcu_read_lock();
1617 if (!pid)
1618 task = current;
1619 else
1620 task = find_task_by_vpid(pid);
1621 if (task)
1622 get_task_struct(task);
1623 rcu_read_unlock();
1624
1625 if (!task)
1626 return ERR_PTR(-ESRCH);
1627
1628 /*
1629 * Can't attach events to a dying task.
1630 */
1631 err = -ESRCH;
1632 if (task->flags & PF_EXITING)
1633 goto errout;
1634
1635 /* Reuse ptrace permission checks for now. */
1636 err = -EACCES;
1637 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1638 goto errout;
1639
1640 retry:
1641 ctx = perf_lock_task_context(task, &flags);
1642 if (ctx) {
1643 unclone_ctx(ctx);
1644 spin_unlock_irqrestore(&ctx->lock, flags);
1645 }
1646
1647 if (!ctx) {
1648 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1649 err = -ENOMEM;
1650 if (!ctx)
1651 goto errout;
1652 __perf_event_init_context(ctx, task);
1653 get_ctx(ctx);
1654 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1655 /*
1656 * We raced with some other task; use
1657 * the context they set.
1658 */
1659 kfree(ctx);
1660 goto retry;
1661 }
1662 get_task_struct(task);
1663 }
1664
1665 put_task_struct(task);
1666 return ctx;
1667
1668 errout:
1669 put_task_struct(task);
1670 return ERR_PTR(err);
1671}
1672
Li Zefan6fb29152009-10-15 11:21:42 +08001673static void perf_event_free_filter(struct perf_event *event);
1674
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001675static void free_event_rcu(struct rcu_head *head)
1676{
1677 struct perf_event *event;
1678
1679 event = container_of(head, struct perf_event, rcu_head);
1680 if (event->ns)
1681 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001682 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001683 kfree(event);
1684}
1685
1686static void perf_pending_sync(struct perf_event *event);
1687
1688static void free_event(struct perf_event *event)
1689{
1690 perf_pending_sync(event);
1691
1692 if (!event->parent) {
1693 atomic_dec(&nr_events);
1694 if (event->attr.mmap)
1695 atomic_dec(&nr_mmap_events);
1696 if (event->attr.comm)
1697 atomic_dec(&nr_comm_events);
1698 if (event->attr.task)
1699 atomic_dec(&nr_task_events);
1700 }
1701
1702 if (event->output) {
1703 fput(event->output->filp);
1704 event->output = NULL;
1705 }
1706
1707 if (event->destroy)
1708 event->destroy(event);
1709
1710 put_ctx(event->ctx);
1711 call_rcu(&event->rcu_head, free_event_rcu);
1712}
1713
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001714int perf_event_release_kernel(struct perf_event *event)
1715{
1716 struct perf_event_context *ctx = event->ctx;
1717
1718 WARN_ON_ONCE(ctx->parent_ctx);
1719 mutex_lock(&ctx->mutex);
1720 perf_event_remove_from_context(event);
1721 mutex_unlock(&ctx->mutex);
1722
1723 mutex_lock(&event->owner->perf_event_mutex);
1724 list_del_init(&event->owner_entry);
1725 mutex_unlock(&event->owner->perf_event_mutex);
1726 put_task_struct(event->owner);
1727
1728 free_event(event);
1729
1730 return 0;
1731}
1732EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1733
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001734/*
1735 * Called when the last reference to the file is gone.
1736 */
1737static int perf_release(struct inode *inode, struct file *file)
1738{
1739 struct perf_event *event = file->private_data;
1740
1741 file->private_data = NULL;
1742
1743 return perf_event_release_kernel(event);
1744}
1745
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001746static int perf_event_read_size(struct perf_event *event)
1747{
1748 int entry = sizeof(u64); /* value */
1749 int size = 0;
1750 int nr = 1;
1751
1752 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1753 size += sizeof(u64);
1754
1755 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1756 size += sizeof(u64);
1757
1758 if (event->attr.read_format & PERF_FORMAT_ID)
1759 entry += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1762 nr += event->group_leader->nr_siblings;
1763 size += sizeof(u64);
1764 }
1765
1766 size += entry * nr;
1767
1768 return size;
1769}
1770
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001771u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001772{
1773 struct perf_event *child;
1774 u64 total = 0;
1775
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001776 *enabled = 0;
1777 *running = 0;
1778
Peter Zijlstra6f105812009-11-20 22:19:56 +01001779 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001780 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001781 *enabled += event->total_time_enabled +
1782 atomic64_read(&event->child_total_time_enabled);
1783 *running += event->total_time_running +
1784 atomic64_read(&event->child_total_time_running);
1785
1786 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001787 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001788 *enabled += child->total_time_enabled;
1789 *running += child->total_time_running;
1790 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001791 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001792
1793 return total;
1794}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001795EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001796
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001797static int perf_event_read_group(struct perf_event *event,
1798 u64 read_format, char __user *buf)
1799{
1800 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001801 int n = 0, size = 0, ret = -EFAULT;
1802 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001803 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001804 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001805
Peter Zijlstra6f105812009-11-20 22:19:56 +01001806 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001807 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001808
1809 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001810 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1811 values[n++] = enabled;
1812 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1813 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001814 values[n++] = count;
1815 if (read_format & PERF_FORMAT_ID)
1816 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001817
1818 size = n * sizeof(u64);
1819
1820 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001821 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001822
Peter Zijlstra6f105812009-11-20 22:19:56 +01001823 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001824
1825 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001826 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001827
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001828 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001829 if (read_format & PERF_FORMAT_ID)
1830 values[n++] = primary_event_id(sub);
1831
1832 size = n * sizeof(u64);
1833
Peter Zijlstra6f105812009-11-20 22:19:56 +01001834 if (copy_to_user(buf + size, values, size)) {
1835 ret = -EFAULT;
1836 goto unlock;
1837 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001838
1839 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001841unlock:
1842 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001843
Peter Zijlstraabf48682009-11-20 22:19:49 +01001844 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001845}
1846
1847static int perf_event_read_one(struct perf_event *event,
1848 u64 read_format, char __user *buf)
1849{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001850 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001851 u64 values[4];
1852 int n = 0;
1853
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001854 values[n++] = perf_event_read_value(event, &enabled, &running);
1855 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1856 values[n++] = enabled;
1857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1858 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001859 if (read_format & PERF_FORMAT_ID)
1860 values[n++] = primary_event_id(event);
1861
1862 if (copy_to_user(buf, values, n * sizeof(u64)))
1863 return -EFAULT;
1864
1865 return n * sizeof(u64);
1866}
1867
1868/*
1869 * Read the performance event - simple non blocking version for now
1870 */
1871static ssize_t
1872perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1873{
1874 u64 read_format = event->attr.read_format;
1875 int ret;
1876
1877 /*
1878 * Return end-of-file for a read on a event that is in
1879 * error state (i.e. because it was pinned but it couldn't be
1880 * scheduled on to the CPU at some point).
1881 */
1882 if (event->state == PERF_EVENT_STATE_ERROR)
1883 return 0;
1884
1885 if (count < perf_event_read_size(event))
1886 return -ENOSPC;
1887
1888 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001889 if (read_format & PERF_FORMAT_GROUP)
1890 ret = perf_event_read_group(event, read_format, buf);
1891 else
1892 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001893
1894 return ret;
1895}
1896
1897static ssize_t
1898perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1899{
1900 struct perf_event *event = file->private_data;
1901
1902 return perf_read_hw(event, buf, count);
1903}
1904
1905static unsigned int perf_poll(struct file *file, poll_table *wait)
1906{
1907 struct perf_event *event = file->private_data;
1908 struct perf_mmap_data *data;
1909 unsigned int events = POLL_HUP;
1910
1911 rcu_read_lock();
1912 data = rcu_dereference(event->data);
1913 if (data)
1914 events = atomic_xchg(&data->poll, 0);
1915 rcu_read_unlock();
1916
1917 poll_wait(file, &event->waitq, wait);
1918
1919 return events;
1920}
1921
1922static void perf_event_reset(struct perf_event *event)
1923{
1924 (void)perf_event_read(event);
1925 atomic64_set(&event->count, 0);
1926 perf_event_update_userpage(event);
1927}
1928
1929/*
1930 * Holding the top-level event's child_mutex means that any
1931 * descendant process that has inherited this event will block
1932 * in sync_child_event if it goes to exit, thus satisfying the
1933 * task existence requirements of perf_event_enable/disable.
1934 */
1935static void perf_event_for_each_child(struct perf_event *event,
1936 void (*func)(struct perf_event *))
1937{
1938 struct perf_event *child;
1939
1940 WARN_ON_ONCE(event->ctx->parent_ctx);
1941 mutex_lock(&event->child_mutex);
1942 func(event);
1943 list_for_each_entry(child, &event->child_list, child_list)
1944 func(child);
1945 mutex_unlock(&event->child_mutex);
1946}
1947
1948static void perf_event_for_each(struct perf_event *event,
1949 void (*func)(struct perf_event *))
1950{
1951 struct perf_event_context *ctx = event->ctx;
1952 struct perf_event *sibling;
1953
1954 WARN_ON_ONCE(ctx->parent_ctx);
1955 mutex_lock(&ctx->mutex);
1956 event = event->group_leader;
1957
1958 perf_event_for_each_child(event, func);
1959 func(event);
1960 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1961 perf_event_for_each_child(event, func);
1962 mutex_unlock(&ctx->mutex);
1963}
1964
1965static int perf_event_period(struct perf_event *event, u64 __user *arg)
1966{
1967 struct perf_event_context *ctx = event->ctx;
1968 unsigned long size;
1969 int ret = 0;
1970 u64 value;
1971
1972 if (!event->attr.sample_period)
1973 return -EINVAL;
1974
1975 size = copy_from_user(&value, arg, sizeof(value));
1976 if (size != sizeof(value))
1977 return -EFAULT;
1978
1979 if (!value)
1980 return -EINVAL;
1981
1982 spin_lock_irq(&ctx->lock);
1983 if (event->attr.freq) {
1984 if (value > sysctl_perf_event_sample_rate) {
1985 ret = -EINVAL;
1986 goto unlock;
1987 }
1988
1989 event->attr.sample_freq = value;
1990 } else {
1991 event->attr.sample_period = value;
1992 event->hw.sample_period = value;
1993 }
1994unlock:
1995 spin_unlock_irq(&ctx->lock);
1996
1997 return ret;
1998}
1999
Li Zefan6fb29152009-10-15 11:21:42 +08002000static int perf_event_set_output(struct perf_event *event, int output_fd);
2001static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002002
2003static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2004{
2005 struct perf_event *event = file->private_data;
2006 void (*func)(struct perf_event *);
2007 u32 flags = arg;
2008
2009 switch (cmd) {
2010 case PERF_EVENT_IOC_ENABLE:
2011 func = perf_event_enable;
2012 break;
2013 case PERF_EVENT_IOC_DISABLE:
2014 func = perf_event_disable;
2015 break;
2016 case PERF_EVENT_IOC_RESET:
2017 func = perf_event_reset;
2018 break;
2019
2020 case PERF_EVENT_IOC_REFRESH:
2021 return perf_event_refresh(event, arg);
2022
2023 case PERF_EVENT_IOC_PERIOD:
2024 return perf_event_period(event, (u64 __user *)arg);
2025
2026 case PERF_EVENT_IOC_SET_OUTPUT:
2027 return perf_event_set_output(event, arg);
2028
Li Zefan6fb29152009-10-15 11:21:42 +08002029 case PERF_EVENT_IOC_SET_FILTER:
2030 return perf_event_set_filter(event, (void __user *)arg);
2031
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002032 default:
2033 return -ENOTTY;
2034 }
2035
2036 if (flags & PERF_IOC_FLAG_GROUP)
2037 perf_event_for_each(event, func);
2038 else
2039 perf_event_for_each_child(event, func);
2040
2041 return 0;
2042}
2043
2044int perf_event_task_enable(void)
2045{
2046 struct perf_event *event;
2047
2048 mutex_lock(&current->perf_event_mutex);
2049 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2050 perf_event_for_each_child(event, perf_event_enable);
2051 mutex_unlock(&current->perf_event_mutex);
2052
2053 return 0;
2054}
2055
2056int perf_event_task_disable(void)
2057{
2058 struct perf_event *event;
2059
2060 mutex_lock(&current->perf_event_mutex);
2061 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2062 perf_event_for_each_child(event, perf_event_disable);
2063 mutex_unlock(&current->perf_event_mutex);
2064
2065 return 0;
2066}
2067
2068#ifndef PERF_EVENT_INDEX_OFFSET
2069# define PERF_EVENT_INDEX_OFFSET 0
2070#endif
2071
2072static int perf_event_index(struct perf_event *event)
2073{
2074 if (event->state != PERF_EVENT_STATE_ACTIVE)
2075 return 0;
2076
2077 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2078}
2079
2080/*
2081 * Callers need to ensure there can be no nesting of this function, otherwise
2082 * the seqlock logic goes bad. We can not serialize this because the arch
2083 * code calls this from NMI context.
