| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *	Driver for the Macintosh 68K onboard MACE controller with PSC | 
|  | 3 | *	driven DMA. The MACE driver code is derived from mace.c. The | 
|  | 4 | *	Mac68k theory of operation is courtesy of the MacBSD wizards. | 
|  | 5 | * | 
|  | 6 | *	This program is free software; you can redistribute it and/or | 
|  | 7 | *	modify it under the terms of the GNU General Public License | 
|  | 8 | *	as published by the Free Software Foundation; either version | 
|  | 9 | *	2 of the License, or (at your option) any later version. | 
|  | 10 | * | 
|  | 11 | *	Copyright (C) 1996 Paul Mackerras. | 
|  | 12 | *	Copyright (C) 1998 Alan Cox <alan@redhat.com> | 
|  | 13 | * | 
|  | 14 | *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 |  | 
|  | 18 | #include <linux/kernel.h> | 
|  | 19 | #include <linux/module.h> | 
|  | 20 | #include <linux/netdevice.h> | 
|  | 21 | #include <linux/etherdevice.h> | 
|  | 22 | #include <linux/delay.h> | 
|  | 23 | #include <linux/string.h> | 
|  | 24 | #include <linux/crc32.h> | 
|  | 25 | #include <asm/io.h> | 
|  | 26 | #include <asm/pgtable.h> | 
|  | 27 | #include <asm/irq.h> | 
|  | 28 | #include <asm/macintosh.h> | 
|  | 29 | #include <asm/macints.h> | 
|  | 30 | #include <asm/mac_psc.h> | 
|  | 31 | #include <asm/page.h> | 
|  | 32 | #include "mace.h" | 
|  | 33 |  | 
|  | 34 | #define N_TX_RING	1 | 
|  | 35 | #define N_RX_RING	8 | 
|  | 36 | #define N_RX_PAGES	((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE) | 
|  | 37 | #define TX_TIMEOUT	HZ | 
|  | 38 |  | 
|  | 39 | /* Bits in transmit DMA status */ | 
|  | 40 | #define TX_DMA_ERR	0x80 | 
|  | 41 |  | 
|  | 42 | /* The MACE is simply wired down on a Mac68K box */ | 
|  | 43 |  | 
|  | 44 | #define MACE_BASE	(void *)(0x50F1C000) | 
|  | 45 | #define MACE_PROM	(void *)(0x50F08001) | 
|  | 46 |  | 
|  | 47 | struct mace_data { | 
|  | 48 | volatile struct mace *mace; | 
|  | 49 | volatile unsigned char *tx_ring; | 
|  | 50 | volatile unsigned char *tx_ring_phys; | 
|  | 51 | volatile unsigned char *rx_ring; | 
|  | 52 | volatile unsigned char *rx_ring_phys; | 
|  | 53 | int dma_intr; | 
|  | 54 | struct net_device_stats stats; | 
|  | 55 | int rx_slot, rx_tail; | 
|  | 56 | int tx_slot, tx_sloti, tx_count; | 
|  | 57 | }; | 
|  | 58 |  | 
|  | 59 | struct mace_frame { | 
|  | 60 | u16	len; | 
|  | 61 | u16	status; | 
|  | 62 | u16	rntpc; | 
|  | 63 | u16	rcvcc; | 
|  | 64 | u32	pad1; | 
|  | 65 | u32	pad2; | 
|  | 66 | u8	data[1]; | 
|  | 67 | /* And frame continues.. */ | 
|  | 68 | }; | 
|  | 69 |  | 
|  | 70 | #define PRIV_BYTES	sizeof(struct mace_data) | 
|  | 71 |  | 
|  | 72 | extern void psc_debug_dump(void); | 
|  | 73 |  | 
|  | 74 | static int mace_open(struct net_device *dev); | 
|  | 75 | static int mace_close(struct net_device *dev); | 
|  | 76 | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); | 
|  | 77 | static struct net_device_stats *mace_stats(struct net_device *dev); | 
|  | 78 | static void mace_set_multicast(struct net_device *dev); | 
|  | 79 | static int mace_set_address(struct net_device *dev, void *addr); | 
|  | 80 | static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs); | 
