blob: 282d037c7300cd94e67a92c8ef41d408db28c429 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
Ingo Molnarc31f2e82007-07-09 18:52:01 +020019 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020031#include <linux/uaccess.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080036#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/completion.h>
38#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070039#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080043#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080044#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
Nick Piggine692ab52007-07-26 13:40:43 +020056#include <linux/sysctl.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include <linux/syscalls.h>
58#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070059#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080060#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070061#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070062#include <linux/reciprocal_div.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020063#include <linux/unistd.h>
Jens Axboef5ff8422007-09-21 09:19:54 +020064#include <linux/pagemap.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070065
Eric Dumazet5517d862007-05-08 00:32:57 -070066#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070067
68/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080069 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
78/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070079 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113#define DEF_TIMESLICE (100 * HZ / 1000)
Peter Williams2dd73a42006-06-27 02:54:34 -0700114
Eric Dumazet5517d862007-05-08 00:32:57 -0700115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200136#define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700138
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200139/*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143static unsigned int static_prio_timeslice(int static_prio)
Peter Williams2dd73a42006-06-27 02:54:34 -0700144{
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Peter Williams2dd73a42006-06-27 02:54:34 -0700152}
153
Ingo Molnare05606d2007-07-09 18:51:59 +0200154static inline int rt_policy(int policy)
155{
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159}
160
161static inline int task_has_rt_policy(struct task_struct *p)
162{
163 return rt_policy(p->policy);
164}
165
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200167 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200169struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200174struct load_stat {
175 struct load_weight load;
176 u64 load_update_start, load_update_last;
177 unsigned long delta_fair, delta_exec, delta_stat;
178};
179
180/* CFS-related fields in a runqueue */
181struct cfs_rq {
182 struct load_weight load;
183 unsigned long nr_running;
184
185 s64 fair_clock;
186 u64 exec_clock;
187 s64 wait_runtime;
188 u64 sleeper_bonus;
189 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190
191 struct rb_root tasks_timeline;
192 struct rb_node *rb_leftmost;
193 struct rb_node *rb_load_balance_curr;
194#ifdef CONFIG_FAIR_GROUP_SCHED
195 /* 'curr' points to currently running entity on this cfs_rq.
196 * It is set to NULL otherwise (i.e when none are currently running).
197 */
198 struct sched_entity *curr;
199 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200
201 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
202 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
203 * (like users, containers etc.)
204 *
205 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
206 * list is used during load balance.
207 */
208 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
209#endif
210};
211
212/* Real-Time classes' related field in a runqueue: */
213struct rt_rq {
214 struct rt_prio_array active;
215 int rt_load_balance_idx;
216 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
217};
218
219/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220 * This is the main, per-CPU runqueue data structure.
221 *
222 * Locking rule: those places that want to lock multiple runqueues
223 * (such as the load balancing or the thread migration code), lock
224 * acquire operations must be ordered by ascending &runqueue.
225 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700226struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200227 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700228
229 /*
230 * nr_running and cpu_load should be in the same cacheline because
231 * remote CPUs use both these fields when doing load calculation.
232 */
233 unsigned long nr_running;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200234 #define CPU_LOAD_IDX_MAX 5
235 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700236 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700237#ifdef CONFIG_NO_HZ
238 unsigned char in_nohz_recently;
239#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200240 struct load_stat ls; /* capture load from *all* tasks on this cpu */
241 unsigned long nr_load_updates;
242 u64 nr_switches;
243
244 struct cfs_rq cfs;
245#ifdef CONFIG_FAIR_GROUP_SCHED
246 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700247#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200248 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249
250 /*
251 * This is part of a global counter where only the total sum
252 * over all CPUs matters. A task can increase this counter on
253 * one CPU and if it got migrated afterwards it may decrease
254 * it on another CPU. Always updated under the runqueue lock:
255 */
256 unsigned long nr_uninterruptible;
257
Ingo Molnar36c8b582006-07-03 00:25:41 -0700258 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800259 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200261
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200262 u64 clock, prev_clock_raw;
263 s64 clock_max_delta;
264
265 unsigned int clock_warps, clock_overflows;
Ingo Molnar2aa44d02007-08-23 15:18:02 +0200266 u64 idle_clock;
267 unsigned int clock_deep_idle_events;
Ingo Molnar529c7722007-08-10 23:05:11 +0200268 u64 tick_timestamp;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200269
Linus Torvalds1da177e2005-04-16 15:20:36 -0700270 atomic_t nr_iowait;
271
272#ifdef CONFIG_SMP
273 struct sched_domain *sd;
274
275 /* For active balancing */
276 int active_balance;
277 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700278 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279
Ingo Molnar36c8b582006-07-03 00:25:41 -0700280 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281 struct list_head migration_queue;
282#endif
283
284#ifdef CONFIG_SCHEDSTATS
285 /* latency stats */
286 struct sched_info rq_sched_info;
287
288 /* sys_sched_yield() stats */
289 unsigned long yld_exp_empty;
290 unsigned long yld_act_empty;
291 unsigned long yld_both_empty;
292 unsigned long yld_cnt;
293
294 /* schedule() stats */
295 unsigned long sched_switch;
296 unsigned long sched_cnt;
297 unsigned long sched_goidle;
298
299 /* try_to_wake_up() stats */
300 unsigned long ttwu_cnt;
301 unsigned long ttwu_local;
302#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700303 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304};
305
Fenghua Yuf34e3b62007-07-19 01:48:13 -0700306static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700307static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308
Ingo Molnardd41f592007-07-09 18:51:59 +0200309static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
310{
311 rq->curr->sched_class->check_preempt_curr(rq, p);
312}
313
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700314static inline int cpu_of(struct rq *rq)
315{
316#ifdef CONFIG_SMP
317 return rq->cpu;
318#else
319 return 0;
320#endif
321}
322
Nick Piggin674311d2005-06-25 14:57:27 -0700323/*
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200324 * Update the per-runqueue clock, as finegrained as the platform can give
325 * us, but without assuming monotonicity, etc.:
Ingo Molnar20d315d2007-07-09 18:51:58 +0200326 */
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200327static void __update_rq_clock(struct rq *rq)
Ingo Molnar20d315d2007-07-09 18:51:58 +0200328{
329 u64 prev_raw = rq->prev_clock_raw;
330 u64 now = sched_clock();
331 s64 delta = now - prev_raw;
332 u64 clock = rq->clock;
333
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200334#ifdef CONFIG_SCHED_DEBUG
335 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
336#endif
Ingo Molnar20d315d2007-07-09 18:51:58 +0200337 /*
338 * Protect against sched_clock() occasionally going backwards:
339 */
340 if (unlikely(delta < 0)) {
341 clock++;
342 rq->clock_warps++;
343 } else {
344 /*
345 * Catch too large forward jumps too:
346 */
Ingo Molnar529c7722007-08-10 23:05:11 +0200347 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
348 if (clock < rq->tick_timestamp + TICK_NSEC)
349 clock = rq->tick_timestamp + TICK_NSEC;
350 else
351 clock++;
Ingo Molnar20d315d2007-07-09 18:51:58 +0200352 rq->clock_overflows++;
353 } else {
354 if (unlikely(delta > rq->clock_max_delta))
355 rq->clock_max_delta = delta;
356 clock += delta;
357 }
358 }
359
360 rq->prev_clock_raw = now;
361 rq->clock = clock;
Ingo Molnar20d315d2007-07-09 18:51:58 +0200362}
363
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200364static void update_rq_clock(struct rq *rq)
Ingo Molnar20d315d2007-07-09 18:51:58 +0200365{
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200366 if (likely(smp_processor_id() == cpu_of(rq)))
367 __update_rq_clock(rq);
368}
Ingo Molnar20d315d2007-07-09 18:51:58 +0200369
Ingo Molnar20d315d2007-07-09 18:51:58 +0200370/*
Nick Piggin674311d2005-06-25 14:57:27 -0700371 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700372 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700373 *
374 * The domain tree of any CPU may only be accessed from within
375 * preempt-disabled sections.
376 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700377#define for_each_domain(cpu, __sd) \
378 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700379
380#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
381#define this_rq() (&__get_cpu_var(runqueues))
382#define task_rq(p) cpu_rq(task_cpu(p))
383#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
384
Ingo Molnare436d802007-07-19 21:28:35 +0200385/*
386 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
387 * clock constructed from sched_clock():
388 */
389unsigned long long cpu_clock(int cpu)
390{
Ingo Molnare436d802007-07-19 21:28:35 +0200391 unsigned long long now;
392 unsigned long flags;
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200393 struct rq *rq;
Ingo Molnare436d802007-07-19 21:28:35 +0200394
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200395 local_irq_save(flags);
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200396 rq = cpu_rq(cpu);
397 update_rq_clock(rq);
398 now = rq->clock;
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200399 local_irq_restore(flags);
Ingo Molnare436d802007-07-19 21:28:35 +0200400
401 return now;
402}
403
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200404#ifdef CONFIG_FAIR_GROUP_SCHED
405/* Change a task's ->cfs_rq if it moves across CPUs */
406static inline void set_task_cfs_rq(struct task_struct *p)
407{
408 p->se.cfs_rq = &task_rq(p)->cfs;
409}
410#else
411static inline void set_task_cfs_rq(struct task_struct *p)
412{
413}
414#endif
415
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700417# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700419#ifndef finish_arch_switch
420# define finish_arch_switch(prev) do { } while (0)
421#endif
422
423#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700424static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700425{
426 return rq->curr == p;
427}
428
Ingo Molnar70b97a72006-07-03 00:25:42 -0700429static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700430{
431}
432
Ingo Molnar70b97a72006-07-03 00:25:42 -0700433static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700434{
Ingo Molnarda04c032005-09-13 11:17:59 +0200435#ifdef CONFIG_DEBUG_SPINLOCK
436 /* this is a valid case when another task releases the spinlock */
437 rq->lock.owner = current;
438#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700439 /*
440 * If we are tracking spinlock dependencies then we have to
441 * fix up the runqueue lock - which gets 'carried over' from
442 * prev into current:
443 */
444 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
445
Nick Piggin4866cde2005-06-25 14:57:23 -0700446 spin_unlock_irq(&rq->lock);
447}
448
449#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700450static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700451{
452#ifdef CONFIG_SMP
453 return p->oncpu;
454#else
455 return rq->curr == p;
456#endif
457}
458
Ingo Molnar70b97a72006-07-03 00:25:42 -0700459static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700460{
461#ifdef CONFIG_SMP
462 /*
463 * We can optimise this out completely for !SMP, because the
464 * SMP rebalancing from interrupt is the only thing that cares
465 * here.
