| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (C) 2008, 2009 Intel Corporation | 
 | 3 |  * Authors: Andi Kleen, Fengguang Wu | 
 | 4 |  * | 
 | 5 |  * This software may be redistributed and/or modified under the terms of | 
 | 6 |  * the GNU General Public License ("GPL") version 2 only as published by the | 
 | 7 |  * Free Software Foundation. | 
 | 8 |  * | 
 | 9 |  * High level machine check handler. Handles pages reported by the | 
| Andi Kleen | 1c80b99 | 2010-09-27 23:09:51 +0200 | [diff] [blame] | 10 |  * hardware as being corrupted usually due to a multi-bit ECC memory or cache | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 11 |  * failure. | 
| Andi Kleen | 1c80b99 | 2010-09-27 23:09:51 +0200 | [diff] [blame] | 12 |  *  | 
 | 13 |  * In addition there is a "soft offline" entry point that allows stop using | 
 | 14 |  * not-yet-corrupted-by-suspicious pages without killing anything. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 15 |  * | 
 | 16 |  * Handles page cache pages in various states.	The tricky part | 
| Andi Kleen | 1c80b99 | 2010-09-27 23:09:51 +0200 | [diff] [blame] | 17 |  * here is that we can access any page asynchronously in respect to  | 
 | 18 |  * other VM users, because memory failures could happen anytime and  | 
 | 19 |  * anywhere. This could violate some of their assumptions. This is why  | 
 | 20 |  * this code has to be extremely careful. Generally it tries to use  | 
 | 21 |  * normal locking rules, as in get the standard locks, even if that means  | 
 | 22 |  * the error handling takes potentially a long time. | 
 | 23 |  *  | 
 | 24 |  * There are several operations here with exponential complexity because | 
 | 25 |  * of unsuitable VM data structures. For example the operation to map back  | 
 | 26 |  * from RMAP chains to processes has to walk the complete process list and  | 
 | 27 |  * has non linear complexity with the number. But since memory corruptions | 
 | 28 |  * are rare we hope to get away with this. This avoids impacting the core  | 
 | 29 |  * VM. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 30 |  */ | 
 | 31 |  | 
 | 32 | /* | 
 | 33 |  * Notebook: | 
 | 34 |  * - hugetlb needs more code | 
 | 35 |  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages | 
 | 36 |  * - pass bad pages to kdump next kernel | 
 | 37 |  */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 38 | #include <linux/kernel.h> | 
 | 39 | #include <linux/mm.h> | 
 | 40 | #include <linux/page-flags.h> | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 41 | #include <linux/kernel-page-flags.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 42 | #include <linux/sched.h> | 
| Hugh Dickins | 01e00f8 | 2009-10-13 15:02:11 +0100 | [diff] [blame] | 43 | #include <linux/ksm.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 44 | #include <linux/rmap.h> | 
 | 45 | #include <linux/pagemap.h> | 
 | 46 | #include <linux/swap.h> | 
 | 47 | #include <linux/backing-dev.h> | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 48 | #include <linux/migrate.h> | 
 | 49 | #include <linux/page-isolation.h> | 
 | 50 | #include <linux/suspend.h> | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 51 | #include <linux/slab.h> | 
| Huang Ying | bf99815 | 2010-05-31 14:28:19 +0800 | [diff] [blame] | 52 | #include <linux/swapops.h> | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 53 | #include <linux/hugetlb.h> | 
| KOSAKI Motohiro | 20d6c96 | 2010-12-02 14:31:19 -0800 | [diff] [blame] | 54 | #include <linux/memory_hotplug.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 55 | #include "internal.h" | 
 | 56 |  | 
 | 57 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 
 | 58 |  | 
 | 59 | int sysctl_memory_failure_recovery __read_mostly = 1; | 
 | 60 |  | 
 | 61 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); | 
 | 62 |  | 
| Andi Kleen | 27df506 | 2009-12-21 19:56:42 +0100 | [diff] [blame] | 63 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) | 
 | 64 |  | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 65 | u32 hwpoison_filter_enable = 0; | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 66 | u32 hwpoison_filter_dev_major = ~0U; | 
 | 67 | u32 hwpoison_filter_dev_minor = ~0U; | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 68 | u64 hwpoison_filter_flags_mask; | 
 | 69 | u64 hwpoison_filter_flags_value; | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 70 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 71 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); | 
 | 72 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 73 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); | 
 | 74 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 75 |  | 
 | 76 | static int hwpoison_filter_dev(struct page *p) | 
 | 77 | { | 
 | 78 | 	struct address_space *mapping; | 
 | 79 | 	dev_t dev; | 
 | 80 |  | 
 | 81 | 	if (hwpoison_filter_dev_major == ~0U && | 
 | 82 | 	    hwpoison_filter_dev_minor == ~0U) | 
 | 83 | 		return 0; | 
 | 84 |  | 
 | 85 | 	/* | 
| Andi Kleen | 1c80b99 | 2010-09-27 23:09:51 +0200 | [diff] [blame] | 86 | 	 * page_mapping() does not accept slab pages. | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 87 | 	 */ | 
 | 88 | 	if (PageSlab(p)) | 
 | 89 | 		return -EINVAL; | 
 | 90 |  | 
 | 91 | 	mapping = page_mapping(p); | 
 | 92 | 	if (mapping == NULL || mapping->host == NULL) | 
 | 93 | 		return -EINVAL; | 
 | 94 |  | 
 | 95 | 	dev = mapping->host->i_sb->s_dev; | 
 | 96 | 	if (hwpoison_filter_dev_major != ~0U && | 
 | 97 | 	    hwpoison_filter_dev_major != MAJOR(dev)) | 
 | 98 | 		return -EINVAL; | 
 | 99 | 	if (hwpoison_filter_dev_minor != ~0U && | 
 | 100 | 	    hwpoison_filter_dev_minor != MINOR(dev)) | 
 | 101 | 		return -EINVAL; | 
 | 102 |  | 
 | 103 | 	return 0; | 
 | 104 | } | 
 | 105 |  | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 106 | static int hwpoison_filter_flags(struct page *p) | 
 | 107 | { | 
 | 108 | 	if (!hwpoison_filter_flags_mask) | 
 | 109 | 		return 0; | 
 | 110 |  | 
 | 111 | 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | 
 | 112 | 				    hwpoison_filter_flags_value) | 
 | 113 | 		return 0; | 
 | 114 | 	else | 
 | 115 | 		return -EINVAL; | 
 | 116 | } | 
 | 117 |  | 
| Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 118 | /* | 
 | 119 |  * This allows stress tests to limit test scope to a collection of tasks | 
 | 120 |  * by putting them under some memcg. This prevents killing unrelated/important | 
 | 121 |  * processes such as /sbin/init. Note that the target task may share clean | 
 | 122 |  * pages with init (eg. libc text), which is harmless. If the target task | 
 | 123 |  * share _dirty_ pages with another task B, the test scheme must make sure B | 
 | 124 |  * is also included in the memcg. At last, due to race conditions this filter | 
 | 125 |  * can only guarantee that the page either belongs to the memcg tasks, or is | 
 | 126 |  * a freed page. | 
 | 127 |  */ | 
 | 128 | #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 | 129 | u64 hwpoison_filter_memcg; | 
 | 130 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | 
 | 131 | static int hwpoison_filter_task(struct page *p) | 
 | 132 | { | 
 | 133 | 	struct mem_cgroup *mem; | 
 | 134 | 	struct cgroup_subsys_state *css; | 
 | 135 | 	unsigned long ino; | 
 | 136 |  | 
 | 137 | 	if (!hwpoison_filter_memcg) | 
 | 138 | 		return 0; | 
 | 139 |  | 
 | 140 | 	mem = try_get_mem_cgroup_from_page(p); | 
 | 141 | 	if (!mem) | 
 | 142 | 		return -EINVAL; | 
 | 143 |  | 
 | 144 | 	css = mem_cgroup_css(mem); | 
 | 145 | 	/* root_mem_cgroup has NULL dentries */ | 
 | 146 | 	if (!css->cgroup->dentry) | 
 | 147 | 		return -EINVAL; | 
 | 148 |  | 
 | 149 | 	ino = css->cgroup->dentry->d_inode->i_ino; | 
 | 150 | 	css_put(css); | 
 | 151 |  | 
 | 152 | 	if (ino != hwpoison_filter_memcg) | 
 | 153 | 		return -EINVAL; | 
 | 154 |  | 
 | 155 | 	return 0; | 
 | 156 | } | 
 | 157 | #else | 
 | 158 | static int hwpoison_filter_task(struct page *p) { return 0; } | 
 | 159 | #endif | 
 | 160 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 161 | int hwpoison_filter(struct page *p) | 
 | 162 | { | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 163 | 	if (!hwpoison_filter_enable) | 
 | 164 | 		return 0; | 
 | 165 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 166 | 	if (hwpoison_filter_dev(p)) | 
 | 167 | 		return -EINVAL; | 
 | 168 |  | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 169 | 	if (hwpoison_filter_flags(p)) | 
 | 170 | 		return -EINVAL; | 
 | 171 |  | 
| Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 172 | 	if (hwpoison_filter_task(p)) | 
 | 173 | 		return -EINVAL; | 
