| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
| Nathan Scott | 7b71876 | 2005-11-02 14:58:39 +1100 | [diff] [blame] | 2 |  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. | 
 | 3 |  * All Rights Reserved. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4 |  * | 
| Nathan Scott | 7b71876 | 2005-11-02 14:58:39 +1100 | [diff] [blame] | 5 |  * This program is free software; you can redistribute it and/or | 
 | 6 |  * modify it under the terms of the GNU General Public License as | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 7 |  * published by the Free Software Foundation. | 
 | 8 |  * | 
| Nathan Scott | 7b71876 | 2005-11-02 14:58:39 +1100 | [diff] [blame] | 9 |  * This program is distributed in the hope that it would be useful, | 
 | 10 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 11 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 12 |  * GNU General Public License for more details. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 |  * | 
| Nathan Scott | 7b71876 | 2005-11-02 14:58:39 +1100 | [diff] [blame] | 14 |  * You should have received a copy of the GNU General Public License | 
 | 15 |  * along with this program; if not, write the Free Software Foundation, | 
 | 16 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 17 |  */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 18 | #include "xfs.h" | 
| Nathan Scott | a844f45 | 2005-11-02 14:38:42 +1100 | [diff] [blame] | 19 | #include "xfs_fs.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 20 | #include "xfs_types.h" | 
| Nathan Scott | a844f45 | 2005-11-02 14:38:42 +1100 | [diff] [blame] | 21 | #include "xfs_bit.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 22 | #include "xfs_log.h" | 
| Nathan Scott | a844f45 | 2005-11-02 14:38:42 +1100 | [diff] [blame] | 23 | #include "xfs_inum.h" | 
 | 24 | #include "xfs_imap.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 25 | #include "xfs_trans.h" | 
 | 26 | #include "xfs_trans_priv.h" | 
 | 27 | #include "xfs_sb.h" | 
 | 28 | #include "xfs_ag.h" | 
 | 29 | #include "xfs_dir.h" | 
 | 30 | #include "xfs_dir2.h" | 
 | 31 | #include "xfs_dmapi.h" | 
 | 32 | #include "xfs_mount.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 33 | #include "xfs_bmap_btree.h" | 
| Nathan Scott | a844f45 | 2005-11-02 14:38:42 +1100 | [diff] [blame] | 34 | #include "xfs_alloc_btree.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 35 | #include "xfs_ialloc_btree.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 36 | #include "xfs_dir_sf.h" | 
 | 37 | #include "xfs_dir2_sf.h" | 
| Nathan Scott | a844f45 | 2005-11-02 14:38:42 +1100 | [diff] [blame] | 38 | #include "xfs_attr_sf.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 39 | #include "xfs_dinode.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 40 | #include "xfs_inode.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 41 | #include "xfs_buf_item.h" | 
| Nathan Scott | a844f45 | 2005-11-02 14:38:42 +1100 | [diff] [blame] | 42 | #include "xfs_inode_item.h" | 
 | 43 | #include "xfs_btree.h" | 
 | 44 | #include "xfs_alloc.h" | 
 | 45 | #include "xfs_ialloc.h" | 
 | 46 | #include "xfs_bmap.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 47 | #include "xfs_rw.h" | 
 | 48 | #include "xfs_error.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 49 | #include "xfs_utils.h" | 
 | 50 | #include "xfs_dir2_trace.h" | 
 | 51 | #include "xfs_quota.h" | 
 | 52 | #include "xfs_mac.h" | 
 | 53 | #include "xfs_acl.h" | 
 | 54 |  | 
 | 55 |  | 
 | 56 | kmem_zone_t *xfs_ifork_zone; | 
 | 57 | kmem_zone_t *xfs_inode_zone; | 
 | 58 | kmem_zone_t *xfs_chashlist_zone; | 
 | 59 |  | 
 | 60 | /* | 
 | 61 |  * Used in xfs_itruncate().  This is the maximum number of extents | 
 | 62 |  * freed from a file in a single transaction. | 
 | 63 |  */ | 
 | 64 | #define	XFS_ITRUNC_MAX_EXTENTS	2 | 
 | 65 |  | 
 | 66 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); | 
 | 67 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | 
 | 68 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | 
 | 69 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | 
 | 70 |  | 
 | 71 |  | 
 | 72 | #ifdef DEBUG | 
 | 73 | /* | 
 | 74 |  * Make sure that the extents in the given memory buffer | 
 | 75 |  * are valid. | 
 | 76 |  */ | 
 | 77 | STATIC void | 
 | 78 | xfs_validate_extents( | 
 | 79 | 	xfs_bmbt_rec_t		*ep, | 
 | 80 | 	int			nrecs, | 
 | 81 | 	int			disk, | 
 | 82 | 	xfs_exntfmt_t		fmt) | 
 | 83 | { | 
 | 84 | 	xfs_bmbt_irec_t		irec; | 
 | 85 | 	xfs_bmbt_rec_t		rec; | 
 | 86 | 	int			i; | 
 | 87 |  | 
 | 88 | 	for (i = 0; i < nrecs; i++) { | 
 | 89 | 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0); | 
 | 90 | 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1); | 
 | 91 | 		if (disk) | 
 | 92 | 			xfs_bmbt_disk_get_all(&rec, &irec); | 
 | 93 | 		else | 
 | 94 | 			xfs_bmbt_get_all(&rec, &irec); | 
 | 95 | 		if (fmt == XFS_EXTFMT_NOSTATE) | 
 | 96 | 			ASSERT(irec.br_state == XFS_EXT_NORM); | 
 | 97 | 		ep++; | 
 | 98 | 	} | 
 | 99 | } | 
 | 100 | #else /* DEBUG */ | 
 | 101 | #define xfs_validate_extents(ep, nrecs, disk, fmt) | 
 | 102 | #endif /* DEBUG */ | 
 | 103 |  | 
 | 104 | /* | 
 | 105 |  * Check that none of the inode's in the buffer have a next | 
 | 106 |  * unlinked field of 0. | 
 | 107 |  */ | 
 | 108 | #if defined(DEBUG) | 
 | 109 | void | 
 | 110 | xfs_inobp_check( | 
 | 111 | 	xfs_mount_t	*mp, | 
 | 112 | 	xfs_buf_t	*bp) | 
 | 113 | { | 
 | 114 | 	int		i; | 
 | 115 | 	int		j; | 
 | 116 | 	xfs_dinode_t	*dip; | 
 | 117 |  | 
 | 118 | 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | 
 | 119 |  | 
 | 120 | 	for (i = 0; i < j; i++) { | 
 | 121 | 		dip = (xfs_dinode_t *)xfs_buf_offset(bp, | 
 | 122 | 					i * mp->m_sb.sb_inodesize); | 
 | 123 | 		if (!dip->di_next_unlinked)  { | 
 | 124 | 			xfs_fs_cmn_err(CE_ALERT, mp, | 
 | 125 | 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.", | 
 | 126 | 				bp); | 
 | 127 | 			ASSERT(dip->di_next_unlinked); | 
 | 128 | 		} | 
 | 129 | 	} | 
 | 130 | } | 
 | 131 | #endif | 
 | 132 |  | 
 | 133 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 134 |  * This routine is called to map an inode number within a file | 
 | 135 |  * system to the buffer containing the on-disk version of the | 
 | 136 |  * inode.  It returns a pointer to the buffer containing the | 
 | 137 |  * on-disk inode in the bpp parameter, and in the dip parameter | 
 | 138 |  * it returns a pointer to the on-disk inode within that buffer. | 
 | 139 |  * | 
 | 140 |  * If a non-zero error is returned, then the contents of bpp and | 
 | 141 |  * dipp are undefined. | 
 | 142 |  * | 
 | 143 |  * Use xfs_imap() to determine the size and location of the | 
 | 144 |  * buffer to read from disk. | 
 | 145 |  */ | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 146 | STATIC int | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 147 | xfs_inotobp( | 
 | 148 | 	xfs_mount_t	*mp, | 
 | 149 | 	xfs_trans_t	*tp, | 
 | 150 | 	xfs_ino_t	ino, | 
 | 151 | 	xfs_dinode_t	**dipp, | 
 | 152 | 	xfs_buf_t	**bpp, | 
 | 153 | 	int		*offset) | 
 | 154 | { | 
 | 155 | 	int		di_ok; | 
 | 156 | 	xfs_imap_t	imap; | 
 | 157 | 	xfs_buf_t	*bp; | 
 | 158 | 	int		error; | 
 | 159 | 	xfs_dinode_t	*dip; | 
 | 160 |  | 
 | 161 | 	/* | 
 | 162 | 	 * Call the space managment code to find the location of the | 
 | 163 | 	 * inode on disk. | 
 | 164 | 	 */ | 
 | 165 | 	imap.im_blkno = 0; | 
 | 166 | 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); | 
 | 167 | 	if (error != 0) { | 
 | 168 | 		cmn_err(CE_WARN, | 
 | 169 | 	"xfs_inotobp: xfs_imap()  returned an " | 
 | 170 | 	"error %d on %s.  Returning error.", error, mp->m_fsname); | 
 | 171 | 		return error; | 
 | 172 | 	} | 
 | 173 |  | 
 | 174 | 	/* | 
 | 175 | 	 * If the inode number maps to a block outside the bounds of the | 
 | 176 | 	 * file system then return NULL rather than calling read_buf | 
 | 177 | 	 * and panicing when we get an error from the driver. | 
 | 178 | 	 */ | 
 | 179 | 	if ((imap.im_blkno + imap.im_len) > | 
 | 180 | 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
 | 181 | 		cmn_err(CE_WARN, | 
| Christoph Hellwig | da1650a | 2005-11-02 10:21:35 +1100 | [diff] [blame] | 182 | 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 183 | 	"of the file system %s.  Returning EINVAL.", | 
| Christoph Hellwig | da1650a | 2005-11-02 10:21:35 +1100 | [diff] [blame] | 184 | 			(unsigned long long)imap.im_blkno, | 
 | 185 | 			imap.im_len, mp->m_fsname); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 186 | 		return XFS_ERROR(EINVAL); | 
 | 187 | 	} | 
 | 188 |  | 
 | 189 | 	/* | 
 | 190 | 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will | 
 | 191 | 	 * default to just a read_buf() call. | 
 | 192 | 	 */ | 
 | 193 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | 
 | 194 | 				   (int)imap.im_len, XFS_BUF_LOCK, &bp); | 
 | 195 |  | 
 | 196 | 	if (error) { | 
 | 197 | 		cmn_err(CE_WARN, | 
 | 198 | 	"xfs_inotobp: xfs_trans_read_buf()  returned an " | 
 | 199 | 	"error %d on %s.  Returning error.", error, mp->m_fsname); | 
 | 200 | 		return error; | 
 | 201 | 	} | 
 | 202 | 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); | 
 | 203 | 	di_ok = | 
 | 204 | 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | 
 | 205 | 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | 
 | 206 | 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | 
 | 207 | 			XFS_RANDOM_ITOBP_INOTOBP))) { | 
 | 208 | 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); | 
 | 209 | 		xfs_trans_brelse(tp, bp); | 
 | 210 | 		cmn_err(CE_WARN, | 
 | 211 | 	"xfs_inotobp: XFS_TEST_ERROR()  returned an " | 
 | 212 | 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname); | 
 | 213 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 214 | 	} | 
 | 215 |  | 
 | 216 | 	xfs_inobp_check(mp, bp); | 
 | 217 |  | 
 | 218 | 	/* | 
 | 219 | 	 * Set *dipp to point to the on-disk inode in the buffer. | 
 | 220 | 	 */ | 
 | 221 | 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | 
 | 222 | 	*bpp = bp; | 
 | 223 | 	*offset = imap.im_boffset; | 
 | 224 | 	return 0; | 
 | 225 | } | 
 | 226 |  | 
 | 227 |  | 
 | 228 | /* | 
 | 229 |  * This routine is called to map an inode to the buffer containing | 
 | 230 |  * the on-disk version of the inode.  It returns a pointer to the | 
 | 231 |  * buffer containing the on-disk inode in the bpp parameter, and in | 
 | 232 |  * the dip parameter it returns a pointer to the on-disk inode within | 
 | 233 |  * that buffer. | 
 | 234 |  * | 
 | 235 |  * If a non-zero error is returned, then the contents of bpp and | 
 | 236 |  * dipp are undefined. | 
 | 237 |  * | 
 | 238 |  * If the inode is new and has not yet been initialized, use xfs_imap() | 
 | 239 |  * to determine the size and location of the buffer to read from disk. | 
 | 240 |  * If the inode has already been mapped to its buffer and read in once, | 
 | 241 |  * then use the mapping information stored in the inode rather than | 
 | 242 |  * calling xfs_imap().  This allows us to avoid the overhead of looking | 
 | 243 |  * at the inode btree for small block file systems (see xfs_dilocate()). | 
 | 244 |  * We can tell whether the inode has been mapped in before by comparing | 
 | 245 |  * its disk block address to 0.  Only uninitialized inodes will have | 
 | 246 |  * 0 for the disk block address. | 
 | 247 |  */ | 
 | 248 | int | 
 | 249 | xfs_itobp( | 
 | 250 | 	xfs_mount_t	*mp, | 
 | 251 | 	xfs_trans_t	*tp, | 
 | 252 | 	xfs_inode_t	*ip, | 
 | 253 | 	xfs_dinode_t	**dipp, | 
 | 254 | 	xfs_buf_t	**bpp, | 
 | 255 | 	xfs_daddr_t	bno) | 
 | 256 | { | 
 | 257 | 	xfs_buf_t	*bp; | 
 | 258 | 	int		error; | 
 | 259 | 	xfs_imap_t	imap; | 
 | 260 | #ifdef __KERNEL__ | 
 | 261 | 	int		i; | 
 | 262 | 	int		ni; | 
 | 263 | #endif | 
 | 264 |  | 
 | 265 | 	if (ip->i_blkno == (xfs_daddr_t)0) { | 
 | 266 | 		/* | 
 | 267 | 		 * Call the space management code to find the location of the | 
 | 268 | 		 * inode on disk. | 
 | 269 | 		 */ | 
 | 270 | 		imap.im_blkno = bno; | 
 | 271 | 		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); | 
 | 272 | 		if (error != 0) { | 
 | 273 | 			return error; | 
 | 274 | 		} | 
 | 275 |  | 
 | 276 | 		/* | 
 | 277 | 		 * If the inode number maps to a block outside the bounds | 
 | 278 | 		 * of the file system then return NULL rather than calling | 
 | 279 | 		 * read_buf and panicing when we get an error from the | 
 | 280 | 		 * driver. | 
 | 281 | 		 */ | 
 | 282 | 		if ((imap.im_blkno + imap.im_len) > | 
 | 283 | 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
 | 284 | #ifdef DEBUG | 
 | 285 | 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | 
 | 286 | 					"(imap.im_blkno (0x%llx) " | 
 | 287 | 					"+ imap.im_len (0x%llx)) > " | 
 | 288 | 					" XFS_FSB_TO_BB(mp, " | 
 | 289 | 					"mp->m_sb.sb_dblocks) (0x%llx)", | 
 | 290 | 					(unsigned long long) imap.im_blkno, | 
 | 291 | 					(unsigned long long) imap.im_len, | 
 | 292 | 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | 
 | 293 | #endif /* DEBUG */ | 
 | 294 | 			return XFS_ERROR(EINVAL); | 
 | 295 | 		} | 
 | 296 |  | 
 | 297 | 		/* | 
 | 298 | 		 * Fill in the fields in the inode that will be used to | 
 | 299 | 		 * map the inode to its buffer from now on. | 
 | 300 | 		 */ | 
 | 301 | 		ip->i_blkno = imap.im_blkno; | 
 | 302 | 		ip->i_len = imap.im_len; | 
 | 303 | 		ip->i_boffset = imap.im_boffset; | 
 | 304 | 	} else { | 
 | 305 | 		/* | 
 | 306 | 		 * We've already mapped the inode once, so just use the | 
 | 307 | 		 * mapping that we saved the first time. | 
 | 308 | 		 */ | 
 | 309 | 		imap.im_blkno = ip->i_blkno; | 
 | 310 | 		imap.im_len = ip->i_len; | 
 | 311 | 		imap.im_boffset = ip->i_boffset; | 
 | 312 | 	} | 
 | 313 | 	ASSERT(bno == 0 || bno == imap.im_blkno); | 
 | 314 |  | 
 | 315 | 	/* | 
 | 316 | 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will | 
 | 317 | 	 * default to just a read_buf() call. | 
 | 318 | 	 */ | 
 | 319 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | 
 | 320 | 				   (int)imap.im_len, XFS_BUF_LOCK, &bp); | 
 | 321 |  | 
 | 322 | 	if (error) { | 
 | 323 | #ifdef DEBUG | 
 | 324 | 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | 
 | 325 | 				"xfs_trans_read_buf() returned error %d, " | 
 | 326 | 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx", | 
 | 327 | 				error, (unsigned long long) imap.im_blkno, | 
 | 328 | 				(unsigned long long) imap.im_len); | 
 | 329 | #endif /* DEBUG */ | 
 | 330 | 		return error; | 
 | 331 | 	} | 
 | 332 | #ifdef __KERNEL__ | 
 | 333 | 	/* | 
 | 334 | 	 * Validate the magic number and version of every inode in the buffer | 
 | 335 | 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise. | 
 | 336 | 	 */ | 
 | 337 | #ifdef DEBUG | 
 | 338 | 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; | 
 | 339 | #else | 
 | 340 | 	ni = 1; | 
 | 341 | #endif | 
 | 342 | 	for (i = 0; i < ni; i++) { | 
 | 343 | 		int		di_ok; | 
 | 344 | 		xfs_dinode_t	*dip; | 
 | 345 |  | 
 | 346 | 		dip = (xfs_dinode_t *)xfs_buf_offset(bp, | 
 | 347 | 					(i << mp->m_sb.sb_inodelog)); | 
 | 348 | 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | 
 | 349 | 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | 
 | 350 | 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | 
 | 351 | 				 XFS_RANDOM_ITOBP_INOTOBP))) { | 
 | 352 | #ifdef DEBUG | 
 | 353 | 			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", | 
 | 354 | 				mp->m_ddev_targp, | 
 | 355 | 				(unsigned long long)imap.im_blkno, i, | 
 | 356 | 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); | 
 | 357 | #endif | 
 | 358 | 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, | 
 | 359 | 					     mp, dip); | 
 | 360 | 			xfs_trans_brelse(tp, bp); | 
 | 361 | 			return XFS_ERROR(EFSCORRUPTED); | 
 | 362 | 		} | 
 | 363 | 	} | 
 | 364 | #endif	/* __KERNEL__ */ | 
 | 365 |  | 
 | 366 | 	xfs_inobp_check(mp, bp); | 
 | 367 |  | 
 | 368 | 	/* | 
 | 369 | 	 * Mark the buffer as an inode buffer now that it looks good | 
 | 370 | 	 */ | 
 | 371 | 	XFS_BUF_SET_VTYPE(bp, B_FS_INO); | 
 | 372 |  | 
 | 373 | 	/* | 
 | 374 | 	 * Set *dipp to point to the on-disk inode in the buffer. | 
 | 375 | 	 */ | 
 | 376 | 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | 
 | 377 | 	*bpp = bp; | 
 | 378 | 	return 0; | 
 | 379 | } | 
 | 380 |  | 
 | 381 | /* | 
 | 382 |  * Move inode type and inode format specific information from the | 
 | 383 |  * on-disk inode to the in-core inode.  For fifos, devs, and sockets | 
 | 384 |  * this means set if_rdev to the proper value.  For files, directories, | 
 | 385 |  * and symlinks this means to bring in the in-line data or extent | 
 | 386 |  * pointers.  For a file in B-tree format, only the root is immediately | 
 | 387 |  * brought in-core.  The rest will be in-lined in if_extents when it | 
 | 388 |  * is first referenced (see xfs_iread_extents()). | 
 | 389 |  */ | 
 | 390 | STATIC int | 
 | 391 | xfs_iformat( | 
 | 392 | 	xfs_inode_t		*ip, | 
 | 393 | 	xfs_dinode_t		*dip) | 
 | 394 | { | 
 | 395 | 	xfs_attr_shortform_t	*atp; | 
 | 396 | 	int			size; | 
 | 397 | 	int			error; | 
 | 398 | 	xfs_fsize_t             di_size; | 
 | 399 | 	ip->i_df.if_ext_max = | 
 | 400 | 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 401 | 	error = 0; | 
 | 402 |  | 
 | 403 | 	if (unlikely( | 
 | 404 | 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + | 
 | 405 | 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > | 
 | 406 | 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { | 
 | 407 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 408 | 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu." | 
 | 409 | 			"  Unmount and run xfs_repair.", | 
 | 410 | 			(unsigned long long)ip->i_ino, | 
 | 411 | 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) | 
 | 412 | 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), | 
 | 413 | 			(unsigned long long) | 
 | 414 | 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); | 
 | 415 | 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, | 
 | 416 | 				     ip->i_mount, dip); | 
 | 417 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 418 | 	} | 
 | 419 |  | 
 | 420 | 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { | 
 | 421 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 422 | 			"corrupt dinode %Lu, forkoff = 0x%x." | 
 | 423 | 			"  Unmount and run xfs_repair.", | 
 | 424 | 			(unsigned long long)ip->i_ino, | 
 | 425 | 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); | 
 | 426 | 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, | 
 | 427 | 				     ip->i_mount, dip); | 
 | 428 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 429 | 	} | 
 | 430 |  | 
 | 431 | 	switch (ip->i_d.di_mode & S_IFMT) { | 
 | 432 | 	case S_IFIFO: | 
 | 433 | 	case S_IFCHR: | 
 | 434 | 	case S_IFBLK: | 
 | 435 | 	case S_IFSOCK: | 
 | 436 | 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { | 
 | 437 | 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, | 
 | 438 | 					      ip->i_mount, dip); | 
 | 439 | 			return XFS_ERROR(EFSCORRUPTED); | 
 | 440 | 		} | 
 | 441 | 		ip->i_d.di_size = 0; | 
 | 442 | 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); | 
 | 443 | 		break; | 
 | 444 |  | 
 | 445 | 	case S_IFREG: | 
 | 446 | 	case S_IFLNK: | 
 | 447 | 	case S_IFDIR: | 
 | 448 | 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { | 
 | 449 | 		case XFS_DINODE_FMT_LOCAL: | 
 | 450 | 			/* | 