466 */
467 next->oncpu = 1;
468#endif
469#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
470 spin_unlock_irq(&rq->lock);
471#else
472 spin_unlock(&rq->lock);
473#endif
474}
475
Ingo Molnar70b97a72006-07-03 00:25:42 -0700476static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700477{
478#ifdef CONFIG_SMP
479 /*
480 * After ->oncpu is cleared, the task can be moved to a different CPU.
481 * We must ensure this doesn't happen until the switch is completely
482 * finished.
483 */
484 smp_wmb();
485 prev->oncpu = 0;
486#endif
487#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
488 local_irq_enable();
489#endif
490}
491#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492
493/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700494 * __task_rq_lock - lock the runqueue a given task resides on.
495 * Must be called interrupts disabled.
496 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700497static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700498 __acquires(rq->lock)
499{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700500 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700501
502repeat_lock_task:
503 rq = task_rq(p);
504 spin_lock(&rq->lock);
505 if (unlikely(rq != task_rq(p))) {
506 spin_unlock(&rq->lock);
507 goto repeat_lock_task;
508 }
509 return rq;
510}
511
512/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513 * task_rq_lock - lock the runqueue a given task resides on and disable
514 * interrupts. Note the ordering: we can safely lookup the task_rq without
515 * explicitly disabling preemption.
516 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700517static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700518 __acquires(rq->lock)
519{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700520 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521
522repeat_lock_task:
523 local_irq_save(*flags);
524 rq = task_rq(p);
525 spin_lock(&rq->lock);
526 if (unlikely(rq != task_rq(p))) {
527 spin_unlock_irqrestore(&rq->lock, *flags);
528 goto repeat_lock_task;
529 }
530 return rq;
531}
532
Ingo Molnar70b97a72006-07-03 00:25:42 -0700533static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700534 __releases(rq->lock)
535{
536 spin_unlock(&rq->lock);
537}
538
Ingo Molnar70b97a72006-07-03 00:25:42 -0700539static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540 __releases(rq->lock)
541{
542 spin_unlock_irqrestore(&rq->lock, *flags);
543}
544
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800546 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700548static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 __acquires(rq->lock)
550{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700551 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552
553 local_irq_disable();
554 rq = this_rq();
555 spin_lock(&rq->lock);
556
557 return rq;
558}
559
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200560/*
Ingo Molnar2aa44d02007-08-23 15:18:02 +0200561 * We are going deep-idle (irqs are disabled):
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200562 */
Ingo Molnar2aa44d02007-08-23 15:18:02 +0200563void sched_clock_idle_sleep_event(void)
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200564{
Ingo Molnar2aa44d02007-08-23 15:18:02 +0200565 struct rq *rq = cpu_rq(smp_processor_id());
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200566
Ingo Molnar2aa44d02007-08-23 15:18:02 +0200567 spin_lock(&rq->lock);
568 __update_rq_clock(rq);
569 spin_unlock(&rq->lock);
570 rq->clock_deep_idle_events++;
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200571}
Ingo Molnar2aa44d02007-08-23 15:18:02 +0200572EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
573
574/*
575 * We just idled delta nanoseconds (called with irqs disabled):
576 */
577void sched_clock_idle_wakeup_event(u64 delta_ns)
578{
579 struct rq *rq = cpu_rq(smp_processor_id());
580 u64 now = sched_clock();
581
582 rq->idle_clock += delta_ns;
583 /*
584 * Override the previous timestamp and ignore all
585 * sched_clock() deltas that occured while we idled,
586 * and use the PM-provided delta_ns to advance the
587 * rq clock:
588 */
589 spin_lock(&rq->lock);
590 rq->prev_clock_raw = now;
591 rq->clock += delta_ns;
592 spin_unlock(&rq->lock);
593}
594EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200595
596/*
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200597 * resched_task - mark a task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603#ifdef CONFIG_SMP
604
605#ifndef tsk_is_polling
606#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
607#endif
608
609static void resched_task(struct task_struct *p)
610{
611 int cpu;
612
613 assert_spin_locked(&task_rq(p)->lock);
614
615 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
616 return;
617
618 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
619
620 cpu = task_cpu(p);
621 if (cpu == smp_processor_id())
622 return;
623
624 /* NEED_RESCHED must be visible before we test polling */
625 smp_mb();
626 if (!tsk_is_polling(p))
627 smp_send_reschedule(cpu);
628}
629
630static void resched_cpu(int cpu)
631{
632 struct rq *rq = cpu_rq(cpu);
633 unsigned long flags;
634
635 if (!spin_trylock_irqsave(&rq->lock, flags))
636 return;
637 resched_task(cpu_curr(cpu));
638 spin_unlock_irqrestore(&rq->lock, flags);
639}
640#else
641static inline void resched_task(struct task_struct *p)
642{
643 assert_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645}
646#endif
647
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200648static u64 div64_likely32(u64 divident, unsigned long divisor)
649{
650#if BITS_PER_LONG == 32
651 if (likely(divident <= 0xffffffffULL))
652 return (u32)divident / divisor;
653 do_div(divident, divisor);
654
655 return divident;
656#else
657 return divident / divisor;
658#endif
659}
660
661#if BITS_PER_LONG == 32
662# define WMULT_CONST (~0UL)
663#else
664# define WMULT_CONST (1UL << 32)
665#endif
666
667#define WMULT_SHIFT 32
668
Ingo Molnar194081e2007-08-09 11:16:51 +0200669/*
670 * Shift right and round:
671 */
Ingo Molnarcf2ab462007-09-05 14:32:49 +0200672#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
Ingo Molnar194081e2007-08-09 11:16:51 +0200673
Ingo Molnarcb1c4fc2007-08-02 17:41:40 +0200674static unsigned long
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200675calc_delta_mine(unsigned long delta_exec, unsigned long weight,
676 struct load_weight *lw)
677{
678 u64 tmp;
679
680 if (unlikely(!lw->inv_weight))
Ingo Molnar194081e2007-08-09 11:16:51 +0200681 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200682
683 tmp = (u64)delta_exec * weight;
684 /*
685 * Check whether we'd overflow the 64-bit multiplication:
686 */
Ingo Molnar194081e2007-08-09 11:16:51 +0200687 if (unlikely(tmp > WMULT_CONST))
Ingo Molnarcf2ab462007-09-05 14:32:49 +0200688 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
Ingo Molnar194081e2007-08-09 11:16:51 +0200689 WMULT_SHIFT/2);
690 else
Ingo Molnarcf2ab462007-09-05 14:32:49 +0200691 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200692
Ingo Molnarecf691d2007-08-02 17:41:40 +0200693 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200694}
695
696static inline unsigned long
697calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
698{
699 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
700}
701
702static void update_load_add(struct load_weight *lw, unsigned long inc)
703{
704 lw->weight += inc;
705 lw->inv_weight = 0;
706}
707
708static void update_load_sub(struct load_weight *lw, unsigned long dec)
709{
710 lw->weight -= dec;
711 lw->inv_weight = 0;
712}
713
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
720 * slice expiry etc.
721 */
722
Ingo Molnardd41f592007-07-09 18:51:59 +0200723#define WEIGHT_IDLEPRIO 2
724#define WMULT_IDLEPRIO (1 << 31)
725
726/*
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
731 *
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
Ingo Molnarf9153ee2007-07-16 09:46:30 +0200734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
Ingo Molnardd41f592007-07-09 18:51:59 +0200737 */
738static const int prio_to_weight[40] = {
Ingo Molnar254753d2007-08-09 11:16:51 +0200739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
Ingo Molnardd41f592007-07-09 18:51:59 +0200747};
748
Ingo Molnar5714d2d2007-07-16 09:46:31 +0200749/*
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
751 *
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
755 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200756static const u32 prio_to_wmult[40] = {
Ingo Molnar254753d2007-08-09 11:16:51 +0200757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
Ingo Molnardd41f592007-07-09 18:51:59 +0200765};
Peter Williams2dd73a42006-06-27 02:54:34 -0700766
Ingo Molnardd41f592007-07-09 18:51:59 +0200767static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
768
769/*
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
773 */
774struct rq_iterator {
775 void *arg;
776 struct task_struct *(*start)(void *);
777 struct task_struct *(*next)(void *);
778};
779
780static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
781 unsigned long max_nr_move, unsigned long max_load_move,
782 struct sched_domain *sd, enum cpu_idle_type idle,
783 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +0200784 int *this_best_prio, struct rq_iterator *iterator);
Ingo Molnardd41f592007-07-09 18:51:59 +0200785
786#include "sched_stats.h"
787#include "sched_rt.c"
788#include "sched_fair.c"
789#include "sched_idletask.c"
790#ifdef CONFIG_SCHED_DEBUG
791# include "sched_debug.c"
792#endif
793
794#define sched_class_highest (&rt_sched_class)
795
Ingo Molnar9c217242007-08-02 17:41:40 +0200796static void __update_curr_load(struct rq *rq, struct load_stat *ls)
797{
798 if (rq->curr != rq->idle && ls->load.weight) {
799 ls->delta_exec += ls->delta_stat;
800 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
801 ls->delta_stat = 0;
802 }
803}
804
805/*
806 * Update delta_exec, delta_fair fields for rq.
