| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * linux/arch/ia64/kernel/time.c | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 1998-2003 Hewlett-Packard Co | 
|  | 5 | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | 6 | *	David Mosberger <davidm@hpl.hp.com> | 
|  | 7 | * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> | 
|  | 8 | * Copyright (C) 1999-2000 VA Linux Systems | 
|  | 9 | * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> | 
|  | 10 | */ | 
|  | 11 | #include <linux/config.h> | 
|  | 12 |  | 
|  | 13 | #include <linux/cpu.h> | 
|  | 14 | #include <linux/init.h> | 
|  | 15 | #include <linux/kernel.h> | 
|  | 16 | #include <linux/module.h> | 
|  | 17 | #include <linux/profile.h> | 
|  | 18 | #include <linux/sched.h> | 
|  | 19 | #include <linux/time.h> | 
|  | 20 | #include <linux/interrupt.h> | 
|  | 21 | #include <linux/efi.h> | 
|  | 22 | #include <linux/profile.h> | 
|  | 23 | #include <linux/timex.h> | 
|  | 24 |  | 
|  | 25 | #include <asm/machvec.h> | 
|  | 26 | #include <asm/delay.h> | 
|  | 27 | #include <asm/hw_irq.h> | 
|  | 28 | #include <asm/ptrace.h> | 
|  | 29 | #include <asm/sal.h> | 
|  | 30 | #include <asm/sections.h> | 
|  | 31 | #include <asm/system.h> | 
|  | 32 |  | 
|  | 33 | extern unsigned long wall_jiffies; | 
|  | 34 |  | 
|  | 35 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 
|  | 36 |  | 
|  | 37 | EXPORT_SYMBOL(jiffies_64); | 
|  | 38 |  | 
|  | 39 | #define TIME_KEEPER_ID	0	/* smp_processor_id() of time-keeper */ | 
|  | 40 |  | 
|  | 41 | #ifdef CONFIG_IA64_DEBUG_IRQ | 
|  | 42 |  | 
|  | 43 | unsigned long last_cli_ip; | 
|  | 44 | EXPORT_SYMBOL(last_cli_ip); | 
|  | 45 |  | 
|  | 46 | #endif | 
|  | 47 |  | 
|  | 48 | static struct time_interpolator itc_interpolator = { | 
|  | 49 | .shift = 16, | 
|  | 50 | .mask = 0xffffffffffffffffLL, | 
|  | 51 | .source = TIME_SOURCE_CPU | 
|  | 52 | }; | 
|  | 53 |  | 
|  | 54 | static irqreturn_t | 
|  | 55 | timer_interrupt (int irq, void *dev_id, struct pt_regs *regs) | 
|  | 56 | { | 
|  | 57 | unsigned long new_itm; | 
|  | 58 |  | 
|  | 59 | if (unlikely(cpu_is_offline(smp_processor_id()))) { | 
|  | 60 | return IRQ_HANDLED; | 
|  | 61 | } | 
|  | 62 |  | 
|  | 63 | platform_timer_interrupt(irq, dev_id, regs); | 
|  | 64 |  | 
|  | 65 | new_itm = local_cpu_data->itm_next; | 
|  | 66 |  | 
|  | 67 | if (!time_after(ia64_get_itc(), new_itm)) | 
|  | 68 | printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", | 
|  | 69 | ia64_get_itc(), new_itm); | 
|  | 70 |  | 
|  | 71 | profile_tick(CPU_PROFILING, regs); | 
|  | 72 |  | 
|  | 73 | while (1) { | 
|  | 74 | update_process_times(user_mode(regs)); | 
|  | 75 |  | 
|  | 76 | new_itm += local_cpu_data->itm_delta; | 
|  | 77 |  | 
|  | 78 | if (smp_processor_id() == TIME_KEEPER_ID) { | 
|  | 79 | /* | 
|  | 80 | * Here we are in the timer irq handler. We have irqs locally | 
|  | 81 | * disabled, but we don't know if the timer_bh is running on | 
|  | 82 | * another CPU. We need to avoid to SMP race by acquiring the | 
|  | 83 | * xtime_lock. | 
|  | 84 | */ | 
|  | 85 | write_seqlock(&xtime_lock); | 
|  | 86 | do_timer(regs); | 
|  | 87 | local_cpu_data->itm_next = new_itm; | 
|  | 88 | write_sequnlock(&xtime_lock); | 
|  | 89 | } else | 
|  | 90 | local_cpu_data->itm_next = new_itm; | 
|  | 91 |  | 
|  | 92 | if (time_after(new_itm, ia64_get_itc())) | 
|  | 93 | break; | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | do { | 