2084 */
2085void perf_event_update_userpage(struct perf_event *event)
2086{
2087 struct perf_event_mmap_page *userpg;
2088 struct perf_mmap_data *data;
2089
2090 rcu_read_lock();
2091 data = rcu_dereference(event->data);
2092 if (!data)
2093 goto unlock;
2094
2095 userpg = data->user_page;
2096
2097 /*
2098 * Disable preemption so as to not let the corresponding user-space
2099 * spin too long if we get preempted.
2100 */
2101 preempt_disable();
2102 ++userpg->lock;
2103 barrier();
2104 userpg->index = perf_event_index(event);
2105 userpg->offset = atomic64_read(&event->count);
2106 if (event->state == PERF_EVENT_STATE_ACTIVE)
2107 userpg->offset -= atomic64_read(&event->hw.prev_count);
2108
2109 userpg->time_enabled = event->total_time_enabled +
2110 atomic64_read(&event->child_total_time_enabled);
2111
2112 userpg->time_running = event->total_time_running +
2113 atomic64_read(&event->child_total_time_running);
2114
2115 barrier();
2116 ++userpg->lock;
2117 preempt_enable();
2118unlock:
2119 rcu_read_unlock();
2120}
2121
Peter Zijlstra906010b2009-09-21 16:08:49 +02002122static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002123{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002124 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002125}
2126
Peter Zijlstra906010b2009-09-21 16:08:49 +02002127#ifndef CONFIG_PERF_USE_VMALLOC
2128
2129/*
2130 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2131 */
2132
2133static struct page *
2134perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2135{
2136 if (pgoff > data->nr_pages)
2137 return NULL;
2138
2139 if (pgoff == 0)
2140 return virt_to_page(data->user_page);
2141
2142 return virt_to_page(data->data_pages[pgoff - 1]);
2143}
2144
2145static struct perf_mmap_data *
2146perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002147{
2148 struct perf_mmap_data *data;
2149 unsigned long size;
2150 int i;
2151
2152 WARN_ON(atomic_read(&event->mmap_count));
2153
2154 size = sizeof(struct perf_mmap_data);
2155 size += nr_pages * sizeof(void *);
2156
2157 data = kzalloc(size, GFP_KERNEL);
2158 if (!data)
2159 goto fail;
2160
2161 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2162 if (!data->user_page)
2163 goto fail_user_page;
2164
2165 for (i = 0; i < nr_pages; i++) {
2166 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->data_pages[i])
2168 goto fail_data_pages;
2169 }
2170
Peter Zijlstra906010b2009-09-21 16:08:49 +02002171 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002172 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002173
Peter Zijlstra906010b2009-09-21 16:08:49 +02002174 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002175
2176fail_data_pages:
2177 for (i--; i >= 0; i--)
2178 free_page((unsigned long)data->data_pages[i]);
2179
2180 free_page((unsigned long)data->user_page);
2181
2182fail_user_page:
2183 kfree(data);
2184
2185fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002186 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002187}
2188
2189static void perf_mmap_free_page(unsigned long addr)
2190{
2191 struct page *page = virt_to_page((void *)addr);
2192
2193 page->mapping = NULL;
2194 __free_page(page);
2195}
2196
Peter Zijlstra906010b2009-09-21 16:08:49 +02002197static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002198{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002199 int i;
2200
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002201 perf_mmap_free_page((unsigned long)data->user_page);
2202 for (i = 0; i < data->nr_pages; i++)
2203 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002204}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002205
Peter Zijlstra906010b2009-09-21 16:08:49 +02002206#else
2207
2208/*
2209 * Back perf_mmap() with vmalloc memory.
2210 *
2211 * Required for architectures that have d-cache aliasing issues.
2212 */
2213
2214static struct page *
2215perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2216{
2217 if (pgoff > (1UL << data->data_order))
2218 return NULL;
2219
2220 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2221}
2222
2223static void perf_mmap_unmark_page(void *addr)
2224{
2225 struct page *page = vmalloc_to_page(addr);
2226
2227 page->mapping = NULL;
2228}
2229
2230static void perf_mmap_data_free_work(struct work_struct *work)
2231{
2232 struct perf_mmap_data *data;
2233 void *base;
2234 int i, nr;
2235
2236 data = container_of(work, struct perf_mmap_data, work);
2237 nr = 1 << data->data_order;
2238
2239 base = data->user_page;
2240 for (i = 0; i < nr + 1; i++)
2241 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2242
2243 vfree(base);
2244}
2245
2246static void perf_mmap_data_free(struct perf_mmap_data *data)
2247{
2248 schedule_work(&data->work);
2249}
2250
2251static struct perf_mmap_data *
2252perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2253{
2254 struct perf_mmap_data *data;
2255 unsigned long size;
2256 void *all_buf;
2257
2258 WARN_ON(atomic_read(&event->mmap_count));
2259
2260 size = sizeof(struct perf_mmap_data);
2261 size += sizeof(void *);
2262
2263 data = kzalloc(size, GFP_KERNEL);
2264 if (!data)
2265 goto fail;
2266
2267 INIT_WORK(&data->work, perf_mmap_data_free_work);
2268
2269 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2270 if (!all_buf)
2271 goto fail_all_buf;
2272
2273 data->user_page = all_buf;
2274 data->data_pages[0] = all_buf + PAGE_SIZE;
2275 data->data_order = ilog2(nr_pages);
2276 data->nr_pages = 1;
2277
2278 return data;
2279
2280fail_all_buf:
2281 kfree(data);
2282
2283fail:
2284 return NULL;
2285}
2286
2287#endif
2288
2289static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2290{
2291 struct perf_event *event = vma->vm_file->private_data;
2292 struct perf_mmap_data *data;
2293 int ret = VM_FAULT_SIGBUS;
2294
2295 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2296 if (vmf->pgoff == 0)
2297 ret = 0;
2298 return ret;
2299 }
2300
2301 rcu_read_lock();
2302 data = rcu_dereference(event->data);
2303 if (!data)
2304 goto unlock;
2305
2306 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2307 goto unlock;
2308
2309 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2310 if (!vmf->page)
2311 goto unlock;
2312
2313 get_page(vmf->page);
2314 vmf->page->mapping = vma->vm_file->f_mapping;
2315 vmf->page->index = vmf->pgoff;
2316
2317 ret = 0;
2318unlock:
2319 rcu_read_unlock();
2320
2321 return ret;
2322}
2323
2324static void
2325perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2326{
2327 long max_size = perf_data_size(data);
2328
2329 atomic_set(&data->lock, -1);
2330
2331 if (event->attr.watermark) {
2332 data->watermark = min_t(long, max_size,
2333 event->attr.wakeup_watermark);
2334 }
2335
2336 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002337 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002338
2339
2340 rcu_assign_pointer(event->data, data);
2341}
2342
2343static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2344{
2345 struct perf_mmap_data *data;
2346
2347 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2348 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002349 kfree(data);
2350}
2351
Peter Zijlstra906010b2009-09-21 16:08:49 +02002352static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353{
2354 struct perf_mmap_data *data = event->data;
2355
2356 WARN_ON(atomic_read(&event->mmap_count));
2357
2358 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002359 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002360}
2361
2362static void perf_mmap_open(struct vm_area_struct *vma)
2363{
2364 struct perf_event *event = vma->vm_file->private_data;
2365
2366 atomic_inc(&event->mmap_count);
2367}
2368
2369static void perf_mmap_close(struct vm_area_struct *vma)
2370{
2371 struct perf_event *event = vma->vm_file->private_data;
2372
2373 WARN_ON_ONCE(event->ctx->parent_ctx);
2374 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002375 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002376 struct user_struct *user = current_user();
2377
Peter Zijlstra906010b2009-09-21 16:08:49 +02002378 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002379 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002380 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002381 mutex_unlock(&event->mmap_mutex);
2382 }
2383}
2384
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002385static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002386 .open = perf_mmap_open,
2387 .close = perf_mmap_close,
2388 .fault = perf_mmap_fault,
2389 .page_mkwrite = perf_mmap_fault,
2390};
2391
2392static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2393{
2394 struct perf_event *event = file->private_data;
2395 unsigned long user_locked, user_lock_limit;
2396 struct user_struct *user = current_user();
2397 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002398 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002399 unsigned long vma_size;
2400 unsigned long nr_pages;
2401 long user_extra, extra;
2402 int ret = 0;
2403
2404 if (!(vma->vm_flags & VM_SHARED))
2405 return -EINVAL;
2406
2407 vma_size = vma->vm_end - vma->vm_start;
2408 nr_pages = (vma_size / PAGE_SIZE) - 1;
2409
2410 /*
2411 * If we have data pages ensure they're a power-of-two number, so we
2412 * can do bitmasks instead of modulo.
2413 */
2414 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2415 return -EINVAL;
2416
2417 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2418 return -EINVAL;
2419
2420 if (vma->vm_pgoff != 0)
2421 return -EINVAL;
2422
2423 WARN_ON_ONCE(event->ctx->parent_ctx);
2424 mutex_lock(&event->mmap_mutex);
2425 if (event->output) {
2426 ret = -EINVAL;
2427 goto unlock;
2428 }
2429
2430 if (atomic_inc_not_zero(&event->mmap_count)) {
2431 if (nr_pages != event->data->nr_pages)
2432 ret = -EINVAL;
2433 goto unlock;
2434 }
2435
2436 user_extra = nr_pages + 1;
2437 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2438
2439 /*
2440 * Increase the limit linearly with more CPUs:
2441 */
2442 user_lock_limit *= num_online_cpus();
2443
2444 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2445
2446 extra = 0;
2447 if (user_locked > user_lock_limit)
2448 extra = user_locked - user_lock_limit;
2449
2450 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2451 lock_limit >>= PAGE_SHIFT;
2452 locked = vma->vm_mm->locked_vm + extra;
2453
2454 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2455 !capable(CAP_IPC_LOCK)) {
2456 ret = -EPERM;
2457 goto unlock;
2458 }
2459
2460 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002461
2462 data = perf_mmap_data_alloc(event, nr_pages);
2463 ret = -ENOMEM;
2464 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002465 goto unlock;
2466
Peter Zijlstra906010b2009-09-21 16:08:49 +02002467 ret = 0;
2468 perf_mmap_data_init(event, data);
2469
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002470 atomic_set(&event->mmap_count, 1);
2471 atomic_long_add(user_extra, &user->locked_vm);
2472 vma->vm_mm->locked_vm += extra;
2473 event->data->nr_locked = extra;
2474 if (vma->vm_flags & VM_WRITE)
2475 event->data->writable = 1;
2476
2477unlock:
2478 mutex_unlock(&event->mmap_mutex);
2479
2480 vma->vm_flags |= VM_RESERVED;
2481 vma->vm_ops = &perf_mmap_vmops;
2482
2483 return ret;
2484}
2485
2486static int perf_fasync(int fd, struct file *filp, int on)
2487{
2488 struct inode *inode = filp->f_path.dentry->d_inode;
2489 struct perf_event *event = filp->private_data;
2490 int retval;
2491
2492 mutex_lock(&inode->i_mutex);
2493 retval = fasync_helper(fd, filp, on, &event->fasync);
2494 mutex_unlock(&inode->i_mutex);
2495
2496 if (retval < 0)
2497 return retval;
2498
2499 return 0;
2500}
2501
2502static const struct file_operations perf_fops = {
2503 .release = perf_release,
2504 .read = perf_read,
2505 .poll = perf_poll,
2506 .unlocked_ioctl = perf_ioctl,
2507 .compat_ioctl = perf_ioctl,
2508 .mmap = perf_mmap,
2509 .fasync = perf_fasync,
2510};
2511
2512/*
2513 * Perf event wakeup
2514 *
2515 * If there's data, ensure we set the poll() state and publish everything
2516 * to user-space before waking everybody up.
2517 */
2518
2519void perf_event_wakeup(struct perf_event *event)
2520{
2521 wake_up_all(&event->waitq);
2522
2523 if (event->pending_kill) {
2524 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2525 event->pending_kill = 0;
2526 }
2527}
2528
2529/*
2530 * Pending wakeups
2531 *
2532 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2533 *
2534 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2535 * single linked list and use cmpxchg() to add entries lockless.