807 *
808 * delta_fair clock advances at a rate inversely proportional to
809 * total load (rq->ls.load.weight) on the runqueue, while
810 * delta_exec advances at the same rate as wall-clock (provided
811 * cpu is not idle).
812 *
813 * delta_exec / delta_fair is a measure of the (smoothened) load on this
814 * runqueue over any given interval. This (smoothened) load is used
815 * during load balance.
816 *
817 * This function is called /before/ updating rq->ls.load
818 * and when switching tasks.
819 */
Ingo Molnar84a1d7a2007-08-09 11:16:49 +0200820static void update_curr_load(struct rq *rq)
Ingo Molnar9c217242007-08-02 17:41:40 +0200821{
822 struct load_stat *ls = &rq->ls;
823 u64 start;
824
825 start = ls->load_update_start;
Ingo Molnard2819182007-08-09 11:16:47 +0200826 ls->load_update_start = rq->clock;
827 ls->delta_stat += rq->clock - start;
Ingo Molnar9c217242007-08-02 17:41:40 +0200828 /*
829 * Stagger updates to ls->delta_fair. Very frequent updates
830 * can be expensive.
831 */
832 if (ls->delta_stat >= sysctl_sched_stat_granularity)
833 __update_curr_load(rq, ls);
834}
835
Ingo Molnar29b4b622007-08-09 11:16:49 +0200836static inline void inc_load(struct rq *rq, const struct task_struct *p)
Ingo Molnar9c217242007-08-02 17:41:40 +0200837{
Ingo Molnar84a1d7a2007-08-09 11:16:49 +0200838 update_curr_load(rq);
Ingo Molnar9c217242007-08-02 17:41:40 +0200839 update_load_add(&rq->ls.load, p->se.load.weight);
840}
841
Ingo Molnar79b5ddd2007-08-09 11:16:49 +0200842static inline void dec_load(struct rq *rq, const struct task_struct *p)
Ingo Molnar9c217242007-08-02 17:41:40 +0200843{
Ingo Molnar84a1d7a2007-08-09 11:16:49 +0200844 update_curr_load(rq);
Ingo Molnar9c217242007-08-02 17:41:40 +0200845 update_load_sub(&rq->ls.load, p->se.load.weight);
846}
847
Ingo Molnare5fa2232007-08-09 11:16:49 +0200848static void inc_nr_running(struct task_struct *p, struct rq *rq)
Ingo Molnar9c217242007-08-02 17:41:40 +0200849{
850 rq->nr_running++;
Ingo Molnar29b4b622007-08-09 11:16:49 +0200851 inc_load(rq, p);
Ingo Molnar9c217242007-08-02 17:41:40 +0200852}
853
Ingo Molnardb531812007-08-09 11:16:49 +0200854static void dec_nr_running(struct task_struct *p, struct rq *rq)
Ingo Molnar9c217242007-08-02 17:41:40 +0200855{
856 rq->nr_running--;
Ingo Molnar79b5ddd2007-08-09 11:16:49 +0200857 dec_load(rq, p);
Ingo Molnar9c217242007-08-02 17:41:40 +0200858}
859
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200860static void set_load_weight(struct task_struct *p)
861{
Ingo Molnardd41f592007-07-09 18:51:59 +0200862 p->se.wait_runtime = 0;
863
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200864 if (task_has_rt_policy(p)) {
Ingo Molnardd41f592007-07-09 18:51:59 +0200865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
869
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
878
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200881}
882
Ingo Molnar8159f872007-08-09 11:16:49 +0200883static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200884{
885 sched_info_queued(p);
Ingo Molnarfd390f62007-08-09 11:16:48 +0200886 p->sched_class->enqueue_task(rq, p, wakeup);
Ingo Molnardd41f592007-07-09 18:51:59 +0200887 p->se.on_rq = 1;
888}
889
Ingo Molnar69be72c2007-08-09 11:16:49 +0200890static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
Ingo Molnardd41f592007-07-09 18:51:59 +0200891{
Ingo Molnarf02231e2007-08-09 11:16:48 +0200892 p->sched_class->dequeue_task(rq, p, sleep);
Ingo Molnardd41f592007-07-09 18:51:59 +0200893 p->se.on_rq = 0;
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200894}
895
896/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200897 * __normal_prio - return the priority that is based on the static prio
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200898 */
Ingo Molnar14531182007-07-09 18:51:59 +0200899static inline int __normal_prio(struct task_struct *p)
900{
Ingo Molnardd41f592007-07-09 18:51:59 +0200901 return p->static_prio;
Ingo Molnar14531182007-07-09 18:51:59 +0200902}
903
904/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700911static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700912{
913 int prio;
914
Ingo Molnare05606d2007-07-09 18:51:59 +0200915 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920}
921
922/*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700929static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700930{
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940}
941
942/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200943 * activate_task - move a task to the runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200945static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946{
Ingo Molnardd41f592007-07-09 18:51:59 +0200947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
949
Ingo Molnar8159f872007-08-09 11:16:49 +0200950 enqueue_task(rq, p, wakeup);
Ingo Molnare5fa2232007-08-09 11:16:49 +0200951 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700952}
953
954/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200955 * activate_idle_task - move idle task to the _front_ of runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200957static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958{
Ingo Molnara8e504d2007-08-09 11:16:47 +0200959 update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960
Ingo Molnardd41f592007-07-09 18:51:59 +0200961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963
Ingo Molnar8159f872007-08-09 11:16:49 +0200964 enqueue_task(rq, p, 0);
Ingo Molnare5fa2232007-08-09 11:16:49 +0200965 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966}
967
968/*
969 * deactivate_task - remove a task from the runqueue.