|  | 81 | static irqreturn_t mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs); | 
|  | 82 | static void mace_tx_timeout(struct net_device *dev); | 
|  | 83 |  | 
|  | 84 | /* Bit-reverse one byte of an ethernet hardware address. */ | 
|  | 85 |  | 
|  | 86 | static int bitrev(int b) | 
|  | 87 | { | 
|  | 88 | int d = 0, i; | 
|  | 89 |  | 
|  | 90 | for (i = 0; i < 8; ++i, b >>= 1) { | 
|  | 91 | d = (d << 1) | (b & 1); | 
|  | 92 | } | 
|  | 93 |  | 
|  | 94 | return d; | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | /* | 
|  | 98 | * Load a receive DMA channel with a base address and ring length | 
|  | 99 | */ | 
|  | 100 |  | 
|  | 101 | static void mace_load_rxdma_base(struct net_device *dev, int set) | 
|  | 102 | { | 
|  | 103 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 104 |  | 
|  | 105 | psc_write_word(PSC_ENETRD_CMD + set, 0x0100); | 
|  | 106 | psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); | 
|  | 107 | psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); | 
|  | 108 | psc_write_word(PSC_ENETRD_CMD + set, 0x9800); | 
|  | 109 | mp->rx_tail = 0; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | /* | 
|  | 113 | * Reset the receive DMA subsystem | 
|  | 114 | */ | 
|  | 115 |  | 
|  | 116 | static void mace_rxdma_reset(struct net_device *dev) | 
|  | 117 | { | 
|  | 118 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 119 | volatile struct mace *mace = mp->mace; | 
|  | 120 | u8 maccc = mace->maccc; | 
|  | 121 |  | 
|  | 122 | mace->maccc = maccc & ~ENRCV; | 
|  | 123 |  | 
|  | 124 | psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
|  | 125 | mace_load_rxdma_base(dev, 0x00); | 
|  | 126 | psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
|  | 127 |  | 
|  | 128 | psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
|  | 129 | mace_load_rxdma_base(dev, 0x10); | 
|  | 130 | psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
|  | 131 |  | 
|  | 132 | mace->maccc = maccc; | 
|  | 133 | mp->rx_slot = 0; | 
|  | 134 |  | 
|  | 135 | psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); | 
|  | 136 | psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); | 
|  | 137 | } | 
|  | 138 |  | 
|  | 139 | /* | 
|  | 140 | * Reset the transmit DMA subsystem | 
|  | 141 | */ | 
|  | 142 |  | 
|  | 143 | static void mace_txdma_reset(struct net_device *dev) | 
|  | 144 | { | 
|  | 145 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 146 | volatile struct mace *mace = mp->mace; | 
|  | 147 | u8 maccc; | 
|  | 148 |  | 
|  | 149 | psc_write_word(PSC_ENETWR_CTL, 0x8800); | 
|  | 150 |  | 
|  | 151 | maccc = mace->maccc; | 
|  | 152 | mace->maccc = maccc & ~ENXMT; | 
|  | 153 |  | 
|  | 154 | mp->tx_slot = mp->tx_sloti = 0; | 
|  | 155 | mp->tx_count = N_TX_RING; | 
|  | 156 |  | 
|  | 157 | psc_write_word(PSC_ENETWR_CTL, 0x0400); | 
|  | 158 | mace->maccc = maccc; | 
|  | 159 | } | 
|  | 160 |  | 
|  | 161 | /* | 
|  | 162 | * Disable DMA | 
|  | 163 | */ | 
|  | 164 |  | 
|  | 165 | static void mace_dma_off(struct net_device *dev) | 
|  | 166 | { | 
|  | 167 | psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
