| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *	This program is free software; you can redistribute it and/or | 
 | 3 |  *	modify it under the terms of the GNU General Public License | 
 | 4 |  *	as published by the Free Software Foundation; either version | 
 | 5 |  *	2 of the License, or (at your option) any later version. | 
 | 6 |  * | 
 | 7 |  *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> | 
 | 8 |  *	(c) Copyright 2000, 2001 Red Hat Inc | 
 | 9 |  * | 
 | 10 |  *	Development of this driver was funded by Equiinet Ltd | 
 | 11 |  *			http://www.equiinet.com | 
 | 12 |  * | 
 | 13 |  *	ChangeLog: | 
 | 14 |  * | 
 | 15 |  *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the | 
 | 16 |  *	unification of all the Z85x30 asynchronous drivers for real. | 
 | 17 |  * | 
 | 18 |  *	DMA now uses get_free_page as kmalloc buffers may span a 64K  | 
 | 19 |  *	boundary. | 
 | 20 |  * | 
 | 21 |  *	Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com> | 
 | 22 |  * | 
 | 23 |  *	Performance | 
 | 24 |  * | 
 | 25 |  *	Z85230: | 
 | 26 |  *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud | 
 | 27 |  *	X.25 is not unrealistic on all machines. DMA mode can in theory | 
 | 28 |  *	handle T1/E1 quite nicely. In practice the limit seems to be about | 
 | 29 |  *	512Kbit->1Mbit depending on motherboard. | 
 | 30 |  * | 
 | 31 |  *	Z85C30: | 
 | 32 |  *	64K will take DMA, 9600 baud X.25 should be ok. | 
 | 33 |  * | 
 | 34 |  *	Z8530: | 
 | 35 |  *	Synchronous mode without DMA is unlikely to pass about 2400 baud. | 
 | 36 |  */ | 
 | 37 |  | 
 | 38 | #include <linux/module.h> | 
 | 39 | #include <linux/kernel.h> | 
 | 40 | #include <linux/mm.h> | 
 | 41 | #include <linux/net.h> | 
 | 42 | #include <linux/skbuff.h> | 
 | 43 | #include <linux/netdevice.h> | 
 | 44 | #include <linux/if_arp.h> | 
 | 45 | #include <linux/delay.h> | 
 | 46 | #include <linux/ioport.h> | 
 | 47 | #include <linux/init.h> | 
 | 48 | #include <asm/dma.h> | 
 | 49 | #include <asm/io.h> | 
 | 50 | #define RT_LOCK | 
 | 51 | #define RT_UNLOCK | 
 | 52 | #include <linux/spinlock.h> | 
 | 53 |  | 
 | 54 | #include <net/syncppp.h> | 
 | 55 | #include "z85230.h" | 
 | 56 |  | 
 | 57 |  | 
 | 58 | /** | 
 | 59 |  *	z8530_read_port - Architecture specific interface function | 
 | 60 |  *	@p: port to read | 
 | 61 |  * | 
 | 62 |  *	Provided port access methods. The Comtrol SV11 requires no delays | 
 | 63 |  *	between accesses and uses PC I/O. Some drivers may need a 5uS delay | 
 | 64 |  *	 | 
 | 65 |  *	In the longer term this should become an architecture specific | 
 | 66 |  *	section so that this can become a generic driver interface for all | 
 | 67 |  *	platforms. For now we only handle PC I/O ports with or without the | 
 | 68 |  *	dread 5uS sanity delay. | 
 | 69 |  * | 
 | 70 |  *	The caller must hold sufficient locks to avoid violating the horrible | 
 | 71 |  *	5uS delay rule. | 
 | 72 |  */ | 
 | 73 |  | 
 | 74 | static inline int z8530_read_port(unsigned long p) | 
 | 75 | { | 
 | 76 | 	u8 r=inb(Z8530_PORT_OF(p)); | 
 | 77 | 	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */ | 
 | 78 | 		udelay(5); | 
 | 79 | 	return r; | 
 | 80 | } | 
 | 81 |  | 
 | 82 | /** | 
 | 83 |  *	z8530_write_port - Architecture specific interface function | 
 | 84 |  *	@p: port to write | 
 | 85 |  *	@d: value to write | 
 | 86 |  * | 
 | 87 |  *	Write a value to a port with delays if need be. Note that the | 
 | 88 |  *	caller must hold locks to avoid read/writes from other contexts | 
 | 89 |  *	violating the 5uS rule | 
 | 90 |  * | 
 | 91 |  *	In the longer term this should become an architecture specific | 
 | 92 |  *	section so that this can become a generic driver interface for all | 
 | 93 |  *	platforms. For now we only handle PC I/O ports with or without the | 
 | 94 |  *	dread 5uS sanity delay. | 
 | 95 |  */ | 
 | 96 |  | 
 | 97 |  | 
 | 98 | static inline void z8530_write_port(unsigned long p, u8 d) | 
 | 99 | { | 
 | 100 | 	outb(d,Z8530_PORT_OF(p)); | 
 | 101 | 	if(p&Z8530_PORT_SLEEP) | 
 | 102 | 		udelay(5); | 
 | 103 | } | 
 | 104 |  | 
 | 105 |  | 
 | 106 |  | 
 | 107 | static void z8530_rx_done(struct z8530_channel *c); | 
 | 108 | static void z8530_tx_done(struct z8530_channel *c); | 
 | 109 |  | 
 | 110 |  | 
 | 111 | /** | 
 | 112 |  *	read_zsreg - Read a register from a Z85230  | 
 | 113 |  *	@c: Z8530 channel to read from (2 per chip) | 
 | 114 |  *	@reg: Register to read | 
 | 115 |  *	FIXME: Use a spinlock. | 
 | 116 |  *	 | 
 | 117 |  *	Most of the Z8530 registers are indexed off the control registers. | 
 | 118 |  *	A read is done by writing to the control register and reading the | 
 | 119 |  *	register back.  The caller must hold the lock | 
 | 120 |  */ | 
 | 121 |   | 
 | 122 | static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) | 
 | 123 | { | 
 | 124 | 	if(reg) | 
 | 125 | 		z8530_write_port(c->ctrlio, reg); | 
 | 126 | 	return z8530_read_port(c->ctrlio); | 
 | 127 | } | 
 | 128 |  | 
 | 129 | /** | 
 | 130 |  *	read_zsdata - Read the data port of a Z8530 channel | 
 | 131 |  *	@c: The Z8530 channel to read the data port from | 
 | 132 |  * | 
 | 133 |  *	The data port provides fast access to some things. We still | 
 | 134 |  *	have all the 5uS delays to worry about. | 
 | 135 |  */ | 
 | 136 |  | 
 | 137 | static inline u8 read_zsdata(struct z8530_channel *c) | 
 | 138 | { | 
 | 139 | 	u8 r; | 
 | 140 | 	r=z8530_read_port(c->dataio); | 
 | 141 | 	return r; | 
 | 142 | } | 
 | 143 |  | 
 | 144 | /** | 
 | 145 |  *	write_zsreg - Write to a Z8530 channel register | 
 | 146 |  *	@c: The Z8530 channel | 
 | 147 |  *	@reg: Register number | 
 | 148 |  *	@val: Value to write | 
 | 149 |  * | 
 | 150 |  *	Write a value to an indexed register. The caller must hold the lock | 
 | 151 |  *	to honour the irritating delay rules. We know about register 0 | 
 | 152 |  *	being fast to access. | 
 | 153 |  * | 
 | 154 |  *      Assumes c->lock is held. | 
 | 155 |  */ | 
 | 156 | static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) | 
 | 157 | { | 
 | 158 | 	if(reg) | 
 | 159 | 		z8530_write_port(c->ctrlio, reg); | 
 | 160 | 	z8530_write_port(c->ctrlio, val); | 
 | 161 |  | 
 | 162 | } | 
 | 163 |  | 
 | 164 | /** | 
 | 165 |  *	write_zsctrl - Write to a Z8530 control register | 
 | 166 |  *	@c: The Z8530 channel | 
 | 167 |  *	@val: Value to write | 
 | 168 |  * | 
 | 169 |  *	Write directly to the control register on the Z8530 | 
 | 170 |  */ | 
 | 171 |  | 
 | 172 | static inline void write_zsctrl(struct z8530_channel *c, u8 val) | 
 | 173 | { | 
 | 174 | 	z8530_write_port(c->ctrlio, val); | 
 | 175 | } | 
 | 176 |  | 
 | 177 | /** | 
 | 178 |  *	write_zsdata - Write to a Z8530 control register | 
 | 179 |  *	@c: The Z8530 channel | 
 | 180 |  *	@val: Value to write | 
 | 181 |  * | 
 | 182 |  *	Write directly to the data register on the Z8530 | 
 | 183 |  */ | 
 | 184 |  | 
 | 185 |  | 
 | 186 | static inline void write_zsdata(struct z8530_channel *c, u8 val) | 
 | 187 | { | 
 | 188 | 	z8530_write_port(c->dataio, val); | 
 | 189 | } | 
 | 190 |  | 
 | 191 | /* | 
 | 192 |  *	Register loading parameters for a dead port | 
 | 193 |  */ | 
 | 194 |   | 
 | 195 | u8 z8530_dead_port[]= | 
 | 196 | { | 
 | 197 | 	255 | 
 | 198 | }; | 
 | 199 |  | 
 | 200 | EXPORT_SYMBOL(z8530_dead_port); | 
 | 201 |  | 
 | 202 | /* | 
 | 203 |  *	Register loading parameters for currently supported circuit types | 
 | 204 |  */ | 
 | 205 |  | 
 | 206 |  | 
 | 207 | /* | 
 | 208 |  *	Data clocked by telco end. This is the correct data for the UK | 
 | 209 |  *	"kilostream" service, and most other similar services. | 
 | 210 |  */ | 
 | 211 |   | 
 | 212 | u8 z8530_hdlc_kilostream[]= | 
 | 213 | { | 
 | 214 | 	4,	SYNC_ENAB|SDLC|X1CLK, | 
 | 215 | 	2,	0,	/* No vector */ | 
 | 216 | 	1,	0, | 
 | 217 | 	3,	ENT_HM|RxCRC_ENAB|Rx8, | 
 | 218 | 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, | 
 | 219 | 	9,	0,		/* Disable interrupts */ | 