970 */
Ingo Molnar2e1cb742007-08-09 11:16:49 +0200971static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
Ingo Molnardd41f592007-07-09 18:51:59 +0200973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
Ingo Molnar69be72c2007-08-09 11:16:49 +0200976 dequeue_task(rq, p, sleep);
Ingo Molnardb531812007-08-09 11:16:49 +0200977 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978}
979
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980/**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700984inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985{
986 return cpu_curr(task_cpu(p)) == p;
987}
988
Peter Williams2dd73a42006-06-27 02:54:34 -0700989/* Used instead of source_load when we know the type == 0 */
990unsigned long weighted_cpuload(const int cpu)
991{
Ingo Molnardd41f592007-07-09 18:51:59 +0200992 return cpu_rq(cpu)->ls.load.weight;
993}
994
995static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996{
997#ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000#endif
Peter Williams2dd73a42006-06-27 02:54:34 -07001001}
1002
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001004
Ingo Molnardd41f592007-07-09 18:51:59 +02001005void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
Ingo Molnarc65cc872007-07-09 18:51:58 +02001006{
Ingo Molnardd41f592007-07-09 18:51:59 +02001007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
Ingo Molnardd41f592007-07-09 18:51:59 +02001014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019#ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
Ingo Molnardd41f592007-07-09 18:51:59 +02001022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001026#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02001027
1028 __set_task_cpu(p, new_cpu);
Ingo Molnarc65cc872007-07-09 18:51:58 +02001029}
1030
Ingo Molnar70b97a72006-07-03 00:25:42 -07001031struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033
Ingo Molnar36c8b582006-07-03 00:25:41 -07001034 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035 int dest_cpu;
1036
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001038};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039
1040/*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001044static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001045migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001047 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001053 if (!p->se.on_rq && !task_running(rq, p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001062
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063 return 1;
1064}
1065
1066/*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001075void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076{
1077 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001078 int running, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001079 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080
1081repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1109 rq = task_rq_lock(p, &flags);
1110 running = task_running(rq, p);
Ingo Molnardd41f592007-07-09 18:51:59 +02001111 on_rq = p->se.on_rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1121 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122 goto repeat;
1123 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001134 if (unlikely(on_rq)) {
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001159void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160{
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168}
1169
1170/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
Con Kolivasb9104722005-11-08 21:38:55 -08001177static inline unsigned long source_load(int cpu, int type)
1178{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001179 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001180 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001181
Peter Williams2dd73a42006-06-27 02:54:34 -07001182 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001183 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001184
Ingo Molnardd41f592007-07-09 18:51:59 +02001185 return min(rq->cpu_load[type-1], total);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186}
1187
1188/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191 */
Con Kolivasb9104722005-11-08 21:38:55 -08001192static inline unsigned long target_load(int cpu, int type)
1193{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001194 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001195 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001196
Peter Williams2dd73a42006-06-27 02:54:34 -07001197 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001198 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001199
Ingo Molnardd41f592007-07-09 18:51:59 +02001200 return max(rq->cpu_load[type-1], total);
Peter Williams2dd73a42006-06-27 02:54:34 -07001201}
1202
1203/*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206static inline unsigned long cpu_avg_load_per_task(int cpu)
1207{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001208 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001209 unsigned long total = weighted_cpuload(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001210 unsigned long n = rq->nr_running;
1211
Ingo Molnardd41f592007-07-09 18:51:59 +02001212 return n ? total / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001213}
1214
Nick Piggin147cbb42005-06-25 14:57:19 -07001215/*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219static struct sched_group *
1220find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221{
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
Nick Piggin147cbb42005-06-25 14:57:19 -07001236 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001262nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269}
1270
1271/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001273 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001274static int
1275find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001276{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001277 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001286 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295}
1296
Nick Piggin476d1392005-06-25 14:57:29 -07001297/*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308static int sched_balance_self(int cpu, int flag)
1309{
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001312
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001313 for_each_domain(cpu, tmp) {
Ingo Molnar9761eea2007-07-09 18:52:00 +02001314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001319 if (tmp->flags & flag)
1320 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001321 }
Nick Piggin476d1392005-06-25 14:57:29 -07001322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
Nick Piggin476d1392005-06-25 14:57:29 -07001332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
Nick Piggin476d1392005-06-25 14:57:29 -07001339
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001340 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
Nick Piggin476d1392005-06-25 14:57:29 -07001346
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001347 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001348 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361}
1362
1363#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001364
1365/*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001374static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375{
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
Siddha, Suresh B49531982007-05-08 00:33:01 -07001380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001394 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
Ingo Molnar9761eea2007-07-09 18:52:00 +02001399 } else {
Nick Piggine0f364f2005-06-25 14:57:06 -07001400 break;
Ingo Molnar9761eea2007-07-09 18:52:00 +02001401 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402 }
1403 return cpu;
1404}
1405#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001406static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001407{
1408 return cpu;
1409}
1410#endif
1411
1412/***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001426static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427{
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001431 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001433 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001434 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435 int new_cpu;
1436#endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
Ingo Molnardd41f592007-07-09 18:51:59 +02001443 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449#ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
Nick Piggin78979862005-06-25 14:57:13 -07001453 new_cpu = cpu;
1454
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466 }
1467 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001468
Nick Piggin78979862005-06-25 14:57:13 -07001469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 goto out_set_cpu;
1471
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472 /*
Nick Piggin78979862005-06-25 14:57:13 -07001473 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474 */
Nick Piggin78979862005-06-25 14:57:13 -07001475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478
Nick Piggina3f21bc2005-06-25 14:57:15 -07001479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
Nick Piggin78979862005-06-25 14:57:13 -07001481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1483
Nick Piggin78979862005-06-25 14:57:13 -07001484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
Nick Piggina3f21bc2005-06-25 14:57:15 -07001486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001491
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001496 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001497 if (sync)
Ingo Molnardd41f592007-07-09 18:51:59 +02001498 tl -= current->se.load.weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001499
1500 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001501 tl + target_load(cpu, idx) <= tl_per_task) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02001502 100*(tl + p->se.load.weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
Ingo Molnardd41f592007-07-09 18:51:59 +02001536 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543out_activate:
1544#endif /* CONFIG_SMP */
Ingo Molnar2daa3572007-08-09 11:16:51 +02001545 update_rq_clock(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02001546 activate_task(rq, p, 1);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001547 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 success = 1;
1558
1559out_running:
1560 p->state = TASK_RUNNING;
1561out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565}
1566
Ingo Molnar36c8b582006-07-03 00:25:41 -07001567int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568{
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572EXPORT_SYMBOL(wake_up_process);
1573
Ingo Molnar36c8b582006-07-03 00:25:41 -07001574int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575{
1576 return try_to_wake_up(p, state, 0);
1577}
1578
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579/*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
Ingo Molnardd41f592007-07-09 18:51:59 +02001582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001585static void __sched_fork(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586{
Ingo Molnardd41f592007-07-09 18:51:59 +02001587 p->se.wait_start_fair = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
Ingo Molnarf6cf8912007-08-28 12:53:24 +02001590 p->se.prev_sum_exec_runtime = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001591 p->se.delta_exec = 0;
1592 p->se.delta_fair_run = 0;
1593 p->se.delta_fair_sleep = 0;
1594 p->se.wait_runtime = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001595 p->se.sleep_start_fair = 0;
1596
1597#ifdef CONFIG_SCHEDSTATS
1598 p->se.wait_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001599 p->se.sum_wait_runtime = 0;
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
Ingo Molnareba1ed42007-10-15 17:00:02 +02001606 p->se.slice_max = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001607 p->se.wait_max = 0;
1608 p->se.wait_runtime_overruns = 0;
1609 p->se.wait_runtime_underruns = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001610#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001611
Ingo Molnardd41f592007-07-09 18:51:59 +02001612 INIT_LIST_HEAD(&p->run_list);
1613 p->se.on_rq = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001614
Avi Kivitye107be32007-07-26 13:40:43 +02001615#ifdef CONFIG_PREEMPT_NOTIFIERS
1616 INIT_HLIST_HEAD(&p->preempt_notifiers);
1617#endif
1618
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619 /*
1620 * We mark the process as running here, but have not actually
1621 * inserted it onto the runqueue yet. This guarantees that
1622 * nobody will actually run it, and a signal or other external
1623 * event cannot wake it up and insert it on the runqueue either.
1624 */
1625 p->state = TASK_RUNNING;
Ingo Molnardd41f592007-07-09 18:51:59 +02001626}
1627
1628/*
1629 * fork()/clone()-time setup:
1630 */
1631void sched_fork(struct task_struct *p, int clone_flags)
1632{
1633 int cpu = get_cpu();
1634
1635 __sched_fork(p);
1636
1637#ifdef CONFIG_SMP
1638 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1639#endif
1640 __set_task_cpu(p, cpu);
Ingo Molnarb29739f2006-06-27 02:54:51 -07001641
1642 /*
1643 * Make sure we do not leak PI boosting priority to the child:
1644 */
1645 p->prio = current->normal_prio;
1646
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001647#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Ingo Molnardd41f592007-07-09 18:51:59 +02001648 if (likely(sched_info_on()))
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001649 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001651#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001652 p->oncpu = 0;
1653#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001654#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001655 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001656 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001658 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659}
1660
1661/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001662 * After fork, child runs first. (default) If set to 0 then
1663 * parent will (try to) run first.
1664 */
1665unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1666
1667/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001668 * wake_up_new_task - wake up a newly created task for the first time.
1669 *
1670 * This function will do some initial scheduler statistics housekeeping
1671 * that must be done for every newly created context, then puts the task
1672 * on the runqueue and wakes it.
1673 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001674void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675{
1676 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001677 struct rq *rq;
1678 int this_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679
1680 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681 BUG_ON(p->state != TASK_RUNNING);
Ingo Molnardd41f592007-07-09 18:51:59 +02001682 this_cpu = smp_processor_id(); /* parent's CPU */
Ingo Molnara8e504d2007-08-09 11:16:47 +02001683 update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684
1685 p->prio = effective_prio(p);
1686
Hiroshi Shimamoto9c95e732007-09-19 23:34:46 +02001687 if (rt_prio(p->prio))
1688 p->sched_class = &rt_sched_class;
1689 else
1690 p->sched_class = &fair_sched_class;
1691
Ingo Molnar44142fa2007-10-15 17:00:01 +02001692 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1693 !current->se.on_rq) {
Ingo Molnardd41f592007-07-09 18:51:59 +02001694 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001696 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02001697 * Let the scheduling class do new task startup
1698 * management (if any):
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699 */
Ingo Molnaree0827d2007-08-09 11:16:49 +02001700 p->sched_class->task_new(rq, p);
Ingo Molnare5fa2232007-08-09 11:16:49 +02001701 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001702 }
Ingo Molnardd41f592007-07-09 18:51:59 +02001703 check_preempt_curr(rq, p);
1704 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705}
1706
Avi Kivitye107be32007-07-26 13:40:43 +02001707#ifdef CONFIG_PREEMPT_NOTIFIERS
1708
1709/**
Randy Dunlap421cee22007-07-31 00:37:50 -07001710 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1711 * @notifier: notifier struct to register
Avi Kivitye107be32007-07-26 13:40:43 +02001712 */
1713void preempt_notifier_register(struct preempt_notifier *notifier)
1714{
1715 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1716}
1717EXPORT_SYMBOL_GPL(preempt_notifier_register);
1718
1719/**
1720 * preempt_notifier_unregister - no longer interested in preemption notifications
Randy Dunlap421cee22007-07-31 00:37:50 -07001721 * @notifier: notifier struct to unregister
Avi Kivitye107be32007-07-26 13:40:43 +02001722 *
1723 * This is safe to call from within a preemption notifier.
