| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* Software floating-point emulation. | 
 | 2 |    Basic two-word fraction declaration and manipulation. | 
 | 3 |    Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. | 
 | 4 |    This file is part of the GNU C Library. | 
 | 5 |    Contributed by Richard Henderson (rth@cygnus.com), | 
 | 6 | 		  Jakub Jelinek (jj@ultra.linux.cz), | 
 | 7 | 		  David S. Miller (davem@redhat.com) and | 
 | 8 | 		  Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
 | 9 |  | 
 | 10 |    The GNU C Library is free software; you can redistribute it and/or | 
 | 11 |    modify it under the terms of the GNU Library General Public License as | 
 | 12 |    published by the Free Software Foundation; either version 2 of the | 
 | 13 |    License, or (at your option) any later version. | 
 | 14 |  | 
 | 15 |    The GNU C Library is distributed in the hope that it will be useful, | 
 | 16 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 17 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 | 18 |    Library General Public License for more details. | 
 | 19 |  | 
 | 20 |    You should have received a copy of the GNU Library General Public | 
 | 21 |    License along with the GNU C Library; see the file COPYING.LIB.  If | 
 | 22 |    not, write to the Free Software Foundation, Inc., | 
 | 23 |    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */ | 
 | 24 |  | 
 | 25 | #ifndef __MATH_EMU_OP_2_H__ | 
 | 26 | #define __MATH_EMU_OP_2_H__ | 
 | 27 |  | 
| Kumar Gala | 40d3057 | 2008-06-27 09:33:59 -0500 | [diff] [blame] | 28 | #define _FP_FRAC_DECL_2(X)	_FP_W_TYPE X##_f0 = 0, X##_f1 = 0 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 29 | #define _FP_FRAC_COPY_2(D,S)	(D##_f0 = S##_f0, D##_f1 = S##_f1) | 
 | 30 | #define _FP_FRAC_SET_2(X,I)	__FP_FRAC_SET_2(X, I) | 
 | 31 | #define _FP_FRAC_HIGH_2(X)	(X##_f1) | 
 | 32 | #define _FP_FRAC_LOW_2(X)	(X##_f0) | 
 | 33 | #define _FP_FRAC_WORD_2(X,w)	(X##_f##w) | 
 | 34 |  | 
 | 35 | #define _FP_FRAC_SLL_2(X,N)						\ | 
 | 36 |   do {									\ | 
 | 37 |     if ((N) < _FP_W_TYPE_SIZE)						\ | 
 | 38 |       {									\ | 
 | 39 | 	if (__builtin_constant_p(N) && (N) == 1) 			\ | 
 | 40 | 	  {								\ | 
 | 41 | 	    X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);	\ | 
 | 42 | 	    X##_f0 += X##_f0;						\ | 
 | 43 | 	  }								\ | 
 | 44 | 	else								\ | 
 | 45 | 	  {								\ | 
 | 46 | 	    X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N));	\ | 
 | 47 | 	    X##_f0 <<= (N);						\ | 
 | 48 | 	  }								\ | 
 | 49 |       }									\ | 
 | 50 |     else								\ | 
 | 51 |       {									\ | 
 | 52 | 	X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);			\ | 
 | 53 | 	X##_f0 = 0;							\ | 
 | 54 |       }									\ | 
 | 55 |   } while (0) | 
 | 56 |  | 
 | 57 | #define _FP_FRAC_SRL_2(X,N)						\ | 
 | 58 |   do {									\ | 
 | 59 |     if ((N) < _FP_W_TYPE_SIZE)						\ | 
 | 60 |       {									\ | 
 | 61 | 	X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));	\ | 
 | 62 | 	X##_f1 >>= (N);							\ | 
 | 63 |       }									\ | 
 | 64 |     else								\ | 
 | 65 |       {									\ | 
 | 66 | 	X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);			\ | 
 | 67 | 	X##_f1 = 0;							\ | 
 | 68 |       }									\ | 
 | 69 |   } while (0) | 
 | 70 |  | 
 | 71 | /* Right shift with sticky-lsb.  */ | 
 | 72 | #define _FP_FRAC_SRS_2(X,N,sz)						\ | 