|  | 97 | /* | 
|  | 98 | * If we're too close to the next clock tick for | 
|  | 99 | * comfort, we increase the safety margin by | 
|  | 100 | * intentionally dropping the next tick(s).  We do NOT | 
|  | 101 | * update itm.next because that would force us to call | 
|  | 102 | * do_timer() which in turn would let our clock run | 
|  | 103 | * too fast (with the potentially devastating effect | 
|  | 104 | * of losing monotony of time). | 
|  | 105 | */ | 
|  | 106 | while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) | 
|  | 107 | new_itm += local_cpu_data->itm_delta; | 
|  | 108 | ia64_set_itm(new_itm); | 
|  | 109 | /* double check, in case we got hit by a (slow) PMI: */ | 
|  | 110 | } while (time_after_eq(ia64_get_itc(), new_itm)); | 
|  | 111 | return IRQ_HANDLED; | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | /* | 
|  | 115 | * Encapsulate access to the itm structure for SMP. | 
|  | 116 | */ | 
|  | 117 | void | 
|  | 118 | ia64_cpu_local_tick (void) | 
|  | 119 | { | 
|  | 120 | int cpu = smp_processor_id(); | 
|  | 121 | unsigned long shift = 0, delta; | 
|  | 122 |  | 
|  | 123 | /* arrange for the cycle counter to generate a timer interrupt: */ | 
|  | 124 | ia64_set_itv(IA64_TIMER_VECTOR); | 
|  | 125 |  | 
|  | 126 | delta = local_cpu_data->itm_delta; | 
|  | 127 | /* | 
|  | 128 | * Stagger the timer tick for each CPU so they don't occur all at (almost) the | 
|  | 129 | * same time: | 
|  | 130 | */ | 
|  | 131 | if (cpu) { | 
|  | 132 | unsigned long hi = 1UL << ia64_fls(cpu); | 
|  | 133 | shift = (2*(cpu - hi) + 1) * delta/hi/2; | 
|  | 134 | } | 
|  | 135 | local_cpu_data->itm_next = ia64_get_itc() + delta + shift; | 
|  | 136 | ia64_set_itm(local_cpu_data->itm_next); | 
|  | 137 | } | 
|  | 138 |  | 
|  | 139 | static int nojitter; | 
|  | 140 |  | 
|  | 141 | static int __init nojitter_setup(char *str) | 
|  | 142 | { | 
|  | 143 | nojitter = 1; | 
|  | 144 | printk("Jitter checking for ITC timers disabled\n"); | 
|  | 145 | return 1; | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | __setup("nojitter", nojitter_setup); | 
|  | 149 |  | 
|  | 150 |  | 
|  | 151 | void __devinit | 
|  | 152 | ia64_init_itm (void) | 
|  | 153 | { | 
|  | 154 | unsigned long platform_base_freq, itc_freq; | 
|  | 155 | struct pal_freq_ratio itc_ratio, proc_ratio; | 
|  | 156 | long status, platform_base_drift, itc_drift; | 
|  | 157 |  | 
|  | 158 | /* | 
|  | 159 | * According to SAL v2.6, we need to use a SAL call to determine the platform base | 
|  | 160 | * frequency and then a PAL call to determine the frequency ratio between the ITC | 
|  | 161 | * and the base frequency. | 
|  | 162 | */ | 
|  | 163 | status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, | 
|  | 164 | &platform_base_freq, &platform_base_drift); | 
|  | 165 | if (status != 0) { | 
|  | 166 | printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); | 
|  | 167 | } else { | 
|  | 168 | status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); | 
|  | 169 | if (status != 0) | 
|  | 170 | printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); | 
|  | 171 | } | 
|  | 172 | if (status != 0) { | 
|  | 173 | /* invent "random" values */ | 
|  | 174 | printk(KERN_ERR | 
|  | 175 | "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); | 
|  | 176 | platform_base_freq = 100000000; | 
|  | 177 | platform_base_drift = -1;	/* no drift info */ | 
|  | 178 | itc_ratio.num = 3; | 