1724 */
1725void preempt_notifier_unregister(struct preempt_notifier *notifier)
1726{
1727 hlist_del(&notifier->link);
1728}
1729EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1730
1731static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1732{
1733 struct preempt_notifier *notifier;
1734 struct hlist_node *node;
1735
1736 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1737 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1738}
1739
1740static void
1741fire_sched_out_preempt_notifiers(struct task_struct *curr,
1742 struct task_struct *next)
1743{
1744 struct preempt_notifier *notifier;
1745 struct hlist_node *node;
1746
1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 notifier->ops->sched_out(notifier, next);
1749}
1750
1751#else
1752
1753static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1754{
1755}
1756
1757static void
1758fire_sched_out_preempt_notifiers(struct task_struct *curr,
1759 struct task_struct *next)
1760{
1761}
1762
1763#endif
1764
Linus Torvalds1da177e2005-04-16 15:20:36 -07001765/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001766 * prepare_task_switch - prepare to switch tasks
1767 * @rq: the runqueue preparing to switch
Randy Dunlap421cee22007-07-31 00:37:50 -07001768 * @prev: the current task that is being switched out
Nick Piggin4866cde2005-06-25 14:57:23 -07001769 * @next: the task we are going to switch to.
1770 *
1771 * This is called with the rq lock held and interrupts off. It must
1772 * be paired with a subsequent finish_task_switch after the context
1773 * switch.
1774 *
1775 * prepare_task_switch sets up locking and calls architecture specific
1776 * hooks.
1777 */
Avi Kivitye107be32007-07-26 13:40:43 +02001778static inline void
1779prepare_task_switch(struct rq *rq, struct task_struct *prev,
1780 struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001781{
Avi Kivitye107be32007-07-26 13:40:43 +02001782 fire_sched_out_preempt_notifiers(prev, next);
Nick Piggin4866cde2005-06-25 14:57:23 -07001783 prepare_lock_switch(rq, next);
1784 prepare_arch_switch(next);
1785}
1786
1787/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001789 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 * @prev: the thread we just switched away from.
1791 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001792 * finish_task_switch must be called after the context switch, paired
1793 * with a prepare_task_switch call before the context switch.
1794 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1795 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 *
1797 * Note that we may have delayed dropping an mm in context_switch(). If
1798 * so, we finish that here outside of the runqueue lock. (Doing it
1799 * with the lock held can cause deadlocks; see schedule() for
1800 * details.)
1801 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001802static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803 __releases(rq->lock)
1804{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001806 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807
1808 rq->prev_mm = NULL;
1809
1810 /*
1811 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001812 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001813 * schedule one last time. The schedule call will never return, and
1814 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001815 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816 * still held, otherwise prev could be scheduled on another cpu, die
1817 * there before we look at prev->state, and then the reference would
1818 * be dropped twice.
1819 * Manfred Spraul <manfred@colorfullife.com>
1820 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001821 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001822 finish_arch_switch(prev);
1823 finish_lock_switch(rq, prev);
Avi Kivitye107be32007-07-26 13:40:43 +02001824 fire_sched_in_preempt_notifiers(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825 if (mm)
1826 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001827 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001828 /*
1829 * Remove function-return probe instances associated with this
1830 * task and put them back on the free list.
Ingo Molnar9761eea2007-07-09 18:52:00 +02001831 */
bibo maoc6fd91f2006-03-26 01:38:20 -08001832 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001834 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835}
1836
1837/**
1838 * schedule_tail - first thing a freshly forked thread must call.
1839 * @prev: the thread we just switched away from.
1840 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001841asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 __releases(rq->lock)
1843{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001844 struct rq *rq = this_rq();
1845
Nick Piggin4866cde2005-06-25 14:57:23 -07001846 finish_task_switch(rq, prev);
1847#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1848 /* In this case, finish_task_switch does not reenable preemption */
1849 preempt_enable();
1850#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 if (current->set_child_tid)
1852 put_user(current->pid, current->set_child_tid);
1853}
1854
1855/*
1856 * context_switch - switch to the new MM and the new
1857 * thread's register state.
1858 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001859static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07001860context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001861 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001862{
Ingo Molnardd41f592007-07-09 18:51:59 +02001863 struct mm_struct *mm, *oldmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864
Avi Kivitye107be32007-07-26 13:40:43 +02001865 prepare_task_switch(rq, prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02001866 mm = next->mm;
1867 oldmm = prev->active_mm;
Zachary Amsden9226d122007-02-13 13:26:21 +01001868 /*
1869 * For paravirt, this is coupled with an exit in switch_to to
1870 * combine the page table reload and the switch backend into
1871 * one hypercall.
1872 */
1873 arch_enter_lazy_cpu_mode();
1874
Ingo Molnardd41f592007-07-09 18:51:59 +02001875 if (unlikely(!mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001876 next->active_mm = oldmm;
1877 atomic_inc(&oldmm->mm_count);
1878 enter_lazy_tlb(oldmm, next);
1879 } else
1880 switch_mm(oldmm, mm, next);
1881
Ingo Molnardd41f592007-07-09 18:51:59 +02001882 if (unlikely(!prev->mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883 prev->active_mm = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884 rq->prev_mm = oldmm;
1885 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001886 /*
1887 * Since the runqueue lock will be released by the next
1888 * task (which is an invalid locking op but in the case
1889 * of the scheduler it's an obvious special-case), so we
1890 * do an early lockdep release here:
1891 */
1892#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001893 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001894#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895
1896 /* Here we just switch the register state and the stack. */
1897 switch_to(prev, next, prev);
1898
Ingo Molnardd41f592007-07-09 18:51:59 +02001899 barrier();
1900 /*
1901 * this_rq must be evaluated again because prev may have moved
1902 * CPUs since it called schedule(), thus the 'rq' on its stack
1903 * frame will be invalid.
1904 */
1905 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001906}
1907
1908/*
1909 * nr_running, nr_uninterruptible and nr_context_switches:
1910 *
1911 * externally visible scheduler statistics: current number of runnable
1912 * threads, current number of uninterruptible-sleeping threads, total
1913 * number of context switches performed since bootup.
1914 */
1915unsigned long nr_running(void)
1916{
1917 unsigned long i, sum = 0;
1918
1919 for_each_online_cpu(i)
1920 sum += cpu_rq(i)->nr_running;
1921
1922 return sum;
1923}
1924
1925unsigned long nr_uninterruptible(void)
1926{
1927 unsigned long i, sum = 0;
1928
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001929 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001930 sum += cpu_rq(i)->nr_uninterruptible;
1931
1932 /*
1933 * Since we read the counters lockless, it might be slightly
1934 * inaccurate. Do not allow it to go below zero though:
1935 */
1936 if (unlikely((long)sum < 0))
1937 sum = 0;
1938
1939 return sum;
1940}
1941
1942unsigned long long nr_context_switches(void)
1943{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001944 int i;
1945 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001947 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948 sum += cpu_rq(i)->nr_switches;
1949
1950 return sum;
1951}
1952
1953unsigned long nr_iowait(void)
1954{
1955 unsigned long i, sum = 0;
1956
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001957 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1959
1960 return sum;
1961}
1962
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001963unsigned long nr_active(void)
1964{
1965 unsigned long i, running = 0, uninterruptible = 0;
1966
1967 for_each_online_cpu(i) {
1968 running += cpu_rq(i)->nr_running;
1969 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1970 }
1971
1972 if (unlikely((long)uninterruptible < 0))
1973 uninterruptible = 0;
1974
1975 return running + uninterruptible;
1976}
1977
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001979 * Update rq->cpu_load[] statistics. This function is usually called every
1980 * scheduler tick (TICK_NSEC).
Ingo Molnar48f24c42006-07-03 00:25:40 -07001981 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001982static void update_cpu_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07001983{
Ingo Molnardd41f592007-07-09 18:51:59 +02001984 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1985 unsigned long total_load = this_rq->ls.load.weight;
1986 unsigned long this_load = total_load;
1987 struct load_stat *ls = &this_rq->ls;
Ingo Molnardd41f592007-07-09 18:51:59 +02001988 int i, scale;
1989
1990 this_rq->nr_load_updates++;
1991 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1992 goto do_avg;
1993
1994 /* Update delta_fair/delta_exec fields first */
Ingo Molnar84a1d7a2007-08-09 11:16:49 +02001995 update_curr_load(this_rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02001996
1997 fair_delta64 = ls->delta_fair + 1;
1998 ls->delta_fair = 0;
1999
2000 exec_delta64 = ls->delta_exec + 1;
2001 ls->delta_exec = 0;
2002
Ingo Molnard2819182007-08-09 11:16:47 +02002003 sample_interval64 = this_rq->clock - ls->load_update_last;
2004 ls->load_update_last = this_rq->clock;
Ingo Molnardd41f592007-07-09 18:51:59 +02002005
2006 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2007 sample_interval64 = TICK_NSEC;
2008
2009 if (exec_delta64 > sample_interval64)
2010 exec_delta64 = sample_interval64;
2011
2012 idle_delta64 = sample_interval64 - exec_delta64;
2013
2014 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2015 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2016
2017 this_load = (unsigned long)tmp64;
2018
2019do_avg:
2020
2021 /* Update our load: */
2022 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2023 unsigned long old_load, new_load;
2024
2025 /* scale is effectively 1 << i now, and >> i divides by scale */
2026
2027 old_load = this_rq->cpu_load[i];
2028 new_load = this_load;
2029
2030 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2031 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002032}
2033
Ingo Molnardd41f592007-07-09 18:51:59 +02002034#ifdef CONFIG_SMP
2035
Ingo Molnar48f24c42006-07-03 00:25:40 -07002036/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002037 * double_rq_lock - safely lock two runqueues
2038 *
2039 * Note this does not disable interrupts like task_rq_lock,
2040 * you need to do so manually before calling.