 | 73 |   do {									\ | 
 | 74 |     if ((N) < _FP_W_TYPE_SIZE)						\ | 
 | 75 |       {									\ | 
 | 76 | 	X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |	\ | 
 | 77 | 		  (__builtin_constant_p(N) && (N) == 1			\ | 
 | 78 | 		   ? X##_f0 & 1						\ | 
 | 79 | 		   : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));	\ | 
 | 80 | 	X##_f1 >>= (N);							\ | 
 | 81 |       }									\ | 
 | 82 |     else								\ | 
 | 83 |       {									\ | 
 | 84 | 	X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |			\ | 
 | 85 | 		(((X##_f1 << (2*_FP_W_TYPE_SIZE - (N))) | X##_f0) != 0)); \ | 
 | 86 | 	X##_f1 = 0;							\ | 
 | 87 |       }									\ | 
 | 88 |   } while (0) | 
 | 89 |  | 
 | 90 | #define _FP_FRAC_ADDI_2(X,I)	\ | 
 | 91 |   __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) | 
 | 92 |  | 
 | 93 | #define _FP_FRAC_ADD_2(R,X,Y)	\ | 
 | 94 |   __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
 | 95 |  | 
 | 96 | #define _FP_FRAC_SUB_2(R,X,Y)	\ | 
 | 97 |   __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
 | 98 |  | 
 | 99 | #define _FP_FRAC_DEC_2(X,Y)	\ | 
 | 100 |   __FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0) | 
 | 101 |  | 
 | 102 | #define _FP_FRAC_CLZ_2(R,X)	\ | 
 | 103 |   do {				\ | 
 | 104 |     if (X##_f1)			\ | 
 | 105 |       __FP_CLZ(R,X##_f1);	\ | 
 | 106 |     else 			\ | 
 | 107 |     {				\ | 
 | 108 |       __FP_CLZ(R,X##_f0);	\ | 
 | 109 |       R += _FP_W_TYPE_SIZE;	\ | 
 | 110 |     }				\ | 
 | 111 |   } while(0) | 
 | 112 |  | 
 | 113 | /* Predicates */ | 
 | 114 | #define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE)X##_f1 < 0) | 
 | 115 | #define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0) | 
 | 116 | #define _FP_FRAC_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) | 
 | 117 | #define _FP_FRAC_CLEAR_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) | 
 | 118 | #define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0) | 
 | 119 | #define _FP_FRAC_GT_2(X, Y)	\ | 
 | 120 |   (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) | 
 | 121 | #define _FP_FRAC_GE_2(X, Y)	\ | 
 | 122 |   (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) | 
 | 123 |  | 
 | 124 | #define _FP_ZEROFRAC_2		0, 0 | 
 | 125 | #define _FP_MINFRAC_2		0, 1 | 
 | 126 | #define _FP_MAXFRAC_2		(~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) | 
 | 127 |  | 
 | 128 | /* | 
 | 129 |  * Internals  | 
 | 130 |  */ | 
 | 131 |  | 
 | 132 | #define __FP_FRAC_SET_2(X,I1,I0)	(X##_f0 = I0, X##_f1 = I1) | 
 | 133 |  | 
 | 134 | #define __FP_CLZ_2(R, xh, xl)	\ | 
 | 135 |   do {				\ | 
 | 136 |     if (xh)			\ | 
 | 137 |       __FP_CLZ(R,xh);		\ | 
 | 138 |     else 			\ | 
 | 139 |     {				\ | 
 | 140 |       __FP_CLZ(R,xl);		\ | 
 | 141 |       R += _FP_W_TYPE_SIZE;	\ | 
 | 142 |     }				\ | 
 | 143 |   } while(0) | 
 | 144 |  | 
 | 145 | #if 0 | 
 | 146 |  | 
 | 147 | #ifndef __FP_FRAC_ADDI_2 | 
 | 148 | #define __FP_FRAC_ADDI_2(xh, xl, i)	\ | 
 | 149 |   (xh += ((xl += i) < i)) | 
 | 150 | #endif | 
 | 151 | #ifndef __FP_FRAC_ADD_2 | 
 | 152 | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl)	\ | 
 | 153 |   (rh = xh + yh + ((rl = xl + yl) < xl)) | 
 | 154 | #endif | 
 | 155 | #ifndef __FP_FRAC_SUB_2 | 
 | 156 | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl)	\ | 
 | 157 |   (rh = xh - yh - ((rl = xl - yl) > xl)) | 
 | 158 | #endif | 
 | 159 | #ifndef __FP_FRAC_DEC_2 | 