 | 451 | 			 * no local regular files yet | 
 | 452 | 			 */ | 
 | 453 | 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { | 
 | 454 | 				xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 455 | 					"corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.", | 
 | 456 | 					(unsigned long long) ip->i_ino); | 
 | 457 | 				XFS_CORRUPTION_ERROR("xfs_iformat(4)", | 
 | 458 | 						     XFS_ERRLEVEL_LOW, | 
 | 459 | 						     ip->i_mount, dip); | 
 | 460 | 				return XFS_ERROR(EFSCORRUPTED); | 
 | 461 | 			} | 
 | 462 |  | 
 | 463 | 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); | 
 | 464 | 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { | 
 | 465 | 				xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 466 | 					"corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.", | 
 | 467 | 					(unsigned long long) ip->i_ino, | 
 | 468 | 					(long long) di_size); | 
 | 469 | 				XFS_CORRUPTION_ERROR("xfs_iformat(5)", | 
 | 470 | 						     XFS_ERRLEVEL_LOW, | 
 | 471 | 						     ip->i_mount, dip); | 
 | 472 | 				return XFS_ERROR(EFSCORRUPTED); | 
 | 473 | 			} | 
 | 474 |  | 
 | 475 | 			size = (int)di_size; | 
 | 476 | 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | 
 | 477 | 			break; | 
 | 478 | 		case XFS_DINODE_FMT_EXTENTS: | 
 | 479 | 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | 
 | 480 | 			break; | 
 | 481 | 		case XFS_DINODE_FMT_BTREE: | 
 | 482 | 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | 
 | 483 | 			break; | 
 | 484 | 		default: | 
 | 485 | 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | 
 | 486 | 					 ip->i_mount); | 
 | 487 | 			return XFS_ERROR(EFSCORRUPTED); | 
 | 488 | 		} | 
 | 489 | 		break; | 
 | 490 |  | 
 | 491 | 	default: | 
 | 492 | 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | 
 | 493 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 494 | 	} | 
 | 495 | 	if (error) { | 
 | 496 | 		return error; | 
 | 497 | 	} | 
 | 498 | 	if (!XFS_DFORK_Q(dip)) | 
 | 499 | 		return 0; | 
 | 500 | 	ASSERT(ip->i_afp == NULL); | 
 | 501 | 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); | 
 | 502 | 	ip->i_afp->if_ext_max = | 
 | 503 | 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 504 | 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { | 
 | 505 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 506 | 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | 
 | 507 | 		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); | 
 | 508 | 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); | 
 | 509 | 		break; | 
 | 510 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 511 | 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | 
 | 512 | 		break; | 
 | 513 | 	case XFS_DINODE_FMT_BTREE: | 
 | 514 | 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | 
 | 515 | 		break; | 
 | 516 | 	default: | 
 | 517 | 		error = XFS_ERROR(EFSCORRUPTED); | 
 | 518 | 		break; | 
 | 519 | 	} | 
 | 520 | 	if (error) { | 
 | 521 | 		kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
 | 522 | 		ip->i_afp = NULL; | 
 | 523 | 		xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
 | 524 | 	} | 
 | 525 | 	return error; | 
 | 526 | } | 
 | 527 |  | 
 | 528 | /* | 
 | 529 |  * The file is in-lined in the on-disk inode. | 
 | 530 |  * If it fits into if_inline_data, then copy | 
 | 531 |  * it there, otherwise allocate a buffer for it | 
 | 532 |  * and copy the data there.  Either way, set | 
 | 533 |  * if_data to point at the data. | 
 | 534 |  * If we allocate a buffer for the data, make | 
 | 535 |  * sure that its size is a multiple of 4 and | 
 | 536 |  * record the real size in i_real_bytes. | 
 | 537 |  */ | 
 | 538 | STATIC int | 
 | 539 | xfs_iformat_local( | 
 | 540 | 	xfs_inode_t	*ip, | 
 | 541 | 	xfs_dinode_t	*dip, | 
 | 542 | 	int		whichfork, | 
 | 543 | 	int		size) | 
 | 544 | { | 
 | 545 | 	xfs_ifork_t	*ifp; | 
 | 546 | 	int		real_size; | 
 | 547 |  | 
 | 548 | 	/* | 
 | 549 | 	 * If the size is unreasonable, then something | 
 | 550 | 	 * is wrong and we just bail out rather than crash in | 
 | 551 | 	 * kmem_alloc() or memcpy() below. | 
 | 552 | 	 */ | 
 | 553 | 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
 | 554 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 555 | 			"corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.", | 
 | 556 | 			(unsigned long long) ip->i_ino, size, | 
 | 557 | 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | 
 | 558 | 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | 
 | 559 | 				     ip->i_mount, dip); | 
 | 560 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 561 | 	} | 
 | 562 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 563 | 	real_size = 0; | 
 | 564 | 	if (size == 0) | 
 | 565 | 		ifp->if_u1.if_data = NULL; | 
 | 566 | 	else if (size <= sizeof(ifp->if_u2.if_inline_data)) | 
 | 567 | 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
 | 568 | 	else { | 
 | 569 | 		real_size = roundup(size, 4); | 
 | 570 | 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
 | 571 | 	} | 
 | 572 | 	ifp->if_bytes = size; | 
 | 573 | 	ifp->if_real_bytes = real_size; | 
 | 574 | 	if (size) | 
 | 575 | 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | 
 | 576 | 	ifp->if_flags &= ~XFS_IFEXTENTS; | 
 | 577 | 	ifp->if_flags |= XFS_IFINLINE; | 
 | 578 | 	return 0; | 
 | 579 | } | 
 | 580 |  | 
 | 581 | /* | 
 | 582 |  * The file consists of a set of extents all | 
 | 583 |  * of which fit into the on-disk inode. | 
 | 584 |  * If there are few enough extents to fit into | 
 | 585 |  * the if_inline_ext, then copy them there. | 
 | 586 |  * Otherwise allocate a buffer for them and copy | 
 | 587 |  * them into it.  Either way, set if_extents | 
 | 588 |  * to point at the extents. | 
 | 589 |  */ | 
 | 590 | STATIC int | 
 | 591 | xfs_iformat_extents( | 
 | 592 | 	xfs_inode_t	*ip, | 
 | 593 | 	xfs_dinode_t	*dip, | 
 | 594 | 	int		whichfork) | 
 | 595 | { | 
 | 596 | 	xfs_bmbt_rec_t	*ep, *dp; | 
 | 597 | 	xfs_ifork_t	*ifp; | 
 | 598 | 	int		nex; | 
 | 599 | 	int		real_size; | 
 | 600 | 	int		size; | 
 | 601 | 	int		i; | 
 | 602 |  | 
 | 603 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 604 | 	nex = XFS_DFORK_NEXTENTS(dip, whichfork); | 
 | 605 | 	size = nex * (uint)sizeof(xfs_bmbt_rec_t); | 
 | 606 |  | 
 | 607 | 	/* | 
 | 608 | 	 * If the number of extents is unreasonable, then something | 
 | 609 | 	 * is wrong and we just bail out rather than crash in | 
 | 610 | 	 * kmem_alloc() or memcpy() below. | 
 | 611 | 	 */ | 
 | 612 | 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
 | 613 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 614 | 			"corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.", | 
 | 615 | 			(unsigned long long) ip->i_ino, nex); | 
 | 616 | 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | 
 | 617 | 				     ip->i_mount, dip); | 
 | 618 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 619 | 	} | 
 | 620 |  | 
 | 621 | 	real_size = 0; | 
 | 622 | 	if (nex == 0) | 
 | 623 | 		ifp->if_u1.if_extents = NULL; | 
 | 624 | 	else if (nex <= XFS_INLINE_EXTS) | 
 | 625 | 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
 | 626 | 	else { | 
 | 627 | 		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | 
 | 628 | 		ASSERT(ifp->if_u1.if_extents != NULL); | 
 | 629 | 		real_size = size; | 
 | 630 | 	} | 
 | 631 | 	ifp->if_bytes = size; | 
 | 632 | 	ifp->if_real_bytes = real_size; | 
 | 633 | 	if (size) { | 
 | 634 | 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | 
 | 635 | 		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); | 
 | 636 | 		ep = ifp->if_u1.if_extents; | 
 | 637 | 		for (i = 0; i < nex; i++, ep++, dp++) { | 
 | 638 | 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), | 
 | 639 | 								ARCH_CONVERT); | 
 | 640 | 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), | 
 | 641 | 								ARCH_CONVERT); | 
 | 642 | 		} | 
 | 643 | 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, | 
 | 644 | 			whichfork); | 
 | 645 | 		if (whichfork != XFS_DATA_FORK || | 
 | 646 | 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | 
 | 647 | 				if (unlikely(xfs_check_nostate_extents( | 
 | 648 | 				    ifp->if_u1.if_extents, nex))) { | 
 | 649 | 					XFS_ERROR_REPORT("xfs_iformat_extents(2)", | 
 | 650 | 							 XFS_ERRLEVEL_LOW, | 
 | 651 | 							 ip->i_mount); | 
 | 652 | 					return XFS_ERROR(EFSCORRUPTED); | 
 | 653 | 				} | 
 | 654 | 	} | 
 | 655 | 	ifp->if_flags |= XFS_IFEXTENTS; | 
 | 656 | 	return 0; | 
 | 657 | } | 
 | 658 |  | 
 | 659 | /* | 
 | 660 |  * The file has too many extents to fit into | 
 | 661 |  * the inode, so they are in B-tree format. | 
 | 662 |  * Allocate a buffer for the root of the B-tree | 
 | 663 |  * and copy the root into it.  The i_extents | 
 | 664 |  * field will remain NULL until all of the | 
 | 665 |  * extents are read in (when they are needed). | 
 | 666 |  */ | 
 | 667 | STATIC int | 
 | 668 | xfs_iformat_btree( | 
 | 669 | 	xfs_inode_t		*ip, | 
 | 670 | 	xfs_dinode_t		*dip, | 
 | 671 | 	int			whichfork) | 
 | 672 | { | 
 | 673 | 	xfs_bmdr_block_t	*dfp; | 
 | 674 | 	xfs_ifork_t		*ifp; | 
 | 675 | 	/* REFERENCED */ | 
 | 676 | 	int			nrecs; | 
 | 677 | 	int			size; | 
 | 678 |  | 
 | 679 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 680 | 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | 
 | 681 | 	size = XFS_BMAP_BROOT_SPACE(dfp); | 
 | 682 | 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); | 
 | 683 |  | 
 | 684 | 	/* | 
 | 685 | 	 * blow out if -- fork has less extents than can fit in | 
 | 686 | 	 * fork (fork shouldn't be a btree format), root btree | 
 | 687 | 	 * block has more records than can fit into the fork, | 
 | 688 | 	 * or the number of extents is greater than the number of | 
 | 689 | 	 * blocks. | 
 | 690 | 	 */ | 
 | 691 | 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max | 
 | 692 | 	    || XFS_BMDR_SPACE_CALC(nrecs) > | 
 | 693 | 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) | 
 | 694 | 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | 
 | 695 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 696 | 			"corrupt inode %Lu (btree).  Unmount and run xfs_repair.", | 
 | 697 | 			(unsigned long long) ip->i_ino); | 
 | 698 | 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, | 
 | 699 | 				 ip->i_mount); | 
 | 700 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 701 | 	} | 
 | 702 |  | 
 | 703 | 	ifp->if_broot_bytes = size; | 
 | 704 | 	ifp->if_broot = kmem_alloc(size, KM_SLEEP); | 
 | 705 | 	ASSERT(ifp->if_broot != NULL); | 
 | 706 | 	/* | 
 | 707 | 	 * Copy and convert from the on-disk structure | 
 | 708 | 	 * to the in-memory structure. | 
 | 709 | 	 */ | 
 | 710 | 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | 
 | 711 | 		ifp->if_broot, size); | 
 | 712 | 	ifp->if_flags &= ~XFS_IFEXTENTS; | 
 | 713 | 	ifp->if_flags |= XFS_IFBROOT; | 
 | 714 |  | 
 | 715 | 	return 0; | 
 | 716 | } | 
 | 717 |  | 
 | 718 | /* | 
 | 719 |  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk | 
 | 720 |  * and native format | 
 | 721 |  * | 
 | 722 |  * buf  = on-disk representation | 
 | 723 |  * dip  = native representation | 
 | 724 |  * dir  = direction - +ve -> disk to native | 
 | 725 |  *                    -ve -> native to disk | 
 | 726 |  */ | 
 | 727 | void | 
 | 728 | xfs_xlate_dinode_core( | 
 | 729 | 	xfs_caddr_t		buf, | 
 | 730 | 	xfs_dinode_core_t	*dip, | 
 | 731 | 	int			dir) | 
 | 732 | { | 
 | 733 | 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf; | 
 | 734 | 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip; | 
 | 735 | 	xfs_arch_t		arch = ARCH_CONVERT; | 
 | 736 |  | 
 | 737 | 	ASSERT(dir); | 
 | 738 |  | 
 | 739 | 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); | 
 | 740 | 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); | 
 | 741 | 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch); | 
 | 742 | 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); | 
 | 743 | 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); | 
 | 744 | 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); | 
 | 745 | 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); | 
 | 746 | 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); | 
 | 747 | 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); | 
 | 748 |  | 
 | 749 | 	if (dir > 0) { | 
 | 750 | 		memcpy(mem_core->di_pad, buf_core->di_pad, | 
 | 751 | 			sizeof(buf_core->di_pad)); | 
 | 752 | 	} else { | 
 | 753 | 		memcpy(buf_core->di_pad, mem_core->di_pad, | 
 | 754 | 			sizeof(buf_core->di_pad)); | 
 | 755 | 	} | 
 | 756 |  | 
 | 757 | 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); | 
 | 758 |  | 
 | 759 | 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, | 
 | 760 | 			dir, arch); | 
 | 761 | 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, | 
 | 762 | 			dir, arch); | 
 | 763 | 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, | 
 | 764 | 			dir, arch); | 
 | 765 | 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, | 
 | 766 | 			dir, arch); | 
 | 767 | 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, | 
 | 768 | 			dir, arch); | 
 | 769 | 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, | 
 | 770 | 			dir, arch); | 
 | 771 | 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); | 
 | 772 | 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); | 
 | 773 | 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); | 
 | 774 | 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); | 
 | 775 | 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); | 
 | 776 | 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); | 
 | 777 | 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); | 
 | 778 | 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); | 
 | 779 | 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); | 
 | 780 | 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); | 
 | 781 | 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); | 
 | 782 | } | 
 | 783 |  | 
 | 784 | STATIC uint | 
 | 785 | _xfs_dic2xflags( | 
 | 786 | 	xfs_dinode_core_t	*dic, | 
 | 787 | 	__uint16_t		di_flags) | 
 | 788 | { | 
 | 789 | 	uint			flags = 0; | 
 | 790 |  | 
 | 791 | 	if (di_flags & XFS_DIFLAG_ANY) { | 
 | 792 | 		if (di_flags & XFS_DIFLAG_REALTIME) | 
 | 793 | 			flags |= XFS_XFLAG_REALTIME; | 
 | 794 | 		if (di_flags & XFS_DIFLAG_PREALLOC) | 
 | 795 | 			flags |= XFS_XFLAG_PREALLOC; | 
 | 796 | 		if (di_flags & XFS_DIFLAG_IMMUTABLE) | 
 | 797 | 			flags |= XFS_XFLAG_IMMUTABLE; | 
 | 798 | 		if (di_flags & XFS_DIFLAG_APPEND) | 
 | 799 | 			flags |= XFS_XFLAG_APPEND; | 
 | 800 | 		if (di_flags & XFS_DIFLAG_SYNC) | 
 | 801 | 			flags |= XFS_XFLAG_SYNC; | 
 | 802 | 		if (di_flags & XFS_DIFLAG_NOATIME) | 
 | 803 | 			flags |= XFS_XFLAG_NOATIME; | 
 | 804 | 		if (di_flags & XFS_DIFLAG_NODUMP) | 
 | 805 | 			flags |= XFS_XFLAG_NODUMP; | 
 | 806 | 		if (di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 807 | 			flags |= XFS_XFLAG_RTINHERIT; | 
 | 808 | 		if (di_flags & XFS_DIFLAG_PROJINHERIT) | 
 | 809 | 			flags |= XFS_XFLAG_PROJINHERIT; | 
 | 810 | 		if (di_flags & XFS_DIFLAG_NOSYMLINKS) | 
 | 811 | 			flags |= XFS_XFLAG_NOSYMLINKS; | 
 | 812 | 	} | 
 | 813 |  | 
 | 814 | 	return flags; | 
 | 815 | } | 
 | 816 |  | 
 | 817 | uint | 
 | 818 | xfs_ip2xflags( | 
 | 819 | 	xfs_inode_t		*ip) | 
 | 820 | { | 
 | 821 | 	xfs_dinode_core_t	*dic = &ip->i_d; | 
 | 822 |  | 
 | 823 | 	return _xfs_dic2xflags(dic, dic->di_flags) | | 
 | 824 | 		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); | 
 | 825 | } | 
 | 826 |  | 
 | 827 | uint | 
 | 828 | xfs_dic2xflags( | 
 | 829 | 	xfs_dinode_core_t	*dic) | 
 | 830 | { | 
 | 831 | 	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | | 
 | 832 | 		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); | 
 | 833 | } | 
 | 834 |  | 
 | 835 | /* | 
 | 836 |  * Given a mount structure and an inode number, return a pointer | 
 | 837 |  * to a newly allocated in-core inode coresponding to the given | 
 | 838 |  * inode number. | 
 | 839 |  * | 
 | 840 |  * Initialize the inode's attributes and extent pointers if it | 
 | 841 |  * already has them (it will not if the inode has no links). | 
 | 842 |  */ | 
 | 843 | int | 
 | 844 | xfs_iread( | 
 | 845 | 	xfs_mount_t	*mp, | 
 | 846 | 	xfs_trans_t	*tp, | 
 | 847 | 	xfs_ino_t	ino, | 
 | 848 | 	xfs_inode_t	**ipp, | 
 | 849 | 	xfs_daddr_t	bno) | 
 | 850 | { | 
 | 851 | 	xfs_buf_t	*bp; | 
 | 852 | 	xfs_dinode_t	*dip; | 
 | 853 | 	xfs_inode_t	*ip; | 
 | 854 | 	int		error; | 
 | 855 |  | 
 | 856 | 	ASSERT(xfs_inode_zone != NULL); | 
 | 857 |  | 
 | 858 | 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); | 
 | 859 | 	ip->i_ino = ino; | 
 | 860 | 	ip->i_mount = mp; | 
 | 861 |  | 
 | 862 | 	/* | 
 | 863 | 	 * Get pointer's to the on-disk inode and the buffer containing it. | 
 | 864 | 	 * If the inode number refers to a block outside the file system | 
 | 865 | 	 * then xfs_itobp() will return NULL.  In this case we should | 
 | 866 | 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will | 
 | 867 | 	 * know that this is a new incore inode. | 
 | 868 | 	 */ | 
 | 869 | 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); | 
 | 870 |  | 
 | 871 | 	if (error != 0) { | 
 | 872 | 		kmem_zone_free(xfs_inode_zone, ip); | 
 | 873 | 		return error; | 
 | 874 | 	} | 
 | 875 |  | 
 | 876 | 	/* | 
 | 877 | 	 * Initialize inode's trace buffers. | 
 | 878 | 	 * Do this before xfs_iformat in case it adds entries. | 
 | 879 | 	 */ | 
 | 880 | #ifdef XFS_BMAP_TRACE | 
 | 881 | 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); | 
 | 882 | #endif | 
 | 883 | #ifdef XFS_BMBT_TRACE | 
 | 884 | 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); | 
 | 885 | #endif | 
 | 886 | #ifdef XFS_RW_TRACE | 
 | 887 | 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); | 
 | 888 | #endif | 
 | 889 | #ifdef XFS_ILOCK_TRACE | 
 | 890 | 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); | 
 | 891 | #endif | 
 | 892 | #ifdef XFS_DIR2_TRACE | 
 | 893 | 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); | 
 | 894 | #endif | 
 | 895 |  | 
 | 896 | 	/* | 
 | 897 | 	 * If we got something that isn't an inode it means someone | 
 | 898 | 	 * (nfs or dmi) has a stale handle. | 
 | 899 | 	 */ | 
 | 900 | 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { | 
 | 901 | 		kmem_zone_free(xfs_inode_zone, ip); | 
 | 902 | 		xfs_trans_brelse(tp, bp); | 
 | 903 | #ifdef DEBUG | 
 | 904 | 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | 
 | 905 | 				"dip->di_core.di_magic (0x%x) != " | 
 | 906 | 				"XFS_DINODE_MAGIC (0x%x)", | 
 | 907 | 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT), | 
 | 908 | 				XFS_DINODE_MAGIC); | 
 | 909 | #endif /* DEBUG */ | 
 | 910 | 		return XFS_ERROR(EINVAL); | 
 | 911 | 	} | 
 | 912 |  | 
 | 913 | 	/* | 
 | 914 | 	 * If the on-disk inode is already linked to a directory | 
 | 915 | 	 * entry, copy all of the inode into the in-core inode. | 
 | 916 | 	 * xfs_iformat() handles copying in the inode format | 
 | 917 | 	 * specific information. | 
 | 918 | 	 * Otherwise, just get the truly permanent information. | 
 | 919 | 	 */ | 
 | 920 | 	if (dip->di_core.di_mode) { | 
 | 921 | 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, | 
 | 922 | 		     &(ip->i_d), 1); | 
 | 923 | 		error = xfs_iformat(ip, dip); | 
 | 924 | 		if (error)  { | 
 | 925 | 			kmem_zone_free(xfs_inode_zone, ip); | 
 | 926 | 			xfs_trans_brelse(tp, bp); | 
 | 927 | #ifdef DEBUG | 