2536 */
2537
2538static void perf_pending_event(struct perf_pending_entry *entry)
2539{
2540 struct perf_event *event = container_of(entry,
2541 struct perf_event, pending);
2542
2543 if (event->pending_disable) {
2544 event->pending_disable = 0;
2545 __perf_event_disable(event);
2546 }
2547
2548 if (event->pending_wakeup) {
2549 event->pending_wakeup = 0;
2550 perf_event_wakeup(event);
2551 }
2552}
2553
2554#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2555
2556static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2557 PENDING_TAIL,
2558};
2559
2560static void perf_pending_queue(struct perf_pending_entry *entry,
2561 void (*func)(struct perf_pending_entry *))
2562{
2563 struct perf_pending_entry **head;
2564
2565 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2566 return;
2567
2568 entry->func = func;
2569
2570 head = &get_cpu_var(perf_pending_head);
2571
2572 do {
2573 entry->next = *head;
2574 } while (cmpxchg(head, entry->next, entry) != entry->next);
2575
2576 set_perf_event_pending();
2577
2578 put_cpu_var(perf_pending_head);
2579}
2580
2581static int __perf_pending_run(void)
2582{
2583 struct perf_pending_entry *list;
2584 int nr = 0;
2585
2586 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2587 while (list != PENDING_TAIL) {
2588 void (*func)(struct perf_pending_entry *);
2589 struct perf_pending_entry *entry = list;
2590
2591 list = list->next;
2592
2593 func = entry->func;
2594 entry->next = NULL;
2595 /*
2596 * Ensure we observe the unqueue before we issue the wakeup,
2597 * so that we won't be waiting forever.
2598 * -- see perf_not_pending().
2599 */
2600 smp_wmb();
2601
2602 func(entry);
2603 nr++;
2604 }
2605
2606 return nr;
2607}
2608
2609static inline int perf_not_pending(struct perf_event *event)
2610{
2611 /*
2612 * If we flush on whatever cpu we run, there is a chance we don't
2613 * need to wait.
2614 */
2615 get_cpu();
2616 __perf_pending_run();
2617 put_cpu();
2618
2619 /*
2620 * Ensure we see the proper queue state before going to sleep
2621 * so that we do not miss the wakeup. -- see perf_pending_handle()
2622 */
2623 smp_rmb();
2624 return event->pending.next == NULL;
2625}
2626
2627static void perf_pending_sync(struct perf_event *event)
2628{
2629 wait_event(event->waitq, perf_not_pending(event));
2630}
2631
2632void perf_event_do_pending(void)
2633{
2634 __perf_pending_run();
2635}
2636
2637/*
2638 * Callchain support -- arch specific
2639 */
2640
2641__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2642{
2643 return NULL;
2644}
2645
2646/*
2647 * Output
2648 */
2649static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2650 unsigned long offset, unsigned long head)
2651{
2652 unsigned long mask;
2653
2654 if (!data->writable)
2655 return true;
2656
Peter Zijlstra906010b2009-09-21 16:08:49 +02002657 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002658
2659 offset = (offset - tail) & mask;
2660 head = (head - tail) & mask;
2661
2662 if ((int)(head - offset) < 0)
2663 return false;
2664
2665 return true;
2666}
2667
2668static void perf_output_wakeup(struct perf_output_handle *handle)
2669{
2670 atomic_set(&handle->data->poll, POLL_IN);
2671
2672 if (handle->nmi) {
2673 handle->event->pending_wakeup = 1;
2674 perf_pending_queue(&handle->event->pending,
2675 perf_pending_event);
2676 } else
2677 perf_event_wakeup(handle->event);
2678}
2679
2680/*
2681 * Curious locking construct.
2682 *
2683 * We need to ensure a later event_id doesn't publish a head when a former
2684 * event_id isn't done writing. However since we need to deal with NMIs we
2685 * cannot fully serialize things.
2686 *
2687 * What we do is serialize between CPUs so we only have to deal with NMI
2688 * nesting on a single CPU.
2689 *
2690 * We only publish the head (and generate a wakeup) when the outer-most
2691 * event_id completes.
2692 */
2693static void perf_output_lock(struct perf_output_handle *handle)
2694{
2695 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002696 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002697
2698 handle->locked = 0;
2699
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002700 for (;;) {
2701 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2702 if (cur == -1) {
2703 handle->locked = 1;
2704 break;
2705 }
2706 if (cur == cpu)
2707 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002708
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002709 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002710 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002711}
2712
2713static void perf_output_unlock(struct perf_output_handle *handle)
2714{
2715 struct perf_mmap_data *data = handle->data;
2716 unsigned long head;
2717 int cpu;
2718
2719 data->done_head = data->head;
2720
2721 if (!handle->locked)
2722 goto out;
2723
2724again:
2725 /*
2726 * The xchg implies a full barrier that ensures all writes are done
2727 * before we publish the new head, matched by a rmb() in userspace when
2728 * reading this position.
2729 */
2730 while ((head = atomic_long_xchg(&data->done_head, 0)))
2731 data->user_page->data_head = head;
2732
2733 /*
2734 * NMI can happen here, which means we can miss a done_head update.
2735 */
2736
2737 cpu = atomic_xchg(&data->lock, -1);
2738 WARN_ON_ONCE(cpu != smp_processor_id());
2739
2740 /*
2741 * Therefore we have to validate we did not indeed do so.
2742 */
2743 if (unlikely(atomic_long_read(&data->done_head))) {
2744 /*
2745 * Since we had it locked, we can lock it again.
2746 */
2747 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2748 cpu_relax();
2749
2750 goto again;
2751 }
2752
2753 if (atomic_xchg(&data->wakeup, 0))
2754 perf_output_wakeup(handle);
2755out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002756 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002757}
2758
2759void perf_output_copy(struct perf_output_handle *handle,
2760 const void *buf, unsigned int len)
2761{
2762 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002763 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002764 unsigned int size;
2765 void **pages;
2766
2767 offset = handle->offset;
2768 pages_mask = handle->data->nr_pages - 1;
2769 pages = handle->data->data_pages;
2770
2771 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002772 unsigned long page_offset;
2773 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002774 int nr;
2775
2776 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002777 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2778 page_offset = offset & (page_size - 1);
2779 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002780
2781 memcpy(pages[nr] + page_offset, buf, size);
2782
2783 len -= size;
2784 buf += size;
2785 offset += size;
2786 } while (len);
2787
2788 handle->offset = offset;
2789
2790 /*
2791 * Check we didn't copy past our reservation window, taking the
2792 * possible unsigned int wrap into account.
2793 */
2794 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2795}
2796
2797int perf_output_begin(struct perf_output_handle *handle,
2798 struct perf_event *event, unsigned int size,
2799 int nmi, int sample)
2800{
2801 struct perf_event *output_event;
2802 struct perf_mmap_data *data;
2803 unsigned long tail, offset, head;
2804 int have_lost;
2805 struct {
2806 struct perf_event_header header;
2807 u64 id;
2808 u64 lost;
2809 } lost_event;
2810
2811 rcu_read_lock();
2812 /*
2813 * For inherited events we send all the output towards the parent.
2814 */
2815 if (event->parent)
2816 event = event->parent;
2817
2818 output_event = rcu_dereference(event->output);
2819 if (output_event)
2820 event = output_event;
2821
2822 data = rcu_dereference(event->data);
2823 if (!data)
2824 goto out;
2825
2826 handle->data = data;
2827 handle->event = event;
2828 handle->nmi = nmi;
2829 handle->sample = sample;
2830
2831 if (!data->nr_pages)
2832 goto fail;
2833
2834 have_lost = atomic_read(&data->lost);
2835 if (have_lost)
2836 size += sizeof(lost_event);
2837
2838 perf_output_lock(handle);
2839
2840 do {
2841 /*
2842 * Userspace could choose to issue a mb() before updating the
2843 * tail pointer. So that all reads will be completed before the
2844 * write is issued.
2845 */
2846 tail = ACCESS_ONCE(data->user_page->data_tail);
2847 smp_rmb();
2848 offset = head = atomic_long_read(&data->head);
2849 head += size;
2850 if (unlikely(!perf_output_space(data, tail, offset, head)))
2851 goto fail;
2852 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2853
2854 handle->offset = offset;
2855 handle->head = head;
2856
2857 if (head - tail > data->watermark)
2858 atomic_set(&data->wakeup, 1);
2859
2860 if (have_lost) {
2861 lost_event.header.type = PERF_RECORD_LOST;
2862 lost_event.header.misc = 0;
2863 lost_event.header.size = sizeof(lost_event);
2864 lost_event.id = event->id;
2865 lost_event.lost = atomic_xchg(&data->lost, 0);
2866
2867 perf_output_put(handle, lost_event);
2868 }
2869
2870 return 0;
2871
2872fail:
2873 atomic_inc(&data->lost);
2874 perf_output_unlock(handle);
2875out:
2876 rcu_read_unlock();
2877
2878 return -ENOSPC;
2879}
2880
2881void perf_output_end(struct perf_output_handle *handle)
2882{
2883 struct perf_event *event = handle->event;
2884 struct perf_mmap_data *data = handle->data;
2885
2886 int wakeup_events = event->attr.wakeup_events;
2887
2888 if (handle->sample && wakeup_events) {
2889 int events = atomic_inc_return(&data->events);
2890 if (events >= wakeup_events) {
2891 atomic_sub(wakeup_events, &data->events);
2892 atomic_set(&data->wakeup, 1);
2893 }
2894 }
2895
2896 perf_output_unlock(handle);
2897 rcu_read_unlock();
2898}
2899
2900static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2901{
2902 /*
2903 * only top level events have the pid namespace they were created in
2904 */
2905 if (event->parent)
2906 event = event->parent;
2907
2908 return task_tgid_nr_ns(p, event->ns);
2909}
2910
2911static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2912{
2913 /*
2914 * only top level events have the pid namespace they were created in
2915 */
2916 if (event->parent)
2917 event = event->parent;
2918
2919 return task_pid_nr_ns(p, event->ns);
2920}
2921
2922static void perf_output_read_one(struct perf_output_handle *handle,
2923 struct perf_event *event)
2924{
2925 u64 read_format = event->attr.read_format;
2926 u64 values[4];
2927 int n = 0;
2928
2929 values[n++] = atomic64_read(&event->count);
2930 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2931 values[n++] = event->total_time_enabled +
2932 atomic64_read(&event->child_total_time_enabled);
2933 }
2934 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2935 values[n++] = event->total_time_running +
2936 atomic64_read(&event->child_total_time_running);
2937 }
2938 if (read_format & PERF_FORMAT_ID)
2939 values[n++] = primary_event_id(event);
2940
2941 perf_output_copy(handle, values, n * sizeof(u64));
2942}
2943
2944/*
2945 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2946 */
2947static void perf_output_read_group(struct perf_output_handle *handle,
2948 struct perf_event *event)
2949{
2950 struct perf_event *leader = event->group_leader, *sub;
2951 u64 read_format = event->attr.read_format;
2952 u64 values[5];
2953 int n = 0;
2954
2955 values[n++] = 1 + leader->nr_siblings;
2956
2957 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2958 values[n++] = leader->total_time_enabled;
2959
2960 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2961 values[n++] = leader->total_time_running;
2962
2963 if (leader != event)
2964 leader->pmu->read(leader);
2965
2966 values[n++] = atomic64_read(&leader->count);
2967 if (read_format & PERF_FORMAT_ID)
2968 values[n++] = primary_event_id(leader);
2969
2970 perf_output_copy(handle, values, n * sizeof(u64));
2971
2972 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2973 n = 0;
2974
2975 if (sub != event)
2976 sub->pmu->read(sub);
2977
2978 values[n++] = atomic64_read(&sub->count);
2979 if (read_format & PERF_FORMAT_ID)
2980 values[n++] = primary_event_id(sub);
2981
2982 perf_output_copy(handle, values, n * sizeof(u64));
2983 }
2984}
2985
2986static void perf_output_read(struct perf_output_handle *handle,
2987 struct perf_event *event)
2988{
2989 if (event->attr.read_format & PERF_FORMAT_GROUP)
2990 perf_output_read_group(handle, event);
2991 else
2992 perf_output_read_one(handle, event);
2993}
2994
2995void perf_output_sample(struct perf_output_handle *handle,
2996 struct perf_event_header *header,
2997 struct perf_sample_data *data,
2998 struct perf_event *event)
2999{
3000 u64 sample_type = data->type;
3001
3002 perf_output_put(handle, *header);
3003
3004 if (sample_type & PERF_SAMPLE_IP)
3005 perf_output_put(handle, data->ip);
3006
3007 if (sample_type & PERF_SAMPLE_TID)
3008 perf_output_put(handle, data->tid_entry);
3009
3010 if (sample_type & PERF_SAMPLE_TIME)
3011 perf_output_put(handle, data->time);
3012
3013 if (sample_type & PERF_SAMPLE_ADDR)
3014 perf_output_put(handle, data->addr);