2041 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002042static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043 __acquires(rq1->lock)
2044 __acquires(rq2->lock)
2045{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002046 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002047 if (rq1 == rq2) {
2048 spin_lock(&rq1->lock);
2049 __acquire(rq2->lock); /* Fake it out ;) */
2050 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002051 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 spin_lock(&rq1->lock);
2053 spin_lock(&rq2->lock);
2054 } else {
2055 spin_lock(&rq2->lock);
2056 spin_lock(&rq1->lock);
2057 }
2058 }
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02002059 update_rq_clock(rq1);
2060 update_rq_clock(rq2);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061}
2062
2063/*
2064 * double_rq_unlock - safely unlock two runqueues
2065 *
2066 * Note this does not restore interrupts like task_rq_unlock,
2067 * you need to do so manually after calling.
2068 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002069static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002070 __releases(rq1->lock)
2071 __releases(rq2->lock)
2072{
2073 spin_unlock(&rq1->lock);
2074 if (rq1 != rq2)
2075 spin_unlock(&rq2->lock);
2076 else
2077 __release(rq2->lock);
2078}
2079
2080/*
2081 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2082 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002083static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084 __releases(this_rq->lock)
2085 __acquires(busiest->lock)
2086 __acquires(this_rq->lock)
2087{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002088 if (unlikely(!irqs_disabled())) {
2089 /* printk() doesn't work good under rq->lock */
2090 spin_unlock(&this_rq->lock);
2091 BUG_ON(1);
2092 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002094 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095 spin_unlock(&this_rq->lock);
2096 spin_lock(&busiest->lock);
2097 spin_lock(&this_rq->lock);
2098 } else
2099 spin_lock(&busiest->lock);
2100 }
2101}
2102
2103/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104 * If dest_cpu is allowed for this process, migrate the task to it.
2105 * This is accomplished by forcing the cpu_allowed mask to only
2106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2107 * the cpu_allowed mask is restored.
2108 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002109static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002111 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002113 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114
2115 rq = task_rq_lock(p, &flags);
2116 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2117 || unlikely(cpu_is_offline(dest_cpu)))
2118 goto out;
2119
2120 /* force the process onto the specified CPU */
2121 if (migrate_task(p, dest_cpu, &req)) {
2122 /* Need to wait for migration thread (might exit: take ref). */
2123 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002124
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125 get_task_struct(mt);
2126 task_rq_unlock(rq, &flags);
2127 wake_up_process(mt);
2128 put_task_struct(mt);
2129 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002130
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131 return;
2132 }
2133out:
2134 task_rq_unlock(rq, &flags);
2135}
2136
2137/*
Nick Piggin476d1392005-06-25 14:57:29 -07002138 * sched_exec - execve() is a valuable balancing opportunity, because at
2139 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140 */
2141void sched_exec(void)
2142{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002146 if (new_cpu != this_cpu)
2147 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148}
2149
2150/*
2151 * pull_task - move a task from a remote runqueue to the local runqueue.
2152 * Both runqueues must be locked.
2153 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002154static void pull_task(struct rq *src_rq, struct task_struct *p,
2155 struct rq *this_rq, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156{
Ingo Molnar2e1cb742007-08-09 11:16:49 +02002157 deactivate_task(src_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002158 set_task_cpu(p, this_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02002159 activate_task(this_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 /*
2161 * Note that idle threads have a prio of MAX_PRIO, for this test
2162 * to be always true for them.
2163 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002164 check_preempt_curr(this_rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165}
2166
2167/*
2168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2169 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002170static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002171int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002172 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002173 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174{
2175 /*
2176 * We do not migrate tasks that are:
2177 * 1) running (obviously), or
2178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2179 * 3) are cache-hot on their current CPU.
2180 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002181 if (!cpu_isset(this_cpu, p->cpus_allowed))
2182 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002183 *all_pinned = 0;
2184
2185 if (task_running(rq, p))
2186 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188 return 1;
2189}
2190
Ingo Molnardd41f592007-07-09 18:51:59 +02002191static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2192 unsigned long max_nr_move, unsigned long max_load_move,
2193 struct sched_domain *sd, enum cpu_idle_type idle,
2194 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002195 int *this_best_prio, struct rq_iterator *iterator)
Ingo Molnardd41f592007-07-09 18:51:59 +02002196{
2197 int pulled = 0, pinned = 0, skip_for_load;
2198 struct task_struct *p;
2199 long rem_load_move = max_load_move;
2200
2201 if (max_nr_move == 0 || max_load_move == 0)
2202 goto out;
2203
2204 pinned = 1;
2205
2206 /*
2207 * Start the load-balancing iterator:
2208 */
2209 p = iterator->start(iterator->arg);
2210next:
2211 if (!p)
2212 goto out;
2213 /*
2214 * To help distribute high priority tasks accross CPUs we don't
2215 * skip a task if it will be the highest priority task (i.e. smallest
2216 * prio value) on its new queue regardless of its load weight
2217 */
2218 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2219 SCHED_LOAD_SCALE_FUZZ;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002220 if ((skip_for_load && p->prio >= *this_best_prio) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02002221 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002222 p = iterator->next(iterator->arg);
2223 goto next;
2224 }
2225
2226 pull_task(busiest, p, this_rq, this_cpu);
2227 pulled++;
2228 rem_load_move -= p->se.load.weight;
2229
2230 /*
2231 * We only want to steal up to the prescribed number of tasks
2232 * and the prescribed amount of weighted load.
2233 */
2234 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002235 if (p->prio < *this_best_prio)
2236 *this_best_prio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02002237 p = iterator->next(iterator->arg);
2238 goto next;
2239 }
2240out:
2241 /*
2242 * Right now, this is the only place pull_task() is called,
2243 * so we can safely collect pull_task() stats here rather than
2244 * inside pull_task().
2245 */
2246 schedstat_add(sd, lb_gained[idle], pulled);
2247
2248 if (all_pinned)
2249 *all_pinned = pinned;
2250 *load_moved = max_load_move - rem_load_move;
2251 return pulled;
2252}
Ingo Molnar48f24c42006-07-03 00:25:40 -07002253
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254/*
Peter Williams43010652007-08-09 11:16:46 +02002255 * move_tasks tries to move up to max_load_move weighted load from busiest to
2256 * this_rq, as part of a balancing operation within domain "sd".
2257 * Returns 1 if successful and 0 otherwise.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258 *
2259 * Called with both runqueues locked.
2260 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002261static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams43010652007-08-09 11:16:46 +02002262 unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002263 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002264 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265{
Ingo Molnardd41f592007-07-09 18:51:59 +02002266 struct sched_class *class = sched_class_highest;
Peter Williams43010652007-08-09 11:16:46 +02002267 unsigned long total_load_moved = 0;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002268 int this_best_prio = this_rq->curr->prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269
Ingo Molnardd41f592007-07-09 18:51:59 +02002270 do {
Peter Williams43010652007-08-09 11:16:46 +02002271 total_load_moved +=
2272 class->load_balance(this_rq, this_cpu, busiest,
2273 ULONG_MAX, max_load_move - total_load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002274 sd, idle, all_pinned, &this_best_prio);
Ingo Molnardd41f592007-07-09 18:51:59 +02002275 class = class->next;
Peter Williams43010652007-08-09 11:16:46 +02002276 } while (class && max_load_move > total_load_moved);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002277
Peter Williams43010652007-08-09 11:16:46 +02002278 return total_load_moved > 0;
2279}
2280
2281/*
2282 * move_one_task tries to move exactly one task from busiest to this_rq, as
2283 * part of active balancing operations within "domain".
2284 * Returns 1 if successful and 0 otherwise.
2285 *
2286 * Called with both runqueues locked.
2287 */
2288static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2289 struct sched_domain *sd, enum cpu_idle_type idle)
2290{
2291 struct sched_class *class;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002292 int this_best_prio = MAX_PRIO;
Peter Williams43010652007-08-09 11:16:46 +02002293
2294 for (class = sched_class_highest; class; class = class->next)
2295 if (class->load_balance(this_rq, this_cpu, busiest,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002296 1, ULONG_MAX, sd, idle, NULL,
2297 &this_best_prio))
Peter Williams43010652007-08-09 11:16:46 +02002298 return 1;
2299
2300 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301}
2302
2303/*
2304 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002305 * domain. It calculates and returns the amount of weighted load which
2306 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307 */
2308static struct sched_group *
2309find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnardd41f592007-07-09 18:51:59 +02002310 unsigned long *imbalance, enum cpu_idle_type idle,
2311 int *sd_idle, cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312{
2313 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2314 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002315 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002316 unsigned long busiest_load_per_task, busiest_nr_running;
2317 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002318 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002319#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2320 int power_savings_balance = 1;
2321 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2322 unsigned long min_nr_running = ULONG_MAX;
2323 struct sched_group *group_min = NULL, *group_leader = NULL;
2324#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002325
2326 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002327 busiest_load_per_task = busiest_nr_running = 0;
2328 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002329 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002330 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002331 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002332 load_idx = sd->newidle_idx;
2333 else
2334 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335
2336 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002337 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002338 int local_group;
2339 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002340 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002341 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342
2343 local_group = cpu_isset(this_cpu, group->cpumask);
2344
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002345 if (local_group)
2346 balance_cpu = first_cpu(group->cpumask);
2347
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002349 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350
2351 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002352 struct rq *rq;
2353
2354 if (!cpu_isset(i, *cpus))
2355 continue;
2356
2357 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002358
Suresh Siddha9439aab2007-07-19 21:28:35 +02002359 if (*sd_idle && rq->nr_running)
Nick Piggin5969fe02005-09-10 00:26:19 -07002360 *sd_idle = 0;
2361
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002363 if (local_group) {
2364 if (idle_cpu(i) && !first_idle_cpu) {
2365 first_idle_cpu = 1;
2366 balance_cpu = i;
2367 }
2368
Nick Piggina2000572006-02-10 01:51:02 -08002369 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002370 } else
Nick Piggina2000572006-02-10 01:51:02 -08002371 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372
2373 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002374 sum_nr_running += rq->nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002375 sum_weighted_load += weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002376 }
2377
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002378 /*
2379 * First idle cpu or the first cpu(busiest) in this sched group
2380 * is eligible for doing load balancing at this and above
Suresh Siddha9439aab2007-07-19 21:28:35 +02002381 * domains. In the newly idle case, we will allow all the cpu's
2382 * to do the newly idle load balance.