 | 174 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 175 | 	return 0; | 
 | 176 | } | 
| Andi Kleen | 27df506 | 2009-12-21 19:56:42 +0100 | [diff] [blame] | 177 | #else | 
 | 178 | int hwpoison_filter(struct page *p) | 
 | 179 | { | 
 | 180 | 	return 0; | 
 | 181 | } | 
 | 182 | #endif | 
 | 183 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 184 | EXPORT_SYMBOL_GPL(hwpoison_filter); | 
 | 185 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 186 | /* | 
 | 187 |  * Send all the processes who have the page mapped an ``action optional'' | 
 | 188 |  * signal. | 
 | 189 |  */ | 
 | 190 | static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, | 
| Andi Kleen | 0d9ee6a | 2010-09-27 22:03:33 +0200 | [diff] [blame] | 191 | 			unsigned long pfn, struct page *page) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 192 | { | 
 | 193 | 	struct siginfo si; | 
 | 194 | 	int ret; | 
 | 195 |  | 
 | 196 | 	printk(KERN_ERR | 
 | 197 | 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", | 
 | 198 | 		pfn, t->comm, t->pid); | 
 | 199 | 	si.si_signo = SIGBUS; | 
 | 200 | 	si.si_errno = 0; | 
 | 201 | 	si.si_code = BUS_MCEERR_AO; | 
 | 202 | 	si.si_addr = (void *)addr; | 
 | 203 | #ifdef __ARCH_SI_TRAPNO | 
 | 204 | 	si.si_trapno = trapno; | 
 | 205 | #endif | 
| Andi Kleen | 0d9ee6a | 2010-09-27 22:03:33 +0200 | [diff] [blame] | 206 | 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 207 | 	/* | 
 | 208 | 	 * Don't use force here, it's convenient if the signal | 
 | 209 | 	 * can be temporarily blocked. | 
 | 210 | 	 * This could cause a loop when the user sets SIGBUS | 
 | 211 | 	 * to SIG_IGN, but hopefully noone will do that? | 
 | 212 | 	 */ | 
 | 213 | 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */ | 
 | 214 | 	if (ret < 0) | 
 | 215 | 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", | 
 | 216 | 		       t->comm, t->pid, ret); | 
 | 217 | 	return ret; | 
 | 218 | } | 
 | 219 |  | 
 | 220 | /* | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 221 |  * When a unknown page type is encountered drain as many buffers as possible | 
 | 222 |  * in the hope to turn the page into a LRU or free page, which we can handle. | 
 | 223 |  */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 224 | void shake_page(struct page *p, int access) | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 225 | { | 
 | 226 | 	if (!PageSlab(p)) { | 
 | 227 | 		lru_add_drain_all(); | 
 | 228 | 		if (PageLRU(p)) | 
 | 229 | 			return; | 
 | 230 | 		drain_all_pages(); | 
 | 231 | 		if (PageLRU(p) || is_free_buddy_page(p)) | 
 | 232 | 			return; | 
 | 233 | 	} | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 234 |  | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 235 | 	/* | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 236 | 	 * Only all shrink_slab here (which would also | 
 | 237 | 	 * shrink other caches) if access is not potentially fatal. | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 238 | 	 */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 239 | 	if (access) { | 
 | 240 | 		int nr; | 
 | 241 | 		do { | 
 | 242 | 			nr = shrink_slab(1000, GFP_KERNEL, 1000); | 
| Andi Kleen | 47f43e7 | 2010-09-28 07:37:55 +0200 | [diff] [blame] | 243 | 			if (page_count(p) == 1) | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 244 | 				break; | 
 | 245 | 		} while (nr > 10); | 
 | 246 | 	} | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 247 | } | 
 | 248 | EXPORT_SYMBOL_GPL(shake_page); | 
 | 249 |  | 
 | 250 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 251 |  * Kill all processes that have a poisoned page mapped and then isolate | 
 | 252 |  * the page. | 
 | 253 |  * | 
 | 254 |  * General strategy: | 
 | 255 |  * Find all processes having the page mapped and kill them. | 
 | 256 |  * But we keep a page reference around so that the page is not | 
 | 257 |  * actually freed yet. | 
 | 258 |  * Then stash the page away | 
 | 259 |  * | 
 | 260 |  * There's no convenient way to get back to mapped processes | 
 | 261 |  * from the VMAs. So do a brute-force search over all | 
 | 262 |  * running processes. | 
 | 263 |  * | 
 | 264 |  * Remember that machine checks are not common (or rather | 
 | 265 |  * if they are common you have other problems), so this shouldn't | 
 | 266 |  * be a performance issue. | 
 | 267 |  * | 
 | 268 |  * Also there are some races possible while we get from the | 
 | 269 |  * error detection to actually handle it. | 
 | 270 |  */ | 
 | 271 |  | 
 | 272 | struct to_kill { | 
 | 273 | 	struct list_head nd; | 
 | 274 | 	struct task_struct *tsk; | 
 | 275 | 	unsigned long addr; | 
| Andi Kleen | 9033ae1 | 2010-09-27 23:36:05 +0200 | [diff] [blame] | 276 | 	char addr_valid; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 277 | }; | 
 | 278 |  | 
 | 279 | /* | 
 | 280 |  * Failure handling: if we can't find or can't kill a process there's | 
 | 281 |  * not much we can do.	We just print a message and ignore otherwise. | 
 | 282 |  */ | 
 | 283 |  | 
 | 284 | /* | 
 | 285 |  * Schedule a process for later kill. | 
 | 286 |  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | 
 | 287 |  * TBD would GFP_NOIO be enough? | 
 | 288 |  */ | 
 | 289 | static void add_to_kill(struct task_struct *tsk, struct page *p, | 
 | 290 | 		       struct vm_area_struct *vma, | 
 | 291 | 		       struct list_head *to_kill, | 
 | 292 | 		       struct to_kill **tkc) | 
 | 293 | { | 
 | 294 | 	struct to_kill *tk; | 
 | 295 |  | 
 | 296 | 	if (*tkc) { | 
 | 297 | 		tk = *tkc; | 
 | 298 | 		*tkc = NULL; | 
 | 299 | 	} else { | 
 | 300 | 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | 
 | 301 | 		if (!tk) { | 
 | 302 | 			printk(KERN_ERR | 
 | 303 | 		"MCE: Out of memory while machine check handling\n"); | 
 | 304 | 			return; | 
 | 305 | 		} | 
 | 306 | 	} | 
 | 307 | 	tk->addr = page_address_in_vma(p, vma); | 
 | 308 | 	tk->addr_valid = 1; | 
 | 309 |  | 
 | 310 | 	/* | 
 | 311 | 	 * In theory we don't have to kill when the page was | 
 | 312 | 	 * munmaped. But it could be also a mremap. Since that's | 
 | 313 | 	 * likely very rare kill anyways just out of paranoia, but use | 
 | 314 | 	 * a SIGKILL because the error is not contained anymore. | 
 | 315 | 	 */ | 
 | 316 | 	if (tk->addr == -EFAULT) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 317 | 		pr_info("MCE: Unable to find user space address %lx in %s\n", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 318 | 			page_to_pfn(p), tsk->comm); | 
 | 319 | 		tk->addr_valid = 0; | 
 | 320 | 	} | 
 | 321 | 	get_task_struct(tsk); | 
 | 322 | 	tk->tsk = tsk; | 
 | 323 | 	list_add_tail(&tk->nd, to_kill); | 
 | 324 | } | 
 | 325 |  | 
 | 326 | /* | 
 | 327 |  * Kill the processes that have been collected earlier. | 
 | 328 |  * | 
 | 329 |  * Only do anything when DOIT is set, otherwise just free the list | 
 | 330 |  * (this is used for clean pages which do not need killing) | 
 | 331 |  * Also when FAIL is set do a force kill because something went | 
 | 332 |  * wrong earlier. | 
 | 333 |  */ | 
 | 334 | static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, | 
| Andi Kleen | 0d9ee6a | 2010-09-27 22:03:33 +0200 | [diff] [blame] | 335 | 			  int fail, struct page *page, unsigned long pfn) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 336 | { | 
 | 337 | 	struct to_kill *tk, *next; | 
 | 338 |  | 
 | 339 | 	list_for_each_entry_safe (tk, next, to_kill, nd) { | 
 | 340 | 		if (doit) { | 
 | 341 | 			/* | 
| André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 342 | 			 * In case something went wrong with munmapping | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 343 | 			 * make sure the process doesn't catch the | 
 | 344 | 			 * signal and then access the memory. Just kill it. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 345 | 			 */ | 
 | 346 | 			if (fail || tk->addr_valid == 0) { | 
 | 347 | 				printk(KERN_ERR | 
 | 348 | 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | 
 | 349 | 					pfn, tk->tsk->comm, tk->tsk->pid); | 
 | 350 | 				force_sig(SIGKILL, tk->tsk); | 
 | 351 | 			} | 
 | 352 |  | 
 | 353 | 			/* | 
 | 354 | 			 * In theory the process could have mapped | 
 | 355 | 			 * something else on the address in-between. We could | 
 | 356 | 			 * check for that, but we need to tell the | 
 | 357 | 			 * process anyways. | 
 | 358 | 			 */ | 
 | 359 | 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno, | 
| Andi Kleen | 0d9ee6a | 2010-09-27 22:03:33 +0200 | [diff] [blame] | 360 | 					      pfn, page) < 0) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 361 | 				printk(KERN_ERR | 
 | 362 | 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", | 