3015
3016 if (sample_type & PERF_SAMPLE_ID)
3017 perf_output_put(handle, data->id);
3018
3019 if (sample_type & PERF_SAMPLE_STREAM_ID)
3020 perf_output_put(handle, data->stream_id);
3021
3022 if (sample_type & PERF_SAMPLE_CPU)
3023 perf_output_put(handle, data->cpu_entry);
3024
3025 if (sample_type & PERF_SAMPLE_PERIOD)
3026 perf_output_put(handle, data->period);
3027
3028 if (sample_type & PERF_SAMPLE_READ)
3029 perf_output_read(handle, event);
3030
3031 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3032 if (data->callchain) {
3033 int size = 1;
3034
3035 if (data->callchain)
3036 size += data->callchain->nr;
3037
3038 size *= sizeof(u64);
3039
3040 perf_output_copy(handle, data->callchain, size);
3041 } else {
3042 u64 nr = 0;
3043 perf_output_put(handle, nr);
3044 }
3045 }
3046
3047 if (sample_type & PERF_SAMPLE_RAW) {
3048 if (data->raw) {
3049 perf_output_put(handle, data->raw->size);
3050 perf_output_copy(handle, data->raw->data,
3051 data->raw->size);
3052 } else {
3053 struct {
3054 u32 size;
3055 u32 data;
3056 } raw = {
3057 .size = sizeof(u32),
3058 .data = 0,
3059 };
3060 perf_output_put(handle, raw);
3061 }
3062 }
3063}
3064
3065void perf_prepare_sample(struct perf_event_header *header,
3066 struct perf_sample_data *data,
3067 struct perf_event *event,
3068 struct pt_regs *regs)
3069{
3070 u64 sample_type = event->attr.sample_type;
3071
3072 data->type = sample_type;
3073
3074 header->type = PERF_RECORD_SAMPLE;
3075 header->size = sizeof(*header);
3076
3077 header->misc = 0;
3078 header->misc |= perf_misc_flags(regs);
3079
3080 if (sample_type & PERF_SAMPLE_IP) {
3081 data->ip = perf_instruction_pointer(regs);
3082
3083 header->size += sizeof(data->ip);
3084 }
3085
3086 if (sample_type & PERF_SAMPLE_TID) {
3087 /* namespace issues */
3088 data->tid_entry.pid = perf_event_pid(event, current);
3089 data->tid_entry.tid = perf_event_tid(event, current);
3090
3091 header->size += sizeof(data->tid_entry);
3092 }
3093
3094 if (sample_type & PERF_SAMPLE_TIME) {
3095 data->time = perf_clock();
3096
3097 header->size += sizeof(data->time);
3098 }
3099
3100 if (sample_type & PERF_SAMPLE_ADDR)
3101 header->size += sizeof(data->addr);
3102
3103 if (sample_type & PERF_SAMPLE_ID) {
3104 data->id = primary_event_id(event);
3105
3106 header->size += sizeof(data->id);
3107 }
3108
3109 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3110 data->stream_id = event->id;
3111
3112 header->size += sizeof(data->stream_id);
3113 }
3114
3115 if (sample_type & PERF_SAMPLE_CPU) {
3116 data->cpu_entry.cpu = raw_smp_processor_id();
3117 data->cpu_entry.reserved = 0;
3118
3119 header->size += sizeof(data->cpu_entry);
3120 }
3121
3122 if (sample_type & PERF_SAMPLE_PERIOD)
3123 header->size += sizeof(data->period);
3124
3125 if (sample_type & PERF_SAMPLE_READ)
3126 header->size += perf_event_read_size(event);
3127
3128 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3129 int size = 1;
3130
3131 data->callchain = perf_callchain(regs);
3132
3133 if (data->callchain)
3134 size += data->callchain->nr;
3135
3136 header->size += size * sizeof(u64);
3137 }
3138
3139 if (sample_type & PERF_SAMPLE_RAW) {
3140 int size = sizeof(u32);
3141
3142 if (data->raw)
3143 size += data->raw->size;
3144 else
3145 size += sizeof(u32);
3146
3147 WARN_ON_ONCE(size & (sizeof(u64)-1));
3148 header->size += size;
3149 }
3150}
3151
3152static void perf_event_output(struct perf_event *event, int nmi,
3153 struct perf_sample_data *data,
3154 struct pt_regs *regs)
3155{
3156 struct perf_output_handle handle;
3157 struct perf_event_header header;
3158
3159 perf_prepare_sample(&header, data, event, regs);
3160
3161 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3162 return;
3163
3164 perf_output_sample(&handle, &header, data, event);
3165
3166 perf_output_end(&handle);
3167}
3168
3169/*
3170 * read event_id
3171 */
3172
3173struct perf_read_event {
3174 struct perf_event_header header;
3175
3176 u32 pid;
3177 u32 tid;
3178};
3179
3180static void
3181perf_event_read_event(struct perf_event *event,
3182 struct task_struct *task)
3183{
3184 struct perf_output_handle handle;
3185 struct perf_read_event read_event = {
3186 .header = {
3187 .type = PERF_RECORD_READ,
3188 .misc = 0,
3189 .size = sizeof(read_event) + perf_event_read_size(event),
3190 },
3191 .pid = perf_event_pid(event, task),
3192 .tid = perf_event_tid(event, task),
3193 };
3194 int ret;
3195
3196 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3197 if (ret)
3198 return;
3199
3200 perf_output_put(&handle, read_event);
3201 perf_output_read(&handle, event);
3202
3203 perf_output_end(&handle);
3204}
3205
3206/*
3207 * task tracking -- fork/exit
3208 *
3209 * enabled by: attr.comm | attr.mmap | attr.task
3210 */
3211
3212struct perf_task_event {
3213 struct task_struct *task;
3214 struct perf_event_context *task_ctx;
3215
3216 struct {
3217 struct perf_event_header header;
3218
3219 u32 pid;
3220 u32 ppid;
3221 u32 tid;
3222 u32 ptid;
3223 u64 time;
3224 } event_id;
3225};
3226
3227static void perf_event_task_output(struct perf_event *event,
3228 struct perf_task_event *task_event)
3229{
3230 struct perf_output_handle handle;
3231 int size;
3232 struct task_struct *task = task_event->task;
3233 int ret;
3234
3235 size = task_event->event_id.header.size;
3236 ret = perf_output_begin(&handle, event, size, 0, 0);
3237
3238 if (ret)
3239 return;
3240
3241 task_event->event_id.pid = perf_event_pid(event, task);
3242 task_event->event_id.ppid = perf_event_pid(event, current);
3243
3244 task_event->event_id.tid = perf_event_tid(event, task);
3245 task_event->event_id.ptid = perf_event_tid(event, current);
3246
3247 task_event->event_id.time = perf_clock();
3248
3249 perf_output_put(&handle, task_event->event_id);
3250
3251 perf_output_end(&handle);
3252}
3253
3254static int perf_event_task_match(struct perf_event *event)
3255{
3256 if (event->attr.comm || event->attr.mmap || event->attr.task)
3257 return 1;
3258
3259 return 0;
3260}
3261
3262static void perf_event_task_ctx(struct perf_event_context *ctx,
3263 struct perf_task_event *task_event)
3264{
3265 struct perf_event *event;
3266
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003267 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3268 if (perf_event_task_match(event))
3269 perf_event_task_output(event, task_event);
3270 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003271}
3272
3273static void perf_event_task_event(struct perf_task_event *task_event)
3274{
3275 struct perf_cpu_context *cpuctx;
3276 struct perf_event_context *ctx = task_event->task_ctx;
3277
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003278 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003279 cpuctx = &get_cpu_var(perf_cpu_context);
3280 perf_event_task_ctx(&cpuctx->ctx, task_event);
3281 put_cpu_var(perf_cpu_context);
3282
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003283 if (!ctx)
3284 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3285 if (ctx)
3286 perf_event_task_ctx(ctx, task_event);
3287 rcu_read_unlock();
3288}
3289
3290static void perf_event_task(struct task_struct *task,
3291 struct perf_event_context *task_ctx,
3292 int new)
3293{
3294 struct perf_task_event task_event;
3295
3296 if (!atomic_read(&nr_comm_events) &&
3297 !atomic_read(&nr_mmap_events) &&
3298 !atomic_read(&nr_task_events))
3299 return;
3300
3301 task_event = (struct perf_task_event){
3302 .task = task,
3303 .task_ctx = task_ctx,
3304 .event_id = {
3305 .header = {
3306 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3307 .misc = 0,
3308 .size = sizeof(task_event.event_id),
3309 },
3310 /* .pid */
3311 /* .ppid */
3312 /* .tid */
3313 /* .ptid */
3314 },
3315 };
3316
3317 perf_event_task_event(&task_event);
3318}
3319
3320void perf_event_fork(struct task_struct *task)
3321{
3322 perf_event_task(task, NULL, 1);
3323}
3324
3325/*
3326 * comm tracking
3327 */
3328
3329struct perf_comm_event {
3330 struct task_struct *task;
3331 char *comm;
3332 int comm_size;
3333
3334 struct {
3335 struct perf_event_header header;
3336
3337 u32 pid;
3338 u32 tid;
3339 } event_id;
3340};
3341
3342static void perf_event_comm_output(struct perf_event *event,
3343 struct perf_comm_event *comm_event)
3344{
3345 struct perf_output_handle handle;
3346 int size = comm_event->event_id.header.size;
3347 int ret = perf_output_begin(&handle, event, size, 0, 0);
3348
3349 if (ret)
3350 return;
3351
3352 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3353 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3354
3355 perf_output_put(&handle, comm_event->event_id);
3356 perf_output_copy(&handle, comm_event->comm,
3357 comm_event->comm_size);
3358 perf_output_end(&handle);
3359}
3360
3361static int perf_event_comm_match(struct perf_event *event)
3362{
3363 if (event->attr.comm)
3364 return 1;
3365
3366 return 0;
3367}
3368
3369static void perf_event_comm_ctx(struct perf_event_context *ctx,
3370 struct perf_comm_event *comm_event)
3371{
3372 struct perf_event *event;
3373
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3375 if (perf_event_comm_match(event))
3376 perf_event_comm_output(event, comm_event);
3377 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003378}
3379
3380static void perf_event_comm_event(struct perf_comm_event *comm_event)
3381{
3382 struct perf_cpu_context *cpuctx;
3383 struct perf_event_context *ctx;
3384 unsigned int size;
3385 char comm[TASK_COMM_LEN];
3386
3387 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003388 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003389 size = ALIGN(strlen(comm)+1, sizeof(u64));
3390
3391 comm_event->comm = comm;
3392 comm_event->comm_size = size;
3393
3394 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3395
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003396 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003397 cpuctx = &get_cpu_var(perf_cpu_context);
3398 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3399 put_cpu_var(perf_cpu_context);
3400
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003401 /*
3402 * doesn't really matter which of the child contexts the
3403 * events ends up in.
3404 */
3405 ctx = rcu_dereference(current->perf_event_ctxp);
3406 if (ctx)
3407 perf_event_comm_ctx(ctx, comm_event);
3408 rcu_read_unlock();
3409}
3410
3411void perf_event_comm(struct task_struct *task)
3412{
3413 struct perf_comm_event comm_event;
3414
3415 if (task->perf_event_ctxp)
3416 perf_event_enable_on_exec(task);
3417
3418 if (!atomic_read(&nr_comm_events))
3419 return;
3420
3421 comm_event = (struct perf_comm_event){
3422 .task = task,
3423 /* .comm */
3424 /* .comm_size */
3425 .event_id = {
3426 .header = {
3427 .type = PERF_RECORD_COMM,
3428 .misc = 0,
3429 /* .size */
3430 },
3431 /* .pid */
3432 /* .tid */
3433 },
3434 };
3435
3436 perf_event_comm_event(&comm_event);
3437}
3438
3439/*
3440 * mmap tracking
3441 */
3442
3443struct perf_mmap_event {
3444 struct vm_area_struct *vma;
3445
3446 const char *file_name;
3447 int file_size;
3448
3449 struct {
3450 struct perf_event_header header;
3451
3452 u32 pid;
3453 u32 tid;
3454 u64 start;
3455 u64 len;
3456 u64 pgoff;
3457 } event_id;
3458};
3459
3460static void perf_event_mmap_output(struct perf_event *event,
3461 struct perf_mmap_event *mmap_event)
3462{
3463 struct perf_output_handle handle;
3464 int size = mmap_event->event_id.header.size;
3465 int ret = perf_output_begin(&handle, event, size, 0, 0);
3466
3467 if (ret)
3468 return;
3469
3470 mmap_event->event_id.pid = perf_event_pid(event, current);
3471 mmap_event->event_id.tid = perf_event_tid(event, current);
3472
3473 perf_output_put(&handle, mmap_event->event_id);
3474 perf_output_copy(&handle, mmap_event->file_name,
3475 mmap_event->file_size);
3476 perf_output_end(&handle);
3477}
3478
3479static int perf_event_mmap_match(struct perf_event *event,
3480 struct perf_mmap_event *mmap_event)
3481{
3482 if (event->attr.mmap)
3483 return 1;
3484
3485 return 0;
3486}
3487
3488static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3489 struct perf_mmap_event *mmap_event)
3490{
3491 struct perf_event *event;
3492
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003493 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3494 if (perf_event_mmap_match(event, mmap_event))
3495 perf_event_mmap_output(event, mmap_event);
3496 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003497}
3498
3499static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3500{
3501 struct perf_cpu_context *cpuctx;
3502 struct perf_event_context *ctx;
3503 struct vm_area_struct *vma = mmap_event->vma;
3504 struct file *file = vma->vm_file;
3505 unsigned int size;
3506 char tmp[16];
3507 char *buf = NULL;
3508 const char *name;
3509
3510 memset(tmp, 0, sizeof(tmp));
3511
3512 if (file) {
3513 /*
3514 * d_path works from the end of the buffer backwards, so we
3515 * need to add enough zero bytes after the string to handle
3516 * the 64bit alignment we do later.