 | 160 | #define __FP_FRAC_DEC_2(xh, xl, yh, yl)	\ | 
 | 161 |   do {					\ | 
 | 162 |     UWtype _t = xl;			\ | 
 | 163 |     xh -= yh + ((xl -= yl) > _t);	\ | 
 | 164 |   } while (0) | 
 | 165 | #endif | 
 | 166 |  | 
 | 167 | #else | 
 | 168 |  | 
 | 169 | #undef __FP_FRAC_ADDI_2 | 
 | 170 | #define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa(xh, xl, xh, xl, 0, i) | 
 | 171 | #undef __FP_FRAC_ADD_2 | 
 | 172 | #define __FP_FRAC_ADD_2			add_ssaaaa | 
 | 173 | #undef __FP_FRAC_SUB_2 | 
 | 174 | #define __FP_FRAC_SUB_2			sub_ddmmss | 
 | 175 | #undef __FP_FRAC_DEC_2 | 
 | 176 | #define __FP_FRAC_DEC_2(xh, xl, yh, yl)	sub_ddmmss(xh, xl, xh, xl, yh, yl) | 
 | 177 |  | 
 | 178 | #endif | 
 | 179 |  | 
 | 180 | /* | 
 | 181 |  * Unpack the raw bits of a native fp value.  Do not classify or | 
 | 182 |  * normalize the data. | 
 | 183 |  */ | 
 | 184 |  | 
 | 185 | #define _FP_UNPACK_RAW_2(fs, X, val)			\ | 
 | 186 |   do {							\ | 
 | 187 |     union _FP_UNION_##fs _flo; _flo.flt = (val);	\ | 
 | 188 | 							\ | 
 | 189 |     X##_f0 = _flo.bits.frac0;				\ | 
 | 190 |     X##_f1 = _flo.bits.frac1;				\ | 
 | 191 |     X##_e  = _flo.bits.exp;				\ | 
 | 192 |     X##_s  = _flo.bits.sign;				\ | 
 | 193 |   } while (0) | 
 | 194 |  | 
 | 195 | #define _FP_UNPACK_RAW_2_P(fs, X, val)			\ | 
 | 196 |   do {							\ | 
 | 197 |     union _FP_UNION_##fs *_flo =			\ | 
 | 198 |       (union _FP_UNION_##fs *)(val);			\ | 
 | 199 | 							\ | 
 | 200 |     X##_f0 = _flo->bits.frac0;				\ | 
 | 201 |     X##_f1 = _flo->bits.frac1;				\ | 
 | 202 |     X##_e  = _flo->bits.exp;				\ | 
 | 203 |     X##_s  = _flo->bits.sign;				\ | 
 | 204 |   } while (0) | 
 | 205 |  | 
 | 206 |  | 
 | 207 | /* | 
 | 208 |  * Repack the raw bits of a native fp value. | 
 | 209 |  */ | 
 | 210 |  | 
 | 211 | #define _FP_PACK_RAW_2(fs, val, X)			\ | 
 | 212 |   do {							\ | 
 | 213 |     union _FP_UNION_##fs _flo;				\ | 
 | 214 | 							\ | 
 | 215 |     _flo.bits.frac0 = X##_f0;				\ | 
 | 216 |     _flo.bits.frac1 = X##_f1;				\ | 
 | 217 |     _flo.bits.exp   = X##_e;				\ | 
 | 218 |     _flo.bits.sign  = X##_s;				\ | 
 | 219 | 							\ | 
 | 220 |     (val) = _flo.flt;					\ | 
 | 221 |   } while (0) | 
 | 222 |  | 
 | 223 | #define _FP_PACK_RAW_2_P(fs, val, X)			\ | 
 | 224 |   do {							\ | 
 | 225 |     union _FP_UNION_##fs *_flo =			\ | 
 | 226 |       (union _FP_UNION_##fs *)(val);			\ | 
 | 227 | 							\ | 
 | 228 |     _flo->bits.frac0 = X##_f0;				\ | 
 | 229 |     _flo->bits.frac1 = X##_f1;				\ | 
 | 230 |     _flo->bits.exp   = X##_e;				\ | 
 | 231 |     _flo->bits.sign  = X##_s;				\ | 
 | 232 |   } while (0) | 
 | 233 |  | 
 | 234 |  | 
 | 235 | /* | 
 | 236 |  * Multiplication algorithms: | 
 | 237 |  */ | 
 | 238 |  | 
 | 239 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
 | 240 |  | 
 | 241 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit)			\ | 
 | 242 |   do {									\ | 
 | 243 |     _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\ | 
 | 244 | 									\ | 
 | 245 |     doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);	\ | 
 | 246 |     doit(_b_f1, _b_f0, X##_f0, Y##_f1);					\ | 
 | 247 |     doit(_c_f1, _c_f0, X##_f1, Y##_f0);					\ | 
 | 248 |     doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1);	\ | 
 | 249 | 									\ | 
 | 250 |     __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 251 | 		    _FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0,		\ | 