 | 220 | 	6,	0xFF, | 
 | 221 | 	7,	FLAG, | 
 | 222 | 	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ | 
 | 223 | 	11,	TCTRxCP, | 
 | 224 | 	14,	DISDPLL, | 
 | 225 | 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, | 
 | 226 | 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, | 
 | 227 | 	9,	NV|MIE|NORESET, | 
 | 228 | 	255 | 
 | 229 | }; | 
 | 230 |  | 
 | 231 | EXPORT_SYMBOL(z8530_hdlc_kilostream); | 
 | 232 |  | 
 | 233 | /* | 
 | 234 |  *	As above but for enhanced chips. | 
 | 235 |  */ | 
 | 236 |   | 
 | 237 | u8 z8530_hdlc_kilostream_85230[]= | 
 | 238 | { | 
 | 239 | 	4,	SYNC_ENAB|SDLC|X1CLK, | 
 | 240 | 	2,	0,	/* No vector */ | 
 | 241 | 	1,	0, | 
 | 242 | 	3,	ENT_HM|RxCRC_ENAB|Rx8, | 
 | 243 | 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, | 
 | 244 | 	9,	0,		/* Disable interrupts */ | 
 | 245 | 	6,	0xFF, | 
 | 246 | 	7,	FLAG, | 
 | 247 | 	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */ | 
 | 248 | 	11,	TCTRxCP, | 
 | 249 | 	14,	DISDPLL, | 
 | 250 | 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, | 
 | 251 | 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, | 
 | 252 | 	9,	NV|MIE|NORESET, | 
 | 253 | 	23,	3,		/* Extended mode AUTO TX and EOM*/ | 
 | 254 | 	 | 
 | 255 | 	255 | 
 | 256 | }; | 
 | 257 |  | 
 | 258 | EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); | 
 | 259 |  | 
 | 260 | /** | 
 | 261 |  *	z8530_flush_fifo - Flush on chip RX FIFO | 
 | 262 |  *	@c: Channel to flush | 
 | 263 |  * | 
 | 264 |  *	Flush the receive FIFO. There is no specific option for this, we  | 
 | 265 |  *	blindly read bytes and discard them. Reading when there is no data | 
 | 266 |  *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. | 
 | 267 |  *	 | 
 | 268 |  *	All locking is handled for the caller. On return data may still be | 
 | 269 |  *	present if it arrived during the flush. | 
 | 270 |  */ | 
 | 271 |   | 
 | 272 | static void z8530_flush_fifo(struct z8530_channel *c) | 
 | 273 | { | 
 | 274 | 	read_zsreg(c, R1); | 
 | 275 | 	read_zsreg(c, R1); | 
 | 276 | 	read_zsreg(c, R1); | 
 | 277 | 	read_zsreg(c, R1); | 
 | 278 | 	if(c->dev->type==Z85230) | 
 | 279 | 	{ | 
 | 280 | 		read_zsreg(c, R1); | 
 | 281 | 		read_zsreg(c, R1); | 
 | 282 | 		read_zsreg(c, R1); | 
 | 283 | 		read_zsreg(c, R1); | 
 | 284 | 	} | 
 | 285 | }	 | 
 | 286 |  | 
 | 287 | /** | 
 | 288 |  *	z8530_rtsdtr - Control the outgoing DTS/RTS line | 
 | 289 |  *	@c: The Z8530 channel to control; | 
 | 290 |  *	@set: 1 to set, 0 to clear | 
 | 291 |  * | 
 | 292 |  *	Sets or clears DTR/RTS on the requested line. All locking is handled | 
 | 293 |  *	by the caller. For now we assume all boards use the actual RTS/DTR | 
 | 294 |  *	on the chip. Apparently one or two don't. We'll scream about them | 
 | 295 |  *	later. | 
 | 296 |  */ | 
 | 297 |  | 
 | 298 | static void z8530_rtsdtr(struct z8530_channel *c, int set) | 
 | 299 | { | 
 | 300 | 	if (set) | 
 | 301 | 		c->regs[5] |= (RTS | DTR); | 
 | 302 | 	else | 
 | 303 | 		c->regs[5] &= ~(RTS | DTR); | 
 | 304 | 	write_zsreg(c, R5, c->regs[5]); | 
 | 305 | } | 
 | 306 |  | 
 | 307 | /** | 
 | 308 |  *	z8530_rx - Handle a PIO receive event | 
 | 309 |  *	@c: Z8530 channel to process | 
 | 310 |  * | 
 | 311 |  *	Receive handler for receiving in PIO mode. This is much like the  | 
 | 312 |  *	async one but not quite the same or as complex | 
 | 313 |  * | 
 | 314 |  *	Note: Its intended that this handler can easily be separated from | 
 | 315 |  *	the main code to run realtime. That'll be needed for some machines | 
 | 316 |  *	(eg to ever clock 64kbits on a sparc ;)). | 
 | 317 |  * | 
 | 318 |  *	The RT_LOCK macros don't do anything now. Keep the code covered | 
 | 319 |  *	by them as short as possible in all circumstances - clocks cost | 
 | 320 |  *	baud. The interrupt handler is assumed to be atomic w.r.t. to | 
 | 321 |  *	other code - this is true in the RT case too. | 
 | 322 |  * | 
 | 323 |  *	We only cover the sync cases for this. If you want 2Mbit async | 
 | 324 |  *	do it yourself but consider medical assistance first. This non DMA  | 
 | 325 |  *	synchronous mode is portable code. The DMA mode assumes PCI like  | 
 | 326 |  *	ISA DMA | 
 | 327 |  * | 
 | 328 |  *	Called with the device lock held | 
 | 329 |  */ | 
 | 330 |   | 
 | 331 | static void z8530_rx(struct z8530_channel *c) | 
 | 332 | { | 
 | 333 | 	u8 ch,stat; | 
 | 334 | 	spin_lock(c->lock); | 
 | 335 |   | 
 | 336 | 	while(1) | 
 | 337 | 	{ | 
 | 338 | 		/* FIFO empty ? */ | 
 | 339 | 		if(!(read_zsreg(c, R0)&1)) | 
 | 340 | 			break; | 
 | 341 | 		ch=read_zsdata(c); | 
 | 342 | 		stat=read_zsreg(c, R1); | 
 | 343 | 	 | 
 | 344 | 		/* | 
 | 345 | 		 *	Overrun ? | 
 | 346 | 		 */ | 
 | 347 | 		if(c->count < c->max) | 
 | 348 | 		{ | 
 | 349 | 			*c->dptr++=ch; | 
 | 350 | 			c->count++; | 
 | 351 | 		} | 
 | 352 |  | 
 | 353 | 		if(stat&END_FR) | 
 | 354 | 		{ | 
 | 355 | 		 | 
 | 356 | 			/* | 
 | 357 | 			 *	Error ? | 
 | 358 | 			 */ | 
 | 359 | 			if(stat&(Rx_OVR|CRC_ERR)) | 
 | 360 | 			{ | 
 | 361 | 				/* Rewind the buffer and return */ | 
 | 362 | 				if(c->skb) | 
 | 363 | 					c->dptr=c->skb->data; | 
 | 364 | 				c->count=0; | 
 | 365 | 				if(stat&Rx_OVR) | 
 | 366 | 				{ | 
 | 367 | 					printk(KERN_WARNING "%s: overrun\n", c->dev->name); | 
 | 368 | 					c->rx_overrun++; | 
 | 369 | 				} | 
 | 370 | 				if(stat&CRC_ERR) | 
 | 371 | 				{ | 
 | 372 | 					c->rx_crc_err++; | 
 | 373 | 					/* printk("crc error\n"); */ | 
 | 374 | 				} | 
 | 375 | 				/* Shove the frame upstream */ | 
 | 376 | 			} | 
 | 377 | 			else | 
 | 378 | 			{ | 
 | 379 | 				/* | 
 | 380 | 				 *	Drop the lock for RX processing, or | 
 | 381 | 		 		 *	there are deadlocks | 
 | 382 | 		 		 */ | 
 | 383 | 				z8530_rx_done(c); | 
 | 384 | 				write_zsctrl(c, RES_Rx_CRC); | 
 | 385 | 			} | 
 | 386 | 		} | 
 | 387 | 	} | 
 | 388 | 	/* | 
 | 389 | 	 *	Clear irq | 
 | 390 | 	 */ | 
 | 391 | 	write_zsctrl(c, ERR_RES); | 
 | 392 | 	write_zsctrl(c, RES_H_IUS); | 
 | 393 | 	spin_unlock(c->lock); | 
 | 394 | } | 
 | 395 |  | 
 | 396 |  | 
 | 397 | /** | 
 | 398 |  *	z8530_tx - Handle a PIO transmit event | 
 | 399 |  *	@c: Z8530 channel to process | 
 | 400 |  * | 
 | 401 |  *	Z8530 transmit interrupt handler for the PIO mode. The basic | 
 | 402 |  *	idea is to attempt to keep the FIFO fed. We fill as many bytes | 
 | 403 |  *	in as possible, its quite possible that we won't keep up with the | 
 | 404 |  *	data rate otherwise. | 
 | 405 |  */ | 
 | 406 |   | 
 | 407 | static void z8530_tx(struct z8530_channel *c) | 
 | 408 | { | 
 | 409 | 	spin_lock(c->lock); | 
 | 410 | 	while(c->txcount) { | 
 | 411 | 		/* FIFO full ? */ | 
 | 412 | 		if(!(read_zsreg(c, R0)&4)) | 
 | 413 | 			break; | 
 | 414 | 		c->txcount--; | 
 | 415 | 		/* | 
 | 416 | 		 *	Shovel out the byte | 
 | 417 | 		 */ | 
 | 418 | 		write_zsreg(c, R8, *c->tx_ptr++); | 
 | 419 | 		write_zsctrl(c, RES_H_IUS); | 
 | 420 | 		/* We are about to underflow */ | 
 | 421 | 		if(c->txcount==0) | 
 | 422 | 		{ | 
 | 423 | 			write_zsctrl(c, RES_EOM_L); | 
 | 424 | 			write_zsreg(c, R10, c->regs[10]&~ABUNDER); | 
 | 425 | 		} | 
 | 426 | 	} | 
 | 427 |  | 
 | 428 | 	 | 
 | 429 | 	/* | 
 | 430 | 	 *	End of frame TX - fire another one | 
 | 431 | 	 */ | 
 | 432 | 	  | 
 | 433 | 	write_zsctrl(c, RES_Tx_P); | 
 | 434 |  | 
 | 435 | 	z8530_tx_done(c);	  | 
 | 436 | 	write_zsctrl(c, RES_H_IUS); | 
 | 437 | 	spin_unlock(c->lock); | 
 | 438 | } | 
 | 439 |  | 
 | 440 | /** | 
 | 441 |  *	z8530_status - Handle a PIO status exception | 
 | 442 |  *	@chan: Z8530 channel to process | 
 | 443 |  * | 
 | 444 |  *	A status event occurred in PIO synchronous mode. There are several | 
 | 445 |  *	reasons the chip will bother us here. A transmit underrun means we | 
 | 446 |  *	failed to feed the chip fast enough and just broke a packet. A DCD | 
 | 447 |  *	change is a line up or down. We communicate that back to the protocol | 
