| Gregory Haskins | 6e0534f | 2008-05-12 21:21:01 +0200 | [diff] [blame] | 1 | /* | 
|  | 2 | *  kernel/sched_cpupri.c | 
|  | 3 | * | 
|  | 4 | *  CPU priority management | 
|  | 5 | * | 
|  | 6 | *  Copyright (C) 2007-2008 Novell | 
|  | 7 | * | 
|  | 8 | *  Author: Gregory Haskins <ghaskins@novell.com> | 
|  | 9 | * | 
|  | 10 | *  This code tracks the priority of each CPU so that global migration | 
|  | 11 | *  decisions are easy to calculate.  Each CPU can be in a state as follows: | 
|  | 12 | * | 
|  | 13 | *                 (INVALID), IDLE, NORMAL, RT1, ... RT99 | 
|  | 14 | * | 
|  | 15 | *  going from the lowest priority to the highest.  CPUs in the INVALID state | 
|  | 16 | *  are not eligible for routing.  The system maintains this state with | 
|  | 17 | *  a 2 dimensional bitmap (the first for priority class, the second for cpus | 
|  | 18 | *  in that class).  Therefore a typical application without affinity | 
|  | 19 | *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit | 
|  | 20 | *  searches).  For tasks with affinity restrictions, the algorithm has a | 
|  | 21 | *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that | 
|  | 22 | *  yields the worst case search is fairly contrived. | 
|  | 23 | * | 
|  | 24 | *  This program is free software; you can redistribute it and/or | 
|  | 25 | *  modify it under the terms of the GNU General Public License | 
|  | 26 | *  as published by the Free Software Foundation; version 2 | 
|  | 27 | *  of the License. | 
|  | 28 | */ | 
|  | 29 |  | 
|  | 30 | #include "sched_cpupri.h" | 
|  | 31 |  | 
|  | 32 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ | 
|  | 33 | static int convert_prio(int prio) | 
|  | 34 | { | 
|  | 35 | int cpupri; | 
|  | 36 |  | 
|  | 37 | if (prio == CPUPRI_INVALID) | 
|  | 38 | cpupri = CPUPRI_INVALID; | 
|  | 39 | else if (prio == MAX_PRIO) | 
|  | 40 | cpupri = CPUPRI_IDLE; | 
|  | 41 | else if (prio >= MAX_RT_PRIO) | 
|  | 42 | cpupri = CPUPRI_NORMAL; | 
|  | 43 | else | 
|  | 44 | cpupri = MAX_RT_PRIO - prio + 1; | 
|  | 45 |  | 
|  | 46 | return cpupri; | 
|  | 47 | } | 
|  | 48 |  | 
|  | 49 | #define for_each_cpupri_active(array, idx)                    \ | 
|  | 50 | for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES);     \ | 
|  | 51 | idx < CPUPRI_NR_PRIORITIES;                            \ | 
|  | 52 | idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1)) | 
|  | 53 |  | 
|  | 54 | /** | 
|  | 55 | * cpupri_find - find the best (lowest-pri) CPU in the system | 
|  | 56 | * @cp: The cpupri context | 
|  | 57 | * @p: The task | 
|  | 58 | * @lowest_mask: A mask to fill in with selected CPUs | 
|  | 59 | * | 
|  | 60 | * Note: This function returns the recommended CPUs as calculated during the | 
|  | 61 | * current invokation.  By the time the call returns, the CPUs may have in | 
|  | 62 | * fact changed priorities any number of times.  While not ideal, it is not | 
|  | 63 | * an issue of correctness since the normal rebalancer logic will correct | 
|  | 64 | * any discrepancies created by racing against the uncertainty of the current | 
|  | 65 | * priority configuration. | 
|  | 66 | * | 
|  | 67 | * Returns: (int)bool - CPUs were found | 
|  | 68 | */ | 
|  | 69 | int cpupri_find(struct cpupri *cp, struct task_struct *p, | 
|  | 70 | cpumask_t *lowest_mask) | 
|  | 71 | { | 
|  | 72 | int                  idx      = 0; | 