 | 363 | 					pfn, tk->tsk->comm, tk->tsk->pid); | 
 | 364 | 		} | 
 | 365 | 		put_task_struct(tk->tsk); | 
 | 366 | 		kfree(tk); | 
 | 367 | 	} | 
 | 368 | } | 
 | 369 |  | 
 | 370 | static int task_early_kill(struct task_struct *tsk) | 
 | 371 | { | 
 | 372 | 	if (!tsk->mm) | 
 | 373 | 		return 0; | 
 | 374 | 	if (tsk->flags & PF_MCE_PROCESS) | 
 | 375 | 		return !!(tsk->flags & PF_MCE_EARLY); | 
 | 376 | 	return sysctl_memory_failure_early_kill; | 
 | 377 | } | 
 | 378 |  | 
 | 379 | /* | 
 | 380 |  * Collect processes when the error hit an anonymous page. | 
 | 381 |  */ | 
 | 382 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | 
 | 383 | 			      struct to_kill **tkc) | 
 | 384 | { | 
 | 385 | 	struct vm_area_struct *vma; | 
 | 386 | 	struct task_struct *tsk; | 
 | 387 | 	struct anon_vma *av; | 
 | 388 |  | 
 | 389 | 	read_lock(&tasklist_lock); | 
 | 390 | 	av = page_lock_anon_vma(page); | 
 | 391 | 	if (av == NULL)	/* Not actually mapped anymore */ | 
 | 392 | 		goto out; | 
 | 393 | 	for_each_process (tsk) { | 
| Rik van Riel | 5beb493 | 2010-03-05 13:42:07 -0800 | [diff] [blame] | 394 | 		struct anon_vma_chain *vmac; | 
 | 395 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 396 | 		if (!task_early_kill(tsk)) | 
 | 397 | 			continue; | 
| Rik van Riel | 5beb493 | 2010-03-05 13:42:07 -0800 | [diff] [blame] | 398 | 		list_for_each_entry(vmac, &av->head, same_anon_vma) { | 
 | 399 | 			vma = vmac->vma; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 400 | 			if (!page_mapped_in_vma(page, vma)) | 
 | 401 | 				continue; | 
 | 402 | 			if (vma->vm_mm == tsk->mm) | 
 | 403 | 				add_to_kill(tsk, page, vma, to_kill, tkc); | 
 | 404 | 		} | 
 | 405 | 	} | 
 | 406 | 	page_unlock_anon_vma(av); | 
 | 407 | out: | 
 | 408 | 	read_unlock(&tasklist_lock); | 
 | 409 | } | 
 | 410 |  | 
 | 411 | /* | 
 | 412 |  * Collect processes when the error hit a file mapped page. | 
 | 413 |  */ | 
 | 414 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | 
 | 415 | 			      struct to_kill **tkc) | 
 | 416 | { | 
 | 417 | 	struct vm_area_struct *vma; | 
 | 418 | 	struct task_struct *tsk; | 
 | 419 | 	struct prio_tree_iter iter; | 
 | 420 | 	struct address_space *mapping = page->mapping; | 
 | 421 |  | 
 | 422 | 	/* | 
 | 423 | 	 * A note on the locking order between the two locks. | 
 | 424 | 	 * We don't rely on this particular order. | 
 | 425 | 	 * If you have some other code that needs a different order | 
 | 426 | 	 * feel free to switch them around. Or add a reverse link | 
 | 427 | 	 * from mm_struct to task_struct, then this could be all | 
 | 428 | 	 * done without taking tasklist_lock and looping over all tasks. | 
 | 429 | 	 */ | 
 | 430 |  | 
 | 431 | 	read_lock(&tasklist_lock); | 
 | 432 | 	spin_lock(&mapping->i_mmap_lock); | 
 | 433 | 	for_each_process(tsk) { | 
 | 434 | 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
 | 435 |  | 
 | 436 | 		if (!task_early_kill(tsk)) | 
 | 437 | 			continue; | 
 | 438 |  | 
 | 439 | 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, | 
 | 440 | 				      pgoff) { | 
 | 441 | 			/* | 
 | 442 | 			 * Send early kill signal to tasks where a vma covers | 
 | 443 | 			 * the page but the corrupted page is not necessarily | 
 | 444 | 			 * mapped it in its pte. | 
 | 445 | 			 * Assume applications who requested early kill want | 
 | 446 | 			 * to be informed of all such data corruptions. | 
 | 447 | 			 */ | 
 | 448 | 			if (vma->vm_mm == tsk->mm) | 
 | 449 | 				add_to_kill(tsk, page, vma, to_kill, tkc); | 
 | 450 | 		} | 
 | 451 | 	} | 
 | 452 | 	spin_unlock(&mapping->i_mmap_lock); | 
 | 453 | 	read_unlock(&tasklist_lock); | 
 | 454 | } | 
 | 455 |  | 
 | 456 | /* | 
 | 457 |  * Collect the processes who have the corrupted page mapped to kill. | 
 | 458 |  * This is done in two steps for locking reasons. | 
 | 459 |  * First preallocate one tokill structure outside the spin locks, | 
 | 460 |  * so that we can kill at least one process reasonably reliable. | 
 | 461 |  */ | 
 | 462 | static void collect_procs(struct page *page, struct list_head *tokill) | 
 | 463 | { | 
 | 464 | 	struct to_kill *tk; | 
 | 465 |  | 
 | 466 | 	if (!page->mapping) | 
 | 467 | 		return; | 
 | 468 |  | 
 | 469 | 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | 
 | 470 | 	if (!tk) | 
 | 471 | 		return; | 
 | 472 | 	if (PageAnon(page)) | 
 | 473 | 		collect_procs_anon(page, tokill, &tk); | 
 | 474 | 	else | 
 | 475 | 		collect_procs_file(page, tokill, &tk); | 
 | 476 | 	kfree(tk); | 
 | 477 | } | 
 | 478 |  | 
 | 479 | /* | 
 | 480 |  * Error handlers for various types of pages. | 
 | 481 |  */ | 
 | 482 |  | 
 | 483 | enum outcome { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 484 | 	IGNORED,	/* Error: cannot be handled */ | 
 | 485 | 	FAILED,		/* Error: handling failed */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 486 | 	DELAYED,	/* Will be handled later */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 487 | 	RECOVERED,	/* Successfully recovered */ | 
 | 488 | }; | 
 | 489 |  | 
 | 490 | static const char *action_name[] = { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 491 | 	[IGNORED] = "Ignored", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 492 | 	[FAILED] = "Failed", | 
 | 493 | 	[DELAYED] = "Delayed", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 494 | 	[RECOVERED] = "Recovered", | 
 | 495 | }; | 
 | 496 |  | 
 | 497 | /* | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 498 |  * XXX: It is possible that a page is isolated from LRU cache, | 
 | 499 |  * and then kept in swap cache or failed to remove from page cache. | 
 | 500 |  * The page count will stop it from being freed by unpoison. | 
 | 501 |  * Stress tests should be aware of this memory leak problem. | 
 | 502 |  */ | 
 | 503 | static int delete_from_lru_cache(struct page *p) | 
 | 504 | { | 
 | 505 | 	if (!isolate_lru_page(p)) { | 
 | 506 | 		/* | 
 | 507 | 		 * Clear sensible page flags, so that the buddy system won't | 
 | 508 | 		 * complain when the page is unpoison-and-freed. | 
 | 509 | 		 */ | 
 | 510 | 		ClearPageActive(p); | 
 | 511 | 		ClearPageUnevictable(p); | 
 | 512 | 		/* | 
 | 513 | 		 * drop the page count elevated by isolate_lru_page() | 
 | 514 | 		 */ | 
 | 515 | 		page_cache_release(p); | 
 | 516 | 		return 0; | 
 | 517 | 	} | 
 | 518 | 	return -EIO; | 
 | 519 | } | 
 | 520 |  | 
 | 521 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 522 |  * Error hit kernel page. | 
 | 523 |  * Do nothing, try to be lucky and not touch this instead. For a few cases we | 
 | 524 |  * could be more sophisticated. | 
 | 525 |  */ | 
 | 526 | static int me_kernel(struct page *p, unsigned long pfn) | 
 | 527 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 528 | 	return IGNORED; | 
 | 529 | } | 
 | 530 |  | 
 | 531 | /* | 
 | 532 |  * Page in unknown state. Do nothing. | 
 | 533 |  */ | 
 | 534 | static int me_unknown(struct page *p, unsigned long pfn) | 
 | 535 | { | 
 | 536 | 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); | 
 | 537 | 	return FAILED; | 
 | 538 | } | 
 | 539 |  | 
 | 540 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 541 |  * Clean (or cleaned) page cache page. | 
 | 542 |  */ | 
 | 543 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | 
 | 544 | { | 
 | 545 | 	int err; | 
 | 546 | 	int ret = FAILED; | 
 | 547 | 	struct address_space *mapping; | 
 | 548 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 549 | 	delete_from_lru_cache(p); | 
 | 550 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 551 | 	/* | 
 | 552 | 	 * For anonymous pages we're done the only reference left | 
 | 553 | 	 * should be the one m_f() holds. | 
 | 554 | 	 */ | 
 | 555 | 	if (PageAnon(p)) | 
 | 556 | 		return RECOVERED; | 
 | 557 |  | 
 | 558 | 	/* | 
 | 559 | 	 * Now truncate the page in the page cache. This is really | 
 | 560 | 	 * more like a "temporary hole punch" | 
 | 561 | 	 * Don't do this for block devices when someone else | 
 | 562 | 	 * has a reference, because it could be file system metadata | 
 | 563 | 	 * and that's not safe to truncate. | 
 | 564 | 	 */ | 
 | 565 | 	mapping = page_mapping(p); | 
 | 566 | 	if (!mapping) { | 
 | 567 | 		/* | 
 | 568 | 		 * Page has been teared down in the meanwhile | 
 | 569 | 		 */ | 
 | 570 | 		return FAILED; | 
 | 571 | 	} | 
 | 572 |  | 
 | 573 | 	/* | 
 | 574 | 	 * Truncation is a bit tricky. Enable it per file system for now. | 
 | 575 | 	 * | 
 | 576 | 	 * Open: to take i_mutex or not for this? Right now we don't. | 
 | 577 | 	 */ | 
 | 578 | 	if (mapping->a_ops->error_remove_page) { | 
 | 579 | 		err = mapping->a_ops->error_remove_page(mapping, p); | 
 | 580 | 		if (err != 0) { | 