|  | 168 | psc_write_word(PSC_ENETRD_CTL, 0x1000); | 
|  | 169 | psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); | 
|  | 170 | psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); | 
|  | 171 |  | 
|  | 172 | psc_write_word(PSC_ENETWR_CTL, 0x8800); | 
|  | 173 | psc_write_word(PSC_ENETWR_CTL, 0x1000); | 
|  | 174 | psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); | 
|  | 175 | psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | /* | 
|  | 179 | * Not really much of a probe. The hardware table tells us if this | 
|  | 180 | * model of Macintrash has a MACE (AV macintoshes) | 
|  | 181 | */ | 
|  | 182 |  | 
|  | 183 | struct net_device *mace_probe(int unit) | 
|  | 184 | { | 
|  | 185 | int j; | 
|  | 186 | struct mace_data *mp; | 
|  | 187 | unsigned char *addr; | 
|  | 188 | struct net_device *dev; | 
|  | 189 | unsigned char checksum = 0; | 
|  | 190 | static int found = 0; | 
|  | 191 | int err; | 
|  | 192 |  | 
|  | 193 | if (found || macintosh_config->ether_type != MAC_ETHER_MACE) | 
|  | 194 | return ERR_PTR(-ENODEV); | 
|  | 195 |  | 
|  | 196 | found = 1;	/* prevent 'finding' one on every device probe */ | 
|  | 197 |  | 
|  | 198 | dev = alloc_etherdev(PRIV_BYTES); | 
|  | 199 | if (!dev) | 
|  | 200 | return ERR_PTR(-ENOMEM); | 
|  | 201 |  | 
|  | 202 | if (unit >= 0) | 
|  | 203 | sprintf(dev->name, "eth%d", unit); | 
|  | 204 |  | 
|  | 205 | mp = (struct mace_data *) dev->priv; | 
|  | 206 | dev->base_addr = (u32)MACE_BASE; | 
|  | 207 | mp->mace = (volatile struct mace *) MACE_BASE; | 
|  | 208 |  | 
|  | 209 | dev->irq = IRQ_MAC_MACE; | 
|  | 210 | mp->dma_intr = IRQ_MAC_MACE_DMA; | 
|  | 211 |  | 
|  | 212 | /* | 
|  | 213 | * The PROM contains 8 bytes which total 0xFF when XOR'd | 
|  | 214 | * together. Due to the usual peculiar apple brain damage | 
|  | 215 | * the bytes are spaced out in a strange boundary and the | 
|  | 216 | * bits are reversed. | 
|  | 217 | */ | 
|  | 218 |  | 
|  | 219 | addr = (void *)MACE_PROM; | 
|  | 220 |  | 
|  | 221 | for (j = 0; j < 6; ++j) { | 
|  | 222 | u8 v=bitrev(addr[j<<4]); | 
|  | 223 | checksum ^= v; | 
|  | 224 | dev->dev_addr[j] = v; | 
|  | 225 | } | 
|  | 226 | for (; j < 8; ++j) { | 
|  | 227 | checksum ^= bitrev(addr[j<<4]); | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | if (checksum != 0xFF) { | 
|  | 231 | free_netdev(dev); | 
|  | 232 | return ERR_PTR(-ENODEV); | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | memset(&mp->stats, 0, sizeof(mp->stats)); | 
|  | 236 |  | 
|  | 237 | dev->open		= mace_open; | 
|  | 238 | dev->stop		= mace_close; | 
|  | 239 | dev->hard_start_xmit	= mace_xmit_start; | 
|  | 240 | dev->tx_timeout		= mace_tx_timeout; | 
|  | 241 | dev->watchdog_timeo	= TX_TIMEOUT; | 
|  | 242 | dev->get_stats		= mace_stats; | 
|  | 243 | dev->set_multicast_list	= mace_set_multicast; | 
|  | 244 | dev->set_mac_address	= mace_set_address; | 
|  | 245 |  | 
|  | 246 | printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]); | 
|  | 247 | for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]); | 
|  | 248 | printk("\n"); | 
|  | 249 |  | 
|  | 250 | err = register_netdev(dev); | 
|  | 251 | if (!err) | 
|  | 252 | return dev; | 