 | 252 | 		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 253 | 		    _FP_FRAC_WORD_4(_z,1));				\ | 
 | 254 |     __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 255 | 		    _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0,		\ | 
 | 256 | 		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 257 | 		    _FP_FRAC_WORD_4(_z,1));				\ | 
 | 258 | 									\ | 
 | 259 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 260 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 261 |        at either 2B or 2B-1.  */					\ | 
 | 262 |     _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\ | 
 | 263 |     R##_f0 = _FP_FRAC_WORD_4(_z,0);					\ | 
 | 264 |     R##_f1 = _FP_FRAC_WORD_4(_z,1);					\ | 
 | 265 |   } while (0) | 
 | 266 |  | 
 | 267 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. | 
 | 268 |    Do only 3 multiplications instead of four. This one is for machines | 
 | 269 |    where multiplication is much more expensive than subtraction.  */ | 
 | 270 |  | 
 | 271 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit)		\ | 
 | 272 |   do {									\ | 
 | 273 |     _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\ | 
 | 274 |     _FP_W_TYPE _d;							\ | 
 | 275 |     int _c1, _c2;							\ | 
 | 276 | 									\ | 
 | 277 |     _b_f0 = X##_f0 + X##_f1;						\ | 
 | 278 |     _c1 = _b_f0 < X##_f0;						\ | 
 | 279 |     _b_f1 = Y##_f0 + Y##_f1;						\ | 
 | 280 |     _c2 = _b_f1 < Y##_f0;						\ | 
 | 281 |     doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);			\ | 
 | 282 |     doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1);	\ | 
 | 283 |     doit(_c_f1, _c_f0, X##_f1, Y##_f1);					\ | 
 | 284 | 									\ | 
 | 285 |     _b_f0 &= -_c2;							\ | 
 | 286 |     _b_f1 &= -_c1;							\ | 
 | 287 |     __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 288 | 		    _FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d,		\ | 
 | 289 | 		    0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1));	\ | 
 | 290 |     __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 291 | 		     _b_f0);						\ | 
 | 292 |     __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 293 | 		     _b_f1);						\ | 
 | 294 |     __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 295 | 		    _FP_FRAC_WORD_4(_z,1),				\ | 
 | 296 | 		    0, _d, _FP_FRAC_WORD_4(_z,0));			\ | 
 | 297 |     __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 298 | 		    _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0);		\ | 
 | 299 |     __FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2),	\ | 
 | 300 | 		    _c_f1, _c_f0,					\ | 
 | 301 | 		    _FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2));	\ | 
 | 302 | 									\ | 
 | 303 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 304 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 305 |        at either 2B or 2B-1.  */					\ | 
 | 306 |     _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\ | 
 | 307 |     R##_f0 = _FP_FRAC_WORD_4(_z,0);					\ | 
 | 308 |     R##_f1 = _FP_FRAC_WORD_4(_z,1);					\ | 
 | 309 |   } while (0) | 
 | 310 |  | 
 | 311 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\ | 
 | 312 |   do {									\ | 
 | 313 |     _FP_FRAC_DECL_4(_z);						\ | 
 | 314 |     _FP_W_TYPE _x[2], _y[2];						\ | 
 | 315 |     _x[0] = X##_f0; _x[1] = X##_f1;					\ | 