3517 */
3518 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3519 if (!buf) {
3520 name = strncpy(tmp, "//enomem", sizeof(tmp));
3521 goto got_name;
3522 }
3523 name = d_path(&file->f_path, buf, PATH_MAX);
3524 if (IS_ERR(name)) {
3525 name = strncpy(tmp, "//toolong", sizeof(tmp));
3526 goto got_name;
3527 }
3528 } else {
3529 if (arch_vma_name(mmap_event->vma)) {
3530 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3531 sizeof(tmp));
3532 goto got_name;
3533 }
3534
3535 if (!vma->vm_mm) {
3536 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3537 goto got_name;
3538 }
3539
3540 name = strncpy(tmp, "//anon", sizeof(tmp));
3541 goto got_name;
3542 }
3543
3544got_name:
3545 size = ALIGN(strlen(name)+1, sizeof(u64));
3546
3547 mmap_event->file_name = name;
3548 mmap_event->file_size = size;
3549
3550 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3551
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003552 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003553 cpuctx = &get_cpu_var(perf_cpu_context);
3554 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3555 put_cpu_var(perf_cpu_context);
3556
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003557 /*
3558 * doesn't really matter which of the child contexts the
3559 * events ends up in.
3560 */
3561 ctx = rcu_dereference(current->perf_event_ctxp);
3562 if (ctx)
3563 perf_event_mmap_ctx(ctx, mmap_event);
3564 rcu_read_unlock();
3565
3566 kfree(buf);
3567}
3568
3569void __perf_event_mmap(struct vm_area_struct *vma)
3570{
3571 struct perf_mmap_event mmap_event;
3572
3573 if (!atomic_read(&nr_mmap_events))
3574 return;
3575
3576 mmap_event = (struct perf_mmap_event){
3577 .vma = vma,
3578 /* .file_name */
3579 /* .file_size */
3580 .event_id = {
3581 .header = {
3582 .type = PERF_RECORD_MMAP,
3583 .misc = 0,
3584 /* .size */
3585 },
3586 /* .pid */
3587 /* .tid */
3588 .start = vma->vm_start,
3589 .len = vma->vm_end - vma->vm_start,
3590 .pgoff = vma->vm_pgoff,
3591 },
3592 };
3593
3594 perf_event_mmap_event(&mmap_event);
3595}
3596
3597/*
3598 * IRQ throttle logging
3599 */
3600
3601static void perf_log_throttle(struct perf_event *event, int enable)
3602{
3603 struct perf_output_handle handle;
3604 int ret;
3605
3606 struct {
3607 struct perf_event_header header;
3608 u64 time;
3609 u64 id;
3610 u64 stream_id;
3611 } throttle_event = {
3612 .header = {
3613 .type = PERF_RECORD_THROTTLE,
3614 .misc = 0,
3615 .size = sizeof(throttle_event),
3616 },
3617 .time = perf_clock(),
3618 .id = primary_event_id(event),
3619 .stream_id = event->id,
3620 };
3621
3622 if (enable)
3623 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3624
3625 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3626 if (ret)
3627 return;
3628
3629 perf_output_put(&handle, throttle_event);
3630 perf_output_end(&handle);
3631}
3632
3633/*
3634 * Generic event overflow handling, sampling.
3635 */
3636
3637static int __perf_event_overflow(struct perf_event *event, int nmi,
3638 int throttle, struct perf_sample_data *data,
3639 struct pt_regs *regs)
3640{
3641 int events = atomic_read(&event->event_limit);
3642 struct hw_perf_event *hwc = &event->hw;
3643 int ret = 0;
3644
3645 throttle = (throttle && event->pmu->unthrottle != NULL);
3646
3647 if (!throttle) {
3648 hwc->interrupts++;
3649 } else {
3650 if (hwc->interrupts != MAX_INTERRUPTS) {
3651 hwc->interrupts++;
3652 if (HZ * hwc->interrupts >
3653 (u64)sysctl_perf_event_sample_rate) {
3654 hwc->interrupts = MAX_INTERRUPTS;
3655 perf_log_throttle(event, 0);
3656 ret = 1;
3657 }
3658 } else {
3659 /*
3660 * Keep re-disabling events even though on the previous
3661 * pass we disabled it - just in case we raced with a
3662 * sched-in and the event got enabled again:
3663 */
3664 ret = 1;
3665 }
3666 }
3667
3668 if (event->attr.freq) {
3669 u64 now = perf_clock();
3670 s64 delta = now - hwc->freq_stamp;
3671
3672 hwc->freq_stamp = now;
3673
3674 if (delta > 0 && delta < TICK_NSEC)
3675 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3676 }
3677
3678 /*
3679 * XXX event_limit might not quite work as expected on inherited
3680 * events
3681 */
3682
3683 event->pending_kill = POLL_IN;
3684 if (events && atomic_dec_and_test(&event->event_limit)) {
3685 ret = 1;
3686 event->pending_kill = POLL_HUP;
3687 if (nmi) {
3688 event->pending_disable = 1;
3689 perf_pending_queue(&event->pending,
3690 perf_pending_event);
3691 } else
3692 perf_event_disable(event);
3693 }
3694
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003695 if (event->overflow_handler)
3696 event->overflow_handler(event, nmi, data, regs);
3697 else
3698 perf_event_output(event, nmi, data, regs);
3699
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003700 return ret;
3701}
3702
3703int perf_event_overflow(struct perf_event *event, int nmi,
3704 struct perf_sample_data *data,
3705 struct pt_regs *regs)
3706{
3707 return __perf_event_overflow(event, nmi, 1, data, regs);
3708}
3709
3710/*
3711 * Generic software event infrastructure
3712 */
3713
3714/*
3715 * We directly increment event->count and keep a second value in
3716 * event->hw.period_left to count intervals. This period event
3717 * is kept in the range [-sample_period, 0] so that we can use the
3718 * sign as trigger.
3719 */
3720
3721static u64 perf_swevent_set_period(struct perf_event *event)
3722{
3723 struct hw_perf_event *hwc = &event->hw;
3724 u64 period = hwc->last_period;
3725 u64 nr, offset;
3726 s64 old, val;
3727
3728 hwc->last_period = hwc->sample_period;
3729
3730again:
3731 old = val = atomic64_read(&hwc->period_left);
3732 if (val < 0)
3733 return 0;
3734
3735 nr = div64_u64(period + val, period);
3736 offset = nr * period;
3737 val -= offset;
3738 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3739 goto again;
3740
3741 return nr;
3742}
3743
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003744static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003745 int nmi, struct perf_sample_data *data,
3746 struct pt_regs *regs)
3747{
3748 struct hw_perf_event *hwc = &event->hw;
3749 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003750
3751 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003752 if (!overflow)
3753 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003754
3755 if (hwc->interrupts == MAX_INTERRUPTS)
3756 return;
3757
3758 for (; overflow; overflow--) {
3759 if (__perf_event_overflow(event, nmi, throttle,
3760 data, regs)) {
3761 /*
3762 * We inhibit the overflow from happening when
3763 * hwc->interrupts == MAX_INTERRUPTS.
3764 */
3765 break;
3766 }
3767 throttle = 1;
3768 }
3769}
3770
3771static void perf_swevent_unthrottle(struct perf_event *event)
3772{
3773 /*
3774 * Nothing to do, we already reset hwc->interrupts.
3775 */
3776}
3777
3778static void perf_swevent_add(struct perf_event *event, u64 nr,
3779 int nmi, struct perf_sample_data *data,
3780 struct pt_regs *regs)
3781{
3782 struct hw_perf_event *hwc = &event->hw;
3783
3784 atomic64_add(nr, &event->count);
3785
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003786 if (!regs)
3787 return;
3788
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003789 if (!hwc->sample_period)
3790 return;
3791
3792 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3793 return perf_swevent_overflow(event, 1, nmi, data, regs);
3794
3795 if (atomic64_add_negative(nr, &hwc->period_left))
3796 return;
3797
3798 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003799}
3800
3801static int perf_swevent_is_counting(struct perf_event *event)
3802{
3803 /*
3804 * The event is active, we're good!
3805 */
3806 if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 return 1;
3808
3809 /*
3810 * The event is off/error, not counting.
3811 */
3812 if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 return 0;
3814
3815 /*
3816 * The event is inactive, if the context is active
3817 * we're part of a group that didn't make it on the 'pmu',
3818 * not counting.
3819 */
3820 if (event->ctx->is_active)
3821 return 0;
3822
3823 /*
3824 * We're inactive and the context is too, this means the
3825 * task is scheduled out, we're counting events that happen
3826 * to us, like migration events.
3827 */
3828 return 1;
3829}
3830
Li Zefan6fb29152009-10-15 11:21:42 +08003831static int perf_tp_event_match(struct perf_event *event,
3832 struct perf_sample_data *data);
3833
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003834static int perf_swevent_match(struct perf_event *event,
3835 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003836 u32 event_id,
3837 struct perf_sample_data *data,
3838 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003839{
3840 if (!perf_swevent_is_counting(event))
3841 return 0;
3842
3843 if (event->attr.type != type)
3844 return 0;
3845 if (event->attr.config != event_id)
3846 return 0;
3847
3848 if (regs) {
3849 if (event->attr.exclude_user && user_mode(regs))
3850 return 0;
3851
3852 if (event->attr.exclude_kernel && !user_mode(regs))
3853 return 0;
3854 }
3855
Li Zefan6fb29152009-10-15 11:21:42 +08003856 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3857 !perf_tp_event_match(event, data))
3858 return 0;
3859
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003860 return 1;
3861}
3862
3863static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3864 enum perf_type_id type,
3865 u32 event_id, u64 nr, int nmi,
3866 struct perf_sample_data *data,
3867 struct pt_regs *regs)
3868{
3869 struct perf_event *event;
3870
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003871 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003872 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003873 perf_swevent_add(event, nr, nmi, data, regs);
3874 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003875}
3876
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003877int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003878{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003879 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3880 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003881
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003882 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003883 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003884 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003885 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003886 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003887 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003888 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003889 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003890
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003891 if (cpuctx->recursion[rctx]) {
3892 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003893 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003894 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003895
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003896 cpuctx->recursion[rctx]++;
3897 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003898
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003899 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003900}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003901EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003902
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003903void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003904{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003905 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3906 barrier();
3907 cpuctx->recursion[rctx]++;
3908 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003909}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003910EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003911
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003912static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3913 u64 nr, int nmi,
3914 struct perf_sample_data *data,
3915 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003916{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003917 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003918 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003919
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003920 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01003921 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003922 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3923 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003924 /*
3925 * doesn't really matter which of the child contexts the
3926 * events ends up in.
3927 */
3928 ctx = rcu_dereference(current->perf_event_ctxp);
3929 if (ctx)
3930 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3931 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003932}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003933
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003934void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3935 struct pt_regs *regs, u64 addr)
3936{
Ingo Molnara4234bf2009-11-23 10:57:59 +01003937 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003938 int rctx;
3939
3940 rctx = perf_swevent_get_recursion_context();
3941 if (rctx < 0)
3942 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003943
Ingo Molnara4234bf2009-11-23 10:57:59 +01003944 data.addr = addr;
3945 data.raw = NULL;
3946
3947 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003948
3949 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003950}
3951
3952static void perf_swevent_read(struct perf_event *event)
3953{
3954}
3955
3956static int perf_swevent_enable(struct perf_event *event)
3957{
3958 struct hw_perf_event *hwc = &event->hw;
3959
3960 if (hwc->sample_period) {
3961 hwc->last_period = hwc->sample_period;
3962 perf_swevent_set_period(event);
3963 }
3964 return 0;
3965}
3966
3967static void perf_swevent_disable(struct perf_event *event)
3968{
3969}
3970
3971static const struct pmu perf_ops_generic = {
3972 .enable = perf_swevent_enable,
3973 .disable = perf_swevent_disable,
3974 .read = perf_swevent_read,
3975 .unthrottle = perf_swevent_unthrottle,
3976};
3977
3978/*
3979 * hrtimer based swevent callback
3980 */
3981
3982static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3983{
3984 enum hrtimer_restart ret = HRTIMER_RESTART;
3985 struct perf_sample_data data;
3986 struct pt_regs *regs;
3987 struct perf_event *event;
3988 u64 period;
3989
3990 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3991 event->pmu->read(event);
3992
3993 data.addr = 0;
3994 regs = get_irq_regs();
3995 /*
3996 * In case we exclude kernel IPs or are somehow not in interrupt
3997 * context, provide the next best thing, the user IP.