|  | 73 | int                  task_pri = convert_prio(p->prio); | 
|  | 74 |  | 
|  | 75 | for_each_cpupri_active(cp->pri_active, idx) { | 
|  | 76 | struct cpupri_vec *vec  = &cp->pri_to_cpu[idx]; | 
|  | 77 | cpumask_t mask; | 
|  | 78 |  | 
|  | 79 | if (idx >= task_pri) | 
|  | 80 | break; | 
|  | 81 |  | 
|  | 82 | cpus_and(mask, p->cpus_allowed, vec->mask); | 
|  | 83 |  | 
|  | 84 | if (cpus_empty(mask)) | 
|  | 85 | continue; | 
|  | 86 |  | 
|  | 87 | *lowest_mask = mask; | 
|  | 88 | return 1; | 
|  | 89 | } | 
|  | 90 |  | 
|  | 91 | return 0; | 
|  | 92 | } | 
|  | 93 |  | 
|  | 94 | /** | 
|  | 95 | * cpupri_set - update the cpu priority setting | 
|  | 96 | * @cp: The cpupri context | 
|  | 97 | * @cpu: The target cpu | 
|  | 98 | * @pri: The priority (INVALID-RT99) to assign to this CPU | 
|  | 99 | * | 
|  | 100 | * Note: Assumes cpu_rq(cpu)->lock is locked | 
|  | 101 | * | 
|  | 102 | * Returns: (void) | 
|  | 103 | */ | 
|  | 104 | void cpupri_set(struct cpupri *cp, int cpu, int newpri) | 
|  | 105 | { | 
|  | 106 | int                 *currpri = &cp->cpu_to_pri[cpu]; | 
|  | 107 | int                  oldpri  = *currpri; | 
|  | 108 | unsigned long        flags; | 
|  | 109 |  | 
|  | 110 | newpri = convert_prio(newpri); | 
|  | 111 |  | 
|  | 112 | BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); | 
|  | 113 |  | 
|  | 114 | if (newpri == oldpri) | 
|  | 115 | return; | 
|  | 116 |  | 
|  | 117 | /* | 
|  | 118 | * If the cpu was currently mapped to a different value, we | 
|  | 119 | * first need to unmap the old value | 
|  | 120 | */ | 
|  | 121 | if (likely(oldpri != CPUPRI_INVALID)) { | 
|  | 122 | struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri]; | 
|  | 123 |  | 
|  | 124 | spin_lock_irqsave(&vec->lock, flags); | 
|  | 125 |  | 
|  | 126 | vec->count--; | 
|  | 127 | if (!vec->count) | 
|  | 128 | clear_bit(oldpri, cp->pri_active); | 
|  | 129 | cpu_clear(cpu, vec->mask); | 
|  | 130 |  | 
|  | 131 | spin_unlock_irqrestore(&vec->lock, flags); | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | if (likely(newpri != CPUPRI_INVALID)) { | 
|  | 135 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | 
|  | 136 |  | 
|  | 137 | spin_lock_irqsave(&vec->lock, flags); | 
|  | 138 |  | 
|  | 139 | cpu_set(cpu, vec->mask); | 
|  | 140 | vec->count++; | 
|  | 141 | if (vec->count == 1) | 
|  | 142 | set_bit(newpri, cp->pri_active); | 
|  | 143 |  | 
|  | 144 | spin_unlock_irqrestore(&vec->lock, flags); | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | *currpri = newpri; | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | /** | 
|  | 151 | * cpupri_init - initialize the cpupri structure | 
|  | 152 | * @cp: The cpupri context | 
|  | 153 | * | 
|  | 154 | * Returns: (void) | 
|  | 155 | */ | 
|  | 156 | void cpupri_init(struct cpupri *cp) | 
|  | 157 | { | 
|  | 158 | int i; | 
|  | 159 |  | 
|  | 160 | memset(cp, 0, sizeof(*cp)); | 
|  | 161 |  | 
|  | 162 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { | 
|  | 163 | struct cpupri_vec *vec = &cp->pri_to_cpu[i]; | 
|  | 164 |  | 
|  | 165 | spin_lock_init(&vec->lock); | 
|  | 166 | vec->count = 0; | 
|  | 167 | cpus_clear(vec->mask); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | for_each_possible_cpu(i) | 
|  | 171 | cp->cpu_to_pri[i] = CPUPRI_INVALID; | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 |  |