 | 316 |     _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
 | 317 | 									\ | 
 | 318 |     mpn_mul_n(_z_f, _x, _y, 2);						\ | 
 | 319 | 									\ | 
 | 320 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 321 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 322 |        at either 2B or 2B-1.  */					\ | 
 | 323 |     _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\ | 
 | 324 |     R##_f0 = _z_f[0];							\ | 
 | 325 |     R##_f1 = _z_f[1];							\ | 
 | 326 |   } while (0) | 
 | 327 |  | 
 | 328 | /* Do at most 120x120=240 bits multiplication using double floating | 
 | 329 |    point multiplication.  This is useful if floating point | 
 | 330 |    multiplication has much bigger throughput than integer multiply. | 
 | 331 |    It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits | 
 | 332 |    between 106 and 120 only.   | 
 | 333 |    Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. | 
 | 334 |    SETFETZ is a macro which will disable all FPU exceptions and set rounding | 
 | 335 |    towards zero,  RESETFE should optionally reset it back.  */ | 
 | 336 |  | 
 | 337 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe)	\ | 
 | 338 |   do {										\ | 
 | 339 |     static const double _const[] = {						\ | 
 | 340 |       /* 2^-24 */ 5.9604644775390625e-08,					\ | 
 | 341 |       /* 2^-48 */ 3.5527136788005009e-15,					\ | 
 | 342 |       /* 2^-72 */ 2.1175823681357508e-22,					\ | 
 | 343 |       /* 2^-96 */ 1.2621774483536189e-29,					\ | 
 | 344 |       /* 2^28 */ 2.68435456e+08,						\ | 
 | 345 |       /* 2^4 */ 1.600000e+01,							\ | 
 | 346 |       /* 2^-20 */ 9.5367431640625e-07,						\ | 
 | 347 |       /* 2^-44 */ 5.6843418860808015e-14,					\ | 
 | 348 |       /* 2^-68 */ 3.3881317890172014e-21,					\ | 
 | 349 |       /* 2^-92 */ 2.0194839173657902e-28,					\ | 
 | 350 |       /* 2^-116 */ 1.2037062152420224e-35};					\ | 
 | 351 |     double _a240, _b240, _c240, _d240, _e240, _f240, 				\ | 
 | 352 | 	   _g240, _h240, _i240, _j240, _k240;					\ | 
 | 353 |     union { double d; UDItype i; } _l240, _m240, _n240, _o240,			\ | 
 | 354 | 				   _p240, _q240, _r240, _s240;			\ | 
 | 355 |     UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;			\ | 
 | 356 | 										\ | 
 | 357 |     if (wfracbits < 106 || wfracbits > 120)					\ | 
 | 358 |       abort();									\ | 
 | 359 | 										\ | 
 | 360 |     setfetz;									\ | 
 | 361 | 										\ | 
 | 362 |     _e240 = (double)(long)(X##_f0 & 0xffffff);					\ | 
 | 363 |     _j240 = (double)(long)(Y##_f0 & 0xffffff);					\ | 
 | 364 |     _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff);				\ | 
 | 365 |     _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff);				\ | 
 | 366 |     _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48));	\ | 
 | 367 |     _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48));	\ | 
 | 368 |     _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff);				\ | 
 | 369 |     _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff);				\ | 
 | 370 |     _a240 = (double)(long)(X##_f1 >> 32);					\ | 
 | 371 |     _f240 = (double)(long)(Y##_f1 >> 32);					\ | 
 | 372 |     _e240 *= _const[3];								\ | 
 | 373 |     _j240 *= _const[3];								\ | 
 | 374 |     _d240 *= _const[2];								\ | 
 | 375 |     _i240 *= _const[2];								\ | 
 | 376 |     _c240 *= _const[1];								\ | 
 | 377 |     _h240 *= _const[1];								\ | 