 | 928 | 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | 
 | 929 | 					"xfs_iformat() returned error %d", | 
 | 930 | 					error); | 
 | 931 | #endif /* DEBUG */ | 
 | 932 | 			return error; | 
 | 933 | 		} | 
 | 934 | 	} else { | 
 | 935 | 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); | 
 | 936 | 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); | 
 | 937 | 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); | 
 | 938 | 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); | 
 | 939 | 		/* | 
 | 940 | 		 * Make sure to pull in the mode here as well in | 
 | 941 | 		 * case the inode is released without being used. | 
 | 942 | 		 * This ensures that xfs_inactive() will see that | 
 | 943 | 		 * the inode is already free and not try to mess | 
 | 944 | 		 * with the uninitialized part of it. | 
 | 945 | 		 */ | 
 | 946 | 		ip->i_d.di_mode = 0; | 
 | 947 | 		/* | 
 | 948 | 		 * Initialize the per-fork minima and maxima for a new | 
 | 949 | 		 * inode here.  xfs_iformat will do it for old inodes. | 
 | 950 | 		 */ | 
 | 951 | 		ip->i_df.if_ext_max = | 
 | 952 | 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 953 | 	} | 
 | 954 |  | 
 | 955 | 	INIT_LIST_HEAD(&ip->i_reclaim); | 
 | 956 |  | 
 | 957 | 	/* | 
 | 958 | 	 * The inode format changed when we moved the link count and | 
 | 959 | 	 * made it 32 bits long.  If this is an old format inode, | 
 | 960 | 	 * convert it in memory to look like a new one.  If it gets | 
 | 961 | 	 * flushed to disk we will convert back before flushing or | 
 | 962 | 	 * logging it.  We zero out the new projid field and the old link | 
 | 963 | 	 * count field.  We'll handle clearing the pad field (the remains | 
 | 964 | 	 * of the old uuid field) when we actually convert the inode to | 
 | 965 | 	 * the new format. We don't change the version number so that we | 
 | 966 | 	 * can distinguish this from a real new format inode. | 
 | 967 | 	 */ | 
 | 968 | 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
 | 969 | 		ip->i_d.di_nlink = ip->i_d.di_onlink; | 
 | 970 | 		ip->i_d.di_onlink = 0; | 
 | 971 | 		ip->i_d.di_projid = 0; | 
 | 972 | 	} | 
 | 973 |  | 
 | 974 | 	ip->i_delayed_blks = 0; | 
 | 975 |  | 
 | 976 | 	/* | 
 | 977 | 	 * Mark the buffer containing the inode as something to keep | 
 | 978 | 	 * around for a while.  This helps to keep recently accessed | 
 | 979 | 	 * meta-data in-core longer. | 
 | 980 | 	 */ | 
 | 981 | 	 XFS_BUF_SET_REF(bp, XFS_INO_REF); | 
 | 982 |  | 
 | 983 | 	/* | 
 | 984 | 	 * Use xfs_trans_brelse() to release the buffer containing the | 
 | 985 | 	 * on-disk inode, because it was acquired with xfs_trans_read_buf() | 
 | 986 | 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal | 
 | 987 | 	 * brelse().  If we're within a transaction, then xfs_trans_brelse() | 
 | 988 | 	 * will only release the buffer if it is not dirty within the | 
 | 989 | 	 * transaction.  It will be OK to release the buffer in this case, | 
 | 990 | 	 * because inodes on disk are never destroyed and we will be | 
 | 991 | 	 * locking the new in-core inode before putting it in the hash | 
 | 992 | 	 * table where other processes can find it.  Thus we don't have | 
 | 993 | 	 * to worry about the inode being changed just because we released | 
 | 994 | 	 * the buffer. | 
 | 995 | 	 */ | 
 | 996 | 	xfs_trans_brelse(tp, bp); | 
 | 997 | 	*ipp = ip; | 
 | 998 | 	return 0; | 
 | 999 | } | 
 | 1000 |  | 
 | 1001 | /* | 
 | 1002 |  * Read in extents from a btree-format inode. | 
 | 1003 |  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c. | 
 | 1004 |  */ | 
 | 1005 | int | 
 | 1006 | xfs_iread_extents( | 
 | 1007 | 	xfs_trans_t	*tp, | 
 | 1008 | 	xfs_inode_t	*ip, | 
 | 1009 | 	int		whichfork) | 
 | 1010 | { | 
 | 1011 | 	int		error; | 
 | 1012 | 	xfs_ifork_t	*ifp; | 
 | 1013 | 	size_t		size; | 
 | 1014 |  | 
 | 1015 | 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | 
 | 1016 | 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | 
 | 1017 | 				 ip->i_mount); | 
 | 1018 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 1019 | 	} | 
 | 1020 | 	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); | 
 | 1021 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 1022 | 	/* | 
 | 1023 | 	 * We know that the size is valid (it's checked in iformat_btree) | 
 | 1024 | 	 */ | 
 | 1025 | 	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | 
 | 1026 | 	ASSERT(ifp->if_u1.if_extents != NULL); | 
 | 1027 | 	ifp->if_lastex = NULLEXTNUM; | 
 | 1028 | 	ifp->if_bytes = ifp->if_real_bytes = (int)size; | 
 | 1029 | 	ifp->if_flags |= XFS_IFEXTENTS; | 
 | 1030 | 	error = xfs_bmap_read_extents(tp, ip, whichfork); | 
 | 1031 | 	if (error) { | 
 | 1032 | 		kmem_free(ifp->if_u1.if_extents, size); | 
 | 1033 | 		ifp->if_u1.if_extents = NULL; | 
 | 1034 | 		ifp->if_bytes = ifp->if_real_bytes = 0; | 
 | 1035 | 		ifp->if_flags &= ~XFS_IFEXTENTS; | 
 | 1036 | 		return error; | 
 | 1037 | 	} | 
 | 1038 | 	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, | 
 | 1039 | 		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); | 
 | 1040 | 	return 0; | 
 | 1041 | } | 
 | 1042 |  | 
 | 1043 | /* | 
 | 1044 |  * Allocate an inode on disk and return a copy of its in-core version. | 
 | 1045 |  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev | 
 | 1046 |  * appropriately within the inode.  The uid and gid for the inode are | 
 | 1047 |  * set according to the contents of the given cred structure. | 
 | 1048 |  * | 
 | 1049 |  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | 
 | 1050 |  * has a free inode available, call xfs_iget() | 
 | 1051 |  * to obtain the in-core version of the allocated inode.  Finally, | 
 | 1052 |  * fill in the inode and log its initial contents.  In this case, | 
 | 1053 |  * ialloc_context would be set to NULL and call_again set to false. | 
 | 1054 |  * | 
 | 1055 |  * If xfs_dialloc() does not have an available inode, | 
 | 1056 |  * it will replenish its supply by doing an allocation. Since we can | 
 | 1057 |  * only do one allocation within a transaction without deadlocks, we | 
 | 1058 |  * must commit the current transaction before returning the inode itself. | 
 | 1059 |  * In this case, therefore, we will set call_again to true and return. | 
 | 1060 |  * The caller should then commit the current transaction, start a new | 
 | 1061 |  * transaction, and call xfs_ialloc() again to actually get the inode. | 
 | 1062 |  * | 
 | 1063 |  * To ensure that some other process does not grab the inode that | 
 | 1064 |  * was allocated during the first call to xfs_ialloc(), this routine | 
 | 1065 |  * also returns the [locked] bp pointing to the head of the freelist | 
 | 1066 |  * as ialloc_context.  The caller should hold this buffer across | 
 | 1067 |  * the commit and pass it back into this routine on the second call. | 
 | 1068 |  */ | 
 | 1069 | int | 
 | 1070 | xfs_ialloc( | 
 | 1071 | 	xfs_trans_t	*tp, | 
 | 1072 | 	xfs_inode_t	*pip, | 
 | 1073 | 	mode_t		mode, | 
| Nathan Scott | 31b084a | 2005-05-05 13:25:00 -0700 | [diff] [blame] | 1074 | 	xfs_nlink_t	nlink, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1075 | 	xfs_dev_t	rdev, | 
 | 1076 | 	cred_t		*cr, | 
 | 1077 | 	xfs_prid_t	prid, | 
 | 1078 | 	int		okalloc, | 
 | 1079 | 	xfs_buf_t	**ialloc_context, | 
 | 1080 | 	boolean_t	*call_again, | 
 | 1081 | 	xfs_inode_t	**ipp) | 
 | 1082 | { | 
 | 1083 | 	xfs_ino_t	ino; | 
 | 1084 | 	xfs_inode_t	*ip; | 
 | 1085 | 	vnode_t		*vp; | 
 | 1086 | 	uint		flags; | 
 | 1087 | 	int		error; | 
 | 1088 |  | 
 | 1089 | 	/* | 
 | 1090 | 	 * Call the space management code to pick | 
 | 1091 | 	 * the on-disk inode to be allocated. | 
 | 1092 | 	 */ | 
 | 1093 | 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, | 
 | 1094 | 			    ialloc_context, call_again, &ino); | 
 | 1095 | 	if (error != 0) { | 
 | 1096 | 		return error; | 
 | 1097 | 	} | 
 | 1098 | 	if (*call_again || ino == NULLFSINO) { | 
 | 1099 | 		*ipp = NULL; | 
 | 1100 | 		return 0; | 
 | 1101 | 	} | 
 | 1102 | 	ASSERT(*ialloc_context == NULL); | 
 | 1103 |  | 
 | 1104 | 	/* | 
 | 1105 | 	 * Get the in-core inode with the lock held exclusively. | 
 | 1106 | 	 * This is because we're setting fields here we need | 
 | 1107 | 	 * to prevent others from looking at until we're done. | 
 | 1108 | 	 */ | 
 | 1109 | 	error = xfs_trans_iget(tp->t_mountp, tp, ino, | 
 | 1110 | 			IGET_CREATE, XFS_ILOCK_EXCL, &ip); | 
 | 1111 | 	if (error != 0) { | 
 | 1112 | 		return error; | 
 | 1113 | 	} | 
 | 1114 | 	ASSERT(ip != NULL); | 
 | 1115 |  | 
 | 1116 | 	vp = XFS_ITOV(ip); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1117 | 	ip->i_d.di_mode = (__uint16_t)mode; | 
 | 1118 | 	ip->i_d.di_onlink = 0; | 
 | 1119 | 	ip->i_d.di_nlink = nlink; | 
 | 1120 | 	ASSERT(ip->i_d.di_nlink == nlink); | 
 | 1121 | 	ip->i_d.di_uid = current_fsuid(cr); | 
 | 1122 | 	ip->i_d.di_gid = current_fsgid(cr); | 
 | 1123 | 	ip->i_d.di_projid = prid; | 
 | 1124 | 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
 | 1125 |  | 
 | 1126 | 	/* | 
 | 1127 | 	 * If the superblock version is up to where we support new format | 
 | 1128 | 	 * inodes and this is currently an old format inode, then change | 
 | 1129 | 	 * the inode version number now.  This way we only do the conversion | 
 | 1130 | 	 * here rather than here and in the flush/logging code. | 
 | 1131 | 	 */ | 
 | 1132 | 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && | 
 | 1133 | 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
 | 1134 | 		ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
 | 1135 | 		/* | 
 | 1136 | 		 * We've already zeroed the old link count, the projid field, | 
 | 1137 | 		 * and the pad field. | 
 | 1138 | 		 */ | 
 | 1139 | 	} | 
 | 1140 |  | 
 | 1141 | 	/* | 
 | 1142 | 	 * Project ids won't be stored on disk if we are using a version 1 inode. | 
 | 1143 | 	 */ | 
 | 1144 | 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) | 
 | 1145 | 		xfs_bump_ino_vers2(tp, ip); | 
 | 1146 |  | 
 | 1147 | 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { | 
 | 1148 | 		ip->i_d.di_gid = pip->i_d.di_gid; | 
 | 1149 | 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { | 
 | 1150 | 			ip->i_d.di_mode |= S_ISGID; | 
 | 1151 | 		} | 
 | 1152 | 	} | 
 | 1153 |  | 
 | 1154 | 	/* | 
 | 1155 | 	 * If the group ID of the new file does not match the effective group | 
 | 1156 | 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | 
 | 1157 | 	 * (and only if the irix_sgid_inherit compatibility variable is set). | 
 | 1158 | 	 */ | 
 | 1159 | 	if ((irix_sgid_inherit) && | 
 | 1160 | 	    (ip->i_d.di_mode & S_ISGID) && | 
 | 1161 | 	    (!in_group_p((gid_t)ip->i_d.di_gid))) { | 
 | 1162 | 		ip->i_d.di_mode &= ~S_ISGID; | 
 | 1163 | 	} | 
 | 1164 |  | 
 | 1165 | 	ip->i_d.di_size = 0; | 
 | 1166 | 	ip->i_d.di_nextents = 0; | 
 | 1167 | 	ASSERT(ip->i_d.di_nblocks == 0); | 
 | 1168 | 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); | 
 | 1169 | 	/* | 
 | 1170 | 	 * di_gen will have been taken care of in xfs_iread. | 
 | 1171 | 	 */ | 
 | 1172 | 	ip->i_d.di_extsize = 0; | 
 | 1173 | 	ip->i_d.di_dmevmask = 0; | 
 | 1174 | 	ip->i_d.di_dmstate = 0; | 
 | 1175 | 	ip->i_d.di_flags = 0; | 
 | 1176 | 	flags = XFS_ILOG_CORE; | 
 | 1177 | 	switch (mode & S_IFMT) { | 
 | 1178 | 	case S_IFIFO: | 
 | 1179 | 	case S_IFCHR: | 
 | 1180 | 	case S_IFBLK: | 
 | 1181 | 	case S_IFSOCK: | 
 | 1182 | 		ip->i_d.di_format = XFS_DINODE_FMT_DEV; | 
 | 1183 | 		ip->i_df.if_u2.if_rdev = rdev; | 
 | 1184 | 		ip->i_df.if_flags = 0; | 
 | 1185 | 		flags |= XFS_ILOG_DEV; | 
 | 1186 | 		break; | 
 | 1187 | 	case S_IFREG: | 
 | 1188 | 	case S_IFDIR: | 
 | 1189 | 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1190 | 			uint	di_flags = 0; | 
 | 1191 |  | 
 | 1192 | 			if ((mode & S_IFMT) == S_IFDIR) { | 
 | 1193 | 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 1194 | 					di_flags |= XFS_DIFLAG_RTINHERIT; | 
 | 1195 | 			} else { | 
 | 1196 | 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { | 
 | 1197 | 					di_flags |= XFS_DIFLAG_REALTIME; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1198 | 					ip->i_iocore.io_flags |= XFS_IOCORE_RT; | 
 | 1199 | 				} | 
 | 1200 | 			} | 
 | 1201 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | 
 | 1202 | 			    xfs_inherit_noatime) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1203 | 				di_flags |= XFS_DIFLAG_NOATIME; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1204 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && | 
 | 1205 | 			    xfs_inherit_nodump) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1206 | 				di_flags |= XFS_DIFLAG_NODUMP; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1207 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && | 
 | 1208 | 			    xfs_inherit_sync) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1209 | 				di_flags |= XFS_DIFLAG_SYNC; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1210 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && | 
 | 1211 | 			    xfs_inherit_nosymlinks) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1212 | 				di_flags |= XFS_DIFLAG_NOSYMLINKS; | 
 | 1213 | 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | 
 | 1214 | 				di_flags |= XFS_DIFLAG_PROJINHERIT; | 
 | 1215 | 			ip->i_d.di_flags |= di_flags; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1216 | 		} | 
 | 1217 | 		/* FALLTHROUGH */ | 
 | 1218 | 	case S_IFLNK: | 
 | 1219 | 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
 | 1220 | 		ip->i_df.if_flags = XFS_IFEXTENTS; | 
 | 1221 | 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; | 
 | 1222 | 		ip->i_df.if_u1.if_extents = NULL; | 
 | 1223 | 		break; | 
 | 1224 | 	default: | 
 | 1225 | 		ASSERT(0); | 
 | 1226 | 	} | 
 | 1227 | 	/* | 
 | 1228 | 	 * Attribute fork settings for new inode. | 
 | 1229 | 	 */ | 
 | 1230 | 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
 | 1231 | 	ip->i_d.di_anextents = 0; | 
 | 1232 |  | 
 | 1233 | 	/* | 
 | 1234 | 	 * Log the new values stuffed into the inode. | 
 | 1235 | 	 */ | 
 | 1236 | 	xfs_trans_log_inode(tp, ip, flags); | 
 | 1237 |  | 
| Christoph Hellwig | 0432dab | 2005-09-02 16:46:51 +1000 | [diff] [blame] | 1238 | 	/* now that we have an i_mode  we can set Linux inode ops (& unlock) */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1239 | 	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); | 
 | 1240 |  | 
 | 1241 | 	*ipp = ip; | 
 | 1242 | 	return 0; | 
 | 1243 | } | 
 | 1244 |  | 
 | 1245 | /* | 
 | 1246 |  * Check to make sure that there are no blocks allocated to the | 
 | 1247 |  * file beyond the size of the file.  We don't check this for | 
 | 1248 |  * files with fixed size extents or real time extents, but we | 
 | 1249 |  * at least do it for regular files. | 
 | 1250 |  */ | 
 | 1251 | #ifdef DEBUG | 
 | 1252 | void | 
 | 1253 | xfs_isize_check( | 
 | 1254 | 	xfs_mount_t	*mp, | 
 | 1255 | 	xfs_inode_t	*ip, | 
 | 1256 | 	xfs_fsize_t	isize) | 
 | 1257 | { | 
 | 1258 | 	xfs_fileoff_t	map_first; | 
 | 1259 | 	int		nimaps; | 
 | 1260 | 	xfs_bmbt_irec_t	imaps[2]; | 
 | 1261 |  | 
 | 1262 | 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) | 
 | 1263 | 		return; | 
 | 1264 |  | 
 | 1265 | 	if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) | 
 | 1266 | 		return; | 
 | 1267 |  | 
 | 1268 | 	nimaps = 2; | 
 | 1269 | 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | 
 | 1270 | 	/* | 
 | 1271 | 	 * The filesystem could be shutting down, so bmapi may return | 
 | 1272 | 	 * an error. | 
 | 1273 | 	 */ | 
 | 1274 | 	if (xfs_bmapi(NULL, ip, map_first, | 
 | 1275 | 			 (XFS_B_TO_FSB(mp, | 
 | 1276 | 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - | 
 | 1277 | 			  map_first), | 
 | 1278 | 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, | 
 | 1279 | 			 NULL)) | 
 | 1280 | 	    return; | 
 | 1281 | 	ASSERT(nimaps == 1); | 
 | 1282 | 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); | 
 | 1283 | } | 
 | 1284 | #endif	/* DEBUG */ | 
 | 1285 |  | 
 | 1286 | /* | 
 | 1287 |  * Calculate the last possible buffered byte in a file.  This must | 
 | 1288 |  * include data that was buffered beyond the EOF by the write code. | 
 | 1289 |  * This also needs to deal with overflowing the xfs_fsize_t type | 
 | 1290 |  * which can happen for sizes near the limit. | 
 | 1291 |  * | 
 | 1292 |  * We also need to take into account any blocks beyond the EOF.  It | 
 | 1293 |  * may be the case that they were buffered by a write which failed. | 
 | 1294 |  * In that case the pages will still be in memory, but the inode size | 
 | 1295 |  * will never have been updated. | 
 | 1296 |  */ | 
 | 1297 | xfs_fsize_t | 
 | 1298 | xfs_file_last_byte( | 
 | 1299 | 	xfs_inode_t	*ip) | 
 | 1300 | { | 
 | 1301 | 	xfs_mount_t	*mp; | 
 | 1302 | 	xfs_fsize_t	last_byte; | 
 | 1303 | 	xfs_fileoff_t	last_block; | 
 | 1304 | 	xfs_fileoff_t	size_last_block; | 
 | 1305 | 	int		error; | 
 | 1306 |  | 
 | 1307 | 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); | 
 | 1308 |  | 
 | 1309 | 	mp = ip->i_mount; | 
 | 1310 | 	/* | 
 | 1311 | 	 * Only check for blocks beyond the EOF if the extents have | 
 | 1312 | 	 * been read in.  This eliminates the need for the inode lock, | 
 | 1313 | 	 * and it also saves us from looking when it really isn't | 
 | 1314 | 	 * necessary. | 
 | 1315 | 	 */ | 
 | 1316 | 	if (ip->i_df.if_flags & XFS_IFEXTENTS) { | 
 | 1317 | 		error = xfs_bmap_last_offset(NULL, ip, &last_block, | 
 | 1318 | 			XFS_DATA_FORK); | 
 | 1319 | 		if (error) { | 
 | 1320 | 			last_block = 0; | 
 | 1321 | 		} | 
 | 1322 | 	} else { | 
 | 1323 | 		last_block = 0; | 
 | 1324 | 	} | 
 | 1325 | 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); | 
 | 1326 | 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block); | 
 | 1327 |  | 
 | 1328 | 	last_byte = XFS_FSB_TO_B(mp, last_block); | 
 | 1329 | 	if (last_byte < 0) { | 
 | 1330 | 		return XFS_MAXIOFFSET(mp); | 
 | 1331 | 	} | 
 | 1332 | 	last_byte += (1 << mp->m_writeio_log); | 
 | 1333 | 	if (last_byte < 0) { | 
 | 1334 | 		return XFS_MAXIOFFSET(mp); | 
 | 1335 | 	} | 
 | 1336 | 	return last_byte; | 
 | 1337 | } | 
 | 1338 |  | 
 | 1339 | #if defined(XFS_RW_TRACE) | 
 | 1340 | STATIC void | 
 | 1341 | xfs_itrunc_trace( | 
 | 1342 | 	int		tag, | 
 | 1343 | 	xfs_inode_t	*ip, | 
 | 1344 | 	int		flag, | 
 | 1345 | 	xfs_fsize_t	new_size, | 
 | 1346 | 	xfs_off_t	toss_start, | 
 | 1347 | 	xfs_off_t	toss_finish) | 
 | 1348 | { | 
 | 1349 | 	if (ip->i_rwtrace == NULL) { | 
 | 1350 | 		return; | 
 | 1351 | 	} | 
 | 1352 |  | 
 | 1353 | 	ktrace_enter(ip->i_rwtrace, | 
 | 1354 | 		     (void*)((long)tag), | 
 | 1355 | 		     (void*)ip, | 
 | 1356 | 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), | 
 | 1357 | 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), | 
 | 1358 | 		     (void*)((long)flag), | 
 | 1359 | 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff), | 
 | 1360 | 		     (void*)(unsigned long)(new_size & 0xffffffff), | 
 | 1361 | 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), | 
 | 1362 | 		     (void*)(unsigned long)(toss_start & 0xffffffff), | 
 | 1363 | 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), | 
 | 1364 | 		     (void*)(unsigned long)(toss_finish & 0xffffffff), | 
 | 1365 | 		     (void*)(unsigned long)current_cpu(), | 
 | 1366 | 		     (void*)0, | 
 | 1367 | 		     (void*)0, | 
 | 1368 | 		     (void*)0, | 
 | 1369 | 		     (void*)0); | 
 | 1370 | } | 
 | 1371 | #else | 