3998 */
3999 if ((event->attr.exclude_kernel || !regs) &&
4000 !event->attr.exclude_user)
4001 regs = task_pt_regs(current);
4002
4003 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004004 if (!(event->attr.exclude_idle && current->pid == 0))
4005 if (perf_event_overflow(event, 0, &data, regs))
4006 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004007 }
4008
4009 period = max_t(u64, 10000, event->hw.sample_period);
4010 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4011
4012 return ret;
4013}
4014
Soeren Sandmann721a6692009-09-15 14:33:08 +02004015static void perf_swevent_start_hrtimer(struct perf_event *event)
4016{
4017 struct hw_perf_event *hwc = &event->hw;
4018
4019 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4020 hwc->hrtimer.function = perf_swevent_hrtimer;
4021 if (hwc->sample_period) {
4022 u64 period;
4023
4024 if (hwc->remaining) {
4025 if (hwc->remaining < 0)
4026 period = 10000;
4027 else
4028 period = hwc->remaining;
4029 hwc->remaining = 0;
4030 } else {
4031 period = max_t(u64, 10000, hwc->sample_period);
4032 }
4033 __hrtimer_start_range_ns(&hwc->hrtimer,
4034 ns_to_ktime(period), 0,
4035 HRTIMER_MODE_REL, 0);
4036 }
4037}
4038
4039static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4040{
4041 struct hw_perf_event *hwc = &event->hw;
4042
4043 if (hwc->sample_period) {
4044 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4045 hwc->remaining = ktime_to_ns(remaining);
4046
4047 hrtimer_cancel(&hwc->hrtimer);
4048 }
4049}
4050
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004051/*
4052 * Software event: cpu wall time clock
4053 */
4054
4055static void cpu_clock_perf_event_update(struct perf_event *event)
4056{
4057 int cpu = raw_smp_processor_id();
4058 s64 prev;
4059 u64 now;
4060
4061 now = cpu_clock(cpu);
4062 prev = atomic64_read(&event->hw.prev_count);
4063 atomic64_set(&event->hw.prev_count, now);
4064 atomic64_add(now - prev, &event->count);
4065}
4066
4067static int cpu_clock_perf_event_enable(struct perf_event *event)
4068{
4069 struct hw_perf_event *hwc = &event->hw;
4070 int cpu = raw_smp_processor_id();
4071
4072 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004073 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004074
4075 return 0;
4076}
4077
4078static void cpu_clock_perf_event_disable(struct perf_event *event)
4079{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004080 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004081 cpu_clock_perf_event_update(event);
4082}
4083
4084static void cpu_clock_perf_event_read(struct perf_event *event)
4085{
4086 cpu_clock_perf_event_update(event);
4087}
4088
4089static const struct pmu perf_ops_cpu_clock = {
4090 .enable = cpu_clock_perf_event_enable,
4091 .disable = cpu_clock_perf_event_disable,
4092 .read = cpu_clock_perf_event_read,
4093};
4094
4095/*
4096 * Software event: task time clock
4097 */
4098
4099static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4100{
4101 u64 prev;
4102 s64 delta;
4103
4104 prev = atomic64_xchg(&event->hw.prev_count, now);
4105 delta = now - prev;
4106 atomic64_add(delta, &event->count);
4107}
4108
4109static int task_clock_perf_event_enable(struct perf_event *event)
4110{
4111 struct hw_perf_event *hwc = &event->hw;
4112 u64 now;
4113
4114 now = event->ctx->time;
4115
4116 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004117
4118 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004119
4120 return 0;
4121}
4122
4123static void task_clock_perf_event_disable(struct perf_event *event)
4124{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004125 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004126 task_clock_perf_event_update(event, event->ctx->time);
4127
4128}
4129
4130static void task_clock_perf_event_read(struct perf_event *event)
4131{
4132 u64 time;
4133
4134 if (!in_nmi()) {
4135 update_context_time(event->ctx);
4136 time = event->ctx->time;
4137 } else {
4138 u64 now = perf_clock();
4139 u64 delta = now - event->ctx->timestamp;
4140 time = event->ctx->time + delta;
4141 }
4142
4143 task_clock_perf_event_update(event, time);
4144}
4145
4146static const struct pmu perf_ops_task_clock = {
4147 .enable = task_clock_perf_event_enable,
4148 .disable = task_clock_perf_event_disable,
4149 .read = task_clock_perf_event_read,
4150};
4151
4152#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004153
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004154void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4155 int entry_size)
4156{
4157 struct perf_raw_record raw = {
4158 .size = entry_size,
4159 .data = record,
4160 };
4161
4162 struct perf_sample_data data = {
4163 .addr = addr,
4164 .raw = &raw,
4165 };
4166
4167 struct pt_regs *regs = get_irq_regs();
4168
4169 if (!regs)
4170 regs = task_pt_regs(current);
4171
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004172 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004173 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004174 &data, regs);
4175}
4176EXPORT_SYMBOL_GPL(perf_tp_event);
4177
Li Zefan6fb29152009-10-15 11:21:42 +08004178static int perf_tp_event_match(struct perf_event *event,
4179 struct perf_sample_data *data)
4180{
4181 void *record = data->raw->data;
4182
4183 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4184 return 1;
4185 return 0;
4186}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004187
4188static void tp_perf_event_destroy(struct perf_event *event)
4189{
4190 ftrace_profile_disable(event->attr.config);
4191}
4192
4193static const struct pmu *tp_perf_event_init(struct perf_event *event)
4194{
4195 /*
4196 * Raw tracepoint data is a severe data leak, only allow root to
4197 * have these.
4198 */
4199 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4200 perf_paranoid_tracepoint_raw() &&
4201 !capable(CAP_SYS_ADMIN))
4202 return ERR_PTR(-EPERM);
4203
4204 if (ftrace_profile_enable(event->attr.config))
4205 return NULL;
4206
4207 event->destroy = tp_perf_event_destroy;
4208
4209 return &perf_ops_generic;
4210}
Li Zefan6fb29152009-10-15 11:21:42 +08004211
4212static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4213{
4214 char *filter_str;
4215 int ret;
4216
4217 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4218 return -EINVAL;
4219
4220 filter_str = strndup_user(arg, PAGE_SIZE);
4221 if (IS_ERR(filter_str))
4222 return PTR_ERR(filter_str);
4223
4224 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4225
4226 kfree(filter_str);
4227 return ret;
4228}
4229
4230static void perf_event_free_filter(struct perf_event *event)
4231{
4232 ftrace_profile_free_filter(event);
4233}
4234
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004235#else
Li Zefan6fb29152009-10-15 11:21:42 +08004236
4237static int perf_tp_event_match(struct perf_event *event,
4238 struct perf_sample_data *data)
4239{
4240 return 1;
4241}
4242
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004243static const struct pmu *tp_perf_event_init(struct perf_event *event)
4244{
4245 return NULL;
4246}
Li Zefan6fb29152009-10-15 11:21:42 +08004247
4248static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4249{
4250 return -ENOENT;
4251}
4252
4253static void perf_event_free_filter(struct perf_event *event)
4254{
4255}
4256
4257#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004258
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004259#ifdef CONFIG_HAVE_HW_BREAKPOINT
4260static void bp_perf_event_destroy(struct perf_event *event)
4261{
4262 release_bp_slot(event);
4263}
4264
4265static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4266{
4267 int err;
4268 /*
4269 * The breakpoint is already filled if we haven't created the counter
4270 * through perf syscall
4271 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4272 */
4273 if (!bp->callback)
4274 err = register_perf_hw_breakpoint(bp);
4275 else
4276 err = __register_perf_hw_breakpoint(bp);
4277 if (err)
4278 return ERR_PTR(err);
4279
4280 bp->destroy = bp_perf_event_destroy;
4281
4282 return &perf_ops_bp;
4283}
4284
4285void perf_bp_event(struct perf_event *bp, void *regs)
4286{
4287 /* TODO */
4288}
4289#else
4290static void bp_perf_event_destroy(struct perf_event *event)
4291{
4292}
4293
4294static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4295{
4296 return NULL;
4297}
4298
4299void perf_bp_event(struct perf_event *bp, void *regs)
4300{
4301}
4302#endif
4303
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004304atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4305
4306static void sw_perf_event_destroy(struct perf_event *event)
4307{
4308 u64 event_id = event->attr.config;
4309
4310 WARN_ON(event->parent);
4311
4312 atomic_dec(&perf_swevent_enabled[event_id]);
4313}
4314
4315static const struct pmu *sw_perf_event_init(struct perf_event *event)
4316{
4317 const struct pmu *pmu = NULL;
4318 u64 event_id = event->attr.config;
4319
4320 /*
4321 * Software events (currently) can't in general distinguish
4322 * between user, kernel and hypervisor events.
4323 * However, context switches and cpu migrations are considered
4324 * to be kernel events, and page faults are never hypervisor
4325 * events.
4326 */
4327 switch (event_id) {
4328 case PERF_COUNT_SW_CPU_CLOCK:
4329 pmu = &perf_ops_cpu_clock;
4330
4331 break;
4332 case PERF_COUNT_SW_TASK_CLOCK:
4333 /*
4334 * If the user instantiates this as a per-cpu event,
4335 * use the cpu_clock event instead.
4336 */
4337 if (event->ctx->task)
4338 pmu = &perf_ops_task_clock;
4339 else
4340 pmu = &perf_ops_cpu_clock;
4341
4342 break;
4343 case PERF_COUNT_SW_PAGE_FAULTS:
4344 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4345 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4346 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4347 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004348 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4349 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004350 if (!event->parent) {
4351 atomic_inc(&perf_swevent_enabled[event_id]);
4352 event->destroy = sw_perf_event_destroy;
4353 }
4354 pmu = &perf_ops_generic;
4355 break;
4356 }
4357
4358 return pmu;
4359}
4360
4361/*
4362 * Allocate and initialize a event structure
4363 */
4364static struct perf_event *
4365perf_event_alloc(struct perf_event_attr *attr,
4366 int cpu,
4367 struct perf_event_context *ctx,
4368 struct perf_event *group_leader,
4369 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004370 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004371 gfp_t gfpflags)
4372{
4373 const struct pmu *pmu;
4374 struct perf_event *event;
4375 struct hw_perf_event *hwc;
4376 long err;
4377
4378 event = kzalloc(sizeof(*event), gfpflags);
4379 if (!event)
4380 return ERR_PTR(-ENOMEM);
4381
4382 /*
4383 * Single events are their own group leaders, with an
4384 * empty sibling list:
4385 */
4386 if (!group_leader)
4387 group_leader = event;
4388
4389 mutex_init(&event->child_mutex);
4390 INIT_LIST_HEAD(&event->child_list);
4391
4392 INIT_LIST_HEAD(&event->group_entry);
4393 INIT_LIST_HEAD(&event->event_entry);
4394 INIT_LIST_HEAD(&event->sibling_list);
4395 init_waitqueue_head(&event->waitq);
4396
4397 mutex_init(&event->mmap_mutex);
4398
4399 event->cpu = cpu;
4400 event->attr = *attr;
4401 event->group_leader = group_leader;
4402 event->pmu = NULL;
4403 event->ctx = ctx;
4404 event->oncpu = -1;
4405
4406 event->parent = parent_event;
4407
4408 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4409 event->id = atomic64_inc_return(&perf_event_id);
4410
4411 event->state = PERF_EVENT_STATE_INACTIVE;
4412
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004413 if (!callback && parent_event)
4414 callback = parent_event->callback;
4415
4416 event->callback = callback;
4417
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004418 if (attr->disabled)
4419 event->state = PERF_EVENT_STATE_OFF;
4420
4421 pmu = NULL;
4422
4423 hwc = &event->hw;
4424 hwc->sample_period = attr->sample_period;
4425 if (attr->freq && attr->sample_freq)
4426 hwc->sample_period = 1;
4427 hwc->last_period = hwc->sample_period;
4428
4429 atomic64_set(&hwc->period_left, hwc->sample_period);
4430
4431 /*
4432 * we currently do not support PERF_FORMAT_GROUP on inherited events
4433 */
4434 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4435 goto done;
4436
4437 switch (attr->type) {
4438 case PERF_TYPE_RAW:
4439 case PERF_TYPE_HARDWARE:
4440 case PERF_TYPE_HW_CACHE:
4441 pmu = hw_perf_event_init(event);
4442 break;
4443
4444 case PERF_TYPE_SOFTWARE:
4445 pmu = sw_perf_event_init(event);
4446 break;
4447
4448 case PERF_TYPE_TRACEPOINT:
4449 pmu = tp_perf_event_init(event);
4450 break;
4451
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004452 case PERF_TYPE_BREAKPOINT:
4453 pmu = bp_perf_event_init(event);
4454 break;
4455
4456
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004457 default:
4458 break;
4459 }
4460done:
4461 err = 0;
4462 if (!pmu)
4463 err = -EINVAL;
4464 else if (IS_ERR(pmu))
4465 err = PTR_ERR(pmu);
4466
4467 if (err) {
4468 if (event->ns)
4469 put_pid_ns(event->ns);
4470 kfree(event);
4471 return ERR_PTR(err);
4472 }
4473
4474 event->pmu = pmu;
4475
4476 if (!event->parent) {
4477 atomic_inc(&nr_events);
4478 if (event->attr.mmap)
4479 atomic_inc(&nr_mmap_events);
4480 if (event->attr.comm)
4481 atomic_inc(&nr_comm_events);
4482 if (event->attr.task)
4483 atomic_inc(&nr_task_events);
4484 }
4485
4486 return event;
4487}
4488
4489static int perf_copy_attr(struct perf_event_attr __user *uattr,
4490 struct perf_event_attr *attr)
4491{
4492 u32 size;
4493 int ret;
4494
4495 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4496 return -EFAULT;
4497
4498 /*
4499 * zero the full structure, so that a short copy will be nice.