 | 378 |     _b240 *= _const[0];								\ | 
 | 379 |     _g240 *= _const[0];								\ | 
 | 380 |     _s240.d =							      _e240*_j240;\ | 
 | 381 |     _r240.d =						_d240*_j240 + _e240*_i240;\ | 
 | 382 |     _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240;\ | 
 | 383 |     _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\ | 
 | 384 |     _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\ | 
 | 385 |     _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;		\ | 
 | 386 |     _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;				\ | 
 | 387 |     _l240.d = _a240*_g240 + _b240*_f240;					\ | 
 | 388 |     _k240 =   _a240*_f240;							\ | 
 | 389 |     _r240.d += _s240.d;								\ | 
 | 390 |     _q240.d += _r240.d;								\ | 
 | 391 |     _p240.d += _q240.d;								\ | 
 | 392 |     _o240.d += _p240.d;								\ | 
 | 393 |     _n240.d += _o240.d;								\ | 
 | 394 |     _m240.d += _n240.d;								\ | 
 | 395 |     _l240.d += _m240.d;								\ | 
 | 396 |     _k240 += _l240.d;								\ | 
 | 397 |     _s240.d -= ((_const[10]+_s240.d)-_const[10]);				\ | 
 | 398 |     _r240.d -= ((_const[9]+_r240.d)-_const[9]);					\ | 
 | 399 |     _q240.d -= ((_const[8]+_q240.d)-_const[8]);					\ | 
 | 400 |     _p240.d -= ((_const[7]+_p240.d)-_const[7]);					\ | 
 | 401 |     _o240.d += _const[7];							\ | 
 | 402 |     _n240.d += _const[6];							\ | 
 | 403 |     _m240.d += _const[5];							\ | 
 | 404 |     _l240.d += _const[4];							\ | 
 | 405 |     if (_s240.d != 0.0) _y240 = 1;						\ | 
 | 406 |     if (_r240.d != 0.0) _y240 = 1;						\ | 
 | 407 |     if (_q240.d != 0.0) _y240 = 1;						\ | 
 | 408 |     if (_p240.d != 0.0) _y240 = 1;						\ | 
 | 409 |     _t240 = (DItype)_k240;							\ | 
 | 410 |     _u240 = _l240.i;								\ | 
 | 411 |     _v240 = _m240.i;								\ | 
 | 412 |     _w240 = _n240.i;								\ | 
 | 413 |     _x240 = _o240.i;								\ | 
 | 414 |     R##_f1 = (_t240 << (128 - (wfracbits - 1)))					\ | 
 | 415 | 	     | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104));			\ | 
 | 416 |     R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1)))			\ | 
 | 417 |     	     | ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))			\ | 
 | 418 |     	     | ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))			\ | 
 | 419 |     	     | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))			\ | 
 | 420 |     	     | _y240;								\ | 
 | 421 |     resetfe;									\ | 
 | 422 |   } while (0) | 
 | 423 |  | 
 | 424 | /* | 
 | 425 |  * Division algorithms: | 
 | 426 |  */ | 
 | 427 |  | 
 | 428 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\ | 
 | 429 |   do {									\ | 
 | 430 |     _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0;		\ | 
 | 431 |     if (_FP_FRAC_GT_2(X, Y))						\ | 
 | 432 |       {									\ | 
 | 433 | 	_n_f2 = X##_f1 >> 1;						\ | 
 | 434 | 	_n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\ | 
 | 435 | 	_n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\ | 
 | 436 |       }									\ | 
 | 437 |     else								\ | 
 | 438 |       {									\ | 
 | 439 | 	R##_e--;							\ | 
 | 440 | 	_n_f2 = X##_f1;							\ | 
 | 441 | 	_n_f1 = X##_f0;							\ | 
 | 442 | 	_n_f0 = 0;							\ | 
 | 443 |       }									\ | 
 | 444 | 									\ | 
 | 445 |     /* Normalize, i.e. make the most significant bit of the 		\ | 
 | 446 |        denominator set. */						\ | 