 | 581 | 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", | 
 | 582 | 					pfn, err); | 
 | 583 | 		} else if (page_has_private(p) && | 
 | 584 | 				!try_to_release_page(p, GFP_NOIO)) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 585 | 			pr_info("MCE %#lx: failed to release buffers\n", pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 586 | 		} else { | 
 | 587 | 			ret = RECOVERED; | 
 | 588 | 		} | 
 | 589 | 	} else { | 
 | 590 | 		/* | 
 | 591 | 		 * If the file system doesn't support it just invalidate | 
 | 592 | 		 * This fails on dirty or anything with private pages | 
 | 593 | 		 */ | 
 | 594 | 		if (invalidate_inode_page(p)) | 
 | 595 | 			ret = RECOVERED; | 
 | 596 | 		else | 
 | 597 | 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", | 
 | 598 | 				pfn); | 
 | 599 | 	} | 
 | 600 | 	return ret; | 
 | 601 | } | 
 | 602 |  | 
 | 603 | /* | 
 | 604 |  * Dirty cache page page | 
 | 605 |  * Issues: when the error hit a hole page the error is not properly | 
 | 606 |  * propagated. | 
 | 607 |  */ | 
 | 608 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | 
 | 609 | { | 
 | 610 | 	struct address_space *mapping = page_mapping(p); | 
 | 611 |  | 
 | 612 | 	SetPageError(p); | 
 | 613 | 	/* TBD: print more information about the file. */ | 
 | 614 | 	if (mapping) { | 
 | 615 | 		/* | 
 | 616 | 		 * IO error will be reported by write(), fsync(), etc. | 
 | 617 | 		 * who check the mapping. | 
 | 618 | 		 * This way the application knows that something went | 
 | 619 | 		 * wrong with its dirty file data. | 
 | 620 | 		 * | 
 | 621 | 		 * There's one open issue: | 
 | 622 | 		 * | 
 | 623 | 		 * The EIO will be only reported on the next IO | 
 | 624 | 		 * operation and then cleared through the IO map. | 
 | 625 | 		 * Normally Linux has two mechanisms to pass IO error | 
 | 626 | 		 * first through the AS_EIO flag in the address space | 
 | 627 | 		 * and then through the PageError flag in the page. | 
 | 628 | 		 * Since we drop pages on memory failure handling the | 
 | 629 | 		 * only mechanism open to use is through AS_AIO. | 
 | 630 | 		 * | 
 | 631 | 		 * This has the disadvantage that it gets cleared on | 
 | 632 | 		 * the first operation that returns an error, while | 
 | 633 | 		 * the PageError bit is more sticky and only cleared | 
 | 634 | 		 * when the page is reread or dropped.  If an | 
 | 635 | 		 * application assumes it will always get error on | 
 | 636 | 		 * fsync, but does other operations on the fd before | 
 | 637 | 		 * and the page is dropped inbetween then the error | 
 | 638 | 		 * will not be properly reported. | 
 | 639 | 		 * | 
 | 640 | 		 * This can already happen even without hwpoisoned | 
 | 641 | 		 * pages: first on metadata IO errors (which only | 
 | 642 | 		 * report through AS_EIO) or when the page is dropped | 
 | 643 | 		 * at the wrong time. | 
 | 644 | 		 * | 
 | 645 | 		 * So right now we assume that the application DTRT on | 
 | 646 | 		 * the first EIO, but we're not worse than other parts | 
 | 647 | 		 * of the kernel. | 
 | 648 | 		 */ | 
 | 649 | 		mapping_set_error(mapping, EIO); | 
 | 650 | 	} | 
 | 651 |  | 
 | 652 | 	return me_pagecache_clean(p, pfn); | 
 | 653 | } | 
 | 654 |  | 
 | 655 | /* | 
 | 656 |  * Clean and dirty swap cache. | 
 | 657 |  * | 
 | 658 |  * Dirty swap cache page is tricky to handle. The page could live both in page | 
 | 659 |  * cache and swap cache(ie. page is freshly swapped in). So it could be | 
 | 660 |  * referenced concurrently by 2 types of PTEs: | 
 | 661 |  * normal PTEs and swap PTEs. We try to handle them consistently by calling | 
 | 662 |  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | 
 | 663 |  * and then | 
 | 664 |  *      - clear dirty bit to prevent IO | 
 | 665 |  *      - remove from LRU | 
 | 666 |  *      - but keep in the swap cache, so that when we return to it on | 
 | 667 |  *        a later page fault, we know the application is accessing | 
 | 668 |  *        corrupted data and shall be killed (we installed simple | 
 | 669 |  *        interception code in do_swap_page to catch it). | 
 | 670 |  * | 
 | 671 |  * Clean swap cache pages can be directly isolated. A later page fault will | 
 | 672 |  * bring in the known good data from disk. | 
 | 673 |  */ | 
 | 674 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | 
 | 675 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 676 | 	ClearPageDirty(p); | 
 | 677 | 	/* Trigger EIO in shmem: */ | 
 | 678 | 	ClearPageUptodate(p); | 
 | 679 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 680 | 	if (!delete_from_lru_cache(p)) | 
 | 681 | 		return DELAYED; | 
 | 682 | 	else | 
 | 683 | 		return FAILED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 684 | } | 
 | 685 |  | 
 | 686 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | 
 | 687 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 688 | 	delete_from_swap_cache(p); | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 689 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 690 | 	if (!delete_from_lru_cache(p)) | 
 | 691 | 		return RECOVERED; | 
 | 692 | 	else | 
 | 693 | 		return FAILED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 694 | } | 
 | 695 |  | 
 | 696 | /* | 
 | 697 |  * Huge pages. Needs work. | 
 | 698 |  * Issues: | 
| Naoya Horiguchi | 93f70f9 | 2010-05-28 09:29:20 +0900 | [diff] [blame] | 699 |  * - Error on hugepage is contained in hugepage unit (not in raw page unit.) | 
 | 700 |  *   To narrow down kill region to one page, we need to break up pmd. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 701 |  */ | 
 | 702 | static int me_huge_page(struct page *p, unsigned long pfn) | 
 | 703 | { | 
| Naoya Horiguchi | 6de2b1a | 2010-09-08 10:19:36 +0900 | [diff] [blame] | 704 | 	int res = 0; | 
| Naoya Horiguchi | 93f70f9 | 2010-05-28 09:29:20 +0900 | [diff] [blame] | 705 | 	struct page *hpage = compound_head(p); | 
 | 706 | 	/* | 
 | 707 | 	 * We can safely recover from error on free or reserved (i.e. | 
 | 708 | 	 * not in-use) hugepage by dequeuing it from freelist. | 
 | 709 | 	 * To check whether a hugepage is in-use or not, we can't use | 
 | 710 | 	 * page->lru because it can be used in other hugepage operations, | 
 | 711 | 	 * such as __unmap_hugepage_range() and gather_surplus_pages(). | 
 | 712 | 	 * So instead we use page_mapping() and PageAnon(). | 
 | 713 | 	 * We assume that this function is called with page lock held, | 
 | 714 | 	 * so there is no race between isolation and mapping/unmapping. | 
 | 715 | 	 */ | 
 | 716 | 	if (!(page_mapping(hpage) || PageAnon(hpage))) { | 
| Naoya Horiguchi | 6de2b1a | 2010-09-08 10:19:36 +0900 | [diff] [blame] | 717 | 		res = dequeue_hwpoisoned_huge_page(hpage); | 
 | 718 | 		if (!res) | 
 | 719 | 			return RECOVERED; | 
| Naoya Horiguchi | 93f70f9 | 2010-05-28 09:29:20 +0900 | [diff] [blame] | 720 | 	} | 
 | 721 | 	return DELAYED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 722 | } | 
 | 723 |  | 
 | 724 | /* | 
 | 725 |  * Various page states we can handle. | 
 | 726 |  * | 
 | 727 |  * A page state is defined by its current page->flags bits. | 
 | 728 |  * The table matches them in order and calls the right handler. | 
 | 729 |  * | 
 | 730 |  * This is quite tricky because we can access page at any time | 
 | 731 |  * in its live cycle, so all accesses have to be extremly careful. | 
 | 732 |  * | 
 | 733 |  * This is not complete. More states could be added. | 
 | 734 |  * For any missing state don't attempt recovery. | 
 | 735 |  */ | 
 | 736 |  | 
 | 737 | #define dirty		(1UL << PG_dirty) | 
 | 738 | #define sc		(1UL << PG_swapcache) | 
 | 739 | #define unevict		(1UL << PG_unevictable) | 
 | 740 | #define mlock		(1UL << PG_mlocked) | 
 | 741 | #define writeback	(1UL << PG_writeback) | 
 | 742 | #define lru		(1UL << PG_lru) | 
 | 743 | #define swapbacked	(1UL << PG_swapbacked) | 
 | 744 | #define head		(1UL << PG_head) | 
 | 745 | #define tail		(1UL << PG_tail) | 
 | 746 | #define compound	(1UL << PG_compound) | 
 | 747 | #define slab		(1UL << PG_slab) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 748 | #define reserved	(1UL << PG_reserved) | 
 | 749 |  | 
 | 750 | static struct page_state { | 
 | 751 | 	unsigned long mask; | 
 | 752 | 	unsigned long res; | 
 | 753 | 	char *msg; | 
 | 754 | 	int (*action)(struct page *p, unsigned long pfn); | 
 | 755 | } error_states[] = { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 756 | 	{ reserved,	reserved,	"reserved kernel",	me_kernel }, | 
| Wu Fengguang | 95d01fc | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 757 | 	/* | 
 | 758 | 	 * free pages are specially detected outside this table: | 