 | 1372 | #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) | 
 | 1373 | #endif | 
 | 1374 |  | 
 | 1375 | /* | 
 | 1376 |  * Start the truncation of the file to new_size.  The new size | 
 | 1377 |  * must be smaller than the current size.  This routine will | 
 | 1378 |  * clear the buffer and page caches of file data in the removed | 
 | 1379 |  * range, and xfs_itruncate_finish() will remove the underlying | 
 | 1380 |  * disk blocks. | 
 | 1381 |  * | 
 | 1382 |  * The inode must have its I/O lock locked EXCLUSIVELY, and it | 
 | 1383 |  * must NOT have the inode lock held at all.  This is because we're | 
 | 1384 |  * calling into the buffer/page cache code and we can't hold the | 
 | 1385 |  * inode lock when we do so. | 
 | 1386 |  * | 
 | 1387 |  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE | 
 | 1388 |  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used | 
 | 1389 |  * in the case that the caller is locking things out of order and | 
 | 1390 |  * may not be able to call xfs_itruncate_finish() with the inode lock | 
 | 1391 |  * held without dropping the I/O lock.  If the caller must drop the | 
 | 1392 |  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() | 
 | 1393 |  * must be called again with all the same restrictions as the initial | 
 | 1394 |  * call. | 
 | 1395 |  */ | 
 | 1396 | void | 
 | 1397 | xfs_itruncate_start( | 
 | 1398 | 	xfs_inode_t	*ip, | 
 | 1399 | 	uint		flags, | 
 | 1400 | 	xfs_fsize_t	new_size) | 
 | 1401 | { | 
 | 1402 | 	xfs_fsize_t	last_byte; | 
 | 1403 | 	xfs_off_t	toss_start; | 
 | 1404 | 	xfs_mount_t	*mp; | 
 | 1405 | 	vnode_t		*vp; | 
 | 1406 |  | 
 | 1407 | 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | 
 | 1408 | 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | 
 | 1409 | 	ASSERT((flags == XFS_ITRUNC_DEFINITE) || | 
 | 1410 | 	       (flags == XFS_ITRUNC_MAYBE)); | 
 | 1411 |  | 
 | 1412 | 	mp = ip->i_mount; | 
 | 1413 | 	vp = XFS_ITOV(ip); | 
 | 1414 | 	/* | 
 | 1415 | 	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers | 
 | 1416 | 	 * overlapping the region being removed.  We have to use | 
 | 1417 | 	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the | 
 | 1418 | 	 * caller may not be able to finish the truncate without | 
 | 1419 | 	 * dropping the inode's I/O lock.  Make sure | 
 | 1420 | 	 * to catch any pages brought in by buffers overlapping | 
 | 1421 | 	 * the EOF by searching out beyond the isize by our | 
 | 1422 | 	 * block size. We round new_size up to a block boundary | 
 | 1423 | 	 * so that we don't toss things on the same block as | 
 | 1424 | 	 * new_size but before it. | 
 | 1425 | 	 * | 
 | 1426 | 	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to | 
 | 1427 | 	 * call remapf() over the same region if the file is mapped. | 
 | 1428 | 	 * This frees up mapped file references to the pages in the | 
 | 1429 | 	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures | 
 | 1430 | 	 * that we get the latest mapped changes flushed out. | 
 | 1431 | 	 */ | 
 | 1432 | 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
 | 1433 | 	toss_start = XFS_FSB_TO_B(mp, toss_start); | 
 | 1434 | 	if (toss_start < 0) { | 
 | 1435 | 		/* | 
 | 1436 | 		 * The place to start tossing is beyond our maximum | 
 | 1437 | 		 * file size, so there is no way that the data extended | 
 | 1438 | 		 * out there. | 
 | 1439 | 		 */ | 
 | 1440 | 		return; | 
 | 1441 | 	} | 
 | 1442 | 	last_byte = xfs_file_last_byte(ip); | 
 | 1443 | 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, | 
 | 1444 | 			 last_byte); | 
 | 1445 | 	if (last_byte > toss_start) { | 
 | 1446 | 		if (flags & XFS_ITRUNC_DEFINITE) { | 
 | 1447 | 			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | 
 | 1448 | 		} else { | 
 | 1449 | 			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | 
 | 1450 | 		} | 
 | 1451 | 	} | 
 | 1452 |  | 
 | 1453 | #ifdef DEBUG | 
 | 1454 | 	if (new_size == 0) { | 
 | 1455 | 		ASSERT(VN_CACHED(vp) == 0); | 
 | 1456 | 	} | 
 | 1457 | #endif | 
 | 1458 | } | 
 | 1459 |  | 
 | 1460 | /* | 
 | 1461 |  * Shrink the file to the given new_size.  The new | 
 | 1462 |  * size must be smaller than the current size. | 
 | 1463 |  * This will free up the underlying blocks | 
 | 1464 |  * in the removed range after a call to xfs_itruncate_start() | 
 | 1465 |  * or xfs_atruncate_start(). | 
 | 1466 |  * | 
 | 1467 |  * The transaction passed to this routine must have made | 
 | 1468 |  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. | 
 | 1469 |  * This routine may commit the given transaction and | 
 | 1470 |  * start new ones, so make sure everything involved in | 
 | 1471 |  * the transaction is tidy before calling here. | 
 | 1472 |  * Some transaction will be returned to the caller to be | 
 | 1473 |  * committed.  The incoming transaction must already include | 
 | 1474 |  * the inode, and both inode locks must be held exclusively. | 
 | 1475 |  * The inode must also be "held" within the transaction.  On | 
 | 1476 |  * return the inode will be "held" within the returned transaction. | 
 | 1477 |  * This routine does NOT require any disk space to be reserved | 
 | 1478 |  * for it within the transaction. | 
 | 1479 |  * | 
 | 1480 |  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, | 
 | 1481 |  * and it indicates the fork which is to be truncated.  For the | 
 | 1482 |  * attribute fork we only support truncation to size 0. | 
 | 1483 |  * | 
 | 1484 |  * We use the sync parameter to indicate whether or not the first | 
 | 1485 |  * transaction we perform might have to be synchronous.  For the attr fork, | 
 | 1486 |  * it needs to be so if the unlink of the inode is not yet known to be | 
 | 1487 |  * permanent in the log.  This keeps us from freeing and reusing the | 
 | 1488 |  * blocks of the attribute fork before the unlink of the inode becomes | 
 | 1489 |  * permanent. | 
 | 1490 |  * | 
 | 1491 |  * For the data fork, we normally have to run synchronously if we're | 
 | 1492 |  * being called out of the inactive path or we're being called | 
 | 1493 |  * out of the create path where we're truncating an existing file. | 
 | 1494 |  * Either way, the truncate needs to be sync so blocks don't reappear | 
 | 1495 |  * in the file with altered data in case of a crash.  wsync filesystems | 
 | 1496 |  * can run the first case async because anything that shrinks the inode | 
 | 1497 |  * has to run sync so by the time we're called here from inactive, the | 
 | 1498 |  * inode size is permanently set to 0. | 
 | 1499 |  * | 
 | 1500 |  * Calls from the truncate path always need to be sync unless we're | 
 | 1501 |  * in a wsync filesystem and the file has already been unlinked. | 
 | 1502 |  * | 
 | 1503 |  * The caller is responsible for correctly setting the sync parameter. | 
 | 1504 |  * It gets too hard for us to guess here which path we're being called | 
 | 1505 |  * out of just based on inode state. | 
 | 1506 |  */ | 
 | 1507 | int | 
 | 1508 | xfs_itruncate_finish( | 
 | 1509 | 	xfs_trans_t	**tp, | 
 | 1510 | 	xfs_inode_t	*ip, | 
 | 1511 | 	xfs_fsize_t	new_size, | 
 | 1512 | 	int		fork, | 
 | 1513 | 	int		sync) | 
 | 1514 | { | 
 | 1515 | 	xfs_fsblock_t	first_block; | 
 | 1516 | 	xfs_fileoff_t	first_unmap_block; | 
 | 1517 | 	xfs_fileoff_t	last_block; | 
 | 1518 | 	xfs_filblks_t	unmap_len=0; | 
 | 1519 | 	xfs_mount_t	*mp; | 
 | 1520 | 	xfs_trans_t	*ntp; | 
 | 1521 | 	int		done; | 
 | 1522 | 	int		committed; | 
 | 1523 | 	xfs_bmap_free_t	free_list; | 
 | 1524 | 	int		error; | 
 | 1525 |  | 
 | 1526 | 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | 
 | 1527 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); | 
 | 1528 | 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | 
 | 1529 | 	ASSERT(*tp != NULL); | 
 | 1530 | 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); | 
 | 1531 | 	ASSERT(ip->i_transp == *tp); | 
 | 1532 | 	ASSERT(ip->i_itemp != NULL); | 
 | 1533 | 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); | 
 | 1534 |  | 
 | 1535 |  | 
 | 1536 | 	ntp = *tp; | 
 | 1537 | 	mp = (ntp)->t_mountp; | 
 | 1538 | 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); | 
 | 1539 |  | 
 | 1540 | 	/* | 
 | 1541 | 	 * We only support truncating the entire attribute fork. | 
 | 1542 | 	 */ | 
 | 1543 | 	if (fork == XFS_ATTR_FORK) { | 
 | 1544 | 		new_size = 0LL; | 
 | 1545 | 	} | 
 | 1546 | 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
 | 1547 | 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); | 
 | 1548 | 	/* | 
 | 1549 | 	 * The first thing we do is set the size to new_size permanently | 
 | 1550 | 	 * on disk.  This way we don't have to worry about anyone ever | 
 | 1551 | 	 * being able to look at the data being freed even in the face | 
 | 1552 | 	 * of a crash.  What we're getting around here is the case where | 
 | 1553 | 	 * we free a block, it is allocated to another file, it is written | 
 | 1554 | 	 * to, and then we crash.  If the new data gets written to the | 
 | 1555 | 	 * file but the log buffers containing the free and reallocation | 
 | 1556 | 	 * don't, then we'd end up with garbage in the blocks being freed. | 
 | 1557 | 	 * As long as we make the new_size permanent before actually | 
 | 1558 | 	 * freeing any blocks it doesn't matter if they get writtten to. | 
 | 1559 | 	 * | 
 | 1560 | 	 * The callers must signal into us whether or not the size | 
 | 1561 | 	 * setting here must be synchronous.  There are a few cases | 
 | 1562 | 	 * where it doesn't have to be synchronous.  Those cases | 
 | 1563 | 	 * occur if the file is unlinked and we know the unlink is | 
 | 1564 | 	 * permanent or if the blocks being truncated are guaranteed | 
 | 1565 | 	 * to be beyond the inode eof (regardless of the link count) | 
 | 1566 | 	 * and the eof value is permanent.  Both of these cases occur | 
 | 1567 | 	 * only on wsync-mounted filesystems.  In those cases, we're | 
 | 1568 | 	 * guaranteed that no user will ever see the data in the blocks | 
 | 1569 | 	 * that are being truncated so the truncate can run async. | 
 | 1570 | 	 * In the free beyond eof case, the file may wind up with | 
 | 1571 | 	 * more blocks allocated to it than it needs if we crash | 
 | 1572 | 	 * and that won't get fixed until the next time the file | 
 | 1573 | 	 * is re-opened and closed but that's ok as that shouldn't | 
 | 1574 | 	 * be too many blocks. | 
 | 1575 | 	 * | 
 | 1576 | 	 * However, we can't just make all wsync xactions run async | 
 | 1577 | 	 * because there's one call out of the create path that needs | 
 | 1578 | 	 * to run sync where it's truncating an existing file to size | 
 | 1579 | 	 * 0 whose size is > 0. | 
 | 1580 | 	 * | 
 | 1581 | 	 * It's probably possible to come up with a test in this | 
 | 1582 | 	 * routine that would correctly distinguish all the above | 
 | 1583 | 	 * cases from the values of the function parameters and the | 
 | 1584 | 	 * inode state but for sanity's sake, I've decided to let the | 
 | 1585 | 	 * layers above just tell us.  It's simpler to correctly figure | 
 | 1586 | 	 * out in the layer above exactly under what conditions we | 
 | 1587 | 	 * can run async and I think it's easier for others read and | 
 | 1588 | 	 * follow the logic in case something has to be changed. | 
 | 1589 | 	 * cscope is your friend -- rcc. | 
 | 1590 | 	 * | 
 | 1591 | 	 * The attribute fork is much simpler. | 
 | 1592 | 	 * | 
 | 1593 | 	 * For the attribute fork we allow the caller to tell us whether | 
 | 1594 | 	 * the unlink of the inode that led to this call is yet permanent | 
 | 1595 | 	 * in the on disk log.  If it is not and we will be freeing extents | 
 | 1596 | 	 * in this inode then we make the first transaction synchronous | 
 | 1597 | 	 * to make sure that the unlink is permanent by the time we free | 
 | 1598 | 	 * the blocks. | 
 | 1599 | 	 */ | 
 | 1600 | 	if (fork == XFS_DATA_FORK) { | 
 | 1601 | 		if (ip->i_d.di_nextents > 0) { | 
 | 1602 | 			ip->i_d.di_size = new_size; | 
 | 1603 | 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
 | 1604 | 		} | 
 | 1605 | 	} else if (sync) { | 
 | 1606 | 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); | 
 | 1607 | 		if (ip->i_d.di_anextents > 0) | 
 | 1608 | 			xfs_trans_set_sync(ntp); | 
 | 1609 | 	} | 
 | 1610 | 	ASSERT(fork == XFS_DATA_FORK || | 
 | 1611 | 		(fork == XFS_ATTR_FORK && | 
 | 1612 | 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || | 
 | 1613 | 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); | 
 | 1614 |  | 
 | 1615 | 	/* | 
 | 1616 | 	 * Since it is possible for space to become allocated beyond | 
 | 1617 | 	 * the end of the file (in a crash where the space is allocated | 
 | 1618 | 	 * but the inode size is not yet updated), simply remove any | 
 | 1619 | 	 * blocks which show up between the new EOF and the maximum | 
 | 1620 | 	 * possible file size.  If the first block to be removed is | 
 | 1621 | 	 * beyond the maximum file size (ie it is the same as last_block), | 
 | 1622 | 	 * then there is nothing to do. | 
 | 1623 | 	 */ | 
 | 1624 | 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); | 
 | 1625 | 	ASSERT(first_unmap_block <= last_block); | 
 | 1626 | 	done = 0; | 
 | 1627 | 	if (last_block == first_unmap_block) { | 
 | 1628 | 		done = 1; | 
 | 1629 | 	} else { | 
 | 1630 | 		unmap_len = last_block - first_unmap_block + 1; | 
 | 1631 | 	} | 
 | 1632 | 	while (!done) { | 
 | 1633 | 		/* | 
 | 1634 | 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi() | 
 | 1635 | 		 * will tell us whether it freed the entire range or | 
 | 1636 | 		 * not.  If this is a synchronous mount (wsync), | 
 | 1637 | 		 * then we can tell bunmapi to keep all the | 
 | 1638 | 		 * transactions asynchronous since the unlink | 
 | 1639 | 		 * transaction that made this inode inactive has | 
 | 1640 | 		 * already hit the disk.  There's no danger of | 
 | 1641 | 		 * the freed blocks being reused, there being a | 
 | 1642 | 		 * crash, and the reused blocks suddenly reappearing | 
 | 1643 | 		 * in this file with garbage in them once recovery | 
 | 1644 | 		 * runs. | 
 | 1645 | 		 */ | 
 | 1646 | 		XFS_BMAP_INIT(&free_list, &first_block); | 
 | 1647 | 		error = xfs_bunmapi(ntp, ip, first_unmap_block, | 
 | 1648 | 				    unmap_len, | 
 | 1649 | 				    XFS_BMAPI_AFLAG(fork) | | 
 | 1650 | 				      (sync ? 0 : XFS_BMAPI_ASYNC), | 
 | 1651 | 				    XFS_ITRUNC_MAX_EXTENTS, | 
 | 1652 | 				    &first_block, &free_list, &done); | 
 | 1653 | 		if (error) { | 
 | 1654 | 			/* | 
 | 1655 | 			 * If the bunmapi call encounters an error, | 
 | 1656 | 			 * return to the caller where the transaction | 
 | 1657 | 			 * can be properly aborted.  We just need to | 
 | 1658 | 			 * make sure we're not holding any resources | 
 | 1659 | 			 * that we were not when we came in. | 
 | 1660 | 			 */ | 
 | 1661 | 			xfs_bmap_cancel(&free_list); | 
 | 1662 | 			return error; | 
 | 1663 | 		} | 
 | 1664 |  | 
 | 1665 | 		/* | 
 | 1666 | 		 * Duplicate the transaction that has the permanent | 
 | 1667 | 		 * reservation and commit the old transaction. | 
 | 1668 | 		 */ | 
 | 1669 | 		error = xfs_bmap_finish(tp, &free_list, first_block, | 
 | 1670 | 					&committed); | 
 | 1671 | 		ntp = *tp; | 
 | 1672 | 		if (error) { | 
 | 1673 | 			/* | 
 | 1674 | 			 * If the bmap finish call encounters an error, | 
 | 1675 | 			 * return to the caller where the transaction | 
 | 1676 | 			 * can be properly aborted.  We just need to | 
 | 1677 | 			 * make sure we're not holding any resources | 
 | 1678 | 			 * that we were not when we came in. | 
 | 1679 | 			 * | 
 | 1680 | 			 * Aborting from this point might lose some | 
 | 1681 | 			 * blocks in the file system, but oh well. | 
 | 1682 | 			 */ | 
 | 1683 | 			xfs_bmap_cancel(&free_list); | 
 | 1684 | 			if (committed) { | 
 | 1685 | 				/* | 
 | 1686 | 				 * If the passed in transaction committed | 
 | 1687 | 				 * in xfs_bmap_finish(), then we want to | 
 | 1688 | 				 * add the inode to this one before returning. | 
 | 1689 | 				 * This keeps things simple for the higher | 
 | 1690 | 				 * level code, because it always knows that | 
 | 1691 | 				 * the inode is locked and held in the | 
 | 1692 | 				 * transaction that returns to it whether | 
 | 1693 | 				 * errors occur or not.  We don't mark the | 
 | 1694 | 				 * inode dirty so that this transaction can | 
 | 1695 | 				 * be easily aborted if possible. | 
 | 1696 | 				 */ | 
 | 1697 | 				xfs_trans_ijoin(ntp, ip, | 
 | 1698 | 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 1699 | 				xfs_trans_ihold(ntp, ip); | 
 | 1700 | 			} | 
 | 1701 | 			return error; | 
 | 1702 | 		} | 
 | 1703 |  | 
 | 1704 | 		if (committed) { | 
 | 1705 | 			/* | 
 | 1706 | 			 * The first xact was committed, | 
 | 1707 | 			 * so add the inode to the new one. | 
 | 1708 | 			 * Mark it dirty so it will be logged | 
 | 1709 | 			 * and moved forward in the log as | 
 | 1710 | 			 * part of every commit. | 
 | 1711 | 			 */ | 
 | 1712 | 			xfs_trans_ijoin(ntp, ip, | 
 | 1713 | 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 1714 | 			xfs_trans_ihold(ntp, ip); | 
 | 1715 | 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
 | 1716 | 		} | 
 | 1717 | 		ntp = xfs_trans_dup(ntp); | 
 | 1718 | 		(void) xfs_trans_commit(*tp, 0, NULL); | 
 | 1719 | 		*tp = ntp; | 
 | 1720 | 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, | 
 | 1721 | 					  XFS_TRANS_PERM_LOG_RES, | 
 | 1722 | 					  XFS_ITRUNCATE_LOG_COUNT); | 
 | 1723 | 		/* | 
 | 1724 | 		 * Add the inode being truncated to the next chained | 
 | 1725 | 		 * transaction. | 
 | 1726 | 		 */ | 
 | 1727 | 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 1728 | 		xfs_trans_ihold(ntp, ip); | 
 | 1729 | 		if (error) | 
 | 1730 | 			return (error); | 
 | 1731 | 	} | 
 | 1732 | 	/* | 
 | 1733 | 	 * Only update the size in the case of the data fork, but | 
 | 1734 | 	 * always re-log the inode so that our permanent transaction | 
 | 1735 | 	 * can keep on rolling it forward in the log. | 
 | 1736 | 	 */ | 
 | 1737 | 	if (fork == XFS_DATA_FORK) { | 
 | 1738 | 		xfs_isize_check(mp, ip, new_size); | 
 | 1739 | 		ip->i_d.di_size = new_size; | 
 | 1740 | 	} | 
 | 1741 | 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
 | 1742 | 	ASSERT((new_size != 0) || | 
 | 1743 | 	       (fork == XFS_ATTR_FORK) || | 
 | 1744 | 	       (ip->i_delayed_blks == 0)); | 
 | 1745 | 	ASSERT((new_size != 0) || | 
 | 1746 | 	       (fork == XFS_ATTR_FORK) || | 
 | 1747 | 	       (ip->i_d.di_nextents == 0)); | 
 | 1748 | 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); | 
 | 1749 | 	return 0; | 
 | 1750 | } | 
 | 1751 |  | 
 | 1752 |  | 
 | 1753 | /* | 
 | 1754 |  * xfs_igrow_start | 
 | 1755 |  * | 
 | 1756 |  * Do the first part of growing a file: zero any data in the last | 
 | 1757 |  * block that is beyond the old EOF.  We need to do this before | 
 | 1758 |  * the inode is joined to the transaction to modify the i_size. | 
 | 1759 |  * That way we can drop the inode lock and call into the buffer | 
 | 1760 |  * cache to get the buffer mapping the EOF. | 
 | 1761 |  */ | 
 | 1762 | int | 
 | 1763 | xfs_igrow_start( | 
 | 1764 | 	xfs_inode_t	*ip, | 
 | 1765 | 	xfs_fsize_t	new_size, | 
 | 1766 | 	cred_t		*credp) | 
 | 1767 | { | 
 | 1768 | 	xfs_fsize_t	isize; | 
 | 1769 | 	int		error; | 
 | 1770 |  | 
 | 1771 | 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | 
 | 1772 | 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | 
 | 1773 | 	ASSERT(new_size > ip->i_d.di_size); | 