|  | 253 |  | 
|  | 254 | free_netdev(dev); | 
|  | 255 | return ERR_PTR(err); | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | /* | 
|  | 259 | * Load the address on a mace controller. | 
|  | 260 | */ | 
|  | 261 |  | 
|  | 262 | static int mace_set_address(struct net_device *dev, void *addr) | 
|  | 263 | { | 
|  | 264 | unsigned char *p = addr; | 
|  | 265 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 266 | volatile struct mace *mb = mp->mace; | 
|  | 267 | int i; | 
|  | 268 | unsigned long flags; | 
|  | 269 | u8 maccc; | 
|  | 270 |  | 
|  | 271 | local_irq_save(flags); | 
|  | 272 |  | 
|  | 273 | maccc = mb->maccc; | 
|  | 274 |  | 
|  | 275 | /* load up the hardware address */ | 
|  | 276 | mb->iac = ADDRCHG | PHYADDR; | 
|  | 277 | while ((mb->iac & ADDRCHG) != 0); | 
|  | 278 |  | 
|  | 279 | for (i = 0; i < 6; ++i) { | 
|  | 280 | mb->padr = dev->dev_addr[i] = p[i]; | 
|  | 281 | } | 
|  | 282 |  | 
|  | 283 | mb->maccc = maccc; | 
|  | 284 | local_irq_restore(flags); | 
|  | 285 |  | 
|  | 286 | return 0; | 
|  | 287 | } | 
|  | 288 |  | 
|  | 289 | /* | 
|  | 290 | * Open the Macintosh MACE. Most of this is playing with the DMA | 
|  | 291 | * engine. The ethernet chip is quite friendly. | 
|  | 292 | */ | 
|  | 293 |  | 
|  | 294 | static int mace_open(struct net_device *dev) | 
|  | 295 | { | 
|  | 296 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 297 | volatile struct mace *mb = mp->mace; | 
|  | 298 | #if 0 | 
|  | 299 | int i; | 
|  | 300 |  | 
|  | 301 | i = 200; | 
|  | 302 | while (--i) { | 
|  | 303 | mb->biucc = SWRST; | 
|  | 304 | if (mb->biucc & SWRST) { | 
|  | 305 | udelay(10); | 
|  | 306 | continue; | 
|  | 307 | } | 
|  | 308 | break; | 
|  | 309 | } | 
|  | 310 | if (!i) { | 
|  | 311 | printk(KERN_ERR "%s: software reset failed!!\n", dev->name); | 
|  | 312 | return -EAGAIN; | 
|  | 313 | } | 
|  | 314 | #endif | 
|  | 315 |  | 
|  | 316 | mb->biucc = XMTSP_64; | 
|  | 317 | mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST; | 
|  | 318 | mb->xmtfc = AUTO_PAD_XMIT; | 
|  | 319 | mb->plscc = PORTSEL_AUI; | 
|  | 320 | /* mb->utr = RTRD; */ | 
|  | 321 |  | 
|  | 322 | if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { | 
|  | 323 | printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); | 
|  | 324 | return -EAGAIN; | 
|  | 325 | } | 
|  | 326 | if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { | 
|  | 327 | printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); | 
|  | 328 | free_irq(dev->irq, dev); | 
|  | 329 | return -EAGAIN; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | /* Allocate the DMA ring buffers */ | 
|  | 333 |  | 
|  | 334 | mp->rx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, N_RX_PAGES); | 
|  | 335 | mp->tx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, 0); | 
|  | 336 |  | 
|  | 337 | if (mp->tx_ring==NULL || mp->rx_ring==NULL) { | 
|  | 338 | if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES); | 
|  | 339 | if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0); | 
|  | 340 | free_irq(dev->irq, dev); | 
|  | 341 | free_irq(mp->dma_intr, dev); | 