 | 759 | 	 * PG_buddy pages only make a small fraction of all free pages. | 
 | 760 | 	 */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 761 |  | 
 | 762 | 	/* | 
 | 763 | 	 * Could in theory check if slab page is free or if we can drop | 
 | 764 | 	 * currently unused objects without touching them. But just | 
 | 765 | 	 * treat it as standard kernel for now. | 
 | 766 | 	 */ | 
 | 767 | 	{ slab,		slab,		"kernel slab",	me_kernel }, | 
 | 768 |  | 
 | 769 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | 
 | 770 | 	{ head,		head,		"huge",		me_huge_page }, | 
 | 771 | 	{ tail,		tail,		"huge",		me_huge_page }, | 
 | 772 | #else | 
 | 773 | 	{ compound,	compound,	"huge",		me_huge_page }, | 
 | 774 | #endif | 
 | 775 |  | 
 | 776 | 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty }, | 
 | 777 | 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean }, | 
 | 778 |  | 
 | 779 | 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty}, | 
 | 780 | 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean}, | 
 | 781 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 782 | 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty }, | 
 | 783 | 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean }, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 784 |  | 
 | 785 | 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty }, | 
 | 786 | 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean }, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 787 |  | 
 | 788 | 	/* | 
 | 789 | 	 * Catchall entry: must be at end. | 
 | 790 | 	 */ | 
 | 791 | 	{ 0,		0,		"unknown page state",	me_unknown }, | 
 | 792 | }; | 
 | 793 |  | 
| Andi Kleen | 2326c46 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 794 | #undef dirty | 
 | 795 | #undef sc | 
 | 796 | #undef unevict | 
 | 797 | #undef mlock | 
 | 798 | #undef writeback | 
 | 799 | #undef lru | 
 | 800 | #undef swapbacked | 
 | 801 | #undef head | 
 | 802 | #undef tail | 
 | 803 | #undef compound | 
 | 804 | #undef slab | 
 | 805 | #undef reserved | 
 | 806 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 807 | static void action_result(unsigned long pfn, char *msg, int result) | 
 | 808 | { | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 809 | 	struct page *page = pfn_to_page(pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 810 |  | 
 | 811 | 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", | 
 | 812 | 		pfn, | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 813 | 		PageDirty(page) ? "dirty " : "", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 814 | 		msg, action_name[result]); | 
 | 815 | } | 
 | 816 |  | 
 | 817 | static int page_action(struct page_state *ps, struct page *p, | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 818 | 			unsigned long pfn) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 819 | { | 
 | 820 | 	int result; | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 821 | 	int count; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 822 |  | 
 | 823 | 	result = ps->action(p, pfn); | 
 | 824 | 	action_result(pfn, ps->msg, result); | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 825 |  | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 826 | 	count = page_count(p) - 1; | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 827 | 	if (ps->action == me_swapcache_dirty && result == DELAYED) | 
 | 828 | 		count--; | 
 | 829 | 	if (count != 0) { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 830 | 		printk(KERN_ERR | 
 | 831 | 		       "MCE %#lx: %s page still referenced by %d users\n", | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 832 | 		       pfn, ps->msg, count); | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 833 | 		result = FAILED; | 
 | 834 | 	} | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 835 |  | 
 | 836 | 	/* Could do more checks here if page looks ok */ | 
 | 837 | 	/* | 
 | 838 | 	 * Could adjust zone counters here to correct for the missing page. | 
 | 839 | 	 */ | 
 | 840 |  | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 841 | 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 842 | } | 
 | 843 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 844 | /* | 
 | 845 |  * Do all that is necessary to remove user space mappings. Unmap | 
 | 846 |  * the pages and send SIGBUS to the processes if the data was dirty. | 
 | 847 |  */ | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 848 | static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 849 | 				  int trapno) | 
 | 850 | { | 
 | 851 | 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | 
 | 852 | 	struct address_space *mapping; | 
 | 853 | 	LIST_HEAD(tokill); | 
 | 854 | 	int ret; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 855 | 	int kill = 1; | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 856 | 	struct page *hpage = compound_head(p); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 857 |  | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 858 | 	if (PageReserved(p) || PageSlab(p)) | 
 | 859 | 		return SWAP_SUCCESS; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 860 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 861 | 	/* | 
 | 862 | 	 * This check implies we don't kill processes if their pages | 
 | 863 | 	 * are in the swap cache early. Those are always late kills. | 
 | 864 | 	 */ | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 865 | 	if (!page_mapped(hpage)) | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 866 | 		return SWAP_SUCCESS; | 
 | 867 |  | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 868 | 	if (PageKsm(p)) | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 869 | 		return SWAP_FAIL; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 870 |  | 
 | 871 | 	if (PageSwapCache(p)) { | 
 | 872 | 		printk(KERN_ERR | 
 | 873 | 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn); | 
 | 874 | 		ttu |= TTU_IGNORE_HWPOISON; | 
 | 875 | 	} | 
 | 876 |  | 
 | 877 | 	/* | 
 | 878 | 	 * Propagate the dirty bit from PTEs to struct page first, because we | 
 | 879 | 	 * need this to decide if we should kill or just drop the page. | 
| Wu Fengguang | db0480b | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 880 | 	 * XXX: the dirty test could be racy: set_page_dirty() may not always | 
 | 881 | 	 * be called inside page lock (it's recommended but not enforced). | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 882 | 	 */ | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 883 | 	mapping = page_mapping(hpage); | 
 | 884 | 	if (!PageDirty(hpage) && mapping && | 
 | 885 | 	    mapping_cap_writeback_dirty(mapping)) { | 
 | 886 | 		if (page_mkclean(hpage)) { | 
 | 887 | 			SetPageDirty(hpage); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 888 | 		} else { | 
 | 889 | 			kill = 0; | 
 | 890 | 			ttu |= TTU_IGNORE_HWPOISON; | 
 | 891 | 			printk(KERN_INFO | 
 | 892 | 	"MCE %#lx: corrupted page was clean: dropped without side effects\n", | 
 | 893 | 				pfn); | 
 | 894 | 		} | 
 | 895 | 	} | 
 | 896 |  | 
 | 897 | 	/* | 
 | 898 | 	 * First collect all the processes that have the page | 
 | 899 | 	 * mapped in dirty form.  This has to be done before try_to_unmap, | 
 | 900 | 	 * because ttu takes the rmap data structures down. | 
 | 901 | 	 * | 
 | 902 | 	 * Error handling: We ignore errors here because | 
 | 903 | 	 * there's nothing that can be done. | 
 | 904 | 	 */ | 
 | 905 | 	if (kill) | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 906 | 		collect_procs(hpage, &tokill); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 907 |  | 
| Andi Kleen | a08c80e | 2010-09-27 23:39:30 +0200 | [diff] [blame] | 908 | 	ret = try_to_unmap(hpage, ttu); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 909 | 	if (ret != SWAP_SUCCESS) | 
 | 910 | 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 911 | 				pfn, page_mapcount(hpage)); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 912 |  | 
 | 913 | 	/* | 
 | 914 | 	 * Now that the dirty bit has been propagated to the | 
 | 915 | 	 * struct page and all unmaps done we can decide if | 
 | 916 | 	 * killing is needed or not.  Only kill when the page | 
 | 917 | 	 * was dirty, otherwise the tokill list is merely | 
 | 918 | 	 * freed.  When there was a problem unmapping earlier | 
 | 919 | 	 * use a more force-full uncatchable kill to prevent | 
 | 920 | 	 * any accesses to the poisoned memory. | 
 | 921 | 	 */ | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 922 | 	kill_procs_ao(&tokill, !!PageDirty(hpage), trapno, | 
| Andi Kleen | 0d9ee6a | 2010-09-27 22:03:33 +0200 | [diff] [blame] | 923 | 		      ret != SWAP_SUCCESS, p, pfn); | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 924 |  | 