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002383 */
Suresh Siddha9439aab2007-07-19 21:28:35 +02002384 if (idle != CPU_NEWLY_IDLE && local_group &&
2385 balance_cpu != this_cpu && balance) {
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002386 *balance = 0;
2387 goto ret;
2388 }
2389
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002391 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002392
2393 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002394 avg_load = sg_div_cpu_power(group,
2395 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396
Eric Dumazet5517d862007-05-08 00:32:57 -07002397 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002398
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399 if (local_group) {
2400 this_load = avg_load;
2401 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002402 this_nr_running = sum_nr_running;
2403 this_load_per_task = sum_weighted_load;
2404 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002405 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406 max_load = avg_load;
2407 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002408 busiest_nr_running = sum_nr_running;
2409 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002411
2412#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2413 /*
2414 * Busy processors will not participate in power savings
2415 * balance.
2416 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002417 if (idle == CPU_NOT_IDLE ||
2418 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2419 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002420
2421 /*
2422 * If the local group is idle or completely loaded
2423 * no need to do power savings balance at this domain
2424 */
2425 if (local_group && (this_nr_running >= group_capacity ||
2426 !this_nr_running))
2427 power_savings_balance = 0;
2428
Ingo Molnardd41f592007-07-09 18:51:59 +02002429 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002430 * If a group is already running at full capacity or idle,
2431 * don't include that group in power savings calculations
Ingo Molnardd41f592007-07-09 18:51:59 +02002432 */
2433 if (!power_savings_balance || sum_nr_running >= group_capacity
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002434 || !sum_nr_running)
Ingo Molnardd41f592007-07-09 18:51:59 +02002435 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002436
Ingo Molnardd41f592007-07-09 18:51:59 +02002437 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002438 * Calculate the group which has the least non-idle load.
Ingo Molnardd41f592007-07-09 18:51:59 +02002439 * This is the group from where we need to pick up the load
2440 * for saving power
2441 */
2442 if ((sum_nr_running < min_nr_running) ||
2443 (sum_nr_running == min_nr_running &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002444 first_cpu(group->cpumask) <
2445 first_cpu(group_min->cpumask))) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002446 group_min = group;
2447 min_nr_running = sum_nr_running;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002448 min_load_per_task = sum_weighted_load /
2449 sum_nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002450 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002451
Ingo Molnardd41f592007-07-09 18:51:59 +02002452 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002453 * Calculate the group which is almost near its
Ingo Molnardd41f592007-07-09 18:51:59 +02002454 * capacity but still has some space to pick up some load
2455 * from other group and save more power
2456 */
2457 if (sum_nr_running <= group_capacity - 1) {
2458 if (sum_nr_running > leader_nr_running ||
2459 (sum_nr_running == leader_nr_running &&
2460 first_cpu(group->cpumask) >
2461 first_cpu(group_leader->cpumask))) {
2462 group_leader = group;
2463 leader_nr_running = sum_nr_running;
2464 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002465 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002466group_next:
2467#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002468 group = group->next;
2469 } while (group != sd->groups);
2470
Peter Williams2dd73a42006-06-27 02:54:34 -07002471 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472 goto out_balanced;
2473
2474 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2475
2476 if (this_load >= avg_load ||
2477 100*max_load <= sd->imbalance_pct*this_load)
2478 goto out_balanced;
2479
Peter Williams2dd73a42006-06-27 02:54:34 -07002480 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002481 /*
2482 * We're trying to get all the cpus to the average_load, so we don't
2483 * want to push ourselves above the average load, nor do we wish to
2484 * reduce the max loaded cpu below the average load, as either of these
2485 * actions would just result in more rebalancing later, and ping-pong
2486 * tasks around. Thus we look for the minimum possible imbalance.
2487 * Negative imbalances (*we* are more loaded than anyone else) will
2488 * be counted as no imbalance for these purposes -- we can't fix that
2489 * by pulling tasks to us. Be careful of negative numbers as they'll
2490 * appear as very large values with unsigned longs.
2491 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002492 if (max_load <= busiest_load_per_task)
2493 goto out_balanced;
2494
2495 /*
2496 * In the presence of smp nice balancing, certain scenarios can have
2497 * max load less than avg load(as we skip the groups at or below
2498 * its cpu_power, while calculating max_load..)
2499 */
2500 if (max_load < avg_load) {
2501 *imbalance = 0;
2502 goto small_imbalance;
2503 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002504
2505 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002506 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002507
Linus Torvalds1da177e2005-04-16 15:20:36 -07002508 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002509 *imbalance = min(max_pull * busiest->__cpu_power,
2510 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002511 / SCHED_LOAD_SCALE;
2512
Peter Williams2dd73a42006-06-27 02:54:34 -07002513 /*
2514 * if *imbalance is less than the average load per runnable task
2515 * there is no gaurantee that any tasks will be moved so we'll have
2516 * a think about bumping its value to force at least one task to be
2517 * moved
2518 */
Suresh Siddha7fd0d2d2007-09-05 14:32:48 +02002519 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002520 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002521 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522
Peter Williams2dd73a42006-06-27 02:54:34 -07002523small_imbalance:
2524 pwr_move = pwr_now = 0;
2525 imbn = 2;
2526 if (this_nr_running) {
2527 this_load_per_task /= this_nr_running;
2528 if (busiest_load_per_task > this_load_per_task)
2529 imbn = 1;
2530 } else
2531 this_load_per_task = SCHED_LOAD_SCALE;
2532
Ingo Molnardd41f592007-07-09 18:51:59 +02002533 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2534 busiest_load_per_task * imbn) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002535 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 return busiest;
2537 }
2538
2539 /*
2540 * OK, we don't have enough imbalance to justify moving tasks,
2541 * however we may be able to increase total CPU power used by
2542 * moving them.
2543 */
2544
Eric Dumazet5517d862007-05-08 00:32:57 -07002545 pwr_now += busiest->__cpu_power *
2546 min(busiest_load_per_task, max_load);
2547 pwr_now += this->__cpu_power *
2548 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549 pwr_now /= SCHED_LOAD_SCALE;
2550
2551 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002552 tmp = sg_div_cpu_power(busiest,
2553 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002555 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002556 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557
2558 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002559 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002560 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002561 tmp = sg_div_cpu_power(this,
2562 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002564 tmp = sg_div_cpu_power(this,
2565 busiest_load_per_task * SCHED_LOAD_SCALE);
2566 pwr_move += this->__cpu_power *
2567 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002568 pwr_move /= SCHED_LOAD_SCALE;
2569
2570 /* Move if we gain throughput */
Suresh Siddha7fd0d2d2007-09-05 14:32:48 +02002571 if (pwr_move > pwr_now)
2572 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573 }
2574
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575 return busiest;
2576
2577out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002578#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002579 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002580 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002582 if (this == group_leader && group_leader != group_min) {
2583 *imbalance = min_load_per_task;
2584 return group_min;
2585 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002586#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002587ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588 *imbalance = 0;
2589 return NULL;
2590}
2591
2592/*
2593 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2594 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002595static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002596find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002597 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002598{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002599 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002600 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601 int i;
2602
2603 for_each_cpu_mask(i, group->cpumask) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002604 unsigned long wl;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002605
2606 if (!cpu_isset(i, *cpus))
2607 continue;
2608
Ingo Molnar48f24c42006-07-03 00:25:40 -07002609 rq = cpu_rq(i);
Ingo Molnardd41f592007-07-09 18:51:59 +02002610 wl = weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002611
Ingo Molnardd41f592007-07-09 18:51:59 +02002612 if (rq->nr_running == 1 && wl > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002613 continue;
2614
Ingo Molnardd41f592007-07-09 18:51:59 +02002615 if (wl > max_load) {
2616 max_load = wl;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002617 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618 }
2619 }
2620
2621 return busiest;
2622}
2623
2624/*
Nick Piggin77391d72005-06-25 14:57:30 -07002625 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2626 * so long as it is large enough.