 | 448 |  *	layer for synchronous PPP to renegotiate. | 
 | 449 |  */ | 
 | 450 |  | 
 | 451 | static void z8530_status(struct z8530_channel *chan) | 
 | 452 | { | 
 | 453 | 	u8 status, altered; | 
 | 454 |  | 
 | 455 | 	spin_lock(chan->lock); | 
 | 456 | 	status=read_zsreg(chan, R0); | 
 | 457 | 	altered=chan->status^status; | 
 | 458 | 	 | 
 | 459 | 	chan->status=status; | 
 | 460 | 	 | 
 | 461 | 	if(status&TxEOM) | 
 | 462 | 	{ | 
 | 463 | /*		printk("%s: Tx underrun.\n", chan->dev->name); */ | 
 | 464 | 		chan->stats.tx_fifo_errors++; | 
 | 465 | 		write_zsctrl(chan, ERR_RES); | 
 | 466 | 		z8530_tx_done(chan); | 
 | 467 | 	} | 
 | 468 | 		 | 
 | 469 | 	if(altered&chan->dcdcheck) | 
 | 470 | 	{ | 
 | 471 | 		if(status&chan->dcdcheck) | 
 | 472 | 		{ | 
 | 473 | 			printk(KERN_INFO "%s: DCD raised\n", chan->dev->name); | 
 | 474 | 			write_zsreg(chan, R3, chan->regs[3]|RxENABLE); | 
 | 475 | 			if(chan->netdevice && | 
 | 476 | 			    ((chan->netdevice->type == ARPHRD_HDLC) || | 
 | 477 | 			    (chan->netdevice->type == ARPHRD_PPP))) | 
 | 478 | 				sppp_reopen(chan->netdevice); | 
 | 479 | 		} | 
 | 480 | 		else | 
 | 481 | 		{ | 
 | 482 | 			printk(KERN_INFO "%s: DCD lost\n", chan->dev->name); | 
 | 483 | 			write_zsreg(chan, R3, chan->regs[3]&~RxENABLE); | 
 | 484 | 			z8530_flush_fifo(chan); | 
 | 485 | 		} | 
 | 486 | 		 | 
 | 487 | 	}	 | 
 | 488 | 	write_zsctrl(chan, RES_EXT_INT); | 
 | 489 | 	write_zsctrl(chan, RES_H_IUS); | 
 | 490 | 	spin_unlock(chan->lock); | 
 | 491 | } | 
 | 492 |  | 
 | 493 | struct z8530_irqhandler z8530_sync= | 
 | 494 | { | 
 | 495 | 	z8530_rx, | 
 | 496 | 	z8530_tx, | 
 | 497 | 	z8530_status | 
 | 498 | }; | 
 | 499 |  | 
 | 500 | EXPORT_SYMBOL(z8530_sync); | 
 | 501 |  | 
 | 502 | /** | 
 | 503 |  *	z8530_dma_rx - Handle a DMA RX event | 
 | 504 |  *	@chan: Channel to handle | 
 | 505 |  * | 
 | 506 |  *	Non bus mastering DMA interfaces for the Z8x30 devices. This | 
 | 507 |  *	is really pretty PC specific. The DMA mode means that most receive | 
 | 508 |  *	events are handled by the DMA hardware. We get a kick here only if | 
 | 509 |  *	a frame ended. | 
 | 510 |  */ | 
 | 511 |   | 
 | 512 | static void z8530_dma_rx(struct z8530_channel *chan) | 
 | 513 | { | 
 | 514 | 	spin_lock(chan->lock); | 
 | 515 | 	if(chan->rxdma_on) | 
 | 516 | 	{ | 
 | 517 | 		/* Special condition check only */ | 
 | 518 | 		u8 status; | 
 | 519 | 	 | 
 | 520 | 		read_zsreg(chan, R7); | 
 | 521 | 		read_zsreg(chan, R6); | 
 | 522 | 		 | 
 | 523 | 		status=read_zsreg(chan, R1); | 
 | 524 | 	 | 
 | 525 | 		if(status&END_FR) | 
 | 526 | 		{ | 
 | 527 | 			z8530_rx_done(chan);	/* Fire up the next one */ | 
 | 528 | 		}		 | 
 | 529 | 		write_zsctrl(chan, ERR_RES); | 
 | 530 | 		write_zsctrl(chan, RES_H_IUS); | 
 | 531 | 	} | 
 | 532 | 	else | 
 | 533 | 	{ | 
 | 534 | 		/* DMA is off right now, drain the slow way */ | 
 | 535 | 		z8530_rx(chan); | 
 | 536 | 	}	 | 
 | 537 | 	spin_unlock(chan->lock); | 
 | 538 | } | 
 | 539 |  | 
 | 540 | /** | 
 | 541 |  *	z8530_dma_tx - Handle a DMA TX event | 
 | 542 |  *	@chan:	The Z8530 channel to handle | 
 | 543 |  * | 
 | 544 |  *	We have received an interrupt while doing DMA transmissions. It | 
 | 545 |  *	shouldn't happen. Scream loudly if it does. | 
 | 546 |  */ | 
 | 547 |   | 
 | 548 | static void z8530_dma_tx(struct z8530_channel *chan) | 
 | 549 | { | 
 | 550 | 	spin_lock(chan->lock); | 
 | 551 | 	if(!chan->dma_tx) | 
 | 552 | 	{ | 
 | 553 | 		printk(KERN_WARNING "Hey who turned the DMA off?\n"); | 
 | 554 | 		z8530_tx(chan); | 
 | 555 | 		return; | 
 | 556 | 	} | 
 | 557 | 	/* This shouldnt occur in DMA mode */ | 
 | 558 | 	printk(KERN_ERR "DMA tx - bogus event!\n"); | 
 | 559 | 	z8530_tx(chan); | 
 | 560 | 	spin_unlock(chan->lock); | 
 | 561 | } | 
 | 562 |  | 
 | 563 | /** | 
 | 564 |  *	z8530_dma_status - Handle a DMA status exception | 
 | 565 |  *	@chan: Z8530 channel to process | 
 | 566 |  *	 | 
 | 567 |  *	A status event occurred on the Z8530. We receive these for two reasons | 
 | 568 |  *	when in DMA mode. Firstly if we finished a packet transfer we get one | 
 | 569 |  *	and kick the next packet out. Secondly we may see a DCD change and | 
 | 570 |  *	have to poke the protocol layer. | 
 | 571 |  * | 
 | 572 |  */ | 
 | 573 |   | 
 | 574 | static void z8530_dma_status(struct z8530_channel *chan) | 
 | 575 | { | 
 | 576 | 	u8 status, altered; | 
 | 577 |  | 
 | 578 | 	status=read_zsreg(chan, R0); | 
 | 579 | 	altered=chan->status^status; | 
 | 580 | 	 | 
 | 581 | 	chan->status=status; | 
 | 582 |  | 
 | 583 |  | 
 | 584 | 	if(chan->dma_tx) | 
 | 585 | 	{ | 
 | 586 | 		if(status&TxEOM) | 
 | 587 | 		{ | 
 | 588 | 			unsigned long flags; | 
 | 589 | 	 | 
 | 590 | 			flags=claim_dma_lock(); | 
 | 591 | 			disable_dma(chan->txdma); | 
 | 592 | 			clear_dma_ff(chan->txdma);	 | 
 | 593 | 			chan->txdma_on=0; | 
 | 594 | 			release_dma_lock(flags); | 
 | 595 | 			z8530_tx_done(chan); | 
 | 596 | 		} | 
 | 597 | 	} | 
 | 598 |  | 
 | 599 | 	spin_lock(chan->lock); | 
 | 600 | 	if(altered&chan->dcdcheck) | 
 | 601 | 	{ | 
 | 602 | 		if(status&chan->dcdcheck) | 
 | 603 | 		{ | 
 | 604 | 			printk(KERN_INFO "%s: DCD raised\n", chan->dev->name); | 
 | 605 | 			write_zsreg(chan, R3, chan->regs[3]|RxENABLE); | 
 | 606 | 			if(chan->netdevice && | 
 | 607 | 			    ((chan->netdevice->type == ARPHRD_HDLC) || | 
 | 608 | 			    (chan->netdevice->type == ARPHRD_PPP))) | 
 | 609 | 				sppp_reopen(chan->netdevice); | 
 | 610 | 		} | 
 | 611 | 		else | 
 | 612 | 		{ | 
 | 613 | 			printk(KERN_INFO "%s:DCD lost\n", chan->dev->name); | 
 | 614 | 			write_zsreg(chan, R3, chan->regs[3]&~RxENABLE); | 
 | 615 | 			z8530_flush_fifo(chan); | 
 | 616 | 		} | 
 | 617 | 	}	 | 
 | 618 |  | 
 | 619 | 	write_zsctrl(chan, RES_EXT_INT); | 
 | 620 | 	write_zsctrl(chan, RES_H_IUS); | 
 | 621 | 	spin_unlock(chan->lock); | 
 | 622 | } | 
 | 623 |  | 
 | 624 | struct z8530_irqhandler z8530_dma_sync= | 
 | 625 | { | 
 | 626 | 	z8530_dma_rx, | 
 | 627 | 	z8530_dma_tx, | 
 | 628 | 	z8530_dma_status | 
 | 629 | }; | 
 | 630 |  | 
 | 631 | EXPORT_SYMBOL(z8530_dma_sync); | 
 | 632 |  | 
 | 633 | struct z8530_irqhandler z8530_txdma_sync= | 
 | 634 | { | 
 | 635 | 	z8530_rx, | 
 | 636 | 	z8530_dma_tx, | 
 | 637 | 	z8530_dma_status | 
 | 638 | }; | 
 | 639 |  | 
 | 640 | EXPORT_SYMBOL(z8530_txdma_sync); | 
 | 641 |  | 
 | 642 | /** | 
 | 643 |  *	z8530_rx_clear - Handle RX events from a stopped chip | 
 | 644 |  *	@c: Z8530 channel to shut up | 
 | 645 |  * | 
 | 646 |  *	Receive interrupt vectors for a Z8530 that is in 'parked' mode. | 
 | 647 |  *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
 | 648 |  *	(eg the MacII) we must clear the interrupt cause or die. | 
 | 649 |  */ | 
 | 650 |  | 
 | 651 |  | 
 | 652 | static void z8530_rx_clear(struct z8530_channel *c) | 
 | 653 | { | 
 | 654 | 	/* | 
 | 655 | 	 *	Data and status bytes | 
 | 656 | 	 */ | 
 | 657 | 	u8 stat; | 
 | 658 |  | 
 | 659 | 	read_zsdata(c); | 
 | 660 | 	stat=read_zsreg(c, R1); | 
 | 661 | 	 | 
 | 662 | 	if(stat&END_FR) | 
 | 663 | 		write_zsctrl(c, RES_Rx_CRC); | 
 | 664 | 	/* | 
 | 665 | 	 *	Clear irq | 
 | 666 | 	 */ | 
 | 667 | 	write_zsctrl(c, ERR_RES); | 
 | 668 | 	write_zsctrl(c, RES_H_IUS); | 
 | 669 | } | 
 | 670 |  | 
 | 671 | /** | 
 | 672 |  *	z8530_tx_clear - Handle TX events from a stopped chip | 
 | 673 |  *	@c: Z8530 channel to shut up | 
 | 674 |  * | 
 | 675 |  *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode. | 
 | 676 |  *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
 | 677 |  *	(eg the MacII) we must clear the interrupt cause or die. | 
 | 678 |  */ | 
 | 679 |  | 
 | 680 | static void z8530_tx_clear(struct z8530_channel *c) | 
 | 681 | { | 
 | 682 | 	write_zsctrl(c, RES_Tx_P); | 
 | 683 | 	write_zsctrl(c, RES_H_IUS); | 
 | 684 | } | 
 | 685 |  | 
 | 686 | /** | 
 | 687 |  *	z8530_status_clear - Handle status events from a stopped chip | 
 | 688 |  *	@chan: Z8530 channel to shut up | 
 | 689 |  * | 