 | 925 | 	return ret; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 926 | } | 
 | 927 |  | 
| Naoya Horiguchi | 7013feb | 2010-05-28 09:29:18 +0900 | [diff] [blame] | 928 | static void set_page_hwpoison_huge_page(struct page *hpage) | 
 | 929 | { | 
 | 930 | 	int i; | 
 | 931 | 	int nr_pages = 1 << compound_order(hpage); | 
 | 932 | 	for (i = 0; i < nr_pages; i++) | 
 | 933 | 		SetPageHWPoison(hpage + i); | 
 | 934 | } | 
 | 935 |  | 
 | 936 | static void clear_page_hwpoison_huge_page(struct page *hpage) | 
 | 937 | { | 
 | 938 | 	int i; | 
 | 939 | 	int nr_pages = 1 << compound_order(hpage); | 
 | 940 | 	for (i = 0; i < nr_pages; i++) | 
 | 941 | 		ClearPageHWPoison(hpage + i); | 
 | 942 | } | 
 | 943 |  | 
| Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 944 | int __memory_failure(unsigned long pfn, int trapno, int flags) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 945 | { | 
 | 946 | 	struct page_state *ps; | 
 | 947 | 	struct page *p; | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 948 | 	struct page *hpage; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 949 | 	int res; | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 950 | 	unsigned int nr_pages; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 951 |  | 
 | 952 | 	if (!sysctl_memory_failure_recovery) | 
 | 953 | 		panic("Memory failure from trap %d on page %lx", trapno, pfn); | 
 | 954 |  | 
 | 955 | 	if (!pfn_valid(pfn)) { | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 956 | 		printk(KERN_ERR | 
 | 957 | 		       "MCE %#lx: memory outside kernel control\n", | 
 | 958 | 		       pfn); | 
 | 959 | 		return -ENXIO; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 960 | 	} | 
 | 961 |  | 
 | 962 | 	p = pfn_to_page(pfn); | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 963 | 	hpage = compound_head(p); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 964 | 	if (TestSetPageHWPoison(p)) { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 965 | 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 966 | 		return 0; | 
 | 967 | 	} | 
 | 968 |  | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 969 | 	nr_pages = 1 << compound_order(hpage); | 
 | 970 | 	atomic_long_add(nr_pages, &mce_bad_pages); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 971 |  | 
 | 972 | 	/* | 
 | 973 | 	 * We need/can do nothing about count=0 pages. | 
 | 974 | 	 * 1) it's a free page, and therefore in safe hand: | 
 | 975 | 	 *    prep_new_page() will be the gate keeper. | 
| Naoya Horiguchi | 8c6c2ec | 2010-09-08 10:19:38 +0900 | [diff] [blame] | 976 | 	 * 2) it's a free hugepage, which is also safe: | 
 | 977 | 	 *    an affected hugepage will be dequeued from hugepage freelist, | 
 | 978 | 	 *    so there's no concern about reusing it ever after. | 
 | 979 | 	 * 3) it's part of a non-compound high order page. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 980 | 	 *    Implies some kernel user: cannot stop them from | 
 | 981 | 	 *    R/W the page; let's pray that the page has been | 
 | 982 | 	 *    used and will be freed some time later. | 
 | 983 | 	 * In fact it's dangerous to directly bump up page count from 0, | 
 | 984 | 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | 
 | 985 | 	 */ | 
| Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 986 | 	if (!(flags & MF_COUNT_INCREASED) && | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 987 | 		!get_page_unless_zero(hpage)) { | 
| Wu Fengguang | 8d22ba1 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 988 | 		if (is_free_buddy_page(p)) { | 
 | 989 | 			action_result(pfn, "free buddy", DELAYED); | 
 | 990 | 			return 0; | 
| Naoya Horiguchi | 8c6c2ec | 2010-09-08 10:19:38 +0900 | [diff] [blame] | 991 | 		} else if (PageHuge(hpage)) { | 
 | 992 | 			/* | 
 | 993 | 			 * Check "just unpoisoned", "filter hit", and | 
 | 994 | 			 * "race with other subpage." | 
 | 995 | 			 */ | 
 | 996 | 			lock_page_nosync(hpage); | 
 | 997 | 			if (!PageHWPoison(hpage) | 
 | 998 | 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p)) | 
 | 999 | 			    || (p != hpage && TestSetPageHWPoison(hpage))) { | 
 | 1000 | 				atomic_long_sub(nr_pages, &mce_bad_pages); | 
 | 1001 | 				return 0; | 
 | 1002 | 			} | 
 | 1003 | 			set_page_hwpoison_huge_page(hpage); | 
 | 1004 | 			res = dequeue_hwpoisoned_huge_page(hpage); | 
 | 1005 | 			action_result(pfn, "free huge", | 
 | 1006 | 				      res ? IGNORED : DELAYED); | 
 | 1007 | 			unlock_page(hpage); | 
 | 1008 | 			return res; | 
| Wu Fengguang | 8d22ba1 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1009 | 		} else { | 
 | 1010 | 			action_result(pfn, "high order kernel", IGNORED); | 
 | 1011 | 			return -EBUSY; | 
 | 1012 | 		} | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1013 | 	} | 
 | 1014 |  | 
 | 1015 | 	/* | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 1016 | 	 * We ignore non-LRU pages for good reasons. | 
 | 1017 | 	 * - PG_locked is only well defined for LRU pages and a few others | 
 | 1018 | 	 * - to avoid races with __set_page_locked() | 
 | 1019 | 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | 
 | 1020 | 	 * The check (unnecessarily) ignores LRU pages being isolated and | 
 | 1021 | 	 * walked by the page reclaim code, however that's not a big loss. | 
 | 1022 | 	 */ | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 1023 | 	if (!PageLRU(p) && !PageHuge(p)) | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1024 | 		shake_page(p, 0); | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 1025 | 	if (!PageLRU(p) && !PageHuge(p)) { | 
| Andi Kleen | 0474a60 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1026 | 		/* | 
 | 1027 | 		 * shake_page could have turned it free. | 
 | 1028 | 		 */ | 
 | 1029 | 		if (is_free_buddy_page(p)) { | 
 | 1030 | 			action_result(pfn, "free buddy, 2nd try", DELAYED); | 
 | 1031 | 			return 0; | 
 | 1032 | 		} | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 1033 | 		action_result(pfn, "non LRU", IGNORED); | 
 | 1034 | 		put_page(p); | 
 | 1035 | 		return -EBUSY; | 
 | 1036 | 	} | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 1037 |  | 
 | 1038 | 	/* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1039 | 	 * Lock the page and wait for writeback to finish. | 
 | 1040 | 	 * It's very difficult to mess with pages currently under IO | 
 | 1041 | 	 * and in many cases impossible, so we just avoid it here. | 
 | 1042 | 	 */ | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 1043 | 	lock_page_nosync(hpage); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1044 |  | 
 | 1045 | 	/* | 
 | 1046 | 	 * unpoison always clear PG_hwpoison inside page lock | 
 | 1047 | 	 */ | 
 | 1048 | 	if (!PageHWPoison(p)) { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1049 | 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1050 | 		res = 0; | 
 | 1051 | 		goto out; | 
 | 1052 | 	} | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 1053 | 	if (hwpoison_filter(p)) { | 
 | 1054 | 		if (TestClearPageHWPoison(p)) | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 1055 | 			atomic_long_sub(nr_pages, &mce_bad_pages); | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 1056 | 		unlock_page(hpage); | 
 | 1057 | 		put_page(hpage); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 1058 | 		return 0; | 
 | 1059 | 	} | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1060 |  | 
| Naoya Horiguchi | 7013feb | 2010-05-28 09:29:18 +0900 | [diff] [blame] | 1061 | 	/* | 
 | 1062 | 	 * For error on the tail page, we should set PG_hwpoison | 
 | 1063 | 	 * on the head page to show that the hugepage is hwpoisoned | 
 | 1064 | 	 */ | 
 | 1065 | 	if (PageTail(p) && TestSetPageHWPoison(hpage)) { | 
 | 1066 | 		action_result(pfn, "hugepage already hardware poisoned", | 
 | 1067 | 				IGNORED); | 
 | 1068 | 		unlock_page(hpage); | 
 | 1069 | 		put_page(hpage); | 
 | 1070 | 		return 0; | 
 | 1071 | 	} | 
 | 1072 | 	/* | 
 | 1073 | 	 * Set PG_hwpoison on all pages in an error hugepage, | 
 | 1074 | 	 * because containment is done in hugepage unit for now. | 
 | 1075 | 	 * Since we have done TestSetPageHWPoison() for the head page with | 
 | 1076 | 	 * page lock held, we can safely set PG_hwpoison bits on tail pages. | 
 | 1077 | 	 */ | 
 | 1078 | 	if (PageHuge(p)) | 
 | 1079 | 		set_page_hwpoison_huge_page(hpage); | 
 | 1080 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1081 | 	wait_on_page_writeback(p); | 
 | 1082 |  | 
 | 1083 | 	/* | 
 | 1084 | 	 * Now take care of user space mappings. | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1085 | 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1086 | 	 */ | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1087 | 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { | 