|  | 342 | printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name); | 
|  | 343 | return -ENOMEM; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | mp->rx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->rx_ring); | 
|  | 347 | mp->tx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->tx_ring); | 
|  | 348 |  | 
|  | 349 | /* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */ | 
|  | 350 |  | 
|  | 351 | kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER); | 
|  | 352 | kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH); | 
|  | 353 |  | 
|  | 354 | mace_dma_off(dev); | 
|  | 355 |  | 
|  | 356 | /* Not sure what these do */ | 
|  | 357 |  | 
|  | 358 | psc_write_word(PSC_ENETWR_CTL, 0x9000); | 
|  | 359 | psc_write_word(PSC_ENETRD_CTL, 0x9000); | 
|  | 360 | psc_write_word(PSC_ENETWR_CTL, 0x0400); | 
|  | 361 | psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
|  | 362 |  | 
|  | 363 | #if 0 | 
|  | 364 | /* load up the hardware address */ | 
|  | 365 |  | 
|  | 366 | mb->iac = ADDRCHG | PHYADDR; | 
|  | 367 |  | 
|  | 368 | while ((mb->iac & ADDRCHG) != 0); | 
|  | 369 |  | 
|  | 370 | for (i = 0; i < 6; ++i) | 
|  | 371 | mb->padr = dev->dev_addr[i]; | 
|  | 372 |  | 
|  | 373 | /* clear the multicast filter */ | 
|  | 374 | mb->iac = ADDRCHG | LOGADDR; | 
|  | 375 |  | 
|  | 376 | while ((mb->iac & ADDRCHG) != 0); | 
|  | 377 |  | 
|  | 378 | for (i = 0; i < 8; ++i) | 
|  | 379 | mb->ladrf = 0; | 
|  | 380 |  | 
|  | 381 | mb->plscc = PORTSEL_GPSI + ENPLSIO; | 
|  | 382 |  | 
|  | 383 | mb->maccc = ENXMT | ENRCV; | 
|  | 384 | mb->imr = RCVINT; | 
|  | 385 | #endif | 
|  | 386 |  | 
|  | 387 | mace_rxdma_reset(dev); | 
|  | 388 | mace_txdma_reset(dev); | 
|  | 389 |  | 
|  | 390 | return 0; | 
|  | 391 | } | 
|  | 392 |  | 
|  | 393 | /* | 
|  | 394 | * Shut down the mace and its interrupt channel | 
|  | 395 | */ | 
|  | 396 |  | 
|  | 397 | static int mace_close(struct net_device *dev) | 
|  | 398 | { | 
|  | 399 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 400 | volatile struct mace *mb = mp->mace; | 
|  | 401 |  | 
|  | 402 | mb->maccc = 0;		/* disable rx and tx	 */ | 
|  | 403 | mb->imr = 0xFF;		/* disable all irqs	 */ | 
|  | 404 | mace_dma_off(dev);	/* disable rx and tx dma */ | 
|  | 405 |  | 
|  | 406 | free_irq(dev->irq, dev); | 
|  | 407 | free_irq(IRQ_MAC_MACE_DMA, dev); | 
|  | 408 |  | 
|  | 409 | free_pages((u32) mp->rx_ring, N_RX_PAGES); | 
|  | 410 | free_pages((u32) mp->tx_ring, 0); | 
|  | 411 |  | 
|  | 412 | return 0; | 
|  | 413 | } | 
|  | 414 |  | 
|  | 415 | /* | 
|  | 416 | * Transmit a frame | 
|  | 417 | */ | 
|  | 418 |  | 
|  | 419 | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) | 
|  | 420 | { | 
|  | 421 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 422 |  | 
|  | 423 | /* Stop the queue if the buffer is full */ | 
|  | 424 |  | 
|  | 425 | if (!mp->tx_count) { | 
|  | 426 | netif_stop_queue(dev); | 
|  | 427 | return 1; | 
|  | 428 | } | 
|  | 429 | mp->tx_count--; | 
|  | 430 |  | 
|  | 431 | mp->stats.tx_packets++; | 
|  | 432 | mp->stats.tx_bytes += skb->len; | 
|  | 433 |  | 
|  | 434 | /* We need to copy into our xmit buffer to take care of alignment and caching issues */ | 