 | 690 |  *	Status interrupt vectors for a Z8530 that is in 'parked' mode. | 
 | 691 |  *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
 | 692 |  *	(eg the MacII) we must clear the interrupt cause or die. | 
 | 693 |  */ | 
 | 694 |  | 
 | 695 | static void z8530_status_clear(struct z8530_channel *chan) | 
 | 696 | { | 
 | 697 | 	u8 status=read_zsreg(chan, R0); | 
 | 698 | 	if(status&TxEOM) | 
 | 699 | 		write_zsctrl(chan, ERR_RES); | 
 | 700 | 	write_zsctrl(chan, RES_EXT_INT); | 
 | 701 | 	write_zsctrl(chan, RES_H_IUS); | 
 | 702 | } | 
 | 703 |  | 
 | 704 | struct z8530_irqhandler z8530_nop= | 
 | 705 | { | 
 | 706 | 	z8530_rx_clear, | 
 | 707 | 	z8530_tx_clear, | 
 | 708 | 	z8530_status_clear | 
 | 709 | }; | 
 | 710 |  | 
 | 711 |  | 
 | 712 | EXPORT_SYMBOL(z8530_nop); | 
 | 713 |  | 
 | 714 | /** | 
 | 715 |  *	z8530_interrupt - Handle an interrupt from a Z8530 | 
 | 716 |  *	@irq: 	Interrupt number | 
 | 717 |  *	@dev_id: The Z8530 device that is interrupting. | 
 | 718 |  *	@regs: unused | 
 | 719 |  * | 
 | 720 |  *	A Z85[2]30 device has stuck its hand in the air for attention. | 
 | 721 |  *	We scan both the channels on the chip for events and then call | 
 | 722 |  *	the channel specific call backs for each channel that has events. | 
 | 723 |  *	We have to use callback functions because the two channels can be | 
 | 724 |  *	in different modes. | 
 | 725 |  * | 
 | 726 |  *	Locking is done for the handlers. Note that locking is done | 
 | 727 |  *	at the chip level (the 5uS delay issue is per chip not per | 
 | 728 |  *	channel). c->lock for both channels points to dev->lock | 
 | 729 |  */ | 
 | 730 |  | 
 | 731 | irqreturn_t z8530_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 732 | { | 
 | 733 | 	struct z8530_dev *dev=dev_id; | 
 | 734 | 	u8 intr; | 
 | 735 | 	static volatile int locker=0; | 
 | 736 | 	int work=0; | 
 | 737 | 	struct z8530_irqhandler *irqs; | 
 | 738 | 	 | 
 | 739 | 	if(locker) | 
 | 740 | 	{ | 
 | 741 | 		printk(KERN_ERR "IRQ re-enter\n"); | 
 | 742 | 		return IRQ_NONE; | 
 | 743 | 	} | 
 | 744 | 	locker=1; | 
 | 745 |  | 
 | 746 | 	spin_lock(&dev->lock); | 
 | 747 |  | 
 | 748 | 	while(++work<5000) | 
 | 749 | 	{ | 
 | 750 |  | 
 | 751 | 		intr = read_zsreg(&dev->chanA, R3); | 
 | 752 | 		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) | 
 | 753 | 			break; | 
 | 754 | 	 | 
 | 755 | 		/* This holds the IRQ status. On the 8530 you must read it from chan  | 
 | 756 | 		   A even though it applies to the whole chip */ | 
 | 757 | 		 | 
 | 758 | 		/* Now walk the chip and see what it is wanting - it may be | 
 | 759 | 		   an IRQ for someone else remember */ | 
 | 760 | 		    | 
 | 761 | 		irqs=dev->chanA.irqs; | 
 | 762 |  | 
 | 763 | 		if(intr & (CHARxIP|CHATxIP|CHAEXT)) | 
 | 764 | 		{ | 
 | 765 | 			if(intr&CHARxIP) | 
 | 766 | 				irqs->rx(&dev->chanA); | 
 | 767 | 			if(intr&CHATxIP) | 
 | 768 | 				irqs->tx(&dev->chanA); | 
 | 769 | 			if(intr&CHAEXT) | 
 | 770 | 				irqs->status(&dev->chanA); | 
 | 771 | 		} | 
 | 772 |  | 
 | 773 | 		irqs=dev->chanB.irqs; | 
 | 774 |  | 
 | 775 | 		if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) | 
 | 776 | 		{ | 
 | 777 | 			if(intr&CHBRxIP) | 
 | 778 | 				irqs->rx(&dev->chanB); | 
 | 779 | 			if(intr&CHBTxIP) | 
 | 780 | 				irqs->tx(&dev->chanB); | 
 | 781 | 			if(intr&CHBEXT) | 
 | 782 | 				irqs->status(&dev->chanB); | 
 | 783 | 		} | 
 | 784 | 	} | 
 | 785 | 	spin_unlock(&dev->lock); | 
 | 786 | 	if(work==5000) | 
 | 787 | 		printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr); | 
 | 788 | 	/* Ok all done */ | 
 | 789 | 	locker=0; | 
 | 790 | 	return IRQ_HANDLED; | 
 | 791 | } | 
 | 792 |  | 
 | 793 | EXPORT_SYMBOL(z8530_interrupt); | 
 | 794 |  | 
 | 795 | static char reg_init[16]= | 
 | 796 | { | 
 | 797 | 	0,0,0,0, | 
 | 798 | 	0,0,0,0, | 
 | 799 | 	0,0,0,0, | 
 | 800 | 	0x55,0,0,0 | 
 | 801 | }; | 
 | 802 |  | 
 | 803 |  | 
 | 804 | /** | 
 | 805 |  *	z8530_sync_open - Open a Z8530 channel for PIO | 
 | 806 |  *	@dev:	The network interface we are using | 
 | 807 |  *	@c:	The Z8530 channel to open in synchronous PIO mode | 
 | 808 |  * | 
 | 809 |  *	Switch a Z8530 into synchronous mode without DMA assist. We | 
 | 810 |  *	raise the RTS/DTR and commence network operation. | 
 | 811 |  */ | 
 | 812 |   | 
 | 813 | int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) | 
 | 814 | { | 
 | 815 | 	unsigned long flags; | 
 | 816 |  | 
 | 817 | 	spin_lock_irqsave(c->lock, flags); | 
 | 818 |  | 
 | 819 | 	c->sync = 1; | 
 | 820 | 	c->mtu = dev->mtu+64; | 
 | 821 | 	c->count = 0; | 
 | 822 | 	c->skb = NULL; | 
 | 823 | 	c->skb2 = NULL; | 
 | 824 | 	c->irqs = &z8530_sync; | 
 | 825 |  | 
 | 826 | 	/* This loads the double buffer up */ | 
 | 827 | 	z8530_rx_done(c);	/* Load the frame ring */ | 
 | 828 | 	z8530_rx_done(c);	/* Load the backup frame */ | 
 | 829 | 	z8530_rtsdtr(c,1); | 
 | 830 | 	c->dma_tx = 0; | 
 | 831 | 	c->regs[R1]|=TxINT_ENAB; | 
 | 832 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 833 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 | 834 |  | 
 | 835 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 836 | 	return 0; | 
 | 837 | } | 
 | 838 |  | 
 | 839 |  | 
 | 840 | EXPORT_SYMBOL(z8530_sync_open); | 
 | 841 |  | 
 | 842 | /** | 
 | 843 |  *	z8530_sync_close - Close a PIO Z8530 channel | 
 | 844 |  *	@dev: Network device to close | 
 | 845 |  *	@c: Z8530 channel to disassociate and move to idle | 
 | 846 |  * | 
 | 847 |  *	Close down a Z8530 interface and switch its interrupt handlers | 
 | 848 |  *	to discard future events. | 
 | 849 |  */ | 
 | 850 |   | 
 | 851 | int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) | 
 | 852 | { | 
 | 853 | 	u8 chk; | 
 | 854 | 	unsigned long flags; | 
 | 855 | 	 | 
 | 856 | 	spin_lock_irqsave(c->lock, flags); | 
 | 857 | 	c->irqs = &z8530_nop; | 
 | 858 | 	c->max = 0; | 
 | 859 | 	c->sync = 0; | 
 | 860 | 	 | 
 | 861 | 	chk=read_zsreg(c,R0); | 
 | 862 | 	write_zsreg(c, R3, c->regs[R3]); | 
 | 863 | 	z8530_rtsdtr(c,0); | 
 | 864 |  | 
 | 865 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 866 | 	return 0; | 
 | 867 | } | 
 | 868 |  | 
 | 869 | EXPORT_SYMBOL(z8530_sync_close); | 
 | 870 |  | 
 | 871 | /** | 
 | 872 |  *	z8530_sync_dma_open - Open a Z8530 for DMA I/O | 
 | 873 |  *	@dev: The network device to attach | 
 | 874 |  *	@c: The Z8530 channel to configure in sync DMA mode. | 
 | 875 |  * | 
 | 876 |  *	Set up a Z85x30 device for synchronous DMA in both directions. Two | 
 | 877 |  *	ISA DMA channels must be available for this to work. We assume ISA | 
 | 878 |  *	DMA driven I/O and PC limits on access. | 
 | 879 |  */ | 
 | 880 |   | 
 | 881 | int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) | 
 | 882 | { | 
 | 883 | 	unsigned long cflags, dflags; | 
 | 884 | 	 | 
 | 885 | 	c->sync = 1; | 
 | 886 | 	c->mtu = dev->mtu+64; | 
 | 887 | 	c->count = 0; | 
 | 888 | 	c->skb = NULL; | 
 | 889 | 	c->skb2 = NULL; | 
 | 890 | 	/* | 
 | 891 | 	 *	Load the DMA interfaces up | 
 | 892 | 	 */ | 
 | 893 | 	c->rxdma_on = 0; | 
 | 894 | 	c->txdma_on = 0; | 
 | 895 | 	 | 
 | 896 | 	/* | 
 | 897 | 	 *	Allocate the DMA flip buffers. Limit by page size. | 
 | 898 | 	 *	Everyone runs 1500 mtu or less on wan links so this | 
 | 899 | 	 *	should be fine. | 
 | 900 | 	 */ | 
 | 901 | 	  | 
 | 902 | 	if(c->mtu  > PAGE_SIZE/2) | 
 | 903 | 		return -EMSGSIZE; | 
 | 904 | 	  | 
 | 905 | 	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
 | 906 | 	if(c->rx_buf[0]==NULL) | 
 | 907 | 		return -ENOBUFS; | 
 | 908 | 	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; | 
 | 909 | 	 | 
 | 910 | 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
 | 911 | 	if(c->tx_dma_buf[0]==NULL) | 
 | 912 | 	{ | 
 | 913 | 		free_page((unsigned long)c->rx_buf[0]); | 
 | 914 | 		c->rx_buf[0]=NULL; | 
 | 915 | 		return -ENOBUFS; | 
 | 916 | 	} | 
 | 917 | 	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; | 
 | 918 |  | 
 | 919 | 	c->tx_dma_used=0; | 