|  | 179 | itc_ratio.den = 1; | 
|  | 180 | } | 
|  | 181 | if (platform_base_freq < 40000000) { | 
|  | 182 | printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", | 
|  | 183 | platform_base_freq); | 
|  | 184 | platform_base_freq = 75000000; | 
|  | 185 | platform_base_drift = -1; | 
|  | 186 | } | 
|  | 187 | if (!proc_ratio.den) | 
|  | 188 | proc_ratio.den = 1;	/* avoid division by zero */ | 
|  | 189 | if (!itc_ratio.den) | 
|  | 190 | itc_ratio.den = 1;	/* avoid division by zero */ | 
|  | 191 |  | 
|  | 192 | itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; | 
|  | 193 |  | 
|  | 194 | local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; | 
|  | 195 | printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, " | 
|  | 196 | "ITC freq=%lu.%03luMHz", smp_processor_id(), | 
|  | 197 | platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, | 
|  | 198 | itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); | 
|  | 199 |  | 
|  | 200 | if (platform_base_drift != -1) { | 
|  | 201 | itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; | 
|  | 202 | printk("+/-%ldppm\n", itc_drift); | 
|  | 203 | } else { | 
|  | 204 | itc_drift = -1; | 
|  | 205 | printk("\n"); | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; | 
|  | 209 | local_cpu_data->itc_freq = itc_freq; | 
|  | 210 | local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; | 
|  | 211 | local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) | 
|  | 212 | + itc_freq/2)/itc_freq; | 
|  | 213 |  | 
|  | 214 | if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { | 
|  | 215 | itc_interpolator.frequency = local_cpu_data->itc_freq; | 
|  | 216 | itc_interpolator.drift = itc_drift; | 
|  | 217 | #ifdef CONFIG_SMP | 
|  | 218 | /* On IA64 in an SMP configuration ITCs are never accurately synchronized. | 
|  | 219 | * Jitter compensation requires a cmpxchg which may limit | 
|  | 220 | * the scalability of the syscalls for retrieving time. | 
|  | 221 | * The ITC synchronization is usually successful to within a few | 
|  | 222 | * ITC ticks but this is not a sure thing. If you need to improve | 
|  | 223 | * timer performance in SMP situations then boot the kernel with the | 
|  | 224 | * "nojitter" option. However, doing so may result in time fluctuating (maybe | 
|  | 225 | * even going backward) if the ITC offsets between the individual CPUs | 
|  | 226 | * are too large. | 
|  | 227 | */ | 
|  | 228 | if (!nojitter) itc_interpolator.jitter = 1; | 
|  | 229 | #endif | 
|  | 230 | register_time_interpolator(&itc_interpolator); | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | /* Setup the CPU local timer tick */ | 
|  | 234 | ia64_cpu_local_tick(); | 
|  | 235 | } | 
|  | 236 |  | 
|  | 237 | static struct irqaction timer_irqaction = { | 
|  | 238 | .handler =	timer_interrupt, | 
|  | 239 | .flags =	SA_INTERRUPT, | 
|  | 240 | .name =		"timer" | 
|  | 241 | }; | 
|  | 242 |  | 
|  | 243 | void __init | 
|  | 244 | time_init (void) | 
|  | 245 | { | 
|  | 246 | register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); | 
|  | 247 | efi_gettimeofday(&xtime); | 
|  | 248 | ia64_init_itm(); | 
|  | 249 |  | 
|  | 250 | /* | 
|  | 251 | * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the | 
|  | 252 | * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). | 
|  | 253 | */ | 
|  | 254 | set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); | 
|  | 255 | } |