|  | 435 |  | 
|  | 436 | memcpy((void *) mp->tx_ring, skb->data, skb->len); | 
|  | 437 |  | 
|  | 438 | /* load the Tx DMA and fire it off */ | 
|  | 439 |  | 
|  | 440 | psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys); | 
|  | 441 | psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); | 
|  | 442 | psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); | 
|  | 443 |  | 
|  | 444 | mp->tx_slot ^= 0x10; | 
|  | 445 |  | 
|  | 446 | dev_kfree_skb(skb); | 
|  | 447 |  | 
|  | 448 | return 0; | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | static struct net_device_stats *mace_stats(struct net_device *dev) | 
|  | 452 | { | 
|  | 453 | struct mace_data *p = (struct mace_data *) dev->priv; | 
|  | 454 | return &p->stats; | 
|  | 455 | } | 
|  | 456 |  | 
|  | 457 | static void mace_set_multicast(struct net_device *dev) | 
|  | 458 | { | 
|  | 459 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 460 | volatile struct mace *mb = mp->mace; | 
|  | 461 | int i, j; | 
|  | 462 | u32 crc; | 
|  | 463 | u8 maccc; | 
|  | 464 |  | 
|  | 465 | maccc = mb->maccc; | 
|  | 466 | mb->maccc &= ~PROM; | 
|  | 467 |  | 
|  | 468 | if (dev->flags & IFF_PROMISC) { | 
|  | 469 | mb->maccc |= PROM; | 
|  | 470 | } else { | 
|  | 471 | unsigned char multicast_filter[8]; | 
|  | 472 | struct dev_mc_list *dmi = dev->mc_list; | 
|  | 473 |  | 
|  | 474 | if (dev->flags & IFF_ALLMULTI) { | 
|  | 475 | for (i = 0; i < 8; i++) { | 
|  | 476 | multicast_filter[i] = 0xFF; | 
|  | 477 | } | 
|  | 478 | } else { | 
|  | 479 | for (i = 0; i < 8; i++) | 
|  | 480 | multicast_filter[i] = 0; | 
|  | 481 | for (i = 0; i < dev->mc_count; i++) { | 
|  | 482 | crc = ether_crc_le(6, dmi->dmi_addr); | 
|  | 483 | j = crc >> 26;	/* bit number in multicast_filter */ | 
|  | 484 | multicast_filter[j >> 3] |= 1 << (j & 7); | 
|  | 485 | dmi = dmi->next; | 
|  | 486 | } | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | mb->iac = ADDRCHG | LOGADDR; | 
|  | 490 | while (mb->iac & ADDRCHG); | 
|  | 491 |  | 
|  | 492 | for (i = 0; i < 8; ++i) { | 
|  | 493 | mb->ladrf = multicast_filter[i]; | 
|  | 494 | } | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | mb->maccc = maccc; | 
|  | 498 | } | 
|  | 499 |  | 
|  | 500 | /* | 
|  | 501 | * Miscellaneous interrupts are handled here. We may end up | 
|  | 502 | * having to bash the chip on the head for bad errors | 
|  | 503 | */ | 
|  | 504 |  | 
|  | 505 | static void mace_handle_misc_intrs(struct mace_data *mp, int intr) | 
|  | 506 | { | 
|  | 507 | volatile struct mace *mb = mp->mace; | 
|  | 508 | static int mace_babbles, mace_jabbers; | 
|  | 509 |  | 
|  | 510 | if (intr & MPCO) { | 
|  | 511 | mp->stats.rx_missed_errors += 256; | 
|  | 512 | } | 
|  | 513 | mp->stats.rx_missed_errors += mb->mpc;	/* reading clears it */ | 
|  | 514 |  | 
|  | 515 | if (intr & RNTPCO) { | 
|  | 516 | mp->stats.rx_length_errors += 256; | 
|  | 517 | } | 
|  | 518 | mp->stats.rx_length_errors += mb->rntpc;	/* reading clears it */ | 
|  | 519 |  | 
|  | 520 | if (intr & CERR) { | 
|  | 521 | ++mp->stats.tx_heartbeat_errors; | 
|  | 522 | } | 
|  | 523 | if (intr & BABBLE) { | 
