| Dimitris Michailidis | 625ba2c | 2010-04-01 15:28:25 +0000 | [diff] [blame] | 1 | /* | 
 | 2 |  * This file is part of the Chelsio T4 Ethernet driver for Linux. | 
 | 3 |  * | 
 | 4 |  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. | 
 | 5 |  * | 
 | 6 |  * This software is available to you under a choice of one of two | 
 | 7 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 | 8 |  * General Public License (GPL) Version 2, available from the file | 
 | 9 |  * COPYING in the main directory of this source tree, or the | 
 | 10 |  * OpenIB.org BSD license below: | 
 | 11 |  * | 
 | 12 |  *     Redistribution and use in source and binary forms, with or | 
 | 13 |  *     without modification, are permitted provided that the following | 
 | 14 |  *     conditions are met: | 
 | 15 |  * | 
 | 16 |  *      - Redistributions of source code must retain the above | 
 | 17 |  *        copyright notice, this list of conditions and the following | 
 | 18 |  *        disclaimer. | 
 | 19 |  * | 
 | 20 |  *      - Redistributions in binary form must reproduce the above | 
 | 21 |  *        copyright notice, this list of conditions and the following | 
 | 22 |  *        disclaimer in the documentation and/or other materials | 
 | 23 |  *        provided with the distribution. | 
 | 24 |  * | 
 | 25 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 | 26 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 | 27 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 | 28 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 | 29 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 | 30 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 | 31 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 | 32 |  * SOFTWARE. | 
 | 33 |  */ | 
 | 34 |  | 
 | 35 | #include <linux/skbuff.h> | 
 | 36 | #include <linux/netdevice.h> | 
 | 37 | #include <linux/if.h> | 
 | 38 | #include <linux/if_vlan.h> | 
 | 39 | #include <linux/jhash.h> | 
 | 40 | #include <net/neighbour.h> | 
 | 41 | #include "cxgb4.h" | 
 | 42 | #include "l2t.h" | 
 | 43 | #include "t4_msg.h" | 
 | 44 | #include "t4fw_api.h" | 
 | 45 |  | 
 | 46 | #define VLAN_NONE 0xfff | 
 | 47 |  | 
 | 48 | /* identifies sync vs async L2T_WRITE_REQs */ | 
 | 49 | #define F_SYNC_WR    (1 << 12) | 
 | 50 |  | 
 | 51 | enum { | 
 | 52 | 	L2T_STATE_VALID,      /* entry is up to date */ | 
 | 53 | 	L2T_STATE_STALE,      /* entry may be used but needs revalidation */ | 
 | 54 | 	L2T_STATE_RESOLVING,  /* entry needs address resolution */ | 
 | 55 | 	L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ | 
 | 56 |  | 
 | 57 | 	/* when state is one of the below the entry is not hashed */ | 
 | 58 | 	L2T_STATE_SWITCHING,  /* entry is being used by a switching filter */ | 
 | 59 | 	L2T_STATE_UNUSED      /* entry not in use */ | 
 | 60 | }; | 
 | 61 |  | 
 | 62 | struct l2t_data { | 
 | 63 | 	rwlock_t lock; | 
 | 64 | 	atomic_t nfree;             /* number of free entries */ | 
 | 65 | 	struct l2t_entry *rover;    /* starting point for next allocation */ | 
 | 66 | 	struct l2t_entry l2tab[L2T_SIZE]; | 
 | 67 | }; | 
 | 68 |  | 
 | 69 | static inline unsigned int vlan_prio(const struct l2t_entry *e) | 
 | 70 | { | 
 | 71 | 	return e->vlan >> 13; | 