 | 920 | 	c->dma_tx = 1; | 
 | 921 | 	c->dma_num=0; | 
 | 922 | 	c->dma_ready=1; | 
 | 923 | 	 | 
 | 924 | 	/* | 
 | 925 | 	 *	Enable DMA control mode | 
 | 926 | 	 */ | 
 | 927 |  | 
 | 928 | 	spin_lock_irqsave(c->lock, cflags); | 
 | 929 | 	  | 
 | 930 | 	/* | 
 | 931 | 	 *	TX DMA via DIR/REQ | 
 | 932 | 	 */ | 
 | 933 | 	  | 
 | 934 | 	c->regs[R14]|= DTRREQ; | 
 | 935 | 	write_zsreg(c, R14, c->regs[R14]);      | 
 | 936 |  | 
 | 937 | 	c->regs[R1]&= ~TxINT_ENAB; | 
 | 938 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 939 | 	 | 
 | 940 | 	/* | 
 | 941 | 	 *	RX DMA via W/Req | 
 | 942 | 	 */	  | 
 | 943 |  | 
 | 944 | 	c->regs[R1]|= WT_FN_RDYFN; | 
 | 945 | 	c->regs[R1]|= WT_RDY_RT; | 
 | 946 | 	c->regs[R1]|= INT_ERR_Rx; | 
 | 947 | 	c->regs[R1]&= ~TxINT_ENAB; | 
 | 948 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 949 | 	c->regs[R1]|= WT_RDY_ENAB; | 
 | 950 | 	write_zsreg(c, R1, c->regs[R1]);             | 
 | 951 | 	 | 
 | 952 | 	/* | 
 | 953 | 	 *	DMA interrupts | 
 | 954 | 	 */ | 
 | 955 | 	  | 
 | 956 | 	/* | 
 | 957 | 	 *	Set up the DMA configuration | 
 | 958 | 	 */	 | 
 | 959 | 	  | 
 | 960 | 	dflags=claim_dma_lock(); | 
 | 961 | 	  | 
 | 962 | 	disable_dma(c->rxdma); | 
 | 963 | 	clear_dma_ff(c->rxdma); | 
 | 964 | 	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); | 
 | 965 | 	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); | 
 | 966 | 	set_dma_count(c->rxdma, c->mtu); | 
 | 967 | 	enable_dma(c->rxdma); | 
 | 968 |  | 
 | 969 | 	disable_dma(c->txdma); | 
 | 970 | 	clear_dma_ff(c->txdma); | 
 | 971 | 	set_dma_mode(c->txdma, DMA_MODE_WRITE); | 
 | 972 | 	disable_dma(c->txdma); | 
 | 973 | 	 | 
 | 974 | 	release_dma_lock(dflags); | 
 | 975 | 	 | 
 | 976 | 	/* | 
 | 977 | 	 *	Select the DMA interrupt handlers | 
 | 978 | 	 */ | 
 | 979 |  | 
 | 980 | 	c->rxdma_on = 1; | 
 | 981 | 	c->txdma_on = 1; | 
 | 982 | 	c->tx_dma_used = 1; | 
 | 983 | 	  | 
 | 984 | 	c->irqs = &z8530_dma_sync; | 
 | 985 | 	z8530_rtsdtr(c,1); | 
 | 986 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 | 987 |  | 
 | 988 | 	spin_unlock_irqrestore(c->lock, cflags); | 
 | 989 | 	 | 
 | 990 | 	return 0; | 
 | 991 | } | 
 | 992 |  | 
 | 993 | EXPORT_SYMBOL(z8530_sync_dma_open); | 
 | 994 |  | 
 | 995 | /** | 
 | 996 |  *	z8530_sync_dma_close - Close down DMA I/O | 
 | 997 |  *	@dev: Network device to detach | 
 | 998 |  *	@c: Z8530 channel to move into discard mode | 
 | 999 |  * | 
 | 1000 |  *	Shut down a DMA mode synchronous interface. Halt the DMA, and | 
 | 1001 |  *	free the buffers. | 
 | 1002 |  */ | 
 | 1003 |   | 
 | 1004 | int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) | 
 | 1005 | { | 
 | 1006 | 	u8 chk; | 
 | 1007 | 	unsigned long flags; | 
 | 1008 | 	 | 
 | 1009 | 	c->irqs = &z8530_nop; | 
 | 1010 | 	c->max = 0; | 
 | 1011 | 	c->sync = 0; | 
 | 1012 | 	 | 
 | 1013 | 	/* | 
 | 1014 | 	 *	Disable the PC DMA channels | 
 | 1015 | 	 */ | 
 | 1016 | 	 | 
 | 1017 | 	flags=claim_dma_lock();  | 
 | 1018 | 	disable_dma(c->rxdma); | 
 | 1019 | 	clear_dma_ff(c->rxdma); | 
 | 1020 | 	 | 
 | 1021 | 	c->rxdma_on = 0; | 
 | 1022 | 	 | 
 | 1023 | 	disable_dma(c->txdma); | 
 | 1024 | 	clear_dma_ff(c->txdma); | 
 | 1025 | 	release_dma_lock(flags); | 
 | 1026 | 	 | 
 | 1027 | 	c->txdma_on = 0; | 
 | 1028 | 	c->tx_dma_used = 0; | 
 | 1029 |  | 
 | 1030 | 	spin_lock_irqsave(c->lock, flags); | 
 | 1031 |  | 
 | 1032 | 	/* | 
 | 1033 | 	 *	Disable DMA control mode | 
 | 1034 | 	 */ | 
 | 1035 | 	  | 
 | 1036 | 	c->regs[R1]&= ~WT_RDY_ENAB; | 
 | 1037 | 	write_zsreg(c, R1, c->regs[R1]);             | 
 | 1038 | 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); | 
 | 1039 | 	c->regs[R1]|= INT_ALL_Rx; | 
 | 1040 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 1041 | 	c->regs[R14]&= ~DTRREQ; | 
 | 1042 | 	write_zsreg(c, R14, c->regs[R14]);    | 
 | 1043 | 	 | 
 | 1044 | 	if(c->rx_buf[0]) | 
 | 1045 | 	{ | 
 | 1046 | 		free_page((unsigned long)c->rx_buf[0]); | 
 | 1047 | 		c->rx_buf[0]=NULL; | 
 | 1048 | 	} | 
 | 1049 | 	if(c->tx_dma_buf[0]) | 
 | 1050 | 	{ | 
 | 1051 | 		free_page((unsigned  long)c->tx_dma_buf[0]); | 
 | 1052 | 		c->tx_dma_buf[0]=NULL; | 
 | 1053 | 	} | 
 | 1054 | 	chk=read_zsreg(c,R0); | 
 | 1055 | 	write_zsreg(c, R3, c->regs[R3]); | 
 | 1056 | 	z8530_rtsdtr(c,0); | 
 | 1057 |  | 
 | 1058 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 1059 |  | 
 | 1060 | 	return 0; | 
 | 1061 | } | 
 | 1062 |  | 
 | 1063 | EXPORT_SYMBOL(z8530_sync_dma_close); | 
 | 1064 |  | 
 | 1065 | /** | 
 | 1066 |  *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA | 
 | 1067 |  *	@dev: The network device to attach | 
 | 1068 |  *	@c: The Z8530 channel to configure in sync DMA mode. | 
 | 1069 |  * | 
 | 1070 |  *	Set up a Z85x30 device for synchronous DMA tranmission. One | 
 | 1071 |  *	ISA DMA channel must be available for this to work. The receive | 
 | 1072 |  *	side is run in PIO mode, but then it has the bigger FIFO. | 
 | 1073 |  */ | 
 | 1074 |  | 
 | 1075 | int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) | 
 | 1076 | { | 
 | 1077 | 	unsigned long cflags, dflags; | 
 | 1078 |  | 
 | 1079 | 	printk("Opening sync interface for TX-DMA\n"); | 
 | 1080 | 	c->sync = 1; | 
 | 1081 | 	c->mtu = dev->mtu+64; | 
 | 1082 | 	c->count = 0; | 
 | 1083 | 	c->skb = NULL; | 
 | 1084 | 	c->skb2 = NULL; | 
 | 1085 | 	 | 
 | 1086 | 	/* | 
 | 1087 | 	 *	Allocate the DMA flip buffers. Limit by page size. | 
 | 1088 | 	 *	Everyone runs 1500 mtu or less on wan links so this | 
 | 1089 | 	 *	should be fine. | 
 | 1090 | 	 */ | 
 | 1091 | 	  | 
 | 1092 | 	if(c->mtu  > PAGE_SIZE/2) | 
 | 1093 | 		return -EMSGSIZE; | 
 | 1094 | 	  | 
 | 1095 | 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
 | 1096 | 	if(c->tx_dma_buf[0]==NULL) | 
 | 1097 | 		return -ENOBUFS; | 
 | 1098 |  | 
 | 1099 | 	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; | 
 | 1100 |  | 
 | 1101 |  | 
 | 1102 | 	spin_lock_irqsave(c->lock, cflags); | 
 | 1103 |  | 
 | 1104 | 	/* | 
 | 1105 | 	 *	Load the PIO receive ring | 
 | 1106 | 	 */ | 
 | 1107 |  | 
 | 1108 | 	z8530_rx_done(c); | 
 | 1109 | 	z8530_rx_done(c); | 
 | 1110 |  | 
 | 1111 |  	/* | 
 | 1112 | 	 *	Load the DMA interfaces up | 
 | 1113 | 	 */ | 
 | 1114 |  | 
 | 1115 | 	c->rxdma_on = 0; | 
 | 1116 | 	c->txdma_on = 0; | 
 | 1117 | 	 | 
 | 1118 | 	c->tx_dma_used=0; | 
 | 1119 | 	c->dma_num=0; | 
 | 1120 | 	c->dma_ready=1; | 
 | 1121 | 	c->dma_tx = 1; | 
 | 1122 |  | 
 | 1123 |  	/* | 
 | 1124 | 	 *	Enable DMA control mode | 
 | 1125 | 	 */ | 
 | 1126 |  | 
 | 1127 |  	/* | 
 | 1128 | 	 *	TX DMA via DIR/REQ | 
 | 1129 |  	 */ | 
 | 1130 | 	c->regs[R14]|= DTRREQ; | 
 | 1131 | 	write_zsreg(c, R14, c->regs[R14]);      | 
 | 1132 | 	 | 
 | 1133 | 	c->regs[R1]&= ~TxINT_ENAB; | 
 | 1134 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 1135 | 	 | 
 | 1136 | 	/* | 
 | 1137 | 	 *	Set up the DMA configuration | 
 | 1138 | 	 */	 | 
 | 1139 | 	  | 
 | 1140 | 	dflags = claim_dma_lock(); | 
 | 1141 |  | 
 | 1142 | 	disable_dma(c->txdma); | 
 | 1143 | 	clear_dma_ff(c->txdma); | 
 | 1144 | 	set_dma_mode(c->txdma, DMA_MODE_WRITE); | 
 | 1145 | 	disable_dma(c->txdma); | 
 | 1146 |  | 
 | 1147 | 	release_dma_lock(dflags); | 
 | 1148 | 	 | 
 | 1149 | 	/* | 
 | 1150 | 	 *	Select the DMA interrupt handlers | 
 | 1151 | 	 */ | 
 | 1152 |  | 
 | 1153 | 	c->rxdma_on = 0; | 
 | 1154 | 	c->txdma_on = 1; | 
 | 1155 | 	c->tx_dma_used = 1; | 
 | 1156 | 	  | 
 | 1157 | 	c->irqs = &z8530_txdma_sync; | 
 | 1158 | 	z8530_rtsdtr(c,1); | 
 | 1159 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 | 1160 | 	spin_unlock_irqrestore(c->lock, cflags); | 
 | 1161 | 	 | 
 | 1162 | 	return 0; | 
 | 1163 | } | 
 | 1164 |  | 
 | 1165 | EXPORT_SYMBOL(z8530_sync_txdma_open); | 
 | 1166 |  | 
 | 1167 | /** | 
 | 1168 |  *	z8530_sync_txdma_close - Close down a TX driven DMA channel | 
 | 1169 |  *	@dev: Network device to detach | 
 | 1170 |  *	@c: Z8530 channel to move into discard mode | 
 | 1171 |  * | 