 | 447 |     _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs);				\ | 
 | 448 | 									\ | 
 | 449 |     udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1);			\ | 
 | 450 |     umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0);				\ | 
 | 451 |     _r_f0 = _n_f0;							\ | 
 | 452 |     if (_FP_FRAC_GT_2(_m, _r))						\ | 
 | 453 |       {									\ | 
 | 454 | 	R##_f1--;							\ | 
 | 455 | 	_FP_FRAC_ADD_2(_r, Y, _r);					\ | 
 | 456 | 	if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
 | 457 | 	  {								\ | 
 | 458 | 	    R##_f1--;							\ | 
 | 459 | 	    _FP_FRAC_ADD_2(_r, Y, _r);					\ | 
 | 460 | 	  }								\ | 
 | 461 |       }									\ | 
 | 462 |     _FP_FRAC_DEC_2(_r, _m);						\ | 
 | 463 | 									\ | 
 | 464 |     if (_r_f1 == Y##_f1)						\ | 
 | 465 |       {									\ | 
 | 466 | 	/* This is a special case, not an optimization			\ | 
 | 467 | 	   (_r/Y##_f1 would not fit into UWtype).			\ | 
 | 468 | 	   As _r is guaranteed to be < Y,  R##_f0 can be either		\ | 
 | 469 | 	   (UWtype)-1 or (UWtype)-2.  But as we know what kind		\ | 
 | 470 | 	   of bits it is (sticky, guard, round),  we don't care.	\ | 
 | 471 | 	   We also don't care what the reminder is,  because the	\ | 
 | 472 | 	   guard bit will be set anyway.  -jj */			\ | 
 | 473 | 	R##_f0 = -1;							\ | 
 | 474 |       }									\ | 
 | 475 |     else								\ | 
 | 476 |       {									\ | 
 | 477 | 	udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1);		\ | 
 | 478 | 	umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0);			\ | 
 | 479 | 	_r_f0 = 0;							\ | 
 | 480 | 	if (_FP_FRAC_GT_2(_m, _r))					\ | 
 | 481 | 	  {								\ | 
 | 482 | 	    R##_f0--;							\ | 
 | 483 | 	    _FP_FRAC_ADD_2(_r, Y, _r);					\ | 
 | 484 | 	    if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
 | 485 | 	      {								\ | 
 | 486 | 		R##_f0--;						\ | 
 | 487 | 		_FP_FRAC_ADD_2(_r, Y, _r);				\ | 
 | 488 | 	      }								\ | 
 | 489 | 	  }								\ | 
 | 490 | 	if (!_FP_FRAC_EQ_2(_r, _m))					\ | 
 | 491 | 	  R##_f0 |= _FP_WORK_STICKY;					\ | 
 | 492 |       }									\ | 
 | 493 |   } while (0) | 
 | 494 |  | 
 | 495 |  | 
 | 496 | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\ | 
 | 497 |   do {									\ | 
 | 498 |     _FP_W_TYPE _x[4], _y[2], _z[4];					\ | 
 | 499 |     _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
 | 500 |     _x[0] = _x[3] = 0;							\ | 
 | 501 |     if (_FP_FRAC_GT_2(X, Y))						\ | 
 | 502 |       {									\ | 
 | 503 | 	R##_e++;							\ | 
 | 504 | 	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) |	\ | 
 | 505 | 		 X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
 | 506 | 			    (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE)));	\ | 
 | 507 | 	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE);	\ | 
 | 508 |       }									\ | 
 | 509 |     else								\ | 
 | 510 |       {									\ | 
 | 511 | 	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) |	\ | 
 | 512 | 		 X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
 | 513 | 			    (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE)));	\ | 
 | 514 | 	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE);	\ | 
 | 515 |       }									\ | 
 | 516 | 									\ | 
 | 517 |     (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\ | 
 | 518 |     R##_f1 = _z[1];							\ | 
 | 519 |     R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\ | 