 | 72 | } | 
 | 73 |  | 
 | 74 | static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) | 
 | 75 | { | 
 | 76 | 	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */ | 
 | 77 | 		atomic_dec(&d->nfree); | 
 | 78 | } | 
 | 79 |  | 
 | 80 | /* | 
 | 81 |  * To avoid having to check address families we do not allow v4 and v6 | 
 | 82 |  * neighbors to be on the same hash chain.  We keep v4 entries in the first | 
 | 83 |  * half of available hash buckets and v6 in the second. | 
 | 84 |  */ | 
 | 85 | enum { | 
 | 86 | 	L2T_SZ_HALF = L2T_SIZE / 2, | 
 | 87 | 	L2T_HASH_MASK = L2T_SZ_HALF - 1 | 
 | 88 | }; | 
 | 89 |  | 
 | 90 | static inline unsigned int arp_hash(const u32 *key, int ifindex) | 
 | 91 | { | 
 | 92 | 	return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; | 
 | 93 | } | 
 | 94 |  | 
 | 95 | static inline unsigned int ipv6_hash(const u32 *key, int ifindex) | 
 | 96 | { | 
 | 97 | 	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; | 
 | 98 |  | 
 | 99 | 	return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); | 
 | 100 | } | 
 | 101 |  | 
 | 102 | static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex) | 
 | 103 | { | 
 | 104 | 	return addr_len == 4 ? arp_hash(addr, ifindex) : | 
 | 105 | 			       ipv6_hash(addr, ifindex); | 
 | 106 | } | 
 | 107 |  | 
 | 108 | /* | 
 | 109 |  * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check | 
 | 110 |  * whether the L2T entry and the address are of the same address family. | 
 | 111 |  * Callers ensure an address is only checked against L2T entries of the same | 
 | 112 |  * family, something made trivial by the separation of IP and IPv6 hash chains | 
 | 113 |  * mentioned above.  Returns 0 if there's a match, | 
 | 114 |  */ | 
 | 115 | static int addreq(const struct l2t_entry *e, const u32 *addr) | 
 | 116 | { | 
 | 117 | 	if (e->v6) | 
 | 118 | 		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | | 
 | 119 | 		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); | 
 | 120 | 	return e->addr[0] ^ addr[0]; | 
 | 121 | } | 
 | 122 |  | 
 | 123 | static void neigh_replace(struct l2t_entry *e, struct neighbour *n) | 
 | 124 | { | 
 | 125 | 	neigh_hold(n); | 
 | 126 | 	if (e->neigh) | 
 | 127 | 		neigh_release(e->neigh); | 
 | 128 | 	e->neigh = n; | 
 | 129 | } | 
 | 130 |  | 
 | 131 | /* | 
 | 132 |  * Write an L2T entry.  Must be called with the entry locked. | 
 | 133 |  * The write may be synchronous or asynchronous. | 
 | 134 |  */ | 
 | 135 | static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) | 
 | 136 | { | 
 | 137 | 	struct sk_buff *skb; | 
 | 138 | 	struct cpl_l2t_write_req *req; | 
 | 139 |  | 
 | 140 | 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC); | 
 | 141 | 	if (!skb) | 
 | 142 | 		return -ENOMEM; | 
 | 143 |  | 
 | 144 | 	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); | 
 | 145 | 	INIT_TP_WR(req, 0); | 
 | 146 |  | 
 | 147 | 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, | 
 | 148 | 					e->idx | (sync ? F_SYNC_WR : 0) | | 
 | 149 | 					TID_QID(adap->sge.fw_evtq.abs_id))); | 
 | 150 | 	req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync)); | 
 | 151 | 	req->l2t_idx = htons(e->idx); | 
 | 152 | 	req->vlan = htons(e->vlan); | 