|  | 524 | if (mace_babbles++ < 4) { | 
|  | 525 | printk(KERN_DEBUG "mace: babbling transmitter\n"); | 
|  | 526 | } | 
|  | 527 | } | 
|  | 528 | if (intr & JABBER) { | 
|  | 529 | if (mace_jabbers++ < 4) { | 
|  | 530 | printk(KERN_DEBUG "mace: jabbering transceiver\n"); | 
|  | 531 | } | 
|  | 532 | } | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | /* | 
|  | 536 | *	A transmit error has occurred. (We kick the transmit side from | 
|  | 537 | *	the DMA completion) | 
|  | 538 | */ | 
|  | 539 |  | 
|  | 540 | static void mace_xmit_error(struct net_device *dev) | 
|  | 541 | { | 
|  | 542 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 543 | volatile struct mace *mb = mp->mace; | 
|  | 544 | u8 xmtfs, xmtrc; | 
|  | 545 |  | 
|  | 546 | xmtfs = mb->xmtfs; | 
|  | 547 | xmtrc = mb->xmtrc; | 
|  | 548 |  | 
|  | 549 | if (xmtfs & XMTSV) { | 
|  | 550 | if (xmtfs & UFLO) { | 
|  | 551 | printk("%s: DMA underrun.\n", dev->name); | 
|  | 552 | mp->stats.tx_errors++; | 
|  | 553 | mp->stats.tx_fifo_errors++; | 
|  | 554 | mace_txdma_reset(dev); | 
|  | 555 | } | 
|  | 556 | if (xmtfs & RTRY) { | 
|  | 557 | mp->stats.collisions++; | 
|  | 558 | } | 
|  | 559 | } | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | /* | 
|  | 563 | *	A receive interrupt occurred. | 
|  | 564 | */ | 
|  | 565 |  | 
|  | 566 | static void mace_recv_interrupt(struct net_device *dev) | 
|  | 567 | { | 
|  | 568 | /*	struct mace_data *mp = (struct mace_data *) dev->priv; */ | 
|  | 569 | //	volatile struct mace *mb = mp->mace; | 
|  | 570 | } | 
|  | 571 |  | 
|  | 572 | /* | 
|  | 573 | * Process the chip interrupt | 
|  | 574 | */ | 
|  | 575 |  | 
|  | 576 | static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
|  | 577 | { | 
|  | 578 | struct net_device *dev = (struct net_device *) dev_id; | 
|  | 579 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 580 | volatile struct mace *mb = mp->mace; | 
|  | 581 | u8 ir; | 
|  | 582 |  | 
|  | 583 | ir = mb->ir; | 
|  | 584 | mace_handle_misc_intrs(mp, ir); | 
|  | 585 |  | 
|  | 586 | if (ir & XMTINT) { | 
|  | 587 | mace_xmit_error(dev); | 
|  | 588 | } | 
|  | 589 | if (ir & RCVINT) { | 
|  | 590 | mace_recv_interrupt(dev); | 
|  | 591 | } | 
|  | 592 | return IRQ_HANDLED; | 
|  | 593 | } | 
|  | 594 |  | 
|  | 595 | static void mace_tx_timeout(struct net_device *dev) | 
|  | 596 | { | 
|  | 597 | /*	struct mace_data *mp = (struct mace_data *) dev->priv; */ | 
|  | 598 | //	volatile struct mace *mb = mp->mace; | 
|  | 599 | } | 
|  | 600 |  | 
|  | 601 | /* | 
|  | 602 | * Handle a newly arrived frame | 
|  | 603 | */ | 
|  | 604 |  | 
|  | 605 | static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) | 
|  | 606 | { | 
|  | 607 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 608 | struct sk_buff *skb; | 
|  | 609 |  | 
|  | 610 | if (mf->status & RS_OFLO) { | 
|  | 611 | printk("%s: fifo overflow.\n", dev->name); | 
|  | 612 | mp->stats.rx_errors++; | 
|  | 613 | mp->stats.rx_fifo_errors++; | 
|  | 614 | } | 
|  | 615 | if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR)) | 
|  | 616 | mp->stats.rx_errors++; | 
|  | 617 |  | 
|  | 618 | if (mf->status&RS_CLSN) { | 