 | 1774 |  | 
 | 1775 | 	error = 0; | 
 | 1776 | 	isize = ip->i_d.di_size; | 
 | 1777 | 	/* | 
 | 1778 | 	 * Zero any pages that may have been created by | 
 | 1779 | 	 * xfs_write_file() beyond the end of the file | 
 | 1780 | 	 * and any blocks between the old and new file sizes. | 
 | 1781 | 	 */ | 
 | 1782 | 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, | 
 | 1783 | 				new_size); | 
 | 1784 | 	return error; | 
 | 1785 | } | 
 | 1786 |  | 
 | 1787 | /* | 
 | 1788 |  * xfs_igrow_finish | 
 | 1789 |  * | 
 | 1790 |  * This routine is called to extend the size of a file. | 
 | 1791 |  * The inode must have both the iolock and the ilock locked | 
 | 1792 |  * for update and it must be a part of the current transaction. | 
 | 1793 |  * The xfs_igrow_start() function must have been called previously. | 
 | 1794 |  * If the change_flag is not zero, the inode change timestamp will | 
 | 1795 |  * be updated. | 
 | 1796 |  */ | 
 | 1797 | void | 
 | 1798 | xfs_igrow_finish( | 
 | 1799 | 	xfs_trans_t	*tp, | 
 | 1800 | 	xfs_inode_t	*ip, | 
 | 1801 | 	xfs_fsize_t	new_size, | 
 | 1802 | 	int		change_flag) | 
 | 1803 | { | 
 | 1804 | 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | 
 | 1805 | 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | 
 | 1806 | 	ASSERT(ip->i_transp == tp); | 
 | 1807 | 	ASSERT(new_size > ip->i_d.di_size); | 
 | 1808 |  | 
 | 1809 | 	/* | 
 | 1810 | 	 * Update the file size.  Update the inode change timestamp | 
 | 1811 | 	 * if change_flag set. | 
 | 1812 | 	 */ | 
 | 1813 | 	ip->i_d.di_size = new_size; | 
 | 1814 | 	if (change_flag) | 
 | 1815 | 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG); | 
 | 1816 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 1817 |  | 
 | 1818 | } | 
 | 1819 |  | 
 | 1820 |  | 
 | 1821 | /* | 
 | 1822 |  * This is called when the inode's link count goes to 0. | 
 | 1823 |  * We place the on-disk inode on a list in the AGI.  It | 
 | 1824 |  * will be pulled from this list when the inode is freed. | 
 | 1825 |  */ | 
 | 1826 | int | 
 | 1827 | xfs_iunlink( | 
 | 1828 | 	xfs_trans_t	*tp, | 
 | 1829 | 	xfs_inode_t	*ip) | 
 | 1830 | { | 
 | 1831 | 	xfs_mount_t	*mp; | 
 | 1832 | 	xfs_agi_t	*agi; | 
 | 1833 | 	xfs_dinode_t	*dip; | 
 | 1834 | 	xfs_buf_t	*agibp; | 
 | 1835 | 	xfs_buf_t	*ibp; | 
 | 1836 | 	xfs_agnumber_t	agno; | 
 | 1837 | 	xfs_daddr_t	agdaddr; | 
 | 1838 | 	xfs_agino_t	agino; | 
 | 1839 | 	short		bucket_index; | 
 | 1840 | 	int		offset; | 
 | 1841 | 	int		error; | 
 | 1842 | 	int		agi_ok; | 
 | 1843 |  | 
 | 1844 | 	ASSERT(ip->i_d.di_nlink == 0); | 
 | 1845 | 	ASSERT(ip->i_d.di_mode != 0); | 
 | 1846 | 	ASSERT(ip->i_transp == tp); | 
 | 1847 |  | 
 | 1848 | 	mp = tp->t_mountp; | 
 | 1849 |  | 
 | 1850 | 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
 | 1851 | 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | 
 | 1852 |  | 
 | 1853 | 	/* | 
 | 1854 | 	 * Get the agi buffer first.  It ensures lock ordering | 
 | 1855 | 	 * on the list. | 
 | 1856 | 	 */ | 
 | 1857 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | 
 | 1858 | 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp); | 
 | 1859 | 	if (error) { | 
 | 1860 | 		return error; | 
 | 1861 | 	} | 
 | 1862 | 	/* | 
 | 1863 | 	 * Validate the magic number of the agi block. | 
 | 1864 | 	 */ | 
 | 1865 | 	agi = XFS_BUF_TO_AGI(agibp); | 
 | 1866 | 	agi_ok = | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1867 | 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && | 
 | 1868 | 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1869 | 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, | 
 | 1870 | 			XFS_RANDOM_IUNLINK))) { | 
 | 1871 | 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); | 
 | 1872 | 		xfs_trans_brelse(tp, agibp); | 
 | 1873 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 1874 | 	} | 
 | 1875 | 	/* | 
 | 1876 | 	 * Get the index into the agi hash table for the | 
 | 1877 | 	 * list this inode will go on. | 
 | 1878 | 	 */ | 
 | 1879 | 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 1880 | 	ASSERT(agino != 0); | 
 | 1881 | 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 1882 | 	ASSERT(agi->agi_unlinked[bucket_index]); | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1883 | 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1884 |  | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1885 | 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1886 | 		/* | 
 | 1887 | 		 * There is already another inode in the bucket we need | 
 | 1888 | 		 * to add ourselves to.  Add us at the front of the list. | 
 | 1889 | 		 * Here we put the head pointer into our next pointer, | 
 | 1890 | 		 * and then we fall through to point the head at us. | 
 | 1891 | 		 */ | 
 | 1892 | 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
 | 1893 | 		if (error) { | 
 | 1894 | 			return error; | 
 | 1895 | 		} | 
 | 1896 | 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); | 
 | 1897 | 		ASSERT(dip->di_next_unlinked); | 
 | 1898 | 		/* both on-disk, don't endian flip twice */ | 
 | 1899 | 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; | 
 | 1900 | 		offset = ip->i_boffset + | 
 | 1901 | 			offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 1902 | 		xfs_trans_inode_buf(tp, ibp); | 
 | 1903 | 		xfs_trans_log_buf(tp, ibp, offset, | 
 | 1904 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 1905 | 		xfs_inobp_check(mp, ibp); | 
 | 1906 | 	} | 
 | 1907 |  | 
 | 1908 | 	/* | 
 | 1909 | 	 * Point the bucket head pointer at the inode being inserted. | 
 | 1910 | 	 */ | 
 | 1911 | 	ASSERT(agino != 0); | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1912 | 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1913 | 	offset = offsetof(xfs_agi_t, agi_unlinked) + | 
 | 1914 | 		(sizeof(xfs_agino_t) * bucket_index); | 
 | 1915 | 	xfs_trans_log_buf(tp, agibp, offset, | 
 | 1916 | 			  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 1917 | 	return 0; | 
 | 1918 | } | 
 | 1919 |  | 
 | 1920 | /* | 
 | 1921 |  * Pull the on-disk inode from the AGI unlinked list. | 
 | 1922 |  */ | 
 | 1923 | STATIC int | 
 | 1924 | xfs_iunlink_remove( | 
 | 1925 | 	xfs_trans_t	*tp, | 
 | 1926 | 	xfs_inode_t	*ip) | 
 | 1927 | { | 
 | 1928 | 	xfs_ino_t	next_ino; | 
 | 1929 | 	xfs_mount_t	*mp; | 
 | 1930 | 	xfs_agi_t	*agi; | 
 | 1931 | 	xfs_dinode_t	*dip; | 
 | 1932 | 	xfs_buf_t	*agibp; | 
 | 1933 | 	xfs_buf_t	*ibp; | 
 | 1934 | 	xfs_agnumber_t	agno; | 
 | 1935 | 	xfs_daddr_t	agdaddr; | 
 | 1936 | 	xfs_agino_t	agino; | 
 | 1937 | 	xfs_agino_t	next_agino; | 
 | 1938 | 	xfs_buf_t	*last_ibp; | 
 | 1939 | 	xfs_dinode_t	*last_dip; | 
 | 1940 | 	short		bucket_index; | 
 | 1941 | 	int		offset, last_offset; | 
 | 1942 | 	int		error; | 
 | 1943 | 	int		agi_ok; | 
 | 1944 |  | 
 | 1945 | 	/* | 
 | 1946 | 	 * First pull the on-disk inode from the AGI unlinked list. | 
 | 1947 | 	 */ | 
 | 1948 | 	mp = tp->t_mountp; | 
 | 1949 |  | 
 | 1950 | 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
 | 1951 | 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | 
 | 1952 |  | 
 | 1953 | 	/* | 
 | 1954 | 	 * Get the agi buffer first.  It ensures lock ordering | 
 | 1955 | 	 * on the list. | 
 | 1956 | 	 */ | 
 | 1957 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | 
 | 1958 | 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp); | 
 | 1959 | 	if (error) { | 
 | 1960 | 		cmn_err(CE_WARN, | 
 | 1961 | 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.", | 
 | 1962 | 			error, mp->m_fsname); | 
 | 1963 | 		return error; | 
 | 1964 | 	} | 
 | 1965 | 	/* | 
 | 1966 | 	 * Validate the magic number of the agi block. | 
 | 1967 | 	 */ | 
 | 1968 | 	agi = XFS_BUF_TO_AGI(agibp); | 
 | 1969 | 	agi_ok = | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1970 | 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && | 
 | 1971 | 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1972 | 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, | 
 | 1973 | 			XFS_RANDOM_IUNLINK_REMOVE))) { | 
 | 1974 | 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, | 
 | 1975 | 				     mp, agi); | 
 | 1976 | 		xfs_trans_brelse(tp, agibp); | 
 | 1977 | 		cmn_err(CE_WARN, | 
 | 1978 | 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.", | 
 | 1979 | 			 mp->m_fsname); | 
 | 1980 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 1981 | 	} | 
 | 1982 | 	/* | 
 | 1983 | 	 * Get the index into the agi hash table for the | 
 | 1984 | 	 * list this inode will go on. | 
 | 1985 | 	 */ | 
 | 1986 | 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 1987 | 	ASSERT(agino != 0); | 
 | 1988 | 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1989 | 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1990 | 	ASSERT(agi->agi_unlinked[bucket_index]); | 
 | 1991 |  | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 1992 | 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1993 | 		/* | 
 | 1994 | 		 * We're at the head of the list.  Get the inode's | 
 | 1995 | 		 * on-disk buffer to see if there is anyone after us | 
 | 1996 | 		 * on the list.  Only modify our next pointer if it | 
 | 1997 | 		 * is not already NULLAGINO.  This saves us the overhead | 
 | 1998 | 		 * of dealing with the buffer when there is no need to | 
 | 1999 | 		 * change it. | 
 | 2000 | 		 */ | 
 | 2001 | 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
 | 2002 | 		if (error) { | 
 | 2003 | 			cmn_err(CE_WARN, | 
 | 2004 | 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.", | 
 | 2005 | 				error, mp->m_fsname); | 
 | 2006 | 			return error; | 
 | 2007 | 		} | 
 | 2008 | 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | 
 | 2009 | 		ASSERT(next_agino != 0); | 
 | 2010 | 		if (next_agino != NULLAGINO) { | 
 | 2011 | 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | 
 | 2012 | 			offset = ip->i_boffset + | 
 | 2013 | 				offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 2014 | 			xfs_trans_inode_buf(tp, ibp); | 
 | 2015 | 			xfs_trans_log_buf(tp, ibp, offset, | 
 | 2016 | 					  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 2017 | 			xfs_inobp_check(mp, ibp); | 
 | 2018 | 		} else { | 
 | 2019 | 			xfs_trans_brelse(tp, ibp); | 
 | 2020 | 		} | 
 | 2021 | 		/* | 
 | 2022 | 		 * Point the bucket head pointer at the next inode. | 
 | 2023 | 		 */ | 
 | 2024 | 		ASSERT(next_agino != 0); | 
 | 2025 | 		ASSERT(next_agino != agino); | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 2026 | 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2027 | 		offset = offsetof(xfs_agi_t, agi_unlinked) + | 
 | 2028 | 			(sizeof(xfs_agino_t) * bucket_index); | 
 | 2029 | 		xfs_trans_log_buf(tp, agibp, offset, | 
 | 2030 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 2031 | 	} else { | 
 | 2032 | 		/* | 
 | 2033 | 		 * We need to search the list for the inode being freed. | 
 | 2034 | 		 */ | 
| Christoph Hellwig | 16259e7 | 2005-11-02 15:11:25 +1100 | [diff] [blame] | 2035 | 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2036 | 		last_ibp = NULL; | 
 | 2037 | 		while (next_agino != agino) { | 
 | 2038 | 			/* | 
 | 2039 | 			 * If the last inode wasn't the one pointing to | 
 | 2040 | 			 * us, then release its buffer since we're not | 
 | 2041 | 			 * going to do anything with it. | 
 | 2042 | 			 */ | 
 | 2043 | 			if (last_ibp != NULL) { | 
 | 2044 | 				xfs_trans_brelse(tp, last_ibp); | 
 | 2045 | 			} | 
 | 2046 | 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); | 
 | 2047 | 			error = xfs_inotobp(mp, tp, next_ino, &last_dip, | 
 | 2048 | 					    &last_ibp, &last_offset); | 
 | 2049 | 			if (error) { | 
 | 2050 | 				cmn_err(CE_WARN, | 
 | 2051 | 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.", | 
 | 2052 | 					error, mp->m_fsname); | 
 | 2053 | 				return error; | 
 | 2054 | 			} | 
 | 2055 | 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); | 
 | 2056 | 			ASSERT(next_agino != NULLAGINO); | 
 | 2057 | 			ASSERT(next_agino != 0); | 
 | 2058 | 		} | 
 | 2059 | 		/* | 
 | 2060 | 		 * Now last_ibp points to the buffer previous to us on | 
 | 2061 | 		 * the unlinked list.  Pull us from the list. | 
 | 2062 | 		 */ | 
 | 2063 | 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
 | 2064 | 		if (error) { | 
 | 2065 | 			cmn_err(CE_WARN, | 
 | 2066 | 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.", | 
 | 2067 | 				error, mp->m_fsname); | 
 | 2068 | 			return error; | 
 | 2069 | 		} | 
 | 2070 | 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | 
 | 2071 | 		ASSERT(next_agino != 0); | 
 | 2072 | 		ASSERT(next_agino != agino); | 
 | 2073 | 		if (next_agino != NULLAGINO) { | 
 | 2074 | 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | 
 | 2075 | 			offset = ip->i_boffset + | 
 | 2076 | 				offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 2077 | 			xfs_trans_inode_buf(tp, ibp); | 
 | 2078 | 			xfs_trans_log_buf(tp, ibp, offset, | 
 | 2079 | 					  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 2080 | 			xfs_inobp_check(mp, ibp); | 
 | 2081 | 		} else { | 
 | 2082 | 			xfs_trans_brelse(tp, ibp); | 
 | 2083 | 		} | 
 | 2084 | 		/* | 
 | 2085 | 		 * Point the previous inode on the list to the next inode. | 
 | 2086 | 		 */ | 
 | 2087 | 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); | 
 | 2088 | 		ASSERT(next_agino != 0); | 
 | 2089 | 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 2090 | 		xfs_trans_inode_buf(tp, last_ibp); | 
 | 2091 | 		xfs_trans_log_buf(tp, last_ibp, offset, | 
 | 2092 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 2093 | 		xfs_inobp_check(mp, last_ibp); | 
 | 2094 | 	} | 
 | 2095 | 	return 0; | 
 | 2096 | } | 
 | 2097 |  | 
 | 2098 | static __inline__ int xfs_inode_clean(xfs_inode_t *ip) | 
 | 2099 | { | 
 | 2100 | 	return (((ip->i_itemp == NULL) || | 
 | 2101 | 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && | 
 | 2102 | 		(ip->i_update_core == 0)); | 
 | 2103 | } | 
 | 2104 |  | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 2105 | STATIC void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2106 | xfs_ifree_cluster( | 
 | 2107 | 	xfs_inode_t	*free_ip, | 
 | 2108 | 	xfs_trans_t	*tp, | 
 | 2109 | 	xfs_ino_t	inum) | 
 | 2110 | { | 
 | 2111 | 	xfs_mount_t		*mp = free_ip->i_mount; | 
 | 2112 | 	int			blks_per_cluster; | 
 | 2113 | 	int			nbufs; | 
 | 2114 | 	int			ninodes; | 
 | 2115 | 	int			i, j, found, pre_flushed; | 
 | 2116 | 	xfs_daddr_t		blkno; | 
 | 2117 | 	xfs_buf_t		*bp; | 
 | 2118 | 	xfs_ihash_t		*ih; | 
 | 2119 | 	xfs_inode_t		*ip, **ip_found; | 
 | 2120 | 	xfs_inode_log_item_t	*iip; | 
 | 2121 | 	xfs_log_item_t		*lip; | 
 | 2122 | 	SPLDECL(s); | 
 | 2123 |  | 
 | 2124 | 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { | 
 | 2125 | 		blks_per_cluster = 1; | 
 | 2126 | 		ninodes = mp->m_sb.sb_inopblock; | 
 | 2127 | 		nbufs = XFS_IALLOC_BLOCKS(mp); | 
 | 2128 | 	} else { | 
 | 2129 | 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / | 
 | 2130 | 					mp->m_sb.sb_blocksize; | 
 | 2131 | 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; | 
 | 2132 | 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; | 
 | 2133 | 	} | 
 | 2134 |  | 
 | 2135 | 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); | 
 | 2136 |  | 
 | 2137 | 	for (j = 0; j < nbufs; j++, inum += ninodes) { | 
 | 2138 | 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
 | 2139 | 					 XFS_INO_TO_AGBNO(mp, inum)); | 
 | 2140 |  | 
 | 2141 |  | 
 | 2142 | 		/* | 
 | 2143 | 		 * Look for each inode in memory and attempt to lock it, | 
 | 2144 | 		 * we can be racing with flush and tail pushing here. | 
 | 2145 | 		 * any inode we get the locks on, add to an array of | 
 | 2146 | 		 * inode items to process later. | 
 | 2147 | 		 * | 
 | 2148 | 		 * The get the buffer lock, we could beat a flush | 
 | 2149 | 		 * or tail pushing thread to the lock here, in which | 
 | 2150 | 		 * case they will go looking for the inode buffer | 
 | 2151 | 		 * and fail, we need some other form of interlock | 
 | 2152 | 		 * here. | 
 | 2153 | 		 */ | 
 | 2154 | 		found = 0; | 
 | 2155 | 		for (i = 0; i < ninodes; i++) { | 
 | 2156 | 			ih = XFS_IHASH(mp, inum + i); | 
 | 2157 | 			read_lock(&ih->ih_lock); | 
 | 2158 | 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { | 
 | 2159 | 				if (ip->i_ino == inum + i) | 
 | 2160 | 					break; | 
 | 2161 | 			} | 
 | 2162 |  | 
 | 2163 | 			/* Inode not in memory or we found it already, | 
 | 2164 | 			 * nothing to do | 
 | 2165 | 			 */ | 
 | 2166 | 			if (!ip || (ip->i_flags & XFS_ISTALE)) { | 
 | 2167 | 				read_unlock(&ih->ih_lock); | 
 | 2168 | 				continue; | 
 | 2169 | 			} | 
 | 2170 |  | 
 | 2171 | 			if (xfs_inode_clean(ip)) { | 
 | 2172 | 				read_unlock(&ih->ih_lock); | 
 | 2173 | 				continue; | 
 | 2174 | 			} | 
 | 2175 |  | 
 | 2176 | 			/* If we can get the locks then add it to the | 
 | 2177 | 			 * list, otherwise by the time we get the bp lock | 
 | 2178 | 			 * below it will already be attached to the | 
 | 2179 | 			 * inode buffer. | 
 | 2180 | 			 */ | 
 | 2181 |  | 
 | 2182 | 			/* This inode will already be locked - by us, lets | 
 | 2183 | 			 * keep it that way. | 
 | 2184 | 			 */ | 
 | 2185 |  | 
 | 2186 | 			if (ip == free_ip) { | 
 | 2187 | 				if (xfs_iflock_nowait(ip)) { | 
 | 2188 | 					ip->i_flags |= XFS_ISTALE; | 
 | 2189 |  | 
 | 2190 | 					if (xfs_inode_clean(ip)) { | 
 | 2191 | 						xfs_ifunlock(ip); | 
 | 2192 | 					} else { | 
 | 2193 | 						ip_found[found++] = ip; | 
 | 2194 | 					} | 
 | 2195 | 				} | 
 | 2196 | 				read_unlock(&ih->ih_lock); | 
 | 2197 | 				continue; | 
 | 2198 | 			} | 
 | 2199 |  | 
 | 2200 | 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
 | 2201 | 				if (xfs_iflock_nowait(ip)) { | 
 | 2202 | 					ip->i_flags |= XFS_ISTALE; | 
 | 2203 |  | 
 | 2204 | 					if (xfs_inode_clean(ip)) { | 
 | 2205 | 						xfs_ifunlock(ip); | 
 | 2206 | 						xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 2207 | 					} else { | 
 | 2208 | 						ip_found[found++] = ip; | 
 | 2209 | 					} | 
 | 2210 | 				} else { | 
 | 2211 | 					xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 2212 | 				} | 
 | 2213 | 			} | 
 | 2214 |  | 
 | 2215 | 			read_unlock(&ih->ih_lock); | 
 | 2216 | 		} | 
 | 2217 |  | 
 | 2218 | 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,  | 
 | 2219 | 					mp->m_bsize * blks_per_cluster, | 
 | 2220 | 					XFS_BUF_LOCK); | 
 | 2221 |  | 
 | 2222 | 		pre_flushed = 0; | 
 | 2223 | 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | 
 | 2224 | 		while (lip) { | 
 | 2225 | 			if (lip->li_type == XFS_LI_INODE) { | 
 | 2226 | 				iip = (xfs_inode_log_item_t *)lip; | 
 | 2227 | 				ASSERT(iip->ili_logged == 1); | 
 | 2228 | 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; | 
 | 2229 | 				AIL_LOCK(mp,s); | 
 | 2230 | 				iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
 | 2231 | 				AIL_UNLOCK(mp, s); | 
 | 2232 | 				iip->ili_inode->i_flags |= XFS_ISTALE; | 
 | 2233 | 				pre_flushed++; | 
 | 2234 | 			} | 
 | 2235 | 			lip = lip->li_bio_list; | 
 | 2236 | 		} | 
 | 2237 |  | 
 | 2238 | 		for (i = 0; i < found; i++) { | 
 | 2239 | 			ip = ip_found[i]; | 
 | 2240 | 			iip = ip->i_itemp; | 
 | 2241 |  | 
 | 2242 | 			if (!iip) { | 
 | 2243 | 				ip->i_update_core = 0; | 
 | 2244 | 				xfs_ifunlock(ip); | 
 | 2245 | 				xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 2246 | 				continue; | 
 | 2247 | 			} | 
 | 2248 |  | 
 | 2249 | 			iip->ili_last_fields = iip->ili_format.ilf_fields; | 
 | 2250 | 			iip->ili_format.ilf_fields = 0; | 