 | 153 | 	if (e->neigh) | 
 | 154 | 		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); | 
 | 155 | 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); | 
 | 156 |  | 
 | 157 | 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); | 
 | 158 | 	t4_ofld_send(adap, skb); | 
 | 159 |  | 
 | 160 | 	if (sync && e->state != L2T_STATE_SWITCHING) | 
 | 161 | 		e->state = L2T_STATE_SYNC_WRITE; | 
 | 162 | 	return 0; | 
 | 163 | } | 
 | 164 |  | 
 | 165 | /* | 
 | 166 |  * Send packets waiting in an L2T entry's ARP queue.  Must be called with the | 
 | 167 |  * entry locked. | 
 | 168 |  */ | 
 | 169 | static void send_pending(struct adapter *adap, struct l2t_entry *e) | 
 | 170 | { | 
 | 171 | 	while (e->arpq_head) { | 
 | 172 | 		struct sk_buff *skb = e->arpq_head; | 
 | 173 |  | 
 | 174 | 		e->arpq_head = skb->next; | 
 | 175 | 		skb->next = NULL; | 
 | 176 | 		t4_ofld_send(adap, skb); | 
 | 177 | 	} | 
 | 178 | 	e->arpq_tail = NULL; | 
 | 179 | } | 
 | 180 |  | 
 | 181 | /* | 
 | 182 |  * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a | 
 | 183 |  * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T | 
 | 184 |  * index it refers to. | 
 | 185 |  */ | 
 | 186 | void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) | 
 | 187 | { | 
 | 188 | 	unsigned int tid = GET_TID(rpl); | 
 | 189 | 	unsigned int idx = tid & (L2T_SIZE - 1); | 
 | 190 |  | 
 | 191 | 	if (unlikely(rpl->status != CPL_ERR_NONE)) { | 
 | 192 | 		dev_err(adap->pdev_dev, | 
 | 193 | 			"Unexpected L2T_WRITE_RPL status %u for entry %u\n", | 
 | 194 | 			rpl->status, idx); | 
 | 195 | 		return; | 
 | 196 | 	} | 
 | 197 |  | 
 | 198 | 	if (tid & F_SYNC_WR) { | 
 | 199 | 		struct l2t_entry *e = &adap->l2t->l2tab[idx]; | 
 | 200 |  | 
 | 201 | 		spin_lock(&e->lock); | 
 | 202 | 		if (e->state != L2T_STATE_SWITCHING) { | 
 | 203 | 			send_pending(adap, e); | 
 | 204 | 			e->state = (e->neigh->nud_state & NUD_STALE) ? | 
 | 205 | 					L2T_STATE_STALE : L2T_STATE_VALID; | 
 | 206 | 		} | 
 | 207 | 		spin_unlock(&e->lock); | 
 | 208 | 	} | 
 | 209 | } | 
 | 210 |  | 
 | 211 | /* | 
 | 212 |  * Add a packet to an L2T entry's queue of packets awaiting resolution. | 
 | 213 |  * Must be called with the entry's lock held. | 
 | 214 |  */ | 
 | 215 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) | 
 | 216 | { | 
 | 217 | 	skb->next = NULL; | 
 | 218 | 	if (e->arpq_head) | 
 | 219 | 		e->arpq_tail->next = skb; | 
 | 220 | 	else | 
 | 221 | 		e->arpq_head = skb; | 
 | 222 | 	e->arpq_tail = skb; | 
 | 223 | } | 
 | 224 |  | 
 | 225 | int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, | 
 | 226 | 		   struct l2t_entry *e) | 
 | 227 | { | 
 | 228 | 	struct adapter *adap = netdev2adap(dev); | 
 | 229 |  | 
 | 230 | again: | 
 | 231 | 	switch (e->state) { | 
 | 232 | 	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */ | 
 | 233 | 		neigh_event_send(e->neigh, NULL); | 
 | 234 | 		spin_lock_bh(&e->lock); | 
 | 235 | 		if (e->state == L2T_STATE_STALE) | 
 | 236 | 			e->state = L2T_STATE_VALID; | 
 | 237 | 		spin_unlock_bh(&e->lock); | 
 | 238 | 	case L2T_STATE_VALID:     /* fast-path, send the packet on */ | 
 | 239 | 		return t4_ofld_send(adap, skb); | 
 | 240 | 	case L2T_STATE_RESOLVING: | 