|  | 619 | mp->stats.collisions++; | 
|  | 620 | } | 
|  | 621 | if (mf->status&RS_FRAMERR) { | 
|  | 622 | mp->stats.rx_frame_errors++; | 
|  | 623 | } | 
|  | 624 | if (mf->status&RS_FCSERR) { | 
|  | 625 | mp->stats.rx_crc_errors++; | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | skb = dev_alloc_skb(mf->len+2); | 
|  | 629 | if (!skb) { | 
|  | 630 | mp->stats.rx_dropped++; | 
|  | 631 | return; | 
|  | 632 | } | 
|  | 633 | skb_reserve(skb,2); | 
|  | 634 | memcpy(skb_put(skb, mf->len), mf->data, mf->len); | 
|  | 635 |  | 
|  | 636 | skb->dev = dev; | 
|  | 637 | skb->protocol = eth_type_trans(skb, dev); | 
|  | 638 | netif_rx(skb); | 
|  | 639 | dev->last_rx = jiffies; | 
|  | 640 | mp->stats.rx_packets++; | 
|  | 641 | mp->stats.rx_bytes += mf->len; | 
|  | 642 | } | 
|  | 643 |  | 
|  | 644 | /* | 
|  | 645 | * The PSC has passed us a DMA interrupt event. | 
|  | 646 | */ | 
|  | 647 |  | 
|  | 648 | static irqreturn_t mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs) | 
|  | 649 | { | 
|  | 650 | struct net_device *dev = (struct net_device *) dev_id; | 
|  | 651 | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | 652 | int left, head; | 
|  | 653 | u16 status; | 
|  | 654 | u32 baka; | 
|  | 655 |  | 
|  | 656 | /* Not sure what this does */ | 
|  | 657 |  | 
|  | 658 | while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); | 
|  | 659 | if (!(baka & 0x60000000)) return IRQ_NONE; | 
|  | 660 |  | 
|  | 661 | /* | 
|  | 662 | * Process the read queue | 
|  | 663 | */ | 
|  | 664 |  | 
|  | 665 | status = psc_read_word(PSC_ENETRD_CTL); | 
|  | 666 |  | 
|  | 667 | if (status & 0x2000) { | 
|  | 668 | mace_rxdma_reset(dev); | 
|  | 669 | } else if (status & 0x0100) { | 
|  | 670 | psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); | 
|  | 671 |  | 
|  | 672 | left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); | 
|  | 673 | head = N_RX_RING - left; | 
|  | 674 |  | 
|  | 675 | /* Loop through the ring buffer and process new packages */ | 
|  | 676 |  | 
|  | 677 | while (mp->rx_tail < head) { | 
|  | 678 | mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800))); | 
|  | 679 | mp->rx_tail++; | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /* If we're out of buffers in this ring then switch to */ | 
|  | 683 | /* the other set, otherwise just reactivate this one.  */ | 
|  | 684 |  | 
|  | 685 | if (!left) { | 
|  | 686 | mace_load_rxdma_base(dev, mp->rx_slot); | 
|  | 687 | mp->rx_slot ^= 0x10; | 
|  | 688 | } else { | 
|  | 689 | psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); | 
|  | 690 | } | 
|  | 691 | } | 
|  | 692 |  | 
|  | 693 | /* | 
|  | 694 | * Process the write queue | 
|  | 695 | */ | 
|  | 696 |  | 
|  | 697 | status = psc_read_word(PSC_ENETWR_CTL); | 
|  | 698 |  | 
|  | 699 | if (status & 0x2000) { | 
|  | 700 | mace_txdma_reset(dev); | 
|  | 701 | } else if (status & 0x0100) { | 
|  | 702 | psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); | 
|  | 703 | mp->tx_sloti ^= 0x10; | 
|  | 704 | mp->tx_count++; | 
|  | 705 | netif_wake_queue(dev); | 
|  | 706 | } | 
|  | 707 | return IRQ_HANDLED; | 
|  | 708 | } | 
|  | 709 |  | 
|  | 710 | MODULE_LICENSE("GPL"); |