 | 520 |   } while (0) | 
 | 521 |  | 
 | 522 |  | 
 | 523 | /* | 
 | 524 |  * Square root algorithms: | 
 | 525 |  * We have just one right now, maybe Newton approximation | 
 | 526 |  * should be added for those machines where division is fast. | 
 | 527 |  */ | 
 | 528 |   | 
 | 529 | #define _FP_SQRT_MEAT_2(R, S, T, X, q)			\ | 
 | 530 |   do {							\ | 
 | 531 |     while (q)						\ | 
 | 532 |       {							\ | 
 | 533 | 	T##_f1 = S##_f1 + q;				\ | 
 | 534 | 	if (T##_f1 <= X##_f1)				\ | 
 | 535 | 	  {						\ | 
 | 536 | 	    S##_f1 = T##_f1 + q;			\ | 
 | 537 | 	    X##_f1 -= T##_f1;				\ | 
 | 538 | 	    R##_f1 += q;				\ | 
 | 539 | 	  }						\ | 
 | 540 | 	_FP_FRAC_SLL_2(X, 1);				\ | 
 | 541 | 	q >>= 1;					\ | 
 | 542 |       }							\ | 
 | 543 |     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
 | 544 |     while (q != _FP_WORK_ROUND)				\ | 
 | 545 |       {							\ | 
 | 546 | 	T##_f0 = S##_f0 + q;				\ | 
 | 547 | 	T##_f1 = S##_f1;				\ | 
 | 548 | 	if (T##_f1 < X##_f1 || 				\ | 
 | 549 | 	    (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\ | 
 | 550 | 	  {						\ | 
 | 551 | 	    S##_f0 = T##_f0 + q;			\ | 
 | 552 | 	    S##_f1 += (T##_f0 > S##_f0);		\ | 
 | 553 | 	    _FP_FRAC_DEC_2(X, T);			\ | 
 | 554 | 	    R##_f0 += q;				\ | 
 | 555 | 	  }						\ | 
 | 556 | 	_FP_FRAC_SLL_2(X, 1);				\ | 
 | 557 | 	q >>= 1;					\ | 
 | 558 |       }							\ | 
 | 559 |     if (X##_f0 | X##_f1)				\ | 
 | 560 |       {							\ | 
 | 561 | 	if (S##_f1 < X##_f1 || 				\ | 
 | 562 | 	    (S##_f1 == X##_f1 && S##_f0 < X##_f0))	\ | 
 | 563 | 	  R##_f0 |= _FP_WORK_ROUND;			\ | 
 | 564 | 	R##_f0 |= _FP_WORK_STICKY;			\ | 
 | 565 |       }							\ | 
 | 566 |   } while (0) | 
 | 567 |  | 
 | 568 |  | 
 | 569 | /* | 
 | 570 |  * Assembly/disassembly for converting to/from integral types.   | 
 | 571 |  * No shifting or overflow handled here. | 
 | 572 |  */ | 
 | 573 |  | 
 | 574 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\ | 
 | 575 |   do {						\ | 
 | 576 |     if (rsize <= _FP_W_TYPE_SIZE)		\ | 
 | 577 |       r = X##_f0;				\ | 
 | 578 |     else					\ | 
 | 579 |       {						\ | 
 | 580 | 	r = X##_f1;				\ | 
 | 581 | 	r <<= _FP_W_TYPE_SIZE;			\ | 
 | 582 | 	r += X##_f0;				\ | 
 | 583 |       }						\ | 
 | 584 |   } while (0) | 
 | 585 |  | 
 | 586 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\ | 
 | 587 |   do {									\ | 
 | 588 |     X##_f0 = r;								\ | 
 | 589 |     X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\ | 
 | 590 |   } while (0) | 
 | 591 |  | 
 | 592 | /* | 
 | 593 |  * Convert FP values between word sizes | 
 | 594 |  */ | 
 | 595 |  | 
 | 596 | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\ | 
 | 597 |   do {									\ | 
 | 598 |     if (S##_c != FP_CLS_NAN)						\ | 
 | 599 |       _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\ | 
 | 600 | 		     _FP_WFRACBITS_##sfs);				\ | 
 | 601 |     else								\ | 
 | 602 |       _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\ | 
 | 603 |     D##_f = S##_f0;							\ | 
 | 604 |   } while (0) | 
 | 605 |  | 
 | 606 | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\ | 
 | 607 |   do {									\ | 
 | 608 |     D##_f0 = S##_f;							\ | 
 | 609 |     D##_f1 = 0;								\ | 
 | 610 |     _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\ | 
 | 611 |   } while (0) | 
 | 612 |  | 
 | 613 | #endif |