 | 2251 | 			iip->ili_logged = 1; | 
 | 2252 | 			AIL_LOCK(mp,s); | 
 | 2253 | 			iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
 | 2254 | 			AIL_UNLOCK(mp, s); | 
 | 2255 |  | 
 | 2256 | 			xfs_buf_attach_iodone(bp, | 
 | 2257 | 				(void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
 | 2258 | 				xfs_istale_done, (xfs_log_item_t *)iip); | 
 | 2259 | 			if (ip != free_ip) { | 
 | 2260 | 				xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 2261 | 			} | 
 | 2262 | 		} | 
 | 2263 |  | 
 | 2264 | 		if (found || pre_flushed) | 
 | 2265 | 			xfs_trans_stale_inode_buf(tp, bp); | 
 | 2266 | 		xfs_trans_binval(tp, bp); | 
 | 2267 | 	} | 
 | 2268 |  | 
 | 2269 | 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); | 
 | 2270 | } | 
 | 2271 |  | 
 | 2272 | /* | 
 | 2273 |  * This is called to return an inode to the inode free list. | 
 | 2274 |  * The inode should already be truncated to 0 length and have | 
 | 2275 |  * no pages associated with it.  This routine also assumes that | 
 | 2276 |  * the inode is already a part of the transaction. | 
 | 2277 |  * | 
 | 2278 |  * The on-disk copy of the inode will have been added to the list | 
 | 2279 |  * of unlinked inodes in the AGI. We need to remove the inode from | 
 | 2280 |  * that list atomically with respect to freeing it here. | 
 | 2281 |  */ | 
 | 2282 | int | 
 | 2283 | xfs_ifree( | 
 | 2284 | 	xfs_trans_t	*tp, | 
 | 2285 | 	xfs_inode_t	*ip, | 
 | 2286 | 	xfs_bmap_free_t	*flist) | 
 | 2287 | { | 
 | 2288 | 	int			error; | 
 | 2289 | 	int			delete; | 
 | 2290 | 	xfs_ino_t		first_ino; | 
 | 2291 |  | 
 | 2292 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
 | 2293 | 	ASSERT(ip->i_transp == tp); | 
 | 2294 | 	ASSERT(ip->i_d.di_nlink == 0); | 
 | 2295 | 	ASSERT(ip->i_d.di_nextents == 0); | 
 | 2296 | 	ASSERT(ip->i_d.di_anextents == 0); | 
 | 2297 | 	ASSERT((ip->i_d.di_size == 0) || | 
 | 2298 | 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); | 
 | 2299 | 	ASSERT(ip->i_d.di_nblocks == 0); | 
 | 2300 |  | 
 | 2301 | 	/* | 
 | 2302 | 	 * Pull the on-disk inode from the AGI unlinked list. | 
 | 2303 | 	 */ | 
 | 2304 | 	error = xfs_iunlink_remove(tp, ip); | 
 | 2305 | 	if (error != 0) { | 
 | 2306 | 		return error; | 
 | 2307 | 	} | 
 | 2308 |  | 
 | 2309 | 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); | 
 | 2310 | 	if (error != 0) { | 
 | 2311 | 		return error; | 
 | 2312 | 	} | 
 | 2313 | 	ip->i_d.di_mode = 0;		/* mark incore inode as free */ | 
 | 2314 | 	ip->i_d.di_flags = 0; | 
 | 2315 | 	ip->i_d.di_dmevmask = 0; | 
 | 2316 | 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */ | 
 | 2317 | 	ip->i_df.if_ext_max = | 
 | 2318 | 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 2319 | 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
 | 2320 | 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
 | 2321 | 	/* | 
 | 2322 | 	 * Bump the generation count so no one will be confused | 
 | 2323 | 	 * by reincarnations of this inode. | 
 | 2324 | 	 */ | 
 | 2325 | 	ip->i_d.di_gen++; | 
 | 2326 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 2327 |  | 
 | 2328 | 	if (delete) { | 
 | 2329 | 		xfs_ifree_cluster(ip, tp, first_ino); | 
 | 2330 | 	} | 
 | 2331 |  | 
 | 2332 | 	return 0; | 
 | 2333 | } | 
 | 2334 |  | 
 | 2335 | /* | 
 | 2336 |  * Reallocate the space for if_broot based on the number of records | 
 | 2337 |  * being added or deleted as indicated in rec_diff.  Move the records | 
 | 2338 |  * and pointers in if_broot to fit the new size.  When shrinking this | 
 | 2339 |  * will eliminate holes between the records and pointers created by | 
 | 2340 |  * the caller.  When growing this will create holes to be filled in | 
 | 2341 |  * by the caller. | 
 | 2342 |  * | 
 | 2343 |  * The caller must not request to add more records than would fit in | 
 | 2344 |  * the on-disk inode root.  If the if_broot is currently NULL, then | 
 | 2345 |  * if we adding records one will be allocated.  The caller must also | 
 | 2346 |  * not request that the number of records go below zero, although | 
 | 2347 |  * it can go to zero. | 
 | 2348 |  * | 
 | 2349 |  * ip -- the inode whose if_broot area is changing | 
 | 2350 |  * ext_diff -- the change in the number of records, positive or negative, | 
 | 2351 |  *	 requested for the if_broot array. | 
 | 2352 |  */ | 
 | 2353 | void | 
 | 2354 | xfs_iroot_realloc( | 
 | 2355 | 	xfs_inode_t		*ip, | 
 | 2356 | 	int			rec_diff, | 
 | 2357 | 	int			whichfork) | 
 | 2358 | { | 
 | 2359 | 	int			cur_max; | 
 | 2360 | 	xfs_ifork_t		*ifp; | 
 | 2361 | 	xfs_bmbt_block_t	*new_broot; | 
 | 2362 | 	int			new_max; | 
 | 2363 | 	size_t			new_size; | 
 | 2364 | 	char			*np; | 
 | 2365 | 	char			*op; | 
 | 2366 |  | 
 | 2367 | 	/* | 
 | 2368 | 	 * Handle the degenerate case quietly. | 
 | 2369 | 	 */ | 
 | 2370 | 	if (rec_diff == 0) { | 
 | 2371 | 		return; | 
 | 2372 | 	} | 
 | 2373 |  | 
 | 2374 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 2375 | 	if (rec_diff > 0) { | 
 | 2376 | 		/* | 
 | 2377 | 		 * If there wasn't any memory allocated before, just | 
 | 2378 | 		 * allocate it now and get out. | 
 | 2379 | 		 */ | 
 | 2380 | 		if (ifp->if_broot_bytes == 0) { | 
 | 2381 | 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); | 
 | 2382 | 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, | 
 | 2383 | 								     KM_SLEEP); | 
 | 2384 | 			ifp->if_broot_bytes = (int)new_size; | 
 | 2385 | 			return; | 
 | 2386 | 		} | 
 | 2387 |  | 
 | 2388 | 		/* | 
 | 2389 | 		 * If there is already an existing if_broot, then we need | 
 | 2390 | 		 * to realloc() it and shift the pointers to their new | 
 | 2391 | 		 * location.  The records don't change location because | 
 | 2392 | 		 * they are kept butted up against the btree block header. | 
 | 2393 | 		 */ | 
 | 2394 | 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | 
 | 2395 | 		new_max = cur_max + rec_diff; | 
 | 2396 | 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | 
 | 2397 | 		ifp->if_broot = (xfs_bmbt_block_t *) | 
 | 2398 | 		  kmem_realloc(ifp->if_broot, | 
 | 2399 | 				new_size, | 
 | 2400 | 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ | 
 | 2401 | 				KM_SLEEP); | 
 | 2402 | 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
 | 2403 | 						      ifp->if_broot_bytes); | 
 | 2404 | 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
 | 2405 | 						      (int)new_size); | 
 | 2406 | 		ifp->if_broot_bytes = (int)new_size; | 
 | 2407 | 		ASSERT(ifp->if_broot_bytes <= | 
 | 2408 | 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | 
 | 2409 | 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | 
 | 2410 | 		return; | 
 | 2411 | 	} | 
 | 2412 |  | 
 | 2413 | 	/* | 
 | 2414 | 	 * rec_diff is less than 0.  In this case, we are shrinking the | 
 | 2415 | 	 * if_broot buffer.  It must already exist.  If we go to zero | 
 | 2416 | 	 * records, just get rid of the root and clear the status bit. | 
 | 2417 | 	 */ | 
 | 2418 | 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | 
 | 2419 | 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | 
 | 2420 | 	new_max = cur_max + rec_diff; | 
 | 2421 | 	ASSERT(new_max >= 0); | 
 | 2422 | 	if (new_max > 0) | 
 | 2423 | 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | 
 | 2424 | 	else | 
 | 2425 | 		new_size = 0; | 
 | 2426 | 	if (new_size > 0) { | 
 | 2427 | 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); | 
 | 2428 | 		/* | 
 | 2429 | 		 * First copy over the btree block header. | 
 | 2430 | 		 */ | 
 | 2431 | 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); | 
 | 2432 | 	} else { | 
 | 2433 | 		new_broot = NULL; | 
 | 2434 | 		ifp->if_flags &= ~XFS_IFBROOT; | 
 | 2435 | 	} | 
 | 2436 |  | 
 | 2437 | 	/* | 
 | 2438 | 	 * Only copy the records and pointers if there are any. | 
 | 2439 | 	 */ | 
 | 2440 | 	if (new_max > 0) { | 
 | 2441 | 		/* | 
 | 2442 | 		 * First copy the records. | 
 | 2443 | 		 */ | 
 | 2444 | 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, | 
 | 2445 | 						     ifp->if_broot_bytes); | 
 | 2446 | 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, | 
 | 2447 | 						     (int)new_size); | 
 | 2448 | 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); | 
 | 2449 |  | 
 | 2450 | 		/* | 
 | 2451 | 		 * Then copy the pointers. | 
 | 2452 | 		 */ | 
 | 2453 | 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
 | 2454 | 						     ifp->if_broot_bytes); | 
 | 2455 | 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, | 
 | 2456 | 						     (int)new_size); | 
 | 2457 | 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | 
 | 2458 | 	} | 
 | 2459 | 	kmem_free(ifp->if_broot, ifp->if_broot_bytes); | 
 | 2460 | 	ifp->if_broot = new_broot; | 
 | 2461 | 	ifp->if_broot_bytes = (int)new_size; | 
 | 2462 | 	ASSERT(ifp->if_broot_bytes <= | 
 | 2463 | 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | 
 | 2464 | 	return; | 
 | 2465 | } | 
 | 2466 |  | 
 | 2467 |  | 
 | 2468 | /* | 
 | 2469 |  * This is called when the amount of space needed for if_extents | 
 | 2470 |  * is increased or decreased.  The change in size is indicated by | 
 | 2471 |  * the number of extents that need to be added or deleted in the | 
 | 2472 |  * ext_diff parameter. | 
 | 2473 |  * | 
 | 2474 |  * If the amount of space needed has decreased below the size of the | 
 | 2475 |  * inline buffer, then switch to using the inline buffer.  Otherwise, | 
 | 2476 |  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
 | 2477 |  * to what is needed. | 
 | 2478 |  * | 
 | 2479 |  * ip -- the inode whose if_extents area is changing | 
 | 2480 |  * ext_diff -- the change in the number of extents, positive or negative, | 
 | 2481 |  *	 requested for the if_extents array. | 
 | 2482 |  */ | 
 | 2483 | void | 
 | 2484 | xfs_iext_realloc( | 
 | 2485 | 	xfs_inode_t	*ip, | 
 | 2486 | 	int		ext_diff, | 
 | 2487 | 	int		whichfork) | 
 | 2488 | { | 
 | 2489 | 	int		byte_diff; | 
 | 2490 | 	xfs_ifork_t	*ifp; | 
 | 2491 | 	int		new_size; | 
 | 2492 | 	uint		rnew_size; | 
 | 2493 |  | 
 | 2494 | 	if (ext_diff == 0) { | 
 | 2495 | 		return; | 
 | 2496 | 	} | 
 | 2497 |  | 
 | 2498 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 2499 | 	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); | 
 | 2500 | 	new_size = (int)ifp->if_bytes + byte_diff; | 
 | 2501 | 	ASSERT(new_size >= 0); | 
 | 2502 |  | 
 | 2503 | 	if (new_size == 0) { | 
 | 2504 | 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | 
 | 2505 | 			ASSERT(ifp->if_real_bytes != 0); | 
 | 2506 | 			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | 
 | 2507 | 		} | 
 | 2508 | 		ifp->if_u1.if_extents = NULL; | 
 | 2509 | 		rnew_size = 0; | 
 | 2510 | 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { | 
 | 2511 | 		/* | 
 | 2512 | 		 * If the valid extents can fit in if_inline_ext, | 
 | 2513 | 		 * copy them from the malloc'd vector and free it. | 
 | 2514 | 		 */ | 
 | 2515 | 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | 
 | 2516 | 			/* | 
 | 2517 | 			 * For now, empty files are format EXTENTS, | 
 | 2518 | 			 * so the if_extents pointer is null. | 
 | 2519 | 			 */ | 
 | 2520 | 			if (ifp->if_u1.if_extents) { | 
 | 2521 | 				memcpy(ifp->if_u2.if_inline_ext, | 
 | 2522 | 					ifp->if_u1.if_extents, new_size); | 
 | 2523 | 				kmem_free(ifp->if_u1.if_extents, | 
 | 2524 | 					  ifp->if_real_bytes); | 
 | 2525 | 			} | 
 | 2526 | 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
 | 2527 | 		} | 
 | 2528 | 		rnew_size = 0; | 
 | 2529 | 	} else { | 
 | 2530 | 		rnew_size = new_size; | 
 | 2531 | 		if ((rnew_size & (rnew_size - 1)) != 0) | 
 | 2532 | 			rnew_size = xfs_iroundup(rnew_size); | 
 | 2533 | 		/* | 
 | 2534 | 		 * Stuck with malloc/realloc. | 
 | 2535 | 		 */ | 
 | 2536 | 		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { | 
 | 2537 | 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | 
 | 2538 | 				kmem_alloc(rnew_size, KM_SLEEP); | 
 | 2539 | 			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | 
 | 2540 | 			      sizeof(ifp->if_u2.if_inline_ext)); | 
 | 2541 | 		} else if (rnew_size != ifp->if_real_bytes) { | 
 | 2542 | 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | 
 | 2543 | 			  kmem_realloc(ifp->if_u1.if_extents, | 
 | 2544 | 					rnew_size, | 
 | 2545 | 					ifp->if_real_bytes, | 
 | 2546 | 					KM_NOFS); | 
 | 2547 | 		} | 
 | 2548 | 	} | 
 | 2549 | 	ifp->if_real_bytes = rnew_size; | 
 | 2550 | 	ifp->if_bytes = new_size; | 
 | 2551 | } | 
 | 2552 |  | 
 | 2553 |  | 
 | 2554 | /* | 
 | 2555 |  * This is called when the amount of space needed for if_data | 
 | 2556 |  * is increased or decreased.  The change in size is indicated by | 
 | 2557 |  * the number of bytes that need to be added or deleted in the | 
 | 2558 |  * byte_diff parameter. | 
 | 2559 |  * | 
 | 2560 |  * If the amount of space needed has decreased below the size of the | 
 | 2561 |  * inline buffer, then switch to using the inline buffer.  Otherwise, | 
 | 2562 |  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
 | 2563 |  * to what is needed. | 
 | 2564 |  * | 
 | 2565 |  * ip -- the inode whose if_data area is changing | 
 | 2566 |  * byte_diff -- the change in the number of bytes, positive or negative, | 
 | 2567 |  *	 requested for the if_data array. | 
 | 2568 |  */ | 
 | 2569 | void | 
 | 2570 | xfs_idata_realloc( | 
 | 2571 | 	xfs_inode_t	*ip, | 
 | 2572 | 	int		byte_diff, | 
 | 2573 | 	int		whichfork) | 
 | 2574 | { | 
 | 2575 | 	xfs_ifork_t	*ifp; | 
 | 2576 | 	int		new_size; | 
 | 2577 | 	int		real_size; | 
 | 2578 |  | 
 | 2579 | 	if (byte_diff == 0) { | 
 | 2580 | 		return; | 
 | 2581 | 	} | 
 | 2582 |  | 
 | 2583 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 2584 | 	new_size = (int)ifp->if_bytes + byte_diff; | 
 | 2585 | 	ASSERT(new_size >= 0); | 
 | 2586 |  | 
 | 2587 | 	if (new_size == 0) { | 
 | 2588 | 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
 | 2589 | 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
 | 2590 | 		} | 
 | 2591 | 		ifp->if_u1.if_data = NULL; | 
 | 2592 | 		real_size = 0; | 
 | 2593 | 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | 
 | 2594 | 		/* | 
 | 2595 | 		 * If the valid extents/data can fit in if_inline_ext/data, | 
 | 2596 | 		 * copy them from the malloc'd vector and free it. | 
 | 2597 | 		 */ | 
 | 2598 | 		if (ifp->if_u1.if_data == NULL) { | 
 | 2599 | 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
 | 2600 | 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
 | 2601 | 			ASSERT(ifp->if_real_bytes != 0); | 
 | 2602 | 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | 
 | 2603 | 			      new_size); | 
 | 2604 | 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
 | 2605 | 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
 | 2606 | 		} | 
 | 2607 | 		real_size = 0; | 
 | 2608 | 	} else { | 
 | 2609 | 		/* | 
 | 2610 | 		 * Stuck with malloc/realloc. | 
 | 2611 | 		 * For inline data, the underlying buffer must be | 
 | 2612 | 		 * a multiple of 4 bytes in size so that it can be | 
 | 2613 | 		 * logged and stay on word boundaries.  We enforce | 
 | 2614 | 		 * that here. | 
 | 2615 | 		 */ | 
 | 2616 | 		real_size = roundup(new_size, 4); | 
 | 2617 | 		if (ifp->if_u1.if_data == NULL) { | 
 | 2618 | 			ASSERT(ifp->if_real_bytes == 0); | 
 | 2619 | 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
 | 2620 | 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
 | 2621 | 			/* | 
 | 2622 | 			 * Only do the realloc if the underlying size | 
 | 2623 | 			 * is really changing. | 
 | 2624 | 			 */ | 
 | 2625 | 			if (ifp->if_real_bytes != real_size) { | 
 | 2626 | 				ifp->if_u1.if_data = | 
 | 2627 | 					kmem_realloc(ifp->if_u1.if_data, | 
 | 2628 | 							real_size, | 
 | 2629 | 							ifp->if_real_bytes, | 
 | 2630 | 							KM_SLEEP); | 
 | 2631 | 			} | 
 | 2632 | 		} else { | 
 | 2633 | 			ASSERT(ifp->if_real_bytes == 0); | 
 | 2634 | 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
 | 2635 | 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, | 
 | 2636 | 				ifp->if_bytes); | 
 | 2637 | 		} | 
 | 2638 | 	} | 
 | 2639 | 	ifp->if_real_bytes = real_size; | 
 | 2640 | 	ifp->if_bytes = new_size; | 
 | 2641 | 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
 | 2642 | } | 
 | 2643 |  | 
 | 2644 |  | 
 | 2645 |  | 
 | 2646 |  | 
 | 2647 | /* | 
 | 2648 |  * Map inode to disk block and offset. | 
 | 2649 |  * | 
 | 2650 |  * mp -- the mount point structure for the current file system | 
 | 2651 |  * tp -- the current transaction | 
 | 2652 |  * ino -- the inode number of the inode to be located | 
 | 2653 |  * imap -- this structure is filled in with the information necessary | 
 | 2654 |  *	 to retrieve the given inode from disk | 
 | 2655 |  * flags -- flags to pass to xfs_dilocate indicating whether or not | 
 | 2656 |  *	 lookups in the inode btree were OK or not | 
 | 2657 |  */ | 
 | 2658 | int | 
 | 2659 | xfs_imap( | 
 | 2660 | 	xfs_mount_t	*mp, | 
 | 2661 | 	xfs_trans_t	*tp, | 
 | 2662 | 	xfs_ino_t	ino, | 
 | 2663 | 	xfs_imap_t	*imap, | 
 | 2664 | 	uint		flags) | 
 | 2665 | { | 
 | 2666 | 	xfs_fsblock_t	fsbno; | 
 | 2667 | 	int		len; | 
 | 2668 | 	int		off; | 
 | 2669 | 	int		error; | 
 | 2670 |  | 
 | 2671 | 	fsbno = imap->im_blkno ? | 
 | 2672 | 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; | 
 | 2673 | 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); | 
 | 2674 | 	if (error != 0) { | 
 | 2675 | 		return error; | 
 | 2676 | 	} | 
 | 2677 | 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); | 
 | 2678 | 	imap->im_len = XFS_FSB_TO_BB(mp, len); | 
 | 2679 | 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); | 
 | 2680 | 	imap->im_ioffset = (ushort)off; | 
 | 2681 | 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); | 
 | 2682 | 	return 0; | 
 | 2683 | } | 
 | 2684 |  | 
 | 2685 | void | 
 | 2686 | xfs_idestroy_fork( | 
 | 2687 | 	xfs_inode_t	*ip, | 
 | 2688 | 	int		whichfork) | 
 | 2689 | { | 
 | 2690 | 	xfs_ifork_t	*ifp; | 
 | 2691 |  | 
 | 2692 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 2693 | 	if (ifp->if_broot != NULL) { | 
 | 2694 | 		kmem_free(ifp->if_broot, ifp->if_broot_bytes); | 
 | 2695 | 		ifp->if_broot = NULL; | 
 | 2696 | 	} | 
 | 2697 |  | 
 | 2698 | 	/* | 
 | 2699 | 	 * If the format is local, then we can't have an extents | 
 | 2700 | 	 * array so just look for an inline data array.  If we're | 
 | 2701 | 	 * not local then we may or may not have an extents list, | 
 | 2702 | 	 * so check and free it up if we do. | 
 | 2703 | 	 */ | 
 | 2704 | 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | 
 | 2705 | 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | 
 | 2706 | 		    (ifp->if_u1.if_data != NULL)) { | 
 | 2707 | 			ASSERT(ifp->if_real_bytes != 0); | 
 | 2708 | 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
 | 2709 | 			ifp->if_u1.if_data = NULL; | 
 | 2710 | 			ifp->if_real_bytes = 0; | 
 | 2711 | 		} | 
 | 2712 | 	} else if ((ifp->if_flags & XFS_IFEXTENTS) && | 
 | 2713 | 		   (ifp->if_u1.if_extents != NULL) && | 
 | 2714 | 		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { | 
 | 2715 | 		ASSERT(ifp->if_real_bytes != 0); | 
 | 2716 | 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | 
 | 2717 | 		ifp->if_u1.if_extents = NULL; | 
 | 2718 | 		ifp->if_real_bytes = 0; | 
 | 2719 | 	} | 
 | 2720 | 	ASSERT(ifp->if_u1.if_extents == NULL || | 
 | 2721 | 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | 
 | 2722 | 	ASSERT(ifp->if_real_bytes == 0); | 