 | 1172 |  *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,  | 
 | 1173 |  *	and  free the buffers. | 
 | 1174 |  */ | 
 | 1175 |  | 
 | 1176 | int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) | 
 | 1177 | { | 
 | 1178 | 	unsigned long dflags, cflags; | 
 | 1179 | 	u8 chk; | 
 | 1180 |  | 
 | 1181 | 	 | 
 | 1182 | 	spin_lock_irqsave(c->lock, cflags); | 
 | 1183 | 	 | 
 | 1184 | 	c->irqs = &z8530_nop; | 
 | 1185 | 	c->max = 0; | 
 | 1186 | 	c->sync = 0; | 
 | 1187 | 	 | 
 | 1188 | 	/* | 
 | 1189 | 	 *	Disable the PC DMA channels | 
 | 1190 | 	 */ | 
 | 1191 | 	  | 
 | 1192 | 	dflags = claim_dma_lock(); | 
 | 1193 |  | 
 | 1194 | 	disable_dma(c->txdma); | 
 | 1195 | 	clear_dma_ff(c->txdma); | 
 | 1196 | 	c->txdma_on = 0; | 
 | 1197 | 	c->tx_dma_used = 0; | 
 | 1198 |  | 
 | 1199 | 	release_dma_lock(dflags); | 
 | 1200 |  | 
 | 1201 | 	/* | 
 | 1202 | 	 *	Disable DMA control mode | 
 | 1203 | 	 */ | 
 | 1204 | 	  | 
 | 1205 | 	c->regs[R1]&= ~WT_RDY_ENAB; | 
 | 1206 | 	write_zsreg(c, R1, c->regs[R1]);             | 
 | 1207 | 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); | 
 | 1208 | 	c->regs[R1]|= INT_ALL_Rx; | 
 | 1209 | 	write_zsreg(c, R1, c->regs[R1]); | 
 | 1210 | 	c->regs[R14]&= ~DTRREQ; | 
 | 1211 | 	write_zsreg(c, R14, c->regs[R14]);    | 
 | 1212 | 	 | 
 | 1213 | 	if(c->tx_dma_buf[0]) | 
 | 1214 | 	{ | 
 | 1215 | 		free_page((unsigned long)c->tx_dma_buf[0]); | 
 | 1216 | 		c->tx_dma_buf[0]=NULL; | 
 | 1217 | 	} | 
 | 1218 | 	chk=read_zsreg(c,R0); | 
 | 1219 | 	write_zsreg(c, R3, c->regs[R3]); | 
 | 1220 | 	z8530_rtsdtr(c,0); | 
 | 1221 |  | 
 | 1222 | 	spin_unlock_irqrestore(c->lock, cflags); | 
 | 1223 | 	return 0; | 
 | 1224 | } | 
 | 1225 |  | 
 | 1226 |  | 
 | 1227 | EXPORT_SYMBOL(z8530_sync_txdma_close); | 
 | 1228 |  | 
 | 1229 |  | 
 | 1230 | /* | 
 | 1231 |  *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny | 
 | 1232 |  *	it exists... | 
 | 1233 |  */ | 
 | 1234 |   | 
 | 1235 | static char *z8530_type_name[]={ | 
 | 1236 | 	"Z8530", | 
 | 1237 | 	"Z85C30", | 
 | 1238 | 	"Z85230" | 
 | 1239 | }; | 
 | 1240 |  | 
 | 1241 | /** | 
 | 1242 |  *	z8530_describe - Uniformly describe a Z8530 port | 
 | 1243 |  *	@dev: Z8530 device to describe | 
 | 1244 |  *	@mapping: string holding mapping type (eg "I/O" or "Mem") | 
 | 1245 |  *	@io: the port value in question | 
 | 1246 |  * | 
 | 1247 |  *	Describe a Z8530 in a standard format. We must pass the I/O as | 
 | 1248 |  *	the port offset isnt predictable. The main reason for this function | 
 | 1249 |  *	is to try and get a common format of report. | 
 | 1250 |  */ | 
 | 1251 |  | 
 | 1252 | void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) | 
 | 1253 | { | 
 | 1254 | 	printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n", | 
 | 1255 | 		dev->name,  | 
 | 1256 | 		z8530_type_name[dev->type], | 
 | 1257 | 		mapping, | 
 | 1258 | 		Z8530_PORT_OF(io), | 
 | 1259 | 		dev->irq); | 
 | 1260 | } | 
 | 1261 |  | 
 | 1262 | EXPORT_SYMBOL(z8530_describe); | 
 | 1263 |  | 
 | 1264 | /* | 
 | 1265 |  *	Locked operation part of the z8530 init code | 
 | 1266 |  */ | 
 | 1267 |   | 
 | 1268 | static inline int do_z8530_init(struct z8530_dev *dev) | 
 | 1269 | { | 
 | 1270 | 	/* NOP the interrupt handlers first - we might get a | 
 | 1271 | 	   floating IRQ transition when we reset the chip */ | 
 | 1272 | 	dev->chanA.irqs=&z8530_nop; | 
 | 1273 | 	dev->chanB.irqs=&z8530_nop; | 
 | 1274 | 	dev->chanA.dcdcheck=DCD; | 
 | 1275 | 	dev->chanB.dcdcheck=DCD; | 
 | 1276 |  | 
 | 1277 | 	/* Reset the chip */ | 
 | 1278 | 	write_zsreg(&dev->chanA, R9, 0xC0); | 
 | 1279 | 	udelay(200); | 
 | 1280 | 	/* Now check its valid */ | 
 | 1281 | 	write_zsreg(&dev->chanA, R12, 0xAA); | 
 | 1282 | 	if(read_zsreg(&dev->chanA, R12)!=0xAA) | 
 | 1283 | 		return -ENODEV; | 
 | 1284 | 	write_zsreg(&dev->chanA, R12, 0x55); | 
 | 1285 | 	if(read_zsreg(&dev->chanA, R12)!=0x55) | 
 | 1286 | 		return -ENODEV; | 
 | 1287 | 		 | 
 | 1288 | 	dev->type=Z8530; | 
 | 1289 | 	 | 
 | 1290 | 	/* | 
 | 1291 | 	 *	See the application note. | 
 | 1292 | 	 */ | 
 | 1293 | 	  | 
 | 1294 | 	write_zsreg(&dev->chanA, R15, 0x01); | 
 | 1295 | 	 | 
 | 1296 | 	/* | 
 | 1297 | 	 *	If we can set the low bit of R15 then | 
 | 1298 | 	 *	the chip is enhanced. | 
 | 1299 | 	 */ | 
 | 1300 | 	  | 
 | 1301 | 	if(read_zsreg(&dev->chanA, R15)==0x01) | 
 | 1302 | 	{ | 
 | 1303 | 		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ | 
 | 1304 | 		/* Put a char in the fifo */ | 
 | 1305 | 		write_zsreg(&dev->chanA, R8, 0); | 
 | 1306 | 		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) | 
 | 1307 | 			dev->type = Z85230;	/* Has a FIFO */ | 
 | 1308 | 		else | 
 | 1309 | 			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */ | 
 | 1310 | 	} | 
 | 1311 | 		 | 
 | 1312 | 	/* | 
 | 1313 | 	 *	The code assumes R7' and friends are | 
 | 1314 | 	 *	off. Use write_zsext() for these and keep | 
 | 1315 | 	 *	this bit clear. | 
 | 1316 | 	 */ | 
 | 1317 | 	  | 
 | 1318 | 	write_zsreg(&dev->chanA, R15, 0); | 
 | 1319 | 		 | 
 | 1320 | 	/* | 
 | 1321 | 	 *	At this point it looks like the chip is behaving | 
 | 1322 | 	 */ | 
 | 1323 | 	  | 
 | 1324 | 	memcpy(dev->chanA.regs, reg_init, 16); | 
 | 1325 | 	memcpy(dev->chanB.regs, reg_init ,16); | 
 | 1326 | 	 | 
 | 1327 | 	return 0; | 
 | 1328 | } | 
 | 1329 |  | 
 | 1330 | /** | 
 | 1331 |  *	z8530_init - Initialise a Z8530 device | 
 | 1332 |  *	@dev: Z8530 device to initialise. | 
 | 1333 |  * | 
 | 1334 |  *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device | 
 | 1335 |  *	is present, identify the type and then program it to hopefully | 
 | 1336 |  *	keep quite and behave. This matters a lot, a Z8530 in the wrong | 
 | 1337 |  *	state will sometimes get into stupid modes generating 10Khz | 
 | 1338 |  *	interrupt streams and the like. | 
 | 1339 |  * | 
 | 1340 |  *	We set the interrupt handler up to discard any events, in case | 
 | 1341 |  *	we get them during reset or setp. | 
 | 1342 |  * | 
 | 1343 |  *	Return 0 for success, or a negative value indicating the problem | 
 | 1344 |  *	in errno form. | 
 | 1345 |  */ | 
 | 1346 |  | 
 | 1347 | int z8530_init(struct z8530_dev *dev) | 
 | 1348 | { | 
 | 1349 | 	unsigned long flags; | 
 | 1350 | 	int ret; | 
 | 1351 |  | 
 | 1352 | 	/* Set up the chip level lock */ | 
 | 1353 | 	spin_lock_init(&dev->lock); | 
 | 1354 | 	dev->chanA.lock = &dev->lock; | 
 | 1355 | 	dev->chanB.lock = &dev->lock; | 
 | 1356 |  | 
 | 1357 | 	spin_lock_irqsave(&dev->lock, flags); | 
 | 1358 | 	ret = do_z8530_init(dev); | 
 | 1359 | 	spin_unlock_irqrestore(&dev->lock, flags); | 
 | 1360 |  | 
 | 1361 | 	return ret; | 
 | 1362 | } | 
 | 1363 |  | 
 | 1364 |  | 
 | 1365 | EXPORT_SYMBOL(z8530_init); | 
 | 1366 |  | 
 | 1367 | /** | 
 | 1368 |  *	z8530_shutdown - Shutdown a Z8530 device | 
 | 1369 |  *	@dev: The Z8530 chip to shutdown | 
 | 1370 |  * | 
 | 1371 |  *	We set the interrupt handlers to silence any interrupts. We then  | 
 | 1372 |  *	reset the chip and wait 100uS to be sure the reset completed. Just | 
 | 1373 |  *	in case the caller then tries to do stuff. | 
 | 1374 |  * | 
 | 1375 |  *	This is called without the lock held | 
 | 1376 |  */ | 
 | 1377 |   | 
 | 1378 | int z8530_shutdown(struct z8530_dev *dev) | 
 | 1379 | { | 
 | 1380 | 	unsigned long flags; | 
 | 1381 | 	/* Reset the chip */ | 
 | 1382 |  | 
 | 1383 | 	spin_lock_irqsave(&dev->lock, flags); | 
 | 1384 | 	dev->chanA.irqs=&z8530_nop; | 
 | 1385 | 	dev->chanB.irqs=&z8530_nop; | 
 | 1386 | 	write_zsreg(&dev->chanA, R9, 0xC0); | 
 | 1387 | 	/* We must lock the udelay, the chip is offlimits here */ | 
 | 1388 | 	udelay(100); | 
 | 1389 | 	spin_unlock_irqrestore(&dev->lock, flags); | 
 | 1390 | 	return 0; | 
 | 1391 | } | 
 | 1392 |  | 
 | 1393 | EXPORT_SYMBOL(z8530_shutdown); | 
 | 1394 |  | 
 | 1395 | /** | 
 | 1396 |  *	z8530_channel_load - Load channel data | 
 | 1397 |  *	@c: Z8530 channel to configure | 