4500 */
4501 memset(attr, 0, sizeof(*attr));
4502
4503 ret = get_user(size, &uattr->size);
4504 if (ret)
4505 return ret;
4506
4507 if (size > PAGE_SIZE) /* silly large */
4508 goto err_size;
4509
4510 if (!size) /* abi compat */
4511 size = PERF_ATTR_SIZE_VER0;
4512
4513 if (size < PERF_ATTR_SIZE_VER0)
4514 goto err_size;
4515
4516 /*
4517 * If we're handed a bigger struct than we know of,
4518 * ensure all the unknown bits are 0 - i.e. new
4519 * user-space does not rely on any kernel feature
4520 * extensions we dont know about yet.
4521 */
4522 if (size > sizeof(*attr)) {
4523 unsigned char __user *addr;
4524 unsigned char __user *end;
4525 unsigned char val;
4526
4527 addr = (void __user *)uattr + sizeof(*attr);
4528 end = (void __user *)uattr + size;
4529
4530 for (; addr < end; addr++) {
4531 ret = get_user(val, addr);
4532 if (ret)
4533 return ret;
4534 if (val)
4535 goto err_size;
4536 }
4537 size = sizeof(*attr);
4538 }
4539
4540 ret = copy_from_user(attr, uattr, size);
4541 if (ret)
4542 return -EFAULT;
4543
4544 /*
4545 * If the type exists, the corresponding creation will verify
4546 * the attr->config.
4547 */
4548 if (attr->type >= PERF_TYPE_MAX)
4549 return -EINVAL;
4550
4551 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4552 return -EINVAL;
4553
4554 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4555 return -EINVAL;
4556
4557 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4558 return -EINVAL;
4559
4560out:
4561 return ret;
4562
4563err_size:
4564 put_user(sizeof(*attr), &uattr->size);
4565 ret = -E2BIG;
4566 goto out;
4567}
4568
Li Zefan6fb29152009-10-15 11:21:42 +08004569static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004570{
4571 struct perf_event *output_event = NULL;
4572 struct file *output_file = NULL;
4573 struct perf_event *old_output;
4574 int fput_needed = 0;
4575 int ret = -EINVAL;
4576
4577 if (!output_fd)
4578 goto set;
4579
4580 output_file = fget_light(output_fd, &fput_needed);
4581 if (!output_file)
4582 return -EBADF;
4583
4584 if (output_file->f_op != &perf_fops)
4585 goto out;
4586
4587 output_event = output_file->private_data;
4588
4589 /* Don't chain output fds */
4590 if (output_event->output)
4591 goto out;
4592
4593 /* Don't set an output fd when we already have an output channel */
4594 if (event->data)
4595 goto out;
4596
4597 atomic_long_inc(&output_file->f_count);
4598
4599set:
4600 mutex_lock(&event->mmap_mutex);
4601 old_output = event->output;
4602 rcu_assign_pointer(event->output, output_event);
4603 mutex_unlock(&event->mmap_mutex);
4604
4605 if (old_output) {
4606 /*
4607 * we need to make sure no existing perf_output_*()
4608 * is still referencing this event.
4609 */
4610 synchronize_rcu();
4611 fput(old_output->filp);
4612 }
4613
4614 ret = 0;
4615out:
4616 fput_light(output_file, fput_needed);
4617 return ret;
4618}
4619
4620/**
4621 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4622 *
4623 * @attr_uptr: event_id type attributes for monitoring/sampling
4624 * @pid: target pid
4625 * @cpu: target cpu
4626 * @group_fd: group leader event fd
4627 */
4628SYSCALL_DEFINE5(perf_event_open,
4629 struct perf_event_attr __user *, attr_uptr,
4630 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4631{
4632 struct perf_event *event, *group_leader;
4633 struct perf_event_attr attr;
4634 struct perf_event_context *ctx;
4635 struct file *event_file = NULL;
4636 struct file *group_file = NULL;
4637 int fput_needed = 0;
4638 int fput_needed2 = 0;
4639 int err;
4640
4641 /* for future expandability... */
4642 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4643 return -EINVAL;
4644
4645 err = perf_copy_attr(attr_uptr, &attr);
4646 if (err)
4647 return err;
4648
4649 if (!attr.exclude_kernel) {
4650 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4651 return -EACCES;
4652 }
4653
4654 if (attr.freq) {
4655 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4656 return -EINVAL;
4657 }
4658
4659 /*
4660 * Get the target context (task or percpu):
4661 */
4662 ctx = find_get_context(pid, cpu);
4663 if (IS_ERR(ctx))
4664 return PTR_ERR(ctx);
4665
4666 /*
4667 * Look up the group leader (we will attach this event to it):
4668 */
4669 group_leader = NULL;
4670 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4671 err = -EINVAL;
4672 group_file = fget_light(group_fd, &fput_needed);
4673 if (!group_file)
4674 goto err_put_context;
4675 if (group_file->f_op != &perf_fops)
4676 goto err_put_context;
4677
4678 group_leader = group_file->private_data;
4679 /*
4680 * Do not allow a recursive hierarchy (this new sibling
4681 * becoming part of another group-sibling):
4682 */
4683 if (group_leader->group_leader != group_leader)
4684 goto err_put_context;
4685 /*
4686 * Do not allow to attach to a group in a different
4687 * task or CPU context:
4688 */
4689 if (group_leader->ctx != ctx)
4690 goto err_put_context;
4691 /*
4692 * Only a group leader can be exclusive or pinned
4693 */
4694 if (attr.exclusive || attr.pinned)
4695 goto err_put_context;
4696 }
4697
4698 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004699 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004700 err = PTR_ERR(event);
4701 if (IS_ERR(event))
4702 goto err_put_context;
4703
4704 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4705 if (err < 0)
4706 goto err_free_put_context;
4707
4708 event_file = fget_light(err, &fput_needed2);
4709 if (!event_file)
4710 goto err_free_put_context;
4711
4712 if (flags & PERF_FLAG_FD_OUTPUT) {
4713 err = perf_event_set_output(event, group_fd);
4714 if (err)
4715 goto err_fput_free_put_context;
4716 }
4717
4718 event->filp = event_file;
4719 WARN_ON_ONCE(ctx->parent_ctx);
4720 mutex_lock(&ctx->mutex);
4721 perf_install_in_context(ctx, event, cpu);
4722 ++ctx->generation;
4723 mutex_unlock(&ctx->mutex);
4724
4725 event->owner = current;
4726 get_task_struct(current);
4727 mutex_lock(&current->perf_event_mutex);
4728 list_add_tail(&event->owner_entry, &current->perf_event_list);
4729 mutex_unlock(&current->perf_event_mutex);
4730
4731err_fput_free_put_context:
4732 fput_light(event_file, fput_needed2);
4733
4734err_free_put_context:
4735 if (err < 0)
4736 kfree(event);
4737
4738err_put_context:
4739 if (err < 0)
4740 put_ctx(ctx);
4741
4742 fput_light(group_file, fput_needed);
4743
4744 return err;
4745}
4746
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004747/**
4748 * perf_event_create_kernel_counter
4749 *
4750 * @attr: attributes of the counter to create
4751 * @cpu: cpu in which the counter is bound
4752 * @pid: task to profile
4753 */
4754struct perf_event *
4755perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004756 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004757{
4758 struct perf_event *event;
4759 struct perf_event_context *ctx;
4760 int err;
4761
4762 /*
4763 * Get the target context (task or percpu):
4764 */
4765
4766 ctx = find_get_context(pid, cpu);
4767 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004768 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004769
4770 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004771 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004772 err = PTR_ERR(event);
4773 if (IS_ERR(event))
4774 goto err_put_context;
4775
4776 event->filp = NULL;
4777 WARN_ON_ONCE(ctx->parent_ctx);
4778 mutex_lock(&ctx->mutex);
4779 perf_install_in_context(ctx, event, cpu);
4780 ++ctx->generation;
4781 mutex_unlock(&ctx->mutex);
4782
4783 event->owner = current;
4784 get_task_struct(current);
4785 mutex_lock(&current->perf_event_mutex);
4786 list_add_tail(&event->owner_entry, &current->perf_event_list);
4787 mutex_unlock(&current->perf_event_mutex);
4788
4789 return event;
4790
4791err_put_context:
4792 if (err < 0)
4793 put_ctx(ctx);
4794
4795 return NULL;
4796}
4797EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4798
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004799/*
4800 * inherit a event from parent task to child task:
4801 */
4802static struct perf_event *
4803inherit_event(struct perf_event *parent_event,
4804 struct task_struct *parent,
4805 struct perf_event_context *parent_ctx,
4806 struct task_struct *child,
4807 struct perf_event *group_leader,
4808 struct perf_event_context *child_ctx)
4809{
4810 struct perf_event *child_event;
4811
4812 /*
4813 * Instead of creating recursive hierarchies of events,
4814 * we link inherited events back to the original parent,
4815 * which has a filp for sure, which we use as the reference
4816 * count:
4817 */
4818 if (parent_event->parent)
4819 parent_event = parent_event->parent;
4820
4821 child_event = perf_event_alloc(&parent_event->attr,
4822 parent_event->cpu, child_ctx,
4823 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004824 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004825 if (IS_ERR(child_event))
4826 return child_event;
4827 get_ctx(child_ctx);
4828
4829 /*
4830 * Make the child state follow the state of the parent event,
4831 * not its attr.disabled bit. We hold the parent's mutex,
4832 * so we won't race with perf_event_{en, dis}able_family.
4833 */
4834 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4835 child_event->state = PERF_EVENT_STATE_INACTIVE;
4836 else
4837 child_event->state = PERF_EVENT_STATE_OFF;
4838
4839 if (parent_event->attr.freq)
4840 child_event->hw.sample_period = parent_event->hw.sample_period;
4841
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004842 child_event->overflow_handler = parent_event->overflow_handler;
4843
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004844 /*
4845 * Link it up in the child's context:
4846 */
4847 add_event_to_ctx(child_event, child_ctx);
4848
4849 /*
4850 * Get a reference to the parent filp - we will fput it
4851 * when the child event exits. This is safe to do because
4852 * we are in the parent and we know that the filp still
4853 * exists and has a nonzero count:
4854 */
4855 atomic_long_inc(&parent_event->filp->f_count);
4856
4857 /*
4858 * Link this into the parent event's child list
4859 */
4860 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4861 mutex_lock(&parent_event->child_mutex);
4862 list_add_tail(&child_event->child_list, &parent_event->child_list);
4863 mutex_unlock(&parent_event->child_mutex);
4864
4865 return child_event;
4866}
4867
4868static int inherit_group(struct perf_event *parent_event,
4869 struct task_struct *parent,
4870 struct perf_event_context *parent_ctx,
4871 struct task_struct *child,
4872 struct perf_event_context *child_ctx)
4873{
4874 struct perf_event *leader;
4875 struct perf_event *sub;
4876 struct perf_event *child_ctr;
4877
4878 leader = inherit_event(parent_event, parent, parent_ctx,
4879 child, NULL, child_ctx);
4880 if (IS_ERR(leader))
4881 return PTR_ERR(leader);
4882 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4883 child_ctr = inherit_event(sub, parent, parent_ctx,
4884 child, leader, child_ctx);
4885 if (IS_ERR(child_ctr))
4886 return PTR_ERR(child_ctr);
4887 }
4888 return 0;
4889}
4890
4891static void sync_child_event(struct perf_event *child_event,
4892 struct task_struct *child)
4893{
4894 struct perf_event *parent_event = child_event->parent;
4895 u64 child_val;
4896
4897 if (child_event->attr.inherit_stat)
4898 perf_event_read_event(child_event, child);
4899
4900 child_val = atomic64_read(&child_event->count);
4901
4902 /*
4903 * Add back the child's count to the parent's count:
4904 */
4905 atomic64_add(child_val, &parent_event->count);
4906 atomic64_add(child_event->total_time_enabled,
4907 &parent_event->child_total_time_enabled);
4908 atomic64_add(child_event->total_time_running,
4909 &parent_event->child_total_time_running);
4910
4911 /*
4912 * Remove this event from the parent's list
4913 */
4914 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4915 mutex_lock(&parent_event->child_mutex);
4916 list_del_init(&child_event->child_list);
4917 mutex_unlock(&parent_event->child_mutex);
4918
4919 /*
4920 * Release the parent event, if this was the last
4921 * reference to it.