 | 241 | 	case L2T_STATE_SYNC_WRITE: | 
 | 242 | 		spin_lock_bh(&e->lock); | 
 | 243 | 		if (e->state != L2T_STATE_SYNC_WRITE && | 
 | 244 | 		    e->state != L2T_STATE_RESOLVING) { | 
 | 245 | 			spin_unlock_bh(&e->lock); | 
 | 246 | 			goto again; | 
 | 247 | 		} | 
 | 248 | 		arpq_enqueue(e, skb); | 
 | 249 | 		spin_unlock_bh(&e->lock); | 
 | 250 |  | 
 | 251 | 		if (e->state == L2T_STATE_RESOLVING && | 
 | 252 | 		    !neigh_event_send(e->neigh, NULL)) { | 
 | 253 | 			spin_lock_bh(&e->lock); | 
 | 254 | 			if (e->state == L2T_STATE_RESOLVING && e->arpq_head) | 
 | 255 | 				write_l2e(adap, e, 1); | 
 | 256 | 			spin_unlock_bh(&e->lock); | 
 | 257 | 		} | 
 | 258 | 	} | 
 | 259 | 	return 0; | 
 | 260 | } | 
 | 261 | EXPORT_SYMBOL(cxgb4_l2t_send); | 
 | 262 |  | 
 | 263 | /* | 
 | 264 |  * Allocate a free L2T entry.  Must be called with l2t_data.lock held. | 
 | 265 |  */ | 
 | 266 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) | 
 | 267 | { | 
 | 268 | 	struct l2t_entry *end, *e, **p; | 
 | 269 |  | 
 | 270 | 	if (!atomic_read(&d->nfree)) | 
 | 271 | 		return NULL; | 
 | 272 |  | 
 | 273 | 	/* there's definitely a free entry */ | 
 | 274 | 	for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) | 
 | 275 | 		if (atomic_read(&e->refcnt) == 0) | 
 | 276 | 			goto found; | 
 | 277 |  | 
 | 278 | 	for (e = d->l2tab; atomic_read(&e->refcnt); ++e) | 
 | 279 | 		; | 
 | 280 | found: | 
 | 281 | 	d->rover = e + 1; | 
 | 282 | 	atomic_dec(&d->nfree); | 
 | 283 |  | 
 | 284 | 	/* | 
 | 285 | 	 * The entry we found may be an inactive entry that is | 
 | 286 | 	 * presently in the hash table.  We need to remove it. | 
 | 287 | 	 */ | 
 | 288 | 	if (e->state < L2T_STATE_SWITCHING) | 
 | 289 | 		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) | 
 | 290 | 			if (*p == e) { | 
 | 291 | 				*p = e->next; | 
 | 292 | 				e->next = NULL; | 
 | 293 | 				break; | 
 | 294 | 			} | 
 | 295 |  | 
 | 296 | 	e->state = L2T_STATE_UNUSED; | 
 | 297 | 	return e; | 
 | 298 | } | 
 | 299 |  | 
 | 300 | /* | 
 | 301 |  * Called when an L2T entry has no more users. | 
 | 302 |  */ | 
 | 303 | static void t4_l2e_free(struct l2t_entry *e) | 
 | 304 | { | 
 | 305 | 	struct l2t_data *d; | 
 | 306 |  | 
 | 307 | 	spin_lock_bh(&e->lock); | 
 | 308 | 	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */ | 
 | 309 | 		if (e->neigh) { | 
 | 310 | 			neigh_release(e->neigh); | 
 | 311 | 			e->neigh = NULL; | 
 | 312 | 		} | 
| Dimitris Michailidis | 204dc3c | 2010-06-18 10:05:29 +0000 | [diff] [blame] | 313 | 		while (e->arpq_head) { | 
 | 314 | 			struct sk_buff *skb = e->arpq_head; | 
 | 315 |  | 
 | 316 | 			e->arpq_head = skb->next; | 
| Denis Kirjanov | 05eda04 | 2010-06-30 23:45:52 +0000 | [diff] [blame] | 317 | 			kfree_skb(skb); | 
| Dimitris Michailidis | 204dc3c | 2010-06-18 10:05:29 +0000 | [diff] [blame] | 318 | 		} | 
 | 319 | 		e->arpq_tail = NULL; | 
| Dimitris Michailidis | 625ba2c | 2010-04-01 15:28:25 +0000 | [diff] [blame] | 320 | 	} | 
 | 321 | 	spin_unlock_bh(&e->lock); | 
 | 322 |  | 
 | 323 | 	d = container_of(e, struct l2t_data, l2tab[e->idx]); | 
 | 324 | 	atomic_inc(&d->nfree); | 
 | 325 | } | 
 | 326 |  | 
 | 327 | void cxgb4_l2t_release(struct l2t_entry *e) | 