 | 1398 |  *	@rtable: table of register, value pairs | 
 | 1399 |  *	FIXME: ioctl to allow user uploaded tables | 
 | 1400 |  * | 
 | 1401 |  *	Load a Z8530 channel up from the system data. We use +16 to  | 
 | 1402 |  *	indicate the "prime" registers. The value 255 terminates the | 
 | 1403 |  *	table. | 
 | 1404 |  */ | 
 | 1405 |  | 
 | 1406 | int z8530_channel_load(struct z8530_channel *c, u8 *rtable) | 
 | 1407 | { | 
 | 1408 | 	unsigned long flags; | 
 | 1409 |  | 
 | 1410 | 	spin_lock_irqsave(c->lock, flags); | 
 | 1411 |  | 
 | 1412 | 	while(*rtable!=255) | 
 | 1413 | 	{ | 
 | 1414 | 		int reg=*rtable++; | 
 | 1415 | 		if(reg>0x0F) | 
 | 1416 | 			write_zsreg(c, R15, c->regs[15]|1); | 
 | 1417 | 		write_zsreg(c, reg&0x0F, *rtable); | 
 | 1418 | 		if(reg>0x0F) | 
 | 1419 | 			write_zsreg(c, R15, c->regs[15]&~1); | 
 | 1420 | 		c->regs[reg]=*rtable++; | 
 | 1421 | 	} | 
 | 1422 | 	c->rx_function=z8530_null_rx; | 
 | 1423 | 	c->skb=NULL; | 
 | 1424 | 	c->tx_skb=NULL; | 
 | 1425 | 	c->tx_next_skb=NULL; | 
 | 1426 | 	c->mtu=1500; | 
 | 1427 | 	c->max=0; | 
 | 1428 | 	c->count=0; | 
 | 1429 | 	c->status=read_zsreg(c, R0); | 
 | 1430 | 	c->sync=1; | 
 | 1431 | 	write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
 | 1432 |  | 
 | 1433 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 1434 | 	return 0; | 
 | 1435 | } | 
 | 1436 |  | 
 | 1437 | EXPORT_SYMBOL(z8530_channel_load); | 
 | 1438 |  | 
 | 1439 |  | 
 | 1440 | /** | 
 | 1441 |  *	z8530_tx_begin - Begin packet transmission | 
 | 1442 |  *	@c: The Z8530 channel to kick | 
 | 1443 |  * | 
 | 1444 |  *	This is the speed sensitive side of transmission. If we are called | 
 | 1445 |  *	and no buffer is being transmitted we commence the next buffer. If | 
 | 1446 |  *	nothing is queued we idle the sync.  | 
 | 1447 |  * | 
 | 1448 |  *	Note: We are handling this code path in the interrupt path, keep it | 
 | 1449 |  *	fast or bad things will happen. | 
 | 1450 |  * | 
 | 1451 |  *	Called with the lock held. | 
 | 1452 |  */ | 
 | 1453 |  | 
 | 1454 | static void z8530_tx_begin(struct z8530_channel *c) | 
 | 1455 | { | 
 | 1456 | 	unsigned long flags; | 
 | 1457 | 	if(c->tx_skb) | 
 | 1458 | 		return; | 
 | 1459 | 		 | 
 | 1460 | 	c->tx_skb=c->tx_next_skb; | 
 | 1461 | 	c->tx_next_skb=NULL; | 
 | 1462 | 	c->tx_ptr=c->tx_next_ptr; | 
 | 1463 | 	 | 
 | 1464 | 	if(c->tx_skb==NULL) | 
 | 1465 | 	{ | 
 | 1466 | 		/* Idle on */ | 
 | 1467 | 		if(c->dma_tx) | 
 | 1468 | 		{ | 
 | 1469 | 			flags=claim_dma_lock(); | 
 | 1470 | 			disable_dma(c->txdma); | 
 | 1471 | 			/* | 
 | 1472 | 			 *	Check if we crapped out. | 
 | 1473 | 			 */ | 
 | 1474 | 			if(get_dma_residue(c->txdma)) | 
 | 1475 | 			{ | 
 | 1476 | 				c->stats.tx_dropped++; | 
 | 1477 | 				c->stats.tx_fifo_errors++; | 
 | 1478 | 			} | 
 | 1479 | 			release_dma_lock(flags); | 
 | 1480 | 		} | 
 | 1481 | 		c->txcount=0; | 
 | 1482 | 	} | 
 | 1483 | 	else | 
 | 1484 | 	{ | 
 | 1485 | 		c->txcount=c->tx_skb->len; | 
 | 1486 | 		 | 
 | 1487 | 		 | 
 | 1488 | 		if(c->dma_tx) | 
 | 1489 | 		{ | 
 | 1490 | 			/* | 
 | 1491 | 			 *	FIXME. DMA is broken for the original 8530, | 
 | 1492 | 			 *	on the older parts we need to set a flag and | 
 | 1493 | 			 *	wait for a further TX interrupt to fire this | 
 | 1494 | 			 *	stage off	 | 
 | 1495 | 			 */ | 
 | 1496 | 			  | 
 | 1497 | 			flags=claim_dma_lock(); | 
 | 1498 | 			disable_dma(c->txdma); | 
 | 1499 |  | 
 | 1500 | 			/* | 
 | 1501 | 			 *	These two are needed by the 8530/85C30 | 
 | 1502 | 			 *	and must be issued when idling. | 
 | 1503 | 			 */ | 
 | 1504 | 			  | 
 | 1505 | 			if(c->dev->type!=Z85230) | 
 | 1506 | 			{ | 
 | 1507 | 				write_zsctrl(c, RES_Tx_CRC); | 
 | 1508 | 				write_zsctrl(c, RES_EOM_L); | 
 | 1509 | 			}	 | 
 | 1510 | 			write_zsreg(c, R10, c->regs[10]&~ABUNDER); | 
 | 1511 | 			clear_dma_ff(c->txdma); | 
 | 1512 | 			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); | 
 | 1513 | 			set_dma_count(c->txdma, c->txcount); | 
 | 1514 | 			enable_dma(c->txdma); | 
 | 1515 | 			release_dma_lock(flags); | 
 | 1516 | 			write_zsctrl(c, RES_EOM_L); | 
 | 1517 | 			write_zsreg(c, R5, c->regs[R5]|TxENAB); | 
 | 1518 | 		} | 
 | 1519 | 		else | 
 | 1520 | 		{ | 
 | 1521 |  | 
 | 1522 | 			/* ABUNDER off */ | 
 | 1523 | 			write_zsreg(c, R10, c->regs[10]); | 
 | 1524 | 			write_zsctrl(c, RES_Tx_CRC); | 
 | 1525 | 	 | 
 | 1526 | 			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) | 
 | 1527 | 			{		 | 
 | 1528 | 				write_zsreg(c, R8, *c->tx_ptr++); | 
 | 1529 | 				c->txcount--; | 
 | 1530 | 			} | 
 | 1531 |  | 
 | 1532 | 		} | 
 | 1533 | 	} | 
 | 1534 | 	/* | 
 | 1535 | 	 *	Since we emptied tx_skb we can ask for more | 
 | 1536 | 	 */ | 
 | 1537 | 	netif_wake_queue(c->netdevice); | 
 | 1538 | } | 
 | 1539 |  | 
 | 1540 | /** | 
 | 1541 |  *	z8530_tx_done - TX complete callback | 
 | 1542 |  *	@c: The channel that completed a transmit. | 
 | 1543 |  * | 
 | 1544 |  *	This is called when we complete a packet send. We wake the queue, | 
 | 1545 |  *	start the next packet going and then free the buffer of the existing | 
 | 1546 |  *	packet. This code is fairly timing sensitive. | 
 | 1547 |  * | 
 | 1548 |  *	Called with the register lock held. | 
 | 1549 |  */  | 
 | 1550 |   | 
 | 1551 | static void z8530_tx_done(struct z8530_channel *c) | 
 | 1552 | { | 
 | 1553 | 	struct sk_buff *skb; | 
 | 1554 |  | 
 | 1555 | 	/* Actually this can happen.*/ | 
 | 1556 | 	if(c->tx_skb==NULL) | 
 | 1557 | 		return; | 
 | 1558 |  | 
 | 1559 | 	skb=c->tx_skb; | 
 | 1560 | 	c->tx_skb=NULL; | 
 | 1561 | 	z8530_tx_begin(c); | 
 | 1562 | 	c->stats.tx_packets++; | 
 | 1563 | 	c->stats.tx_bytes+=skb->len; | 
 | 1564 | 	dev_kfree_skb_irq(skb); | 
 | 1565 | } | 
 | 1566 |  | 
 | 1567 | /** | 
 | 1568 |  *	z8530_null_rx - Discard a packet | 
 | 1569 |  *	@c: The channel the packet arrived on | 
 | 1570 |  *	@skb: The buffer | 
 | 1571 |  * | 
 | 1572 |  *	We point the receive handler at this function when idle. Instead | 
 | 1573 |  *	of syncppp processing the frames we get to throw them away. | 
 | 1574 |  */ | 
 | 1575 |   | 
 | 1576 | void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) | 
 | 1577 | { | 
 | 1578 | 	dev_kfree_skb_any(skb); | 
 | 1579 | } | 
 | 1580 |  | 
 | 1581 | EXPORT_SYMBOL(z8530_null_rx); | 
 | 1582 |  | 
 | 1583 | /** | 
 | 1584 |  *	z8530_rx_done - Receive completion callback | 
 | 1585 |  *	@c: The channel that completed a receive | 
 | 1586 |  * | 
 | 1587 |  *	A new packet is complete. Our goal here is to get back into receive | 
 | 1588 |  *	mode as fast as possible. On the Z85230 we could change to using | 
 | 1589 |  *	ESCC mode, but on the older chips we have no choice. We flip to the | 
 | 1590 |  *	new buffer immediately in DMA mode so that the DMA of the next | 
 | 1591 |  *	frame can occur while we are copying the previous buffer to an sk_buff | 
 | 1592 |  * | 
 | 1593 |  *	Called with the lock held | 
 | 1594 |  */ | 
 | 1595 |   | 
 | 1596 | static void z8530_rx_done(struct z8530_channel *c) | 
 | 1597 | { | 
 | 1598 | 	struct sk_buff *skb; | 
 | 1599 | 	int ct; | 
 | 1600 | 	 | 
 | 1601 | 	/* | 
 | 1602 | 	 *	Is our receive engine in DMA mode | 
 | 1603 | 	 */ | 
 | 1604 | 	  | 
 | 1605 | 	if(c->rxdma_on) | 
 | 1606 | 	{ | 
 | 1607 | 		/* | 
 | 1608 | 		 *	Save the ready state and the buffer currently | 
 | 1609 | 		 *	being used as the DMA target | 
 | 1610 | 		 */ | 
 | 1611 | 		  | 
 | 1612 | 		int ready=c->dma_ready; | 
 | 1613 | 		unsigned char *rxb=c->rx_buf[c->dma_num]; | 
 | 1614 | 		unsigned long flags; | 
 | 1615 | 		 | 
 | 1616 | 		/* | 
 | 1617 | 		 *	Complete this DMA. Neccessary to find the length | 
 | 1618 | 		 */		 | 
 | 1619 | 		  | 
 | 1620 | 		flags=claim_dma_lock(); | 
 | 1621 | 		 | 
 | 1622 | 		disable_dma(c->rxdma); | 
 | 1623 | 		clear_dma_ff(c->rxdma); | 
 | 1624 | 		c->rxdma_on=0; | 
 | 1625 | 		ct=c->mtu-get_dma_residue(c->rxdma); | 
 | 1626 | 		if(ct<0) | 
 | 1627 | 			ct=2;	/* Shit happens.. */ | 