 | 2723 | 	if (whichfork == XFS_ATTR_FORK) { | 
 | 2724 | 		kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
 | 2725 | 		ip->i_afp = NULL; | 
 | 2726 | 	} | 
 | 2727 | } | 
 | 2728 |  | 
 | 2729 | /* | 
 | 2730 |  * This is called free all the memory associated with an inode. | 
 | 2731 |  * It must free the inode itself and any buffers allocated for | 
 | 2732 |  * if_extents/if_data and if_broot.  It must also free the lock | 
 | 2733 |  * associated with the inode. | 
 | 2734 |  */ | 
 | 2735 | void | 
 | 2736 | xfs_idestroy( | 
 | 2737 | 	xfs_inode_t	*ip) | 
 | 2738 | { | 
 | 2739 |  | 
 | 2740 | 	switch (ip->i_d.di_mode & S_IFMT) { | 
 | 2741 | 	case S_IFREG: | 
 | 2742 | 	case S_IFDIR: | 
 | 2743 | 	case S_IFLNK: | 
 | 2744 | 		xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
 | 2745 | 		break; | 
 | 2746 | 	} | 
 | 2747 | 	if (ip->i_afp) | 
 | 2748 | 		xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
 | 2749 | 	mrfree(&ip->i_lock); | 
 | 2750 | 	mrfree(&ip->i_iolock); | 
 | 2751 | 	freesema(&ip->i_flock); | 
 | 2752 | #ifdef XFS_BMAP_TRACE | 
 | 2753 | 	ktrace_free(ip->i_xtrace); | 
 | 2754 | #endif | 
 | 2755 | #ifdef XFS_BMBT_TRACE | 
 | 2756 | 	ktrace_free(ip->i_btrace); | 
 | 2757 | #endif | 
 | 2758 | #ifdef XFS_RW_TRACE | 
 | 2759 | 	ktrace_free(ip->i_rwtrace); | 
 | 2760 | #endif | 
 | 2761 | #ifdef XFS_ILOCK_TRACE | 
 | 2762 | 	ktrace_free(ip->i_lock_trace); | 
 | 2763 | #endif | 
 | 2764 | #ifdef XFS_DIR2_TRACE | 
 | 2765 | 	ktrace_free(ip->i_dir_trace); | 
 | 2766 | #endif | 
 | 2767 | 	if (ip->i_itemp) { | 
 | 2768 | 		/* XXXdpd should be able to assert this but shutdown | 
 | 2769 | 		 * is leaving the AIL behind. */ | 
 | 2770 | 		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || | 
 | 2771 | 		       XFS_FORCED_SHUTDOWN(ip->i_mount)); | 
 | 2772 | 		xfs_inode_item_destroy(ip); | 
 | 2773 | 	} | 
 | 2774 | 	kmem_zone_free(xfs_inode_zone, ip); | 
 | 2775 | } | 
 | 2776 |  | 
 | 2777 |  | 
 | 2778 | /* | 
 | 2779 |  * Increment the pin count of the given buffer. | 
 | 2780 |  * This value is protected by ipinlock spinlock in the mount structure. | 
 | 2781 |  */ | 
 | 2782 | void | 
 | 2783 | xfs_ipin( | 
 | 2784 | 	xfs_inode_t	*ip) | 
 | 2785 | { | 
 | 2786 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
 | 2787 |  | 
 | 2788 | 	atomic_inc(&ip->i_pincount); | 
 | 2789 | } | 
 | 2790 |  | 
 | 2791 | /* | 
 | 2792 |  * Decrement the pin count of the given inode, and wake up | 
 | 2793 |  * anyone in xfs_iwait_unpin() if the count goes to 0.  The | 
 | 2794 |  * inode must have been previoulsy pinned with a call to xfs_ipin(). | 
 | 2795 |  */ | 
 | 2796 | void | 
 | 2797 | xfs_iunpin( | 
 | 2798 | 	xfs_inode_t	*ip) | 
 | 2799 | { | 
 | 2800 | 	ASSERT(atomic_read(&ip->i_pincount) > 0); | 
 | 2801 |  | 
 | 2802 | 	if (atomic_dec_and_test(&ip->i_pincount)) { | 
 | 2803 | 		vnode_t	*vp = XFS_ITOV_NULL(ip); | 
 | 2804 |  | 
 | 2805 | 		/* make sync come back and flush this inode */ | 
 | 2806 | 		if (vp) { | 
 | 2807 | 			struct inode	*inode = LINVFS_GET_IP(vp); | 
 | 2808 |  | 
 | 2809 | 			if (!(inode->i_state & I_NEW)) | 
 | 2810 | 				mark_inode_dirty_sync(inode); | 
 | 2811 | 		} | 
 | 2812 |  | 
 | 2813 | 		wake_up(&ip->i_ipin_wait); | 
 | 2814 | 	} | 
 | 2815 | } | 
 | 2816 |  | 
 | 2817 | /* | 
 | 2818 |  * This is called to wait for the given inode to be unpinned. | 
 | 2819 |  * It will sleep until this happens.  The caller must have the | 
 | 2820 |  * inode locked in at least shared mode so that the buffer cannot | 
 | 2821 |  * be subsequently pinned once someone is waiting for it to be | 
 | 2822 |  * unpinned. | 
 | 2823 |  */ | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 2824 | STATIC void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2825 | xfs_iunpin_wait( | 
 | 2826 | 	xfs_inode_t	*ip) | 
 | 2827 | { | 
 | 2828 | 	xfs_inode_log_item_t	*iip; | 
 | 2829 | 	xfs_lsn_t	lsn; | 
 | 2830 |  | 
 | 2831 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); | 
 | 2832 |  | 
 | 2833 | 	if (atomic_read(&ip->i_pincount) == 0) { | 
 | 2834 | 		return; | 
 | 2835 | 	} | 
 | 2836 |  | 
 | 2837 | 	iip = ip->i_itemp; | 
 | 2838 | 	if (iip && iip->ili_last_lsn) { | 
 | 2839 | 		lsn = iip->ili_last_lsn; | 
 | 2840 | 	} else { | 
 | 2841 | 		lsn = (xfs_lsn_t)0; | 
 | 2842 | 	} | 
 | 2843 |  | 
 | 2844 | 	/* | 
 | 2845 | 	 * Give the log a push so we don't wait here too long. | 
 | 2846 | 	 */ | 
 | 2847 | 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); | 
 | 2848 |  | 
 | 2849 | 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); | 
 | 2850 | } | 
 | 2851 |  | 
 | 2852 |  | 
 | 2853 | /* | 
 | 2854 |  * xfs_iextents_copy() | 
 | 2855 |  * | 
 | 2856 |  * This is called to copy the REAL extents (as opposed to the delayed | 
 | 2857 |  * allocation extents) from the inode into the given buffer.  It | 
 | 2858 |  * returns the number of bytes copied into the buffer. | 
 | 2859 |  * | 
 | 2860 |  * If there are no delayed allocation extents, then we can just | 
 | 2861 |  * memcpy() the extents into the buffer.  Otherwise, we need to | 
 | 2862 |  * examine each extent in turn and skip those which are delayed. | 
 | 2863 |  */ | 
 | 2864 | int | 
 | 2865 | xfs_iextents_copy( | 
 | 2866 | 	xfs_inode_t		*ip, | 
 | 2867 | 	xfs_bmbt_rec_t		*buffer, | 
 | 2868 | 	int			whichfork) | 
 | 2869 | { | 
 | 2870 | 	int			copied; | 
 | 2871 | 	xfs_bmbt_rec_t		*dest_ep; | 
 | 2872 | 	xfs_bmbt_rec_t		*ep; | 
 | 2873 | #ifdef XFS_BMAP_TRACE | 
 | 2874 | 	static char		fname[] = "xfs_iextents_copy"; | 
 | 2875 | #endif | 
 | 2876 | 	int			i; | 
 | 2877 | 	xfs_ifork_t		*ifp; | 
 | 2878 | 	int			nrecs; | 
 | 2879 | 	xfs_fsblock_t		start_block; | 
 | 2880 |  | 
 | 2881 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 2882 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
 | 2883 | 	ASSERT(ifp->if_bytes > 0); | 
 | 2884 |  | 
 | 2885 | 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 2886 | 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); | 
 | 2887 | 	ASSERT(nrecs > 0); | 
 | 2888 |  | 
 | 2889 | 	/* | 
 | 2890 | 	 * There are some delayed allocation extents in the | 
 | 2891 | 	 * inode, so copy the extents one at a time and skip | 
 | 2892 | 	 * the delayed ones.  There must be at least one | 
 | 2893 | 	 * non-delayed extent. | 
 | 2894 | 	 */ | 
 | 2895 | 	ep = ifp->if_u1.if_extents; | 
 | 2896 | 	dest_ep = buffer; | 
 | 2897 | 	copied = 0; | 
 | 2898 | 	for (i = 0; i < nrecs; i++) { | 
 | 2899 | 		start_block = xfs_bmbt_get_startblock(ep); | 
 | 2900 | 		if (ISNULLSTARTBLOCK(start_block)) { | 
 | 2901 | 			/* | 
 | 2902 | 			 * It's a delayed allocation extent, so skip it. | 
 | 2903 | 			 */ | 
 | 2904 | 			ep++; | 
 | 2905 | 			continue; | 
 | 2906 | 		} | 
 | 2907 |  | 
 | 2908 | 		/* Translate to on disk format */ | 
 | 2909 | 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), | 
 | 2910 | 			      (__uint64_t*)&dest_ep->l0); | 
 | 2911 | 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), | 
 | 2912 | 			      (__uint64_t*)&dest_ep->l1); | 
 | 2913 | 		dest_ep++; | 
 | 2914 | 		ep++; | 
 | 2915 | 		copied++; | 
 | 2916 | 	} | 
 | 2917 | 	ASSERT(copied != 0); | 
 | 2918 | 	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); | 
 | 2919 |  | 
 | 2920 | 	return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | 
 | 2921 | } | 
 | 2922 |  | 
 | 2923 | /* | 
 | 2924 |  * Each of the following cases stores data into the same region | 
 | 2925 |  * of the on-disk inode, so only one of them can be valid at | 
 | 2926 |  * any given time. While it is possible to have conflicting formats | 
 | 2927 |  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | 
 | 2928 |  * in EXTENTS format, this can only happen when the fork has | 
 | 2929 |  * changed formats after being modified but before being flushed. | 
 | 2930 |  * In these cases, the format always takes precedence, because the | 
 | 2931 |  * format indicates the current state of the fork. | 
 | 2932 |  */ | 
 | 2933 | /*ARGSUSED*/ | 
 | 2934 | STATIC int | 
 | 2935 | xfs_iflush_fork( | 
 | 2936 | 	xfs_inode_t		*ip, | 
 | 2937 | 	xfs_dinode_t		*dip, | 
 | 2938 | 	xfs_inode_log_item_t	*iip, | 
 | 2939 | 	int			whichfork, | 
 | 2940 | 	xfs_buf_t		*bp) | 
 | 2941 | { | 
 | 2942 | 	char			*cp; | 
 | 2943 | 	xfs_ifork_t		*ifp; | 
 | 2944 | 	xfs_mount_t		*mp; | 
 | 2945 | #ifdef XFS_TRANS_DEBUG | 
 | 2946 | 	int			first; | 
 | 2947 | #endif | 
 | 2948 | 	static const short	brootflag[2] = | 
 | 2949 | 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | 
 | 2950 | 	static const short	dataflag[2] = | 
 | 2951 | 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | 
 | 2952 | 	static const short	extflag[2] = | 
 | 2953 | 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | 
 | 2954 |  | 
 | 2955 | 	if (iip == NULL) | 
 | 2956 | 		return 0; | 
 | 2957 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 2958 | 	/* | 
 | 2959 | 	 * This can happen if we gave up in iformat in an error path, | 
 | 2960 | 	 * for the attribute fork. | 
 | 2961 | 	 */ | 
 | 2962 | 	if (ifp == NULL) { | 
 | 2963 | 		ASSERT(whichfork == XFS_ATTR_FORK); | 
 | 2964 | 		return 0; | 
 | 2965 | 	} | 
 | 2966 | 	cp = XFS_DFORK_PTR(dip, whichfork); | 
 | 2967 | 	mp = ip->i_mount; | 
 | 2968 | 	switch (XFS_IFORK_FORMAT(ip, whichfork)) { | 
 | 2969 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 2970 | 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && | 
 | 2971 | 		    (ifp->if_bytes > 0)) { | 
 | 2972 | 			ASSERT(ifp->if_u1.if_data != NULL); | 
 | 2973 | 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
 | 2974 | 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | 
 | 2975 | 		} | 
 | 2976 | 		if (whichfork == XFS_DATA_FORK) { | 
 | 2977 | 			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { | 
 | 2978 | 				XFS_ERROR_REPORT("xfs_iflush_fork", | 
 | 2979 | 						 XFS_ERRLEVEL_LOW, mp); | 
 | 2980 | 				return XFS_ERROR(EFSCORRUPTED); | 
 | 2981 | 			} | 
 | 2982 | 		} | 
 | 2983 | 		break; | 
 | 2984 |  | 
 | 2985 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 2986 | 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | 
 | 2987 | 		       !(iip->ili_format.ilf_fields & extflag[whichfork])); | 
 | 2988 | 		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); | 
 | 2989 | 		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); | 
 | 2990 | 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) && | 
 | 2991 | 		    (ifp->if_bytes > 0)) { | 
 | 2992 | 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); | 
 | 2993 | 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | 
 | 2994 | 				whichfork); | 
 | 2995 | 		} | 
 | 2996 | 		break; | 
 | 2997 |  | 
 | 2998 | 	case XFS_DINODE_FMT_BTREE: | 
 | 2999 | 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && | 
 | 3000 | 		    (ifp->if_broot_bytes > 0)) { | 
 | 3001 | 			ASSERT(ifp->if_broot != NULL); | 
 | 3002 | 			ASSERT(ifp->if_broot_bytes <= | 
 | 3003 | 			       (XFS_IFORK_SIZE(ip, whichfork) + | 
 | 3004 | 				XFS_BROOT_SIZE_ADJ)); | 
 | 3005 | 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, | 
 | 3006 | 				(xfs_bmdr_block_t *)cp, | 
 | 3007 | 				XFS_DFORK_SIZE(dip, mp, whichfork)); | 
 | 3008 | 		} | 
 | 3009 | 		break; | 
 | 3010 |  | 
 | 3011 | 	case XFS_DINODE_FMT_DEV: | 
 | 3012 | 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | 
 | 3013 | 			ASSERT(whichfork == XFS_DATA_FORK); | 
 | 3014 | 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); | 
 | 3015 | 		} | 
 | 3016 | 		break; | 
 | 3017 |  | 
 | 3018 | 	case XFS_DINODE_FMT_UUID: | 
 | 3019 | 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | 
 | 3020 | 			ASSERT(whichfork == XFS_DATA_FORK); | 
 | 3021 | 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, | 
 | 3022 | 				sizeof(uuid_t)); | 
 | 3023 | 		} | 
 | 3024 | 		break; | 
 | 3025 |  | 
 | 3026 | 	default: | 
 | 3027 | 		ASSERT(0); | 
 | 3028 | 		break; | 
 | 3029 | 	} | 
 | 3030 |  | 
 | 3031 | 	return 0; | 
 | 3032 | } | 
 | 3033 |  | 
 | 3034 | /* | 
 | 3035 |  * xfs_iflush() will write a modified inode's changes out to the | 
 | 3036 |  * inode's on disk home.  The caller must have the inode lock held | 
 | 3037 |  * in at least shared mode and the inode flush semaphore must be | 
 | 3038 |  * held as well.  The inode lock will still be held upon return from | 
 | 3039 |  * the call and the caller is free to unlock it. | 
 | 3040 |  * The inode flush lock will be unlocked when the inode reaches the disk. | 
 | 3041 |  * The flags indicate how the inode's buffer should be written out. | 
 | 3042 |  */ | 
 | 3043 | int | 
 | 3044 | xfs_iflush( | 
 | 3045 | 	xfs_inode_t		*ip, | 
 | 3046 | 	uint			flags) | 
 | 3047 | { | 
 | 3048 | 	xfs_inode_log_item_t	*iip; | 
 | 3049 | 	xfs_buf_t		*bp; | 
 | 3050 | 	xfs_dinode_t		*dip; | 
 | 3051 | 	xfs_mount_t		*mp; | 
 | 3052 | 	int			error; | 
 | 3053 | 	/* REFERENCED */ | 
 | 3054 | 	xfs_chash_t		*ch; | 
 | 3055 | 	xfs_inode_t		*iq; | 
 | 3056 | 	int			clcount;	/* count of inodes clustered */ | 
 | 3057 | 	int			bufwasdelwri; | 
 | 3058 | 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; | 
 | 3059 | 	SPLDECL(s); | 
 | 3060 |  | 
 | 3061 | 	XFS_STATS_INC(xs_iflush_count); | 
 | 3062 |  | 
 | 3063 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
 | 3064 | 	ASSERT(valusema(&ip->i_flock) <= 0); | 
 | 3065 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 3066 | 	       ip->i_d.di_nextents > ip->i_df.if_ext_max); | 
 | 3067 |  | 
 | 3068 | 	iip = ip->i_itemp; | 
 | 3069 | 	mp = ip->i_mount; | 
 | 3070 |  | 
 | 3071 | 	/* | 
 | 3072 | 	 * If the inode isn't dirty, then just release the inode | 
 | 3073 | 	 * flush lock and do nothing. | 
 | 3074 | 	 */ | 
 | 3075 | 	if ((ip->i_update_core == 0) && | 
 | 3076 | 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
 | 3077 | 		ASSERT((iip != NULL) ? | 
 | 3078 | 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); | 
 | 3079 | 		xfs_ifunlock(ip); | 
 | 3080 | 		return 0; | 
 | 3081 | 	} | 
 | 3082 |  | 
 | 3083 | 	/* | 
 | 3084 | 	 * We can't flush the inode until it is unpinned, so | 
 | 3085 | 	 * wait for it.  We know noone new can pin it, because | 
 | 3086 | 	 * we are holding the inode lock shared and you need | 
 | 3087 | 	 * to hold it exclusively to pin the inode. | 
 | 3088 | 	 */ | 
 | 3089 | 	xfs_iunpin_wait(ip); | 
 | 3090 |  | 
 | 3091 | 	/* | 
 | 3092 | 	 * This may have been unpinned because the filesystem is shutting | 
 | 3093 | 	 * down forcibly. If that's the case we must not write this inode | 
 | 3094 | 	 * to disk, because the log record didn't make it to disk! | 
 | 3095 | 	 */ | 
 | 3096 | 	if (XFS_FORCED_SHUTDOWN(mp)) { | 
 | 3097 | 		ip->i_update_core = 0; | 
 | 3098 | 		if (iip) | 
 | 3099 | 			iip->ili_format.ilf_fields = 0; | 
 | 3100 | 		xfs_ifunlock(ip); | 
 | 3101 | 		return XFS_ERROR(EIO); | 
 | 3102 | 	} | 
 | 3103 |  | 
 | 3104 | 	/* | 
 | 3105 | 	 * Get the buffer containing the on-disk inode. | 
 | 3106 | 	 */ | 
 | 3107 | 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); | 
 | 3108 | 	if (error != 0) { | 
 | 3109 | 		xfs_ifunlock(ip); | 
 | 3110 | 		return error; | 
 | 3111 | 	} | 
 | 3112 |  | 
 | 3113 | 	/* | 
 | 3114 | 	 * Decide how buffer will be flushed out.  This is done before | 
 | 3115 | 	 * the call to xfs_iflush_int because this field is zeroed by it. | 
 | 3116 | 	 */ | 
 | 3117 | 	if (iip != NULL && iip->ili_format.ilf_fields != 0) { | 
 | 3118 | 		/* | 
 | 3119 | 		 * Flush out the inode buffer according to the directions | 
 | 3120 | 		 * of the caller.  In the cases where the caller has given | 
 | 3121 | 		 * us a choice choose the non-delwri case.  This is because | 
 | 3122 | 		 * the inode is in the AIL and we need to get it out soon. | 
 | 3123 | 		 */ | 
 | 3124 | 		switch (flags) { | 
 | 3125 | 		case XFS_IFLUSH_SYNC: | 
 | 3126 | 		case XFS_IFLUSH_DELWRI_ELSE_SYNC: | 
 | 3127 | 			flags = 0; | 
 | 3128 | 			break; | 
 | 3129 | 		case XFS_IFLUSH_ASYNC: | 
 | 3130 | 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | 
 | 3131 | 			flags = INT_ASYNC; | 
 | 3132 | 			break; | 
 | 3133 | 		case XFS_IFLUSH_DELWRI: | 
 | 3134 | 			flags = INT_DELWRI; | 
 | 3135 | 			break; | 
 | 3136 | 		default: | 
 | 3137 | 			ASSERT(0); | 
 | 3138 | 			flags = 0; | 
 | 3139 | 			break; | 
 | 3140 | 		} | 
 | 3141 | 	} else { | 
 | 3142 | 		switch (flags) { | 
 | 3143 | 		case XFS_IFLUSH_DELWRI_ELSE_SYNC: | 
 | 3144 | 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | 
 | 3145 | 		case XFS_IFLUSH_DELWRI: | 
 | 3146 | 			flags = INT_DELWRI; | 
 | 3147 | 			break; | 
 | 3148 | 		case XFS_IFLUSH_ASYNC: | 
 | 3149 | 			flags = INT_ASYNC; | 
 | 3150 | 			break; | 
 | 3151 | 		case XFS_IFLUSH_SYNC: | 
 | 3152 | 			flags = 0; | 
 | 3153 | 			break; | 
 | 3154 | 		default: | 
 | 3155 | 			ASSERT(0); | 
 | 3156 | 			flags = 0; | 
 | 3157 | 			break; | 
 | 3158 | 		} | 
 | 3159 | 	} | 
 | 3160 |  | 
 | 3161 | 	/* | 
 | 3162 | 	 * First flush out the inode that xfs_iflush was called with. | 
 | 3163 | 	 */ | 
 | 3164 | 	error = xfs_iflush_int(ip, bp); | 
 | 3165 | 	if (error) { | 
 | 3166 | 		goto corrupt_out; | 
 | 3167 | 	} | 
 | 3168 |  | 
 | 3169 | 	/* | 
 | 3170 | 	 * inode clustering: | 
 | 3171 | 	 * see if other inodes can be gathered into this write | 
 | 3172 | 	 */ | 
 | 3173 |  | 
 | 3174 | 	ip->i_chash->chl_buf = bp; | 
 | 3175 |  | 
 | 3176 | 	ch = XFS_CHASH(mp, ip->i_blkno); | 
 | 3177 | 	s = mutex_spinlock(&ch->ch_lock); | 
 | 3178 |  | 
 | 3179 | 	clcount = 0; | 
 | 3180 | 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { | 
 | 3181 | 		/* | 
 | 3182 | 		 * Do an un-protected check to see if the inode is dirty and | 
 | 3183 | 		 * is a candidate for flushing.  These checks will be repeated | 
 | 3184 | 		 * later after the appropriate locks are acquired. | 
 | 3185 | 		 */ | 
 | 3186 | 		iip = iq->i_itemp; | 
 | 3187 | 		if ((iq->i_update_core == 0) && | 
 | 3188 | 		    ((iip == NULL) || | 
 | 3189 | 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && | 
 | 3190 | 		      xfs_ipincount(iq) == 0) { | 
 | 3191 | 			continue; | 
 | 3192 | 		} | 
 | 3193 |  | 
 | 3194 | 		/* | 
 | 3195 | 		 * Try to get locks.  If any are unavailable, | 
 | 3196 | 		 * then this inode cannot be flushed and is skipped. | 
 | 3197 | 		 */ | 
 | 3198 |  | 
 | 3199 | 		/* get inode locks (just i_lock) */ | 
 | 3200 | 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { | 
 | 3201 | 			/* get inode flush lock */ | 
 | 3202 | 			if (xfs_iflock_nowait(iq)) { | 
 | 3203 | 				/* check if pinned */ | 
 | 3204 | 				if (xfs_ipincount(iq) == 0) { | 
 | 3205 | 					/* arriving here means that | 
 | 3206 | 					 * this inode can be flushed. | 
 | 3207 | 					 * first re-check that it's | 
 | 3208 | 					 * dirty | 
 | 3209 | 					 */ | 
 | 3210 | 					iip = iq->i_itemp; | 
 | 3211 | 					if ((iq->i_update_core != 0)|| | 
 | 3212 | 					    ((iip != NULL) && | 
 | 3213 | 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
 | 3214 | 						clcount++; | 
 | 3215 | 						error = xfs_iflush_int(iq, bp); | 
 | 3216 | 						if (error) { | 
 | 3217 | 							xfs_iunlock(iq, | 
 | 3218 | 								    XFS_ILOCK_SHARED); | 
 | 3219 | 							goto cluster_corrupt_out; | 
 | 3220 | 						} | 
 | 3221 | 					} else { | 
 | 3222 | 						xfs_ifunlock(iq); | 
 | 3223 | 					} | 
 | 3224 | 				} else { | 
 | 3225 | 					xfs_ifunlock(iq); | 
 | 3226 | 				} | 
 | 3227 | 			} | 
 | 3228 | 			xfs_iunlock(iq, XFS_ILOCK_SHARED); | 
 | 3229 | 		} | 
 | 3230 | 	} | 
 | 3231 | 	mutex_spinunlock(&ch->ch_lock, s); | 