 | 1088 | 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); | 
 | 1089 | 		res = -EBUSY; | 
 | 1090 | 		goto out; | 
 | 1091 | 	} | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1092 |  | 
 | 1093 | 	/* | 
 | 1094 | 	 * Torn down by someone else? | 
 | 1095 | 	 */ | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1096 | 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1097 | 		action_result(pfn, "already truncated LRU", IGNORED); | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1098 | 		res = -EBUSY; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1099 | 		goto out; | 
 | 1100 | 	} | 
 | 1101 |  | 
 | 1102 | 	res = -EBUSY; | 
 | 1103 | 	for (ps = error_states;; ps++) { | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1104 | 		if ((p->flags & ps->mask) == ps->res) { | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 1105 | 			res = page_action(ps, p, pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1106 | 			break; | 
 | 1107 | 		} | 
 | 1108 | 	} | 
 | 1109 | out: | 
| Naoya Horiguchi | 7af446a | 2010-05-28 09:29:17 +0900 | [diff] [blame] | 1110 | 	unlock_page(hpage); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1111 | 	return res; | 
 | 1112 | } | 
 | 1113 | EXPORT_SYMBOL_GPL(__memory_failure); | 
 | 1114 |  | 
 | 1115 | /** | 
 | 1116 |  * memory_failure - Handle memory failure of a page. | 
 | 1117 |  * @pfn: Page Number of the corrupted page | 
 | 1118 |  * @trapno: Trap number reported in the signal to user space. | 
 | 1119 |  * | 
 | 1120 |  * This function is called by the low level machine check code | 
 | 1121 |  * of an architecture when it detects hardware memory corruption | 
 | 1122 |  * of a page. It tries its best to recover, which includes | 
 | 1123 |  * dropping pages, killing processes etc. | 
 | 1124 |  * | 
 | 1125 |  * The function is primarily of use for corruptions that | 
 | 1126 |  * happen outside the current execution context (e.g. when | 
 | 1127 |  * detected by a background scrubber) | 
 | 1128 |  * | 
 | 1129 |  * Must run in process context (e.g. a work queue) with interrupts | 
 | 1130 |  * enabled and no spinlocks hold. | 
 | 1131 |  */ | 
 | 1132 | void memory_failure(unsigned long pfn, int trapno) | 
 | 1133 | { | 
 | 1134 | 	__memory_failure(pfn, trapno, 0); | 
 | 1135 | } | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1136 |  | 
 | 1137 | /** | 
 | 1138 |  * unpoison_memory - Unpoison a previously poisoned page | 
 | 1139 |  * @pfn: Page number of the to be unpoisoned page | 
 | 1140 |  * | 
 | 1141 |  * Software-unpoison a page that has been poisoned by | 
 | 1142 |  * memory_failure() earlier. | 
 | 1143 |  * | 
 | 1144 |  * This is only done on the software-level, so it only works | 
 | 1145 |  * for linux injected failures, not real hardware failures | 
 | 1146 |  * | 
 | 1147 |  * Returns 0 for success, otherwise -errno. | 
 | 1148 |  */ | 
 | 1149 | int unpoison_memory(unsigned long pfn) | 
 | 1150 | { | 
 | 1151 | 	struct page *page; | 
 | 1152 | 	struct page *p; | 
 | 1153 | 	int freeit = 0; | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 1154 | 	unsigned int nr_pages; | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1155 |  | 
 | 1156 | 	if (!pfn_valid(pfn)) | 
 | 1157 | 		return -ENXIO; | 
 | 1158 |  | 
 | 1159 | 	p = pfn_to_page(pfn); | 
 | 1160 | 	page = compound_head(p); | 
 | 1161 |  | 
 | 1162 | 	if (!PageHWPoison(p)) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1163 | 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1164 | 		return 0; | 
 | 1165 | 	} | 
 | 1166 |  | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 1167 | 	nr_pages = 1 << compound_order(page); | 
 | 1168 |  | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1169 | 	if (!get_page_unless_zero(page)) { | 
| Naoya Horiguchi | 8c6c2ec | 2010-09-08 10:19:38 +0900 | [diff] [blame] | 1170 | 		/* | 
 | 1171 | 		 * Since HWPoisoned hugepage should have non-zero refcount, | 
 | 1172 | 		 * race between memory failure and unpoison seems to happen. | 
 | 1173 | 		 * In such case unpoison fails and memory failure runs | 
 | 1174 | 		 * to the end. | 
 | 1175 | 		 */ | 
 | 1176 | 		if (PageHuge(page)) { | 
 | 1177 | 			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); | 
 | 1178 | 			return 0; | 
 | 1179 | 		} | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1180 | 		if (TestClearPageHWPoison(p)) | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 1181 | 			atomic_long_sub(nr_pages, &mce_bad_pages); | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1182 | 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1183 | 		return 0; | 
 | 1184 | 	} | 
 | 1185 |  | 
 | 1186 | 	lock_page_nosync(page); | 
 | 1187 | 	/* | 
 | 1188 | 	 * This test is racy because PG_hwpoison is set outside of page lock. | 
 | 1189 | 	 * That's acceptable because that won't trigger kernel panic. Instead, | 
 | 1190 | 	 * the PG_hwpoison page will be caught and isolated on the entrance to | 
 | 1191 | 	 * the free buddy page pool. | 
 | 1192 | 	 */ | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 1193 | 	if (TestClearPageHWPoison(page)) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1194 | 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); | 
| Naoya Horiguchi | c9fbdd5 | 2010-05-28 09:29:19 +0900 | [diff] [blame] | 1195 | 		atomic_long_sub(nr_pages, &mce_bad_pages); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1196 | 		freeit = 1; | 
| Naoya Horiguchi | 6a90181 | 2010-09-08 10:19:40 +0900 | [diff] [blame] | 1197 | 		if (PageHuge(page)) | 
 | 1198 | 			clear_page_hwpoison_huge_page(page); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1199 | 	} | 
 | 1200 | 	unlock_page(page); | 
 | 1201 |  | 
 | 1202 | 	put_page(page); | 
 | 1203 | 	if (freeit) | 
 | 1204 | 		put_page(page); | 
 | 1205 |  | 
 | 1206 | 	return 0; | 
 | 1207 | } | 
 | 1208 | EXPORT_SYMBOL(unpoison_memory); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1209 |  | 
 | 1210 | static struct page *new_page(struct page *p, unsigned long private, int **x) | 
 | 1211 | { | 
| Andi Kleen | 12686d1 | 2009-12-16 12:20:01 +0100 | [diff] [blame] | 1212 | 	int nid = page_to_nid(p); | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1213 | 	if (PageHuge(p)) | 
 | 1214 | 		return alloc_huge_page_node(page_hstate(compound_head(p)), | 
 | 1215 | 						   nid); | 
 | 1216 | 	else | 
 | 1217 | 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1218 | } | 
 | 1219 |  | 
 | 1220 | /* | 
 | 1221 |  * Safely get reference count of an arbitrary page. | 
 | 1222 |  * Returns 0 for a free page, -EIO for a zero refcount page | 
 | 1223 |  * that is not free, and 1 for any other page type. | 
 | 1224 |  * For 1 the page is returned with increased page count, otherwise not. | 
 | 1225 |  */ | 
 | 1226 | static int get_any_page(struct page *p, unsigned long pfn, int flags) | 
 | 1227 | { | 
 | 1228 | 	int ret; | 
 | 1229 |  | 
 | 1230 | 	if (flags & MF_COUNT_INCREASED) | 
 | 1231 | 		return 1; | 
 | 1232 |  | 
 | 1233 | 	/* | 
| KOSAKI Motohiro | 20d6c96 | 2010-12-02 14:31:19 -0800 | [diff] [blame] | 1234 | 	 * The lock_memory_hotplug prevents a race with memory hotplug. | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1235 | 	 * This is a big hammer, a better would be nicer. | 
 | 1236 | 	 */ | 
| KOSAKI Motohiro | 20d6c96 | 2010-12-02 14:31:19 -0800 | [diff] [blame] | 1237 | 	lock_memory_hotplug(); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1238 |  | 
 | 1239 | 	/* | 
 | 1240 | 	 * Isolate the page, so that it doesn't get reallocated if it | 
 | 1241 | 	 * was free. | 
 | 1242 | 	 */ | 
 | 1243 | 	set_migratetype_isolate(p); | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1244 | 	/* | 
 | 1245 | 	 * When the target page is a free hugepage, just remove it | 
 | 1246 | 	 * from free hugepage list. | 
 | 1247 | 	 */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1248 | 	if (!get_page_unless_zero(compound_head(p))) { | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1249 | 		if (PageHuge(p)) { | 
| Andi Kleen | 46e387b | 2010-10-22 17:40:48 +0200 | [diff] [blame] | 1250 | 			pr_info("get_any_page: %#lx free huge page\n", pfn); | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1251 | 			ret = dequeue_hwpoisoned_huge_page(compound_head(p)); | 
 | 1252 | 		} else if (is_free_buddy_page(p)) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1253 | 			pr_info("get_any_page: %#lx free buddy page\n", pfn); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1254 | 			/* Set hwpoison bit while page is still isolated */ | 