 | 328 | { | 
 | 329 | 	if (atomic_dec_and_test(&e->refcnt)) | 
 | 330 | 		t4_l2e_free(e); | 
 | 331 | } | 
 | 332 | EXPORT_SYMBOL(cxgb4_l2t_release); | 
 | 333 |  | 
 | 334 | /* | 
 | 335 |  * Update an L2T entry that was previously used for the same next hop as neigh. | 
 | 336 |  * Must be called with softirqs disabled. | 
 | 337 |  */ | 
 | 338 | static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) | 
 | 339 | { | 
 | 340 | 	unsigned int nud_state; | 
 | 341 |  | 
 | 342 | 	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */ | 
 | 343 | 	if (neigh != e->neigh) | 
 | 344 | 		neigh_replace(e, neigh); | 
 | 345 | 	nud_state = neigh->nud_state; | 
 | 346 | 	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || | 
 | 347 | 	    !(nud_state & NUD_VALID)) | 
 | 348 | 		e->state = L2T_STATE_RESOLVING; | 
 | 349 | 	else if (nud_state & NUD_CONNECTED) | 
 | 350 | 		e->state = L2T_STATE_VALID; | 
 | 351 | 	else | 
 | 352 | 		e->state = L2T_STATE_STALE; | 
 | 353 | 	spin_unlock(&e->lock); | 
 | 354 | } | 
 | 355 |  | 
 | 356 | struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, | 
 | 357 | 				const struct net_device *physdev, | 
 | 358 | 				unsigned int priority) | 
 | 359 | { | 
 | 360 | 	u8 lport; | 
 | 361 | 	u16 vlan; | 
 | 362 | 	struct l2t_entry *e; | 
 | 363 | 	int addr_len = neigh->tbl->key_len; | 
 | 364 | 	u32 *addr = (u32 *)neigh->primary_key; | 
 | 365 | 	int ifidx = neigh->dev->ifindex; | 
 | 366 | 	int hash = addr_hash(addr, addr_len, ifidx); | 
 | 367 |  | 
 | 368 | 	if (neigh->dev->flags & IFF_LOOPBACK) | 
 | 369 | 		lport = netdev2pinfo(physdev)->tx_chan + 4; | 
 | 370 | 	else | 
 | 371 | 		lport = netdev2pinfo(physdev)->lport; | 
 | 372 |  | 
 | 373 | 	if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) | 
 | 374 | 		vlan = vlan_dev_vlan_id(neigh->dev); | 
 | 375 | 	else | 
 | 376 | 		vlan = VLAN_NONE; | 
 | 377 |  | 
 | 378 | 	write_lock_bh(&d->lock); | 
 | 379 | 	for (e = d->l2tab[hash].first; e; e = e->next) | 
 | 380 | 		if (!addreq(e, addr) && e->ifindex == ifidx && | 
 | 381 | 		    e->vlan == vlan && e->lport == lport) { | 
 | 382 | 			l2t_hold(d, e); | 
 | 383 | 			if (atomic_read(&e->refcnt) == 1) | 
 | 384 | 				reuse_entry(e, neigh); | 
 | 385 | 			goto done; | 
 | 386 | 		} | 
 | 387 |  | 
 | 388 | 	/* Need to allocate a new entry */ | 
 | 389 | 	e = alloc_l2e(d); | 
 | 390 | 	if (e) { | 
 | 391 | 		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */ | 
 | 392 | 		e->state = L2T_STATE_RESOLVING; | 
 | 393 | 		memcpy(e->addr, addr, addr_len); | 
 | 394 | 		e->ifindex = ifidx; | 
 | 395 | 		e->hash = hash; | 
 | 396 | 		e->lport = lport; | 
 | 397 | 		e->v6 = addr_len == 16; | 
 | 398 | 		atomic_set(&e->refcnt, 1); | 
 | 399 | 		neigh_replace(e, neigh); | 
 | 400 | 		e->vlan = vlan; | 
 | 401 | 		e->next = d->l2tab[hash].first; | 
 | 402 | 		d->l2tab[hash].first = e; | 
 | 403 | 		spin_unlock(&e->lock); | 
 | 404 | 	} | 
 | 405 | done: | 
 | 406 | 	write_unlock_bh(&d->lock); | 
 | 407 | 	return e; | 
 | 408 | } | 
 | 409 | EXPORT_SYMBOL(cxgb4_l2t_get); | 
 | 410 |  | 
 | 411 | /* | 
 | 412 |  * Called when address resolution fails for an L2T entry to handle packets | 
 | 413 |  * on the arpq head.  If a packet specifies a failure handler it is invoked, | 