 | 3232 |  | 
 | 3233 | 	if (clcount) { | 
 | 3234 | 		XFS_STATS_INC(xs_icluster_flushcnt); | 
 | 3235 | 		XFS_STATS_ADD(xs_icluster_flushinode, clcount); | 
 | 3236 | 	} | 
 | 3237 |  | 
 | 3238 | 	/* | 
 | 3239 | 	 * If the buffer is pinned then push on the log so we won't | 
 | 3240 | 	 * get stuck waiting in the write for too long. | 
 | 3241 | 	 */ | 
 | 3242 | 	if (XFS_BUF_ISPINNED(bp)){ | 
 | 3243 | 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); | 
 | 3244 | 	} | 
 | 3245 |  | 
 | 3246 | 	if (flags & INT_DELWRI) { | 
 | 3247 | 		xfs_bdwrite(mp, bp); | 
 | 3248 | 	} else if (flags & INT_ASYNC) { | 
 | 3249 | 		xfs_bawrite(mp, bp); | 
 | 3250 | 	} else { | 
 | 3251 | 		error = xfs_bwrite(mp, bp); | 
 | 3252 | 	} | 
 | 3253 | 	return error; | 
 | 3254 |  | 
 | 3255 | corrupt_out: | 
 | 3256 | 	xfs_buf_relse(bp); | 
 | 3257 | 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | 
 | 3258 | 	xfs_iflush_abort(ip); | 
 | 3259 | 	/* | 
 | 3260 | 	 * Unlocks the flush lock | 
 | 3261 | 	 */ | 
 | 3262 | 	return XFS_ERROR(EFSCORRUPTED); | 
 | 3263 |  | 
 | 3264 | cluster_corrupt_out: | 
 | 3265 | 	/* Corruption detected in the clustering loop.  Invalidate the | 
 | 3266 | 	 * inode buffer and shut down the filesystem. | 
 | 3267 | 	 */ | 
 | 3268 | 	mutex_spinunlock(&ch->ch_lock, s); | 
 | 3269 |  | 
 | 3270 | 	/* | 
 | 3271 | 	 * Clean up the buffer.  If it was B_DELWRI, just release it -- | 
 | 3272 | 	 * brelse can handle it with no problems.  If not, shut down the | 
 | 3273 | 	 * filesystem before releasing the buffer. | 
 | 3274 | 	 */ | 
 | 3275 | 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { | 
 | 3276 | 		xfs_buf_relse(bp); | 
 | 3277 | 	} | 
 | 3278 |  | 
 | 3279 | 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | 
 | 3280 |  | 
 | 3281 | 	if(!bufwasdelwri)  { | 
 | 3282 | 		/* | 
 | 3283 | 		 * Just like incore_relse: if we have b_iodone functions, | 
 | 3284 | 		 * mark the buffer as an error and call them.  Otherwise | 
 | 3285 | 		 * mark it as stale and brelse. | 
 | 3286 | 		 */ | 
 | 3287 | 		if (XFS_BUF_IODONE_FUNC(bp)) { | 
 | 3288 | 			XFS_BUF_CLR_BDSTRAT_FUNC(bp); | 
 | 3289 | 			XFS_BUF_UNDONE(bp); | 
 | 3290 | 			XFS_BUF_STALE(bp); | 
 | 3291 | 			XFS_BUF_SHUT(bp); | 
 | 3292 | 			XFS_BUF_ERROR(bp,EIO); | 
 | 3293 | 			xfs_biodone(bp); | 
 | 3294 | 		} else { | 
 | 3295 | 			XFS_BUF_STALE(bp); | 
 | 3296 | 			xfs_buf_relse(bp); | 
 | 3297 | 		} | 
 | 3298 | 	} | 
 | 3299 |  | 
 | 3300 | 	xfs_iflush_abort(iq); | 
 | 3301 | 	/* | 
 | 3302 | 	 * Unlocks the flush lock | 
 | 3303 | 	 */ | 
 | 3304 | 	return XFS_ERROR(EFSCORRUPTED); | 
 | 3305 | } | 
 | 3306 |  | 
 | 3307 |  | 
 | 3308 | STATIC int | 
 | 3309 | xfs_iflush_int( | 
 | 3310 | 	xfs_inode_t		*ip, | 
 | 3311 | 	xfs_buf_t		*bp) | 
 | 3312 | { | 
 | 3313 | 	xfs_inode_log_item_t	*iip; | 
 | 3314 | 	xfs_dinode_t		*dip; | 
 | 3315 | 	xfs_mount_t		*mp; | 
 | 3316 | #ifdef XFS_TRANS_DEBUG | 
 | 3317 | 	int			first; | 
 | 3318 | #endif | 
 | 3319 | 	SPLDECL(s); | 
 | 3320 |  | 
 | 3321 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
 | 3322 | 	ASSERT(valusema(&ip->i_flock) <= 0); | 
 | 3323 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 3324 | 	       ip->i_d.di_nextents > ip->i_df.if_ext_max); | 
 | 3325 |  | 
 | 3326 | 	iip = ip->i_itemp; | 
 | 3327 | 	mp = ip->i_mount; | 
 | 3328 |  | 
 | 3329 |  | 
 | 3330 | 	/* | 
 | 3331 | 	 * If the inode isn't dirty, then just release the inode | 
 | 3332 | 	 * flush lock and do nothing. | 
 | 3333 | 	 */ | 
 | 3334 | 	if ((ip->i_update_core == 0) && | 
 | 3335 | 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
 | 3336 | 		xfs_ifunlock(ip); | 
 | 3337 | 		return 0; | 
 | 3338 | 	} | 
 | 3339 |  | 
 | 3340 | 	/* set *dip = inode's place in the buffer */ | 
 | 3341 | 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); | 
 | 3342 |  | 
 | 3343 | 	/* | 
 | 3344 | 	 * Clear i_update_core before copying out the data. | 
 | 3345 | 	 * This is for coordination with our timestamp updates | 
 | 3346 | 	 * that don't hold the inode lock. They will always | 
 | 3347 | 	 * update the timestamps BEFORE setting i_update_core, | 
 | 3348 | 	 * so if we clear i_update_core after they set it we | 
 | 3349 | 	 * are guaranteed to see their updates to the timestamps. | 
 | 3350 | 	 * I believe that this depends on strongly ordered memory | 
 | 3351 | 	 * semantics, but we have that.  We use the SYNCHRONIZE | 
 | 3352 | 	 * macro to make sure that the compiler does not reorder | 
 | 3353 | 	 * the i_update_core access below the data copy below. | 
 | 3354 | 	 */ | 
 | 3355 | 	ip->i_update_core = 0; | 
 | 3356 | 	SYNCHRONIZE(); | 
 | 3357 |  | 
 | 3358 | 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, | 
 | 3359 | 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { | 
 | 3360 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 3361 | 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", | 
 | 3362 | 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); | 
 | 3363 | 		goto corrupt_out; | 
 | 3364 | 	} | 
 | 3365 | 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, | 
 | 3366 | 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { | 
 | 3367 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 3368 | 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", | 
 | 3369 | 			ip->i_ino, ip, ip->i_d.di_magic); | 
 | 3370 | 		goto corrupt_out; | 
 | 3371 | 	} | 
 | 3372 | 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { | 
 | 3373 | 		if (XFS_TEST_ERROR( | 
 | 3374 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
 | 3375 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | 
 | 3376 | 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { | 
 | 3377 | 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 3378 | 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p", | 
 | 3379 | 				ip->i_ino, ip); | 
 | 3380 | 			goto corrupt_out; | 
 | 3381 | 		} | 
 | 3382 | 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { | 
 | 3383 | 		if (XFS_TEST_ERROR( | 
 | 3384 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
 | 3385 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
 | 3386 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | 
 | 3387 | 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { | 
 | 3388 | 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 3389 | 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p", | 
 | 3390 | 				ip->i_ino, ip); | 
 | 3391 | 			goto corrupt_out; | 
 | 3392 | 		} | 
 | 3393 | 	} | 
 | 3394 | 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | 
 | 3395 | 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, | 
 | 3396 | 				XFS_RANDOM_IFLUSH_5)) { | 
 | 3397 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 3398 | 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", | 
 | 3399 | 			ip->i_ino, | 
 | 3400 | 			ip->i_d.di_nextents + ip->i_d.di_anextents, | 
 | 3401 | 			ip->i_d.di_nblocks, | 
 | 3402 | 			ip); | 
 | 3403 | 		goto corrupt_out; | 
 | 3404 | 	} | 
 | 3405 | 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | 
 | 3406 | 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { | 
 | 3407 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 3408 | 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", | 
 | 3409 | 			ip->i_ino, ip->i_d.di_forkoff, ip); | 
 | 3410 | 		goto corrupt_out; | 
 | 3411 | 	} | 
 | 3412 | 	/* | 
 | 3413 | 	 * bump the flush iteration count, used to detect flushes which | 
 | 3414 | 	 * postdate a log record during recovery. | 
 | 3415 | 	 */ | 
 | 3416 |  | 
 | 3417 | 	ip->i_d.di_flushiter++; | 
 | 3418 |  | 
 | 3419 | 	/* | 
 | 3420 | 	 * Copy the dirty parts of the inode into the on-disk | 
 | 3421 | 	 * inode.  We always copy out the core of the inode, | 
 | 3422 | 	 * because if the inode is dirty at all the core must | 
 | 3423 | 	 * be. | 
 | 3424 | 	 */ | 
 | 3425 | 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); | 
 | 3426 |  | 
 | 3427 | 	/* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
 | 3428 | 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | 
 | 3429 | 		ip->i_d.di_flushiter = 0; | 
 | 3430 |  | 
 | 3431 | 	/* | 
 | 3432 | 	 * If this is really an old format inode and the superblock version | 
 | 3433 | 	 * has not been updated to support only new format inodes, then | 
 | 3434 | 	 * convert back to the old inode format.  If the superblock version | 
 | 3435 | 	 * has been updated, then make the conversion permanent. | 
 | 3436 | 	 */ | 
 | 3437 | 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || | 
 | 3438 | 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb)); | 
 | 3439 | 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
 | 3440 | 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { | 
 | 3441 | 			/* | 
 | 3442 | 			 * Convert it back. | 
 | 3443 | 			 */ | 
 | 3444 | 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | 
 | 3445 | 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); | 
 | 3446 | 		} else { | 
 | 3447 | 			/* | 
 | 3448 | 			 * The superblock version has already been bumped, | 
 | 3449 | 			 * so just make the conversion to the new inode | 
 | 3450 | 			 * format permanent. | 
 | 3451 | 			 */ | 
 | 3452 | 			ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
 | 3453 | 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); | 
 | 3454 | 			ip->i_d.di_onlink = 0; | 
 | 3455 | 			dip->di_core.di_onlink = 0; | 
 | 3456 | 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
 | 3457 | 			memset(&(dip->di_core.di_pad[0]), 0, | 
 | 3458 | 			      sizeof(dip->di_core.di_pad)); | 
 | 3459 | 			ASSERT(ip->i_d.di_projid == 0); | 
 | 3460 | 		} | 
 | 3461 | 	} | 
 | 3462 |  | 
 | 3463 | 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { | 
 | 3464 | 		goto corrupt_out; | 
 | 3465 | 	} | 
 | 3466 |  | 
 | 3467 | 	if (XFS_IFORK_Q(ip)) { | 
 | 3468 | 		/* | 
 | 3469 | 		 * The only error from xfs_iflush_fork is on the data fork. | 
 | 3470 | 		 */ | 
 | 3471 | 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); | 
 | 3472 | 	} | 
 | 3473 | 	xfs_inobp_check(mp, bp); | 
 | 3474 |  | 
 | 3475 | 	/* | 
 | 3476 | 	 * We've recorded everything logged in the inode, so we'd | 
 | 3477 | 	 * like to clear the ilf_fields bits so we don't log and | 
 | 3478 | 	 * flush things unnecessarily.  However, we can't stop | 
 | 3479 | 	 * logging all this information until the data we've copied | 
 | 3480 | 	 * into the disk buffer is written to disk.  If we did we might | 
 | 3481 | 	 * overwrite the copy of the inode in the log with all the | 
 | 3482 | 	 * data after re-logging only part of it, and in the face of | 
 | 3483 | 	 * a crash we wouldn't have all the data we need to recover. | 
 | 3484 | 	 * | 
 | 3485 | 	 * What we do is move the bits to the ili_last_fields field. | 
 | 3486 | 	 * When logging the inode, these bits are moved back to the | 
 | 3487 | 	 * ilf_fields field.  In the xfs_iflush_done() routine we | 
 | 3488 | 	 * clear ili_last_fields, since we know that the information | 
 | 3489 | 	 * those bits represent is permanently on disk.  As long as | 
 | 3490 | 	 * the flush completes before the inode is logged again, then | 
 | 3491 | 	 * both ilf_fields and ili_last_fields will be cleared. | 
 | 3492 | 	 * | 
 | 3493 | 	 * We can play with the ilf_fields bits here, because the inode | 
 | 3494 | 	 * lock must be held exclusively in order to set bits there | 
 | 3495 | 	 * and the flush lock protects the ili_last_fields bits. | 
 | 3496 | 	 * Set ili_logged so the flush done | 
 | 3497 | 	 * routine can tell whether or not to look in the AIL. | 
 | 3498 | 	 * Also, store the current LSN of the inode so that we can tell | 
 | 3499 | 	 * whether the item has moved in the AIL from xfs_iflush_done(). | 
 | 3500 | 	 * In order to read the lsn we need the AIL lock, because | 
 | 3501 | 	 * it is a 64 bit value that cannot be read atomically. | 
 | 3502 | 	 */ | 
 | 3503 | 	if (iip != NULL && iip->ili_format.ilf_fields != 0) { | 
 | 3504 | 		iip->ili_last_fields = iip->ili_format.ilf_fields; | 
 | 3505 | 		iip->ili_format.ilf_fields = 0; | 
 | 3506 | 		iip->ili_logged = 1; | 
 | 3507 |  | 
 | 3508 | 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */ | 
 | 3509 | 		AIL_LOCK(mp,s); | 
 | 3510 | 		iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
 | 3511 | 		AIL_UNLOCK(mp, s); | 
 | 3512 |  | 
 | 3513 | 		/* | 
 | 3514 | 		 * Attach the function xfs_iflush_done to the inode's | 
 | 3515 | 		 * buffer.  This will remove the inode from the AIL | 
 | 3516 | 		 * and unlock the inode's flush lock when the inode is | 
 | 3517 | 		 * completely written to disk. | 
 | 3518 | 		 */ | 
 | 3519 | 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
 | 3520 | 				      xfs_iflush_done, (xfs_log_item_t *)iip); | 
 | 3521 |  | 
 | 3522 | 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
 | 3523 | 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); | 
 | 3524 | 	} else { | 
 | 3525 | 		/* | 
 | 3526 | 		 * We're flushing an inode which is not in the AIL and has | 
 | 3527 | 		 * not been logged but has i_update_core set.  For this | 
 | 3528 | 		 * case we can use a B_DELWRI flush and immediately drop | 
 | 3529 | 		 * the inode flush lock because we can avoid the whole | 
 | 3530 | 		 * AIL state thing.  It's OK to drop the flush lock now, | 
 | 3531 | 		 * because we've already locked the buffer and to do anything | 
 | 3532 | 		 * you really need both. | 
 | 3533 | 		 */ | 
 | 3534 | 		if (iip != NULL) { | 
 | 3535 | 			ASSERT(iip->ili_logged == 0); | 
 | 3536 | 			ASSERT(iip->ili_last_fields == 0); | 
 | 3537 | 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); | 
 | 3538 | 		} | 
 | 3539 | 		xfs_ifunlock(ip); | 
 | 3540 | 	} | 
 | 3541 |  | 
 | 3542 | 	return 0; | 
 | 3543 |  | 
 | 3544 | corrupt_out: | 
 | 3545 | 	return XFS_ERROR(EFSCORRUPTED); | 
 | 3546 | } | 
 | 3547 |  | 
 | 3548 |  | 
 | 3549 | /* | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3550 |  * Flush all inactive inodes in mp. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3551 |  */ | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3552 | void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3553 | xfs_iflush_all( | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3554 | 	xfs_mount_t	*mp) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3555 | { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3556 | 	xfs_inode_t	*ip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3557 | 	vnode_t		*vp; | 
 | 3558 |  | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3559 |  again: | 
 | 3560 | 	XFS_MOUNT_ILOCK(mp); | 
 | 3561 | 	ip = mp->m_inodes; | 
 | 3562 | 	if (ip == NULL) | 
 | 3563 | 		goto out; | 
 | 3564 |  | 
 | 3565 | 	do { | 
 | 3566 | 		/* Make sure we skip markers inserted by sync */ | 
 | 3567 | 		if (ip->i_mount == NULL) { | 
 | 3568 | 			ip = ip->i_mnext; | 
 | 3569 | 			continue; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3570 | 		} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3571 |  | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3572 | 		vp = XFS_ITOV_NULL(ip); | 
 | 3573 | 		if (!vp) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3574 | 			XFS_MOUNT_IUNLOCK(mp); | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3575 | 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); | 
 | 3576 | 			goto again; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3577 | 		} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3578 |  | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3579 | 		ASSERT(vn_count(vp) == 0); | 
 | 3580 |  | 
 | 3581 | 		ip = ip->i_mnext; | 
 | 3582 | 	} while (ip != mp->m_inodes); | 
 | 3583 |  out: | 
 | 3584 | 	XFS_MOUNT_IUNLOCK(mp); | 
 | 3585 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3586 |  | 
 | 3587 | /* | 
 | 3588 |  * xfs_iaccess: check accessibility of inode for mode. | 
 | 3589 |  */ | 
 | 3590 | int | 
 | 3591 | xfs_iaccess( | 
 | 3592 | 	xfs_inode_t	*ip, | 
 | 3593 | 	mode_t		mode, | 
 | 3594 | 	cred_t		*cr) | 
 | 3595 | { | 
 | 3596 | 	int		error; | 
 | 3597 | 	mode_t		orgmode = mode; | 
 | 3598 | 	struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip)); | 
 | 3599 |  | 
 | 3600 | 	if (mode & S_IWUSR) { | 
 | 3601 | 		umode_t		imode = inode->i_mode; | 
 | 3602 |  | 
 | 3603 | 		if (IS_RDONLY(inode) && | 
 | 3604 | 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) | 
 | 3605 | 			return XFS_ERROR(EROFS); | 
 | 3606 |  | 
 | 3607 | 		if (IS_IMMUTABLE(inode)) | 
 | 3608 | 			return XFS_ERROR(EACCES); | 
 | 3609 | 	} | 
 | 3610 |  | 
 | 3611 | 	/* | 
 | 3612 | 	 * If there's an Access Control List it's used instead of | 
 | 3613 | 	 * the mode bits. | 
 | 3614 | 	 */ | 
 | 3615 | 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) | 
 | 3616 | 		return error ? XFS_ERROR(error) : 0; | 
 | 3617 |  | 
 | 3618 | 	if (current_fsuid(cr) != ip->i_d.di_uid) { | 
 | 3619 | 		mode >>= 3; | 
 | 3620 | 		if (!in_group_p((gid_t)ip->i_d.di_gid)) | 
 | 3621 | 			mode >>= 3; | 
 | 3622 | 	} | 
 | 3623 |  | 
 | 3624 | 	/* | 
 | 3625 | 	 * If the DACs are ok we don't need any capability check. | 
 | 3626 | 	 */ | 
 | 3627 | 	if ((ip->i_d.di_mode & mode) == mode) | 
 | 3628 | 		return 0; | 
 | 3629 | 	/* | 
 | 3630 | 	 * Read/write DACs are always overridable. | 
 | 3631 | 	 * Executable DACs are overridable if at least one exec bit is set. | 
 | 3632 | 	 */ | 
 | 3633 | 	if (!(orgmode & S_IXUSR) || | 
 | 3634 | 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) | 
 | 3635 | 		if (capable_cred(cr, CAP_DAC_OVERRIDE)) | 
 | 3636 | 			return 0; | 
 | 3637 |  | 
 | 3638 | 	if ((orgmode == S_IRUSR) || | 
 | 3639 | 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { | 
 | 3640 | 		if (capable_cred(cr, CAP_DAC_READ_SEARCH)) | 
 | 3641 | 			return 0; | 
 | 3642 | #ifdef	NOISE | 
 | 3643 | 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); | 
 | 3644 | #endif	/* NOISE */ | 
 | 3645 | 		return XFS_ERROR(EACCES); | 
 | 3646 | 	} | 
 | 3647 | 	return XFS_ERROR(EACCES); | 
 | 3648 | } | 
 | 3649 |  | 
 | 3650 | /* | 
 | 3651 |  * xfs_iroundup: round up argument to next power of two | 
 | 3652 |  */ | 
 | 3653 | uint | 
 | 3654 | xfs_iroundup( | 
 | 3655 | 	uint	v) | 
 | 3656 | { | 
 | 3657 | 	int i; | 
 | 3658 | 	uint m; | 
 | 3659 |  | 
 | 3660 | 	if ((v & (v - 1)) == 0) | 
 | 3661 | 		return v; | 
 | 3662 | 	ASSERT((v & 0x80000000) == 0); | 
 | 3663 | 	if ((v & (v + 1)) == 0) | 
 | 3664 | 		return v + 1; | 
 | 3665 | 	for (i = 0, m = 1; i < 31; i++, m <<= 1) { | 
 | 3666 | 		if (v & m) | 
 | 3667 | 			continue; | 
 | 3668 | 		v |= m; | 
 | 3669 | 		if ((v & (v + 1)) == 0) | 
 | 3670 | 			return v + 1; | 
 | 3671 | 	} | 
 | 3672 | 	ASSERT(0); | 
 | 3673 | 	return( 0 ); | 
 | 3674 | } | 
 | 3675 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3676 | #ifdef XFS_ILOCK_TRACE | 
 | 3677 | ktrace_t	*xfs_ilock_trace_buf; | 
 | 3678 |  | 
 | 3679 | void | 
 | 3680 | xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) | 
 | 3681 | { | 
 | 3682 | 	ktrace_enter(ip->i_lock_trace, | 
 | 3683 | 		     (void *)ip, | 
 | 3684 | 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ | 
 | 3685 | 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ | 
 | 3686 | 		     (void *)ra,		/* caller of ilock */ | 
 | 3687 | 		     (void *)(unsigned long)current_cpu(), | 
 | 3688 | 		     (void *)(unsigned long)current_pid(), | 
 | 3689 | 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); | 
 | 3690 | } | 
 | 3691 | #endif |