4922 */
4923 fput(parent_event->filp);
4924}
4925
4926static void
4927__perf_event_exit_task(struct perf_event *child_event,
4928 struct perf_event_context *child_ctx,
4929 struct task_struct *child)
4930{
4931 struct perf_event *parent_event;
4932
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004933 perf_event_remove_from_context(child_event);
4934
4935 parent_event = child_event->parent;
4936 /*
4937 * It can happen that parent exits first, and has events
4938 * that are still around due to the child reference. These
4939 * events need to be zapped - but otherwise linger.
4940 */
4941 if (parent_event) {
4942 sync_child_event(child_event, child);
4943 free_event(child_event);
4944 }
4945}
4946
4947/*
4948 * When a child task exits, feed back event values to parent events.
4949 */
4950void perf_event_exit_task(struct task_struct *child)
4951{
4952 struct perf_event *child_event, *tmp;
4953 struct perf_event_context *child_ctx;
4954 unsigned long flags;
4955
4956 if (likely(!child->perf_event_ctxp)) {
4957 perf_event_task(child, NULL, 0);
4958 return;
4959 }
4960
4961 local_irq_save(flags);
4962 /*
4963 * We can't reschedule here because interrupts are disabled,
4964 * and either child is current or it is a task that can't be
4965 * scheduled, so we are now safe from rescheduling changing
4966 * our context.
4967 */
4968 child_ctx = child->perf_event_ctxp;
4969 __perf_event_task_sched_out(child_ctx);
4970
4971 /*
4972 * Take the context lock here so that if find_get_context is
4973 * reading child->perf_event_ctxp, we wait until it has
4974 * incremented the context's refcount before we do put_ctx below.
4975 */
4976 spin_lock(&child_ctx->lock);
4977 child->perf_event_ctxp = NULL;
4978 /*
4979 * If this context is a clone; unclone it so it can't get
4980 * swapped to another process while we're removing all
4981 * the events from it.
4982 */
4983 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01004984 update_context_time(child_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004985 spin_unlock_irqrestore(&child_ctx->lock, flags);
4986
4987 /*
4988 * Report the task dead after unscheduling the events so that we
4989 * won't get any samples after PERF_RECORD_EXIT. We can however still
4990 * get a few PERF_RECORD_READ events.
4991 */
4992 perf_event_task(child, child_ctx, 0);
4993
4994 /*
4995 * We can recurse on the same lock type through:
4996 *
4997 * __perf_event_exit_task()
4998 * sync_child_event()
4999 * fput(parent_event->filp)
5000 * perf_release()
5001 * mutex_lock(&ctx->mutex)
5002 *
5003 * But since its the parent context it won't be the same instance.
5004 */
5005 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5006
5007again:
5008 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5009 group_entry)
5010 __perf_event_exit_task(child_event, child_ctx, child);
5011
5012 /*
5013 * If the last event was a group event, it will have appended all
5014 * its siblings to the list, but we obtained 'tmp' before that which
5015 * will still point to the list head terminating the iteration.
5016 */
5017 if (!list_empty(&child_ctx->group_list))
5018 goto again;
5019
5020 mutex_unlock(&child_ctx->mutex);
5021
5022 put_ctx(child_ctx);
5023}
5024
5025/*
5026 * free an unexposed, unused context as created by inheritance by
5027 * init_task below, used by fork() in case of fail.
5028 */
5029void perf_event_free_task(struct task_struct *task)
5030{
5031 struct perf_event_context *ctx = task->perf_event_ctxp;
5032 struct perf_event *event, *tmp;
5033
5034 if (!ctx)
5035 return;
5036
5037 mutex_lock(&ctx->mutex);
5038again:
5039 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5040 struct perf_event *parent = event->parent;
5041
5042 if (WARN_ON_ONCE(!parent))
5043 continue;
5044
5045 mutex_lock(&parent->child_mutex);
5046 list_del_init(&event->child_list);
5047 mutex_unlock(&parent->child_mutex);
5048
5049 fput(parent->filp);
5050
5051 list_del_event(event, ctx);
5052 free_event(event);
5053 }
5054
5055 if (!list_empty(&ctx->group_list))
5056 goto again;
5057
5058 mutex_unlock(&ctx->mutex);
5059
5060 put_ctx(ctx);
5061}
5062
5063/*
5064 * Initialize the perf_event context in task_struct
5065 */
5066int perf_event_init_task(struct task_struct *child)
5067{
5068 struct perf_event_context *child_ctx, *parent_ctx;
5069 struct perf_event_context *cloned_ctx;
5070 struct perf_event *event;
5071 struct task_struct *parent = current;
5072 int inherited_all = 1;
5073 int ret = 0;
5074
5075 child->perf_event_ctxp = NULL;
5076
5077 mutex_init(&child->perf_event_mutex);
5078 INIT_LIST_HEAD(&child->perf_event_list);
5079
5080 if (likely(!parent->perf_event_ctxp))
5081 return 0;
5082
5083 /*
5084 * This is executed from the parent task context, so inherit
5085 * events that have been marked for cloning.
5086 * First allocate and initialize a context for the child.
5087 */
5088
5089 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5090 if (!child_ctx)
5091 return -ENOMEM;
5092
5093 __perf_event_init_context(child_ctx, child);
5094 child->perf_event_ctxp = child_ctx;
5095 get_task_struct(child);
5096
5097 /*
5098 * If the parent's context is a clone, pin it so it won't get
5099 * swapped under us.
5100 */
5101 parent_ctx = perf_pin_task_context(parent);
5102
5103 /*
5104 * No need to check if parent_ctx != NULL here; since we saw
5105 * it non-NULL earlier, the only reason for it to become NULL
5106 * is if we exit, and since we're currently in the middle of
5107 * a fork we can't be exiting at the same time.
5108 */
5109
5110 /*
5111 * Lock the parent list. No need to lock the child - not PID
5112 * hashed yet and not running, so nobody can access it.
5113 */
5114 mutex_lock(&parent_ctx->mutex);
5115
5116 /*
5117 * We dont have to disable NMIs - we are only looking at
5118 * the list, not manipulating it:
5119 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005120 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005121
5122 if (!event->attr.inherit) {
5123 inherited_all = 0;
5124 continue;
5125 }
5126
5127 ret = inherit_group(event, parent, parent_ctx,
5128 child, child_ctx);
5129 if (ret) {
5130 inherited_all = 0;
5131 break;
5132 }
5133 }
5134
5135 if (inherited_all) {
5136 /*
5137 * Mark the child context as a clone of the parent
5138 * context, or of whatever the parent is a clone of.
5139 * Note that if the parent is a clone, it could get
5140 * uncloned at any point, but that doesn't matter
5141 * because the list of events and the generation
5142 * count can't have changed since we took the mutex.
5143 */
5144 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5145 if (cloned_ctx) {
5146 child_ctx->parent_ctx = cloned_ctx;
5147 child_ctx->parent_gen = parent_ctx->parent_gen;
5148 } else {
5149 child_ctx->parent_ctx = parent_ctx;
5150 child_ctx->parent_gen = parent_ctx->generation;
5151 }
5152 get_ctx(child_ctx->parent_ctx);
5153 }
5154
5155 mutex_unlock(&parent_ctx->mutex);
5156
5157 perf_unpin_context(parent_ctx);
5158
5159 return ret;
5160}
5161
5162static void __cpuinit perf_event_init_cpu(int cpu)
5163{
5164 struct perf_cpu_context *cpuctx;
5165
5166 cpuctx = &per_cpu(perf_cpu_context, cpu);
5167 __perf_event_init_context(&cpuctx->ctx, NULL);
5168
5169 spin_lock(&perf_resource_lock);
5170 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5171 spin_unlock(&perf_resource_lock);
5172
5173 hw_perf_event_setup(cpu);
5174}
5175
5176#ifdef CONFIG_HOTPLUG_CPU
5177static void __perf_event_exit_cpu(void *info)
5178{
5179 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5180 struct perf_event_context *ctx = &cpuctx->ctx;
5181 struct perf_event *event, *tmp;
5182
5183 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5184 __perf_event_remove_from_context(event);
5185}
5186static void perf_event_exit_cpu(int cpu)
5187{
5188 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5189 struct perf_event_context *ctx = &cpuctx->ctx;
5190
5191 mutex_lock(&ctx->mutex);
5192 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5193 mutex_unlock(&ctx->mutex);
5194}
5195#else
5196static inline void perf_event_exit_cpu(int cpu) { }
5197#endif
5198
5199static int __cpuinit
5200perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5201{
5202 unsigned int cpu = (long)hcpu;
5203
5204 switch (action) {
5205
5206 case CPU_UP_PREPARE:
5207 case CPU_UP_PREPARE_FROZEN:
5208 perf_event_init_cpu(cpu);
5209 break;
5210
5211 case CPU_ONLINE:
5212 case CPU_ONLINE_FROZEN:
5213 hw_perf_event_setup_online(cpu);
5214 break;
5215
5216 case CPU_DOWN_PREPARE:
5217 case CPU_DOWN_PREPARE_FROZEN:
5218 perf_event_exit_cpu(cpu);
5219 break;
5220
5221 default:
5222 break;
5223 }
5224
5225 return NOTIFY_OK;
5226}
5227
5228/*
5229 * This has to have a higher priority than migration_notifier in sched.c.
5230 */
5231static struct notifier_block __cpuinitdata perf_cpu_nb = {
5232 .notifier_call = perf_cpu_notify,
5233 .priority = 20,
5234};
5235
5236void __init perf_event_init(void)
5237{
5238 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5239 (void *)(long)smp_processor_id());
5240 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5241 (void *)(long)smp_processor_id());
5242 register_cpu_notifier(&perf_cpu_nb);
5243}
5244
5245static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5246{
5247 return sprintf(buf, "%d\n", perf_reserved_percpu);
5248}
5249
5250static ssize_t
5251perf_set_reserve_percpu(struct sysdev_class *class,
5252 const char *buf,
5253 size_t count)
5254{
5255 struct perf_cpu_context *cpuctx;
5256 unsigned long val;
5257 int err, cpu, mpt;
5258
5259 err = strict_strtoul(buf, 10, &val);
5260 if (err)
5261 return err;
5262 if (val > perf_max_events)
5263 return -EINVAL;
5264
5265 spin_lock(&perf_resource_lock);
5266 perf_reserved_percpu = val;
5267 for_each_online_cpu(cpu) {
5268 cpuctx = &per_cpu(perf_cpu_context, cpu);
5269 spin_lock_irq(&cpuctx->ctx.lock);
5270 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5271 perf_max_events - perf_reserved_percpu);
5272 cpuctx->max_pertask = mpt;
5273 spin_unlock_irq(&cpuctx->ctx.lock);
5274 }
5275 spin_unlock(&perf_resource_lock);
5276
5277 return count;
5278}
5279
5280static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5281{
5282 return sprintf(buf, "%d\n", perf_overcommit);
5283}
5284
5285static ssize_t
5286perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5287{
5288 unsigned long val;
5289 int err;
5290
5291 err = strict_strtoul(buf, 10, &val);
5292 if (err)
5293 return err;
5294 if (val > 1)
5295 return -EINVAL;
5296
5297 spin_lock(&perf_resource_lock);
5298 perf_overcommit = val;
5299 spin_unlock(&perf_resource_lock);
5300
5301 return count;
5302}
5303
5304static SYSDEV_CLASS_ATTR(
5305 reserve_percpu,
5306 0644,
5307 perf_show_reserve_percpu,
5308 perf_set_reserve_percpu
5309 );
5310
5311static SYSDEV_CLASS_ATTR(
5312 overcommit,
5313 0644,
5314 perf_show_overcommit,
5315 perf_set_overcommit
5316 );
5317
5318static struct attribute *perfclass_attrs[] = {
5319 &attr_reserve_percpu.attr,
5320 &attr_overcommit.attr,
5321 NULL
5322};
5323
5324static struct attribute_group perfclass_attr_group = {
5325 .attrs = perfclass_attrs,
5326 .name = "perf_events",
5327};
5328
5329static int __init perf_event_sysfs_init(void)
5330{
5331 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5332 &perfclass_attr_group);
5333}
5334device_initcall(perf_event_sysfs_init);