 | 1628 | 		c->dma_ready=0; | 
 | 1629 | 		 | 
 | 1630 | 		/* | 
 | 1631 | 		 *	Normal case: the other slot is free, start the next DMA | 
 | 1632 | 		 *	into it immediately. | 
 | 1633 | 		 */ | 
 | 1634 | 		  | 
 | 1635 | 		if(ready) | 
 | 1636 | 		{ | 
 | 1637 | 			c->dma_num^=1; | 
 | 1638 | 			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); | 
 | 1639 | 			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); | 
 | 1640 | 			set_dma_count(c->rxdma, c->mtu); | 
 | 1641 | 			c->rxdma_on = 1; | 
 | 1642 | 			enable_dma(c->rxdma); | 
 | 1643 | 			/* Stop any frames that we missed the head of  | 
 | 1644 | 			   from passing */ | 
 | 1645 | 			write_zsreg(c, R0, RES_Rx_CRC); | 
 | 1646 | 		} | 
 | 1647 | 		else | 
 | 1648 | 			/* Can't occur as we dont reenable the DMA irq until | 
 | 1649 | 			   after the flip is done */ | 
 | 1650 | 			printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name); | 
 | 1651 | 			 | 
 | 1652 | 		release_dma_lock(flags); | 
 | 1653 | 		 | 
 | 1654 | 		/* | 
 | 1655 | 		 *	Shove the old buffer into an sk_buff. We can't DMA | 
 | 1656 | 		 *	directly into one on a PC - it might be above the 16Mb | 
 | 1657 | 		 *	boundary. Optimisation - we could check to see if we | 
 | 1658 | 		 *	can avoid the copy. Optimisation 2 - make the memcpy | 
 | 1659 | 		 *	a copychecksum. | 
 | 1660 | 		 */ | 
 | 1661 | 		  | 
 | 1662 | 		skb=dev_alloc_skb(ct); | 
 | 1663 | 		if(skb==NULL) | 
 | 1664 | 		{ | 
 | 1665 | 			c->stats.rx_dropped++; | 
 | 1666 | 			printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name); | 
 | 1667 | 		} | 
 | 1668 | 		else | 
 | 1669 | 		{ | 
 | 1670 | 			skb_put(skb, ct); | 
 | 1671 | 			memcpy(skb->data, rxb, ct); | 
 | 1672 | 			c->stats.rx_packets++; | 
 | 1673 | 			c->stats.rx_bytes+=ct; | 
 | 1674 | 		} | 
 | 1675 | 		c->dma_ready=1; | 
 | 1676 | 	} | 
 | 1677 | 	else | 
 | 1678 | 	{ | 
 | 1679 | 		RT_LOCK;	 | 
 | 1680 | 		skb=c->skb; | 
 | 1681 | 		 | 
 | 1682 | 		/* | 
 | 1683 | 		 *	The game we play for non DMA is similar. We want to | 
 | 1684 | 		 *	get the controller set up for the next packet as fast | 
 | 1685 | 		 *	as possible. We potentially only have one byte + the | 
 | 1686 | 		 *	fifo length for this. Thus we want to flip to the new | 
 | 1687 | 		 *	buffer and then mess around copying and allocating | 
 | 1688 | 		 *	things. For the current case it doesn't matter but | 
 | 1689 | 		 *	if you build a system where the sync irq isnt blocked | 
 | 1690 | 		 *	by the kernel IRQ disable then you need only block the | 
 | 1691 | 		 *	sync IRQ for the RT_LOCK area. | 
 | 1692 | 		 *	 | 
 | 1693 | 		 */ | 
 | 1694 | 		ct=c->count; | 
 | 1695 | 		 | 
 | 1696 | 		c->skb = c->skb2; | 
 | 1697 | 		c->count = 0; | 
 | 1698 | 		c->max = c->mtu; | 
 | 1699 | 		if(c->skb) | 
 | 1700 | 		{ | 
 | 1701 | 			c->dptr = c->skb->data; | 
 | 1702 | 			c->max = c->mtu; | 
 | 1703 | 		} | 
 | 1704 | 		else | 
 | 1705 | 		{ | 
 | 1706 | 			c->count= 0; | 
 | 1707 | 			c->max = 0; | 
 | 1708 | 		} | 
 | 1709 | 		RT_UNLOCK; | 
 | 1710 |  | 
 | 1711 | 		c->skb2 = dev_alloc_skb(c->mtu); | 
 | 1712 | 		if(c->skb2==NULL) | 
 | 1713 | 			printk(KERN_WARNING "%s: memory squeeze.\n", | 
 | 1714 | 				c->netdevice->name); | 
 | 1715 | 		else | 
 | 1716 | 		{ | 
 | 1717 | 			skb_put(c->skb2,c->mtu); | 
 | 1718 | 		} | 
 | 1719 | 		c->stats.rx_packets++; | 
 | 1720 | 		c->stats.rx_bytes+=ct; | 
 | 1721 | 		 | 
 | 1722 | 	} | 
 | 1723 | 	/* | 
 | 1724 | 	 *	If we received a frame we must now process it. | 
 | 1725 | 	 */ | 
 | 1726 | 	if(skb) | 
 | 1727 | 	{ | 
 | 1728 | 		skb_trim(skb, ct); | 
 | 1729 | 		c->rx_function(c,skb); | 
 | 1730 | 	} | 
 | 1731 | 	else | 
 | 1732 | 	{ | 
 | 1733 | 		c->stats.rx_dropped++; | 
 | 1734 | 		printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name); | 
 | 1735 | 	} | 
 | 1736 | } | 
 | 1737 |  | 
 | 1738 | /** | 
 | 1739 |  *	spans_boundary - Check a packet can be ISA DMA'd | 
 | 1740 |  *	@skb: The buffer to check | 
 | 1741 |  * | 
 | 1742 |  *	Returns true if the buffer cross a DMA boundary on a PC. The poor | 
 | 1743 |  *	thing can only DMA within a 64K block not across the edges of it. | 
 | 1744 |  */ | 
 | 1745 |   | 
 | 1746 | static inline int spans_boundary(struct sk_buff *skb) | 
 | 1747 | { | 
 | 1748 | 	unsigned long a=(unsigned long)skb->data; | 
 | 1749 | 	a^=(a+skb->len); | 
 | 1750 | 	if(a&0x00010000)	/* If the 64K bit is different.. */ | 
 | 1751 | 		return 1; | 
 | 1752 | 	return 0; | 
 | 1753 | } | 
 | 1754 |  | 
 | 1755 | /** | 
 | 1756 |  *	z8530_queue_xmit - Queue a packet | 
 | 1757 |  *	@c: The channel to use | 
 | 1758 |  *	@skb: The packet to kick down the channel | 
 | 1759 |  * | 
 | 1760 |  *	Queue a packet for transmission. Because we have rather | 
 | 1761 |  *	hard to hit interrupt latencies for the Z85230 per packet  | 
 | 1762 |  *	even in DMA mode we do the flip to DMA buffer if needed here | 
 | 1763 |  *	not in the IRQ. | 
 | 1764 |  * | 
 | 1765 |  *	Called from the network code. The lock is not held at this  | 
 | 1766 |  *	point. | 
 | 1767 |  */ | 
 | 1768 |  | 
 | 1769 | int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) | 
 | 1770 | { | 
 | 1771 | 	unsigned long flags; | 
 | 1772 | 	 | 
 | 1773 | 	netif_stop_queue(c->netdevice); | 
 | 1774 | 	if(c->tx_next_skb) | 
 | 1775 | 	{ | 
 | 1776 | 		return 1; | 
 | 1777 | 	} | 
 | 1778 | 	 | 
 | 1779 | 	/* PC SPECIFIC - DMA limits */ | 
 | 1780 | 	 | 
 | 1781 | 	/* | 
 | 1782 | 	 *	If we will DMA the transmit and its gone over the ISA bus | 
 | 1783 | 	 *	limit, then copy to the flip buffer | 
 | 1784 | 	 */ | 
 | 1785 | 	  | 
 | 1786 | 	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) | 
 | 1787 | 	{ | 
 | 1788 | 		/*  | 
 | 1789 | 		 *	Send the flip buffer, and flip the flippy bit. | 
 | 1790 | 		 *	We don't care which is used when just so long as | 
 | 1791 | 		 *	we never use the same buffer twice in a row. Since | 
 | 1792 | 		 *	only one buffer can be going out at a time the other | 
 | 1793 | 		 *	has to be safe. | 
 | 1794 | 		 */ | 
 | 1795 | 		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; | 
 | 1796 | 		c->tx_dma_used^=1;	/* Flip temp buffer */ | 
 | 1797 | 		memcpy(c->tx_next_ptr, skb->data, skb->len); | 
 | 1798 | 	} | 
 | 1799 | 	else | 
 | 1800 | 		c->tx_next_ptr=skb->data;	 | 
 | 1801 | 	RT_LOCK; | 
 | 1802 | 	c->tx_next_skb=skb; | 
 | 1803 | 	RT_UNLOCK; | 
 | 1804 | 	 | 
 | 1805 | 	spin_lock_irqsave(c->lock, flags); | 
 | 1806 | 	z8530_tx_begin(c); | 
 | 1807 | 	spin_unlock_irqrestore(c->lock, flags); | 
 | 1808 | 	 | 
 | 1809 | 	return 0; | 
 | 1810 | } | 
 | 1811 |  | 
 | 1812 | EXPORT_SYMBOL(z8530_queue_xmit); | 
 | 1813 |  | 
 | 1814 | /** | 
 | 1815 |  *	z8530_get_stats - Get network statistics | 
 | 1816 |  *	@c: The channel to use | 
 | 1817 |  * | 
 | 1818 |  *	Get the statistics block. We keep the statistics in software as | 
 | 1819 |  *	the chip doesn't do it for us. | 
 | 1820 |  * | 
 | 1821 |  *	Locking is ignored here - we could lock for a copy but its | 
 | 1822 |  *	not likely to be that big an issue | 
 | 1823 |  */ | 
 | 1824 |   | 
 | 1825 | struct net_device_stats *z8530_get_stats(struct z8530_channel *c) | 
 | 1826 | { | 
 | 1827 | 	return &c->stats; | 
 | 1828 | } | 
 | 1829 |  | 
 | 1830 | EXPORT_SYMBOL(z8530_get_stats); | 
 | 1831 |  | 
 | 1832 | /* | 
 | 1833 |  *	Module support | 
 | 1834 |  */ | 
 | 1835 | static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; | 
 | 1836 |  | 
 | 1837 | static int __init z85230_init_driver(void) | 
 | 1838 | { | 
 | 1839 | 	printk(banner); | 
 | 1840 | 	return 0; | 
 | 1841 | } | 
 | 1842 | module_init(z85230_init_driver); | 
 | 1843 |  | 
 | 1844 | static void __exit z85230_cleanup_driver(void) | 
 | 1845 | { | 
 | 1846 | } | 
 | 1847 | module_exit(z85230_cleanup_driver); | 
 | 1848 |  | 
 | 1849 | MODULE_AUTHOR("Red Hat Inc."); | 
 | 1850 | MODULE_DESCRIPTION("Z85x30 synchronous driver core"); | 
 | 1851 | MODULE_LICENSE("GPL"); |