 | 1255 | 			SetPageHWPoison(p); | 
 | 1256 | 			ret = 0; | 
 | 1257 | 		} else { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1258 | 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n", | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1259 | 				pfn, p->flags); | 
 | 1260 | 			ret = -EIO; | 
 | 1261 | 		} | 
 | 1262 | 	} else { | 
 | 1263 | 		/* Not a free page */ | 
 | 1264 | 		ret = 1; | 
 | 1265 | 	} | 
 | 1266 | 	unset_migratetype_isolate(p); | 
| KOSAKI Motohiro | 20d6c96 | 2010-12-02 14:31:19 -0800 | [diff] [blame] | 1267 | 	unlock_memory_hotplug(); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1268 | 	return ret; | 
 | 1269 | } | 
 | 1270 |  | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1271 | static int soft_offline_huge_page(struct page *page, int flags) | 
 | 1272 | { | 
 | 1273 | 	int ret; | 
 | 1274 | 	unsigned long pfn = page_to_pfn(page); | 
 | 1275 | 	struct page *hpage = compound_head(page); | 
 | 1276 | 	LIST_HEAD(pagelist); | 
 | 1277 |  | 
 | 1278 | 	ret = get_any_page(page, pfn, flags); | 
 | 1279 | 	if (ret < 0) | 
 | 1280 | 		return ret; | 
 | 1281 | 	if (ret == 0) | 
 | 1282 | 		goto done; | 
 | 1283 |  | 
 | 1284 | 	if (PageHWPoison(hpage)) { | 
 | 1285 | 		put_page(hpage); | 
 | 1286 | 		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn); | 
 | 1287 | 		return -EBUSY; | 
 | 1288 | 	} | 
 | 1289 |  | 
 | 1290 | 	/* Keep page count to indicate a given hugepage is isolated. */ | 
 | 1291 |  | 
 | 1292 | 	list_add(&hpage->lru, &pagelist); | 
 | 1293 | 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | 
 | 1294 | 	if (ret) { | 
| Minchan Kim | cf608ac | 2010-10-26 14:21:29 -0700 | [diff] [blame] | 1295 | 			putback_lru_pages(&pagelist); | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1296 | 		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", | 
 | 1297 | 			 pfn, ret, page->flags); | 
 | 1298 | 		if (ret > 0) | 
 | 1299 | 			ret = -EIO; | 
 | 1300 | 		return ret; | 
 | 1301 | 	} | 
 | 1302 | done: | 
 | 1303 | 	if (!PageHWPoison(hpage)) | 
 | 1304 | 		atomic_long_add(1 << compound_order(hpage), &mce_bad_pages); | 
 | 1305 | 	set_page_hwpoison_huge_page(hpage); | 
 | 1306 | 	dequeue_hwpoisoned_huge_page(hpage); | 
 | 1307 | 	/* keep elevated page count for bad page */ | 
 | 1308 | 	return ret; | 
 | 1309 | } | 
 | 1310 |  | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1311 | /** | 
 | 1312 |  * soft_offline_page - Soft offline a page. | 
 | 1313 |  * @page: page to offline | 
 | 1314 |  * @flags: flags. Same as memory_failure(). | 
 | 1315 |  * | 
 | 1316 |  * Returns 0 on success, otherwise negated errno. | 
 | 1317 |  * | 
 | 1318 |  * Soft offline a page, by migration or invalidation, | 
 | 1319 |  * without killing anything. This is for the case when | 
 | 1320 |  * a page is not corrupted yet (so it's still valid to access), | 
 | 1321 |  * but has had a number of corrected errors and is better taken | 
 | 1322 |  * out. | 
 | 1323 |  * | 
 | 1324 |  * The actual policy on when to do that is maintained by | 
 | 1325 |  * user space. | 
 | 1326 |  * | 
 | 1327 |  * This should never impact any application or cause data loss, | 
 | 1328 |  * however it might take some time. | 
 | 1329 |  * | 
 | 1330 |  * This is not a 100% solution for all memory, but tries to be | 
 | 1331 |  * ``good enough'' for the majority of memory. | 
 | 1332 |  */ | 
 | 1333 | int soft_offline_page(struct page *page, int flags) | 
 | 1334 | { | 
 | 1335 | 	int ret; | 
 | 1336 | 	unsigned long pfn = page_to_pfn(page); | 
 | 1337 |  | 
| Naoya Horiguchi | d950b95 | 2010-09-08 10:19:39 +0900 | [diff] [blame] | 1338 | 	if (PageHuge(page)) | 
 | 1339 | 		return soft_offline_huge_page(page, flags); | 
 | 1340 |  | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1341 | 	ret = get_any_page(page, pfn, flags); | 
 | 1342 | 	if (ret < 0) | 
 | 1343 | 		return ret; | 
 | 1344 | 	if (ret == 0) | 
 | 1345 | 		goto done; | 
 | 1346 |  | 
 | 1347 | 	/* | 
 | 1348 | 	 * Page cache page we can handle? | 
 | 1349 | 	 */ | 
 | 1350 | 	if (!PageLRU(page)) { | 
 | 1351 | 		/* | 
 | 1352 | 		 * Try to free it. | 
 | 1353 | 		 */ | 
 | 1354 | 		put_page(page); | 
 | 1355 | 		shake_page(page, 1); | 
 | 1356 |  | 
 | 1357 | 		/* | 
 | 1358 | 		 * Did it turn free? | 
 | 1359 | 		 */ | 
 | 1360 | 		ret = get_any_page(page, pfn, 0); | 
 | 1361 | 		if (ret < 0) | 
 | 1362 | 			return ret; | 
 | 1363 | 		if (ret == 0) | 
 | 1364 | 			goto done; | 
 | 1365 | 	} | 
 | 1366 | 	if (!PageLRU(page)) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1367 | 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1368 | 				pfn, page->flags); | 
 | 1369 | 		return -EIO; | 
 | 1370 | 	} | 
 | 1371 |  | 
 | 1372 | 	lock_page(page); | 
 | 1373 | 	wait_on_page_writeback(page); | 
 | 1374 |  | 
 | 1375 | 	/* | 
 | 1376 | 	 * Synchronized using the page lock with memory_failure() | 
 | 1377 | 	 */ | 
 | 1378 | 	if (PageHWPoison(page)) { | 
 | 1379 | 		unlock_page(page); | 
 | 1380 | 		put_page(page); | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1381 | 		pr_info("soft offline: %#lx page already poisoned\n", pfn); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1382 | 		return -EBUSY; | 
 | 1383 | 	} | 
 | 1384 |  | 
 | 1385 | 	/* | 
 | 1386 | 	 * Try to invalidate first. This should work for | 
 | 1387 | 	 * non dirty unmapped page cache pages. | 
 | 1388 | 	 */ | 
 | 1389 | 	ret = invalidate_inode_page(page); | 
 | 1390 | 	unlock_page(page); | 
 | 1391 |  | 
 | 1392 | 	/* | 
 | 1393 | 	 * Drop count because page migration doesn't like raised | 
 | 1394 | 	 * counts. The page could get re-allocated, but if it becomes | 
 | 1395 | 	 * LRU the isolation will just fail. | 
 | 1396 | 	 * RED-PEN would be better to keep it isolated here, but we | 
 | 1397 | 	 * would need to fix isolation locking first. | 
 | 1398 | 	 */ | 
 | 1399 | 	put_page(page); | 
 | 1400 | 	if (ret == 1) { | 
 | 1401 | 		ret = 0; | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1402 | 		pr_info("soft_offline: %#lx: invalidated\n", pfn); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1403 | 		goto done; | 
 | 1404 | 	} | 
 | 1405 |  | 
 | 1406 | 	/* | 
 | 1407 | 	 * Simple invalidation didn't work. | 
 | 1408 | 	 * Try to migrate to a new page instead. migrate.c | 
 | 1409 | 	 * handles a large number of cases for us. | 
 | 1410 | 	 */ | 
 | 1411 | 	ret = isolate_lru_page(page); | 
 | 1412 | 	if (!ret) { | 
 | 1413 | 		LIST_HEAD(pagelist); | 
 | 1414 |  | 
 | 1415 | 		list_add(&page->lru, &pagelist); | 
 | 1416 | 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | 
 | 1417 | 		if (ret) { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1418 | 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n", | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1419 | 				pfn, ret, page->flags); | 
 | 1420 | 			if (ret > 0) | 
 | 1421 | 				ret = -EIO; | 
 | 1422 | 		} | 
 | 1423 | 	} else { | 
| Andi Kleen | fb46e73 | 2010-09-27 23:31:30 +0200 | [diff] [blame] | 1424 | 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1425 | 				pfn, ret, page_count(page), page->flags); | 
 | 1426 | 	} | 
 | 1427 | 	if (ret) | 
 | 1428 | 		return ret; | 
 | 1429 |  | 
 | 1430 | done: | 
 | 1431 | 	atomic_long_add(1, &mce_bad_pages); | 
 | 1432 | 	SetPageHWPoison(page); | 
 | 1433 | 	/* keep elevated page count for bad page */ | 
 | 1434 | 	return ret; | 
 | 1435 | } | 
| Huang Ying | bf99815 | 2010-05-31 14:28:19 +0800 | [diff] [blame] | 1436 |  | 
| Huang Ying | bbeb340 | 2010-06-22 14:23:11 +0800 | [diff] [blame] | 1437 | /* | 
 | 1438 |  * The caller must hold current->mm->mmap_sem in read mode. | 
 | 1439 |  */ | 
| Huang Ying | bf99815 | 2010-05-31 14:28:19 +0800 | [diff] [blame] | 1440 | int is_hwpoison_address(unsigned long addr) | 
 | 1441 | { | 
 | 1442 | 	pgd_t *pgdp; | 
 | 1443 | 	pud_t pud, *pudp; | 
 | 1444 | 	pmd_t pmd, *pmdp; | 
 | 1445 | 	pte_t pte, *ptep; | 
 | 1446 | 	swp_entry_t entry; | 
 | 1447 |  | 
 | 1448 | 	pgdp = pgd_offset(current->mm, addr); | 
 | 1449 | 	if (!pgd_present(*pgdp)) | 
 | 1450 | 		return 0; | 
 | 1451 | 	pudp = pud_offset(pgdp, addr); | 
 | 1452 | 	pud = *pudp; | 
 | 1453 | 	if (!pud_present(pud) || pud_large(pud)) | 
 | 1454 | 		return 0; | 
 | 1455 | 	pmdp = pmd_offset(pudp, addr); | 
 | 1456 | 	pmd = *pmdp; | 
 | 1457 | 	if (!pmd_present(pmd) || pmd_large(pmd)) | 
 | 1458 | 		return 0; | 
 | 1459 | 	ptep = pte_offset_map(pmdp, addr); | 
 | 1460 | 	pte = *ptep; | 
 | 1461 | 	pte_unmap(ptep); | 
 | 1462 | 	if (!is_swap_pte(pte)) | 
 | 1463 | 		return 0; | 
 | 1464 | 	entry = pte_to_swp_entry(pte); | 
 | 1465 | 	return is_hwpoison_entry(entry); | 
 | 1466 | } | 
 | 1467 | EXPORT_SYMBOL_GPL(is_hwpoison_address); |