 | 414 |  * otherwise the packet is sent to the device. | 
 | 415 |  */ | 
 | 416 | static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq) | 
 | 417 | { | 
 | 418 | 	while (arpq) { | 
 | 419 | 		struct sk_buff *skb = arpq; | 
 | 420 | 		const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); | 
 | 421 |  | 
 | 422 | 		arpq = skb->next; | 
 | 423 | 		skb->next = NULL; | 
 | 424 | 		if (cb->arp_err_handler) | 
 | 425 | 			cb->arp_err_handler(cb->handle, skb); | 
 | 426 | 		else | 
 | 427 | 			t4_ofld_send(adap, skb); | 
 | 428 | 	} | 
 | 429 | } | 
 | 430 |  | 
 | 431 | /* | 
 | 432 |  * Called when the host's neighbor layer makes a change to some entry that is | 
 | 433 |  * loaded into the HW L2 table. | 
 | 434 |  */ | 
 | 435 | void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) | 
 | 436 | { | 
 | 437 | 	struct l2t_entry *e; | 
 | 438 | 	struct sk_buff *arpq = NULL; | 
 | 439 | 	struct l2t_data *d = adap->l2t; | 
 | 440 | 	int addr_len = neigh->tbl->key_len; | 
 | 441 | 	u32 *addr = (u32 *) neigh->primary_key; | 
 | 442 | 	int ifidx = neigh->dev->ifindex; | 
 | 443 | 	int hash = addr_hash(addr, addr_len, ifidx); | 
 | 444 |  | 
 | 445 | 	read_lock_bh(&d->lock); | 
 | 446 | 	for (e = d->l2tab[hash].first; e; e = e->next) | 
 | 447 | 		if (!addreq(e, addr) && e->ifindex == ifidx) { | 
 | 448 | 			spin_lock(&e->lock); | 
 | 449 | 			if (atomic_read(&e->refcnt)) | 
 | 450 | 				goto found; | 
 | 451 | 			spin_unlock(&e->lock); | 
 | 452 | 			break; | 
 | 453 | 		} | 
 | 454 | 	read_unlock_bh(&d->lock); | 
 | 455 | 	return; | 
 | 456 |  | 
 | 457 |  found: | 
 | 458 | 	read_unlock(&d->lock); | 
 | 459 |  | 
 | 460 | 	if (neigh != e->neigh) | 
 | 461 | 		neigh_replace(e, neigh); | 
 | 462 |  | 
 | 463 | 	if (e->state == L2T_STATE_RESOLVING) { | 
 | 464 | 		if (neigh->nud_state & NUD_FAILED) { | 
 | 465 | 			arpq = e->arpq_head; | 
 | 466 | 			e->arpq_head = e->arpq_tail = NULL; | 
 | 467 | 		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && | 
 | 468 | 			   e->arpq_head) { | 
 | 469 | 			write_l2e(adap, e, 1); | 
 | 470 | 		} | 
 | 471 | 	} else { | 
 | 472 | 		e->state = neigh->nud_state & NUD_CONNECTED ? | 
 | 473 | 			L2T_STATE_VALID : L2T_STATE_STALE; | 
 | 474 | 		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) | 
 | 475 | 			write_l2e(adap, e, 0); | 
 | 476 | 	} | 
 | 477 |  | 
 | 478 | 	spin_unlock_bh(&e->lock); | 
 | 479 |  | 
 | 480 | 	if (arpq) | 
 | 481 | 		handle_failed_resolution(adap, arpq); | 
 | 482 | } | 
 | 483 |  | 
| Dimitris Michailidis | 625ba2c | 2010-04-01 15:28:25 +0000 | [diff] [blame] | 484 | struct l2t_data *t4_init_l2t(void) | 
 | 485 | { | 
 | 486 | 	int i; | 
 | 487 | 	struct l2t_data *d; | 
 | 488 |  | 
 | 489 | 	d = t4_alloc_mem(sizeof(*d)); | 
 | 490 | 	if (!d) | 
 | 491 | 		return NULL; | 
 | 492 |  | 
 | 493 | 	d->rover = d->l2tab; | 
 | 494 | 	atomic_set(&d->nfree, L2T_SIZE); | 
 | 495 | 	rwlock_init(&d->lock); | 
 | 496 |  | 
 | 497 | 	for (i = 0; i < L2T_SIZE; ++i) { | 
 | 498 | 		d->l2tab[i].idx = i; | 
 | 499 | 		d->l2tab[i].state = L2T_STATE_UNUSED; | 
 | 500 | 		spin_lock_init(&d->l2tab[i].lock); | 
 | 501 | 		atomic_set(&d->l2tab[i].refcnt, 0); | 
 | 502 | 	} | 
 | 503 | 	return d; | 
 | 504 | } | 
 | 505 |  | 
 | 506 | #include <linux/module.h> | 
 | 507 | #include <linux/debugfs.h> | 
 | 508 | #include <linux/seq_file.h> | 
 | 509 |  | 
 | 510 | static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) | 
 | 511 | { | 
 | 512 | 	struct l2t_entry *l2tab = seq->private; | 
 | 513 |  | 
 | 514 | 	return pos >= L2T_SIZE ? NULL : &l2tab[pos]; | 
 | 515 | } | 
 | 516 |  | 
 | 517 | static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) | 
 | 518 | { | 
 | 519 | 	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; | 
 | 520 | } | 
 | 521 |  | 
 | 522 | static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
 | 523 | { | 
 | 524 | 	v = l2t_get_idx(seq, *pos); | 
 | 525 | 	if (v) | 
 | 526 | 		++*pos; | 
 | 527 | 	return v; | 
 | 528 | } | 
 | 529 |  | 
 | 530 | static void l2t_seq_stop(struct seq_file *seq, void *v) | 
 | 531 | { | 
 | 532 | } | 
 | 533 |  | 
 | 534 | static char l2e_state(const struct l2t_entry *e) | 
 | 535 | { | 
 | 536 | 	switch (e->state) { | 
 | 537 | 	case L2T_STATE_VALID: return 'V'; | 
 | 538 | 	case L2T_STATE_STALE: return 'S'; | 
 | 539 | 	case L2T_STATE_SYNC_WRITE: return 'W'; | 
 | 540 | 	case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; | 
 | 541 | 	case L2T_STATE_SWITCHING: return 'X'; | 
 | 542 | 	default: | 
 | 543 | 		return 'U'; | 
 | 544 | 	} | 
 | 545 | } | 
 | 546 |  | 
 | 547 | static int l2t_seq_show(struct seq_file *seq, void *v) | 
 | 548 | { | 
 | 549 | 	if (v == SEQ_START_TOKEN) | 
 | 550 | 		seq_puts(seq, " Idx IP address                " | 
 | 551 | 			 "Ethernet address  VLAN/P LP State Users Port\n"); | 
 | 552 | 	else { | 
 | 553 | 		char ip[60]; | 
 | 554 | 		struct l2t_entry *e = v; | 
 | 555 |  | 
 | 556 | 		spin_lock_bh(&e->lock); | 
 | 557 | 		if (e->state == L2T_STATE_SWITCHING) | 
 | 558 | 			ip[0] = '\0'; | 
 | 559 | 		else | 
 | 560 | 			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); | 
 | 561 | 		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n", | 
 | 562 | 			   e->idx, ip, e->dmac, | 
 | 563 | 			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, | 
 | 564 | 			   l2e_state(e), atomic_read(&e->refcnt), | 
 | 565 | 			   e->neigh ? e->neigh->dev->name : ""); | 
 | 566 | 		spin_unlock_bh(&e->lock); | 
 | 567 | 	} | 
 | 568 | 	return 0; | 
 | 569 | } | 
 | 570 |  | 
 | 571 | static const struct seq_operations l2t_seq_ops = { | 
 | 572 | 	.start = l2t_seq_start, | 
 | 573 | 	.next = l2t_seq_next, | 
 | 574 | 	.stop = l2t_seq_stop, | 
 | 575 | 	.show = l2t_seq_show | 
 | 576 | }; | 
 | 577 |  | 
 | 578 | static int l2t_seq_open(struct inode *inode, struct file *file) | 
 | 579 | { | 
 | 580 | 	int rc = seq_open(file, &l2t_seq_ops); | 
 | 581 |  | 
 | 582 | 	if (!rc) { | 
 | 583 | 		struct adapter *adap = inode->i_private; | 
 | 584 | 		struct seq_file *seq = file->private_data; | 
 | 585 |  | 
 | 586 | 		seq->private = adap->l2t->l2tab; | 
 | 587 | 	} | 
 | 588 | 	return rc; | 
 | 589 | } | 
 | 590 |  | 
 | 591 | const struct file_operations t4_l2t_fops = { | 
 | 592 | 	.owner = THIS_MODULE, | 
 | 593 | 	.open = l2t_seq_open, | 
 | 594 | 	.read = seq_read, | 
 | 595 | 	.llseek = seq_lseek, | 
 | 596 | 	.release = seq_release, | 
 | 597 | }; |