2627 */
2628#define MAX_PINNED_INTERVAL 512
2629
2630/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002631 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2632 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002633 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002634static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002635 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002636 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637{
Peter Williams43010652007-08-09 11:16:46 +02002638 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002640 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002641 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002642 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002643 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002644
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002645 /*
2646 * When power savings policy is enabled for the parent domain, idle
2647 * sibling can pick up load irrespective of busy siblings. In this case,
Ingo Molnardd41f592007-07-09 18:51:59 +02002648 * let the state of idle sibling percolate up as CPU_IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002649 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002650 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002651 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002652 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002653 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 schedstat_inc(sd, lb_cnt[idle]);
2656
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002657redo:
2658 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002659 &cpus, balance);
2660
Chen, Kenneth W06066712006-12-10 02:20:35 -08002661 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002662 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002663
Linus Torvalds1da177e2005-04-16 15:20:36 -07002664 if (!group) {
2665 schedstat_inc(sd, lb_nobusyg[idle]);
2666 goto out_balanced;
2667 }
2668
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002669 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670 if (!busiest) {
2671 schedstat_inc(sd, lb_nobusyq[idle]);
2672 goto out_balanced;
2673 }
2674
Nick Piggindb935db2005-06-25 14:57:11 -07002675 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676
2677 schedstat_add(sd, lb_imbalance[idle], imbalance);
2678
Peter Williams43010652007-08-09 11:16:46 +02002679 ld_moved = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002680 if (busiest->nr_running > 1) {
2681 /*
2682 * Attempt to move tasks. If find_busiest_group has found
2683 * an imbalance but busiest->nr_running <= 1, the group is
Peter Williams43010652007-08-09 11:16:46 +02002684 * still unbalanced. ld_moved simply stays zero, so it is
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 * correctly treated as an imbalance.
2686 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002687 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002688 double_rq_lock(this_rq, busiest);
Peter Williams43010652007-08-09 11:16:46 +02002689 ld_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002690 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002691 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002692 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002693
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002694 /*
2695 * some other cpu did the load balance for us.
2696 */
Peter Williams43010652007-08-09 11:16:46 +02002697 if (ld_moved && this_cpu != smp_processor_id())
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002698 resched_cpu(this_cpu);
2699
Nick Piggin81026792005-06-25 14:57:07 -07002700 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002701 if (unlikely(all_pinned)) {
2702 cpu_clear(cpu_of(busiest), cpus);
2703 if (!cpus_empty(cpus))
2704 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002705 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002706 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707 }
Nick Piggin81026792005-06-25 14:57:07 -07002708
Peter Williams43010652007-08-09 11:16:46 +02002709 if (!ld_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710 schedstat_inc(sd, lb_failed[idle]);
2711 sd->nr_balance_failed++;
2712
2713 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002715 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002716
2717 /* don't kick the migration_thread, if the curr
2718 * task on busiest cpu can't be moved to this_cpu
2719 */
2720 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002721 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002722 all_pinned = 1;
2723 goto out_one_pinned;
2724 }
2725
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 if (!busiest->active_balance) {
2727 busiest->active_balance = 1;
2728 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002729 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002730 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002731 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002732 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 wake_up_process(busiest->migration_thread);
2734
2735 /*
2736 * We've kicked active balancing, reset the failure
2737 * counter.
2738 */
Nick Piggin39507452005-06-25 14:57:09 -07002739 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002740 }
Nick Piggin81026792005-06-25 14:57:07 -07002741 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 sd->nr_balance_failed = 0;
2743
Nick Piggin81026792005-06-25 14:57:07 -07002744 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002745 /* We were unbalanced, so reset the balancing interval */
2746 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002747 } else {
2748 /*
2749 * If we've begun active balancing, start to back off. This
2750 * case may not be covered by the all_pinned logic if there
2751 * is only 1 task on the busy runqueue (because we don't call
2752 * move_tasks).
2753 */
2754 if (sd->balance_interval < sd->max_interval)
2755 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756 }
2757
Peter Williams43010652007-08-09 11:16:46 +02002758 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002759 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002760 return -1;
Peter Williams43010652007-08-09 11:16:46 +02002761 return ld_moved;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002762
2763out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764 schedstat_inc(sd, lb_balanced[idle]);
2765
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002766 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002767
2768out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002769 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002770 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2771 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002772 sd->balance_interval *= 2;
2773
Ingo Molnar48f24c42006-07-03 00:25:40 -07002774 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002775 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002776 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777 return 0;
2778}
2779
2780/*
2781 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2782 * tasks if there is an imbalance.
2783 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002784 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785 * this_rq is locked.
2786 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002787static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002788load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789{
2790 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002791 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002792 unsigned long imbalance;
Peter Williams43010652007-08-09 11:16:46 +02002793 int ld_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002794 int sd_idle = 0;
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002795 int all_pinned = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002796 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002797
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002798 /*
2799 * When power savings policy is enabled for the parent domain, idle
2800 * sibling can pick up load irrespective of busy siblings. In this case,
2801 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002802 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002803 */
2804 if (sd->flags & SD_SHARE_CPUPOWER &&
2805 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002806 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002807
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002808 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002809redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002810 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002811 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002813 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002814 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 }
2816
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002817 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002818 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002819 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002820 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002821 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 }
2823
Nick Piggindb935db2005-06-25 14:57:11 -07002824 BUG_ON(busiest == this_rq);
2825
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002826 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002827
Peter Williams43010652007-08-09 11:16:46 +02002828 ld_moved = 0;
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002829 if (busiest->nr_running > 1) {
2830 /* Attempt to move tasks */
2831 double_lock_balance(this_rq, busiest);
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02002832 /* this_rq->clock is already updated */
2833 update_rq_clock(busiest);
Peter Williams43010652007-08-09 11:16:46 +02002834 ld_moved = move_tasks(this_rq, this_cpu, busiest,
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002835 imbalance, sd, CPU_NEWLY_IDLE,
2836 &all_pinned);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002837 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002838
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002839 if (unlikely(all_pinned)) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002840 cpu_clear(cpu_of(busiest), cpus);
2841 if (!cpus_empty(cpus))
2842 goto redo;
2843 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002844 }
2845
Peter Williams43010652007-08-09 11:16:46 +02002846 if (!ld_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002847 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002848 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2849 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002850 return -1;
2851 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002852 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853
Peter Williams43010652007-08-09 11:16:46 +02002854 return ld_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002855
2856out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002857 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002858 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002859 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002860 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002861 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002862
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002863 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864}
2865
2866/*
2867 * idle_balance is called by schedule() if this_cpu is about to become
2868 * idle. Attempts to pull tasks from other CPUs.
2869 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002870static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871{
2872 struct sched_domain *sd;
Ingo Molnardd41f592007-07-09 18:51:59 +02002873 int pulled_task = -1;
2874 unsigned long next_balance = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002875
2876 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002877 unsigned long interval;
2878
2879 if (!(sd->flags & SD_LOAD_BALANCE))
2880 continue;
2881
2882 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002883 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002884 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002885 this_rq, sd);
2886
2887 interval = msecs_to_jiffies(sd->balance_interval);
2888 if (time_after(next_balance, sd->last_balance + interval))
2889 next_balance = sd->last_balance + interval;
2890 if (pulled_task)
2891 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002892 }
Ingo Molnardd41f592007-07-09 18:51:59 +02002893 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002894 /*
2895 * We are going idle. next_balance may be set based on
2896 * a busy processor. So reset next_balance.
2897 */
2898 this_rq->next_balance = next_balance;
Ingo Molnardd41f592007-07-09 18:51:59 +02002899 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900}
2901
2902/*
2903 * active_load_balance is run by migration threads. It pushes running tasks
2904 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2905 * running on each physical CPU where possible, and avoids physical /
2906 * logical imbalances.
2907 *
2908 * Called with busiest_rq locked.
2909 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002910static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911{
Nick Piggin39507452005-06-25 14:57:09 -07002912 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002913 struct sched_domain *sd;
2914 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002915
Ingo Molnar48f24c42006-07-03 00:25:40 -07002916 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002917 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002918 return;
2919
2920 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002921
2922 /*
Nick Piggin39507452005-06-25 14:57:09 -07002923 * This condition is "impossible", if it occurs
2924 * we need to fix it. Originally reported by
2925 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002926 */
Nick Piggin39507452005-06-25 14:57:09 -07002927 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002928
Nick Piggin39507452005-06-25 14:57:09 -07002929 /* move a task from busiest_rq to target_rq */
2930 double_lock_balance(busiest_rq, target_rq);
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02002931 update_rq_clock(busiest_rq);
2932 update_rq_clock(target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002933
Nick Piggin39507452005-06-25 14:57:09 -07002934 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002935 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002936 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002937 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002938 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002939 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002940
Ingo Molnar48f24c42006-07-03 00:25:40 -07002941 if (likely(sd)) {
2942 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943
Peter Williams43010652007-08-09 11:16:46 +02002944 if (move_one_task(target_rq, target_cpu, busiest_rq,
2945 sd, CPU_IDLE))
Ingo Molnar48f24c42006-07-03 00:25:40 -07002946 schedstat_inc(sd, alb_pushed);
2947 else
2948 schedstat_inc(sd, alb_failed);
2949 }
Nick Piggin39507452005-06-25 14:57:09 -07002950 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002951}
2952
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002953#ifdef CONFIG_NO_HZ
2954static struct {
2955 atomic_t load_balancer;
2956 cpumask_t cpu_mask;
2957} nohz ____cacheline_aligned = {
2958 .load_balancer = ATOMIC_INIT(-1),
2959 .cpu_mask = CPU_MASK_NONE,
2960};
2961
Christoph Lameter7835b982006-12-10 02:20:22 -08002962/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002963 * This routine will try to nominate the ilb (idle load balancing)
2964 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2965 * load balancing on behalf of all those cpus. If all the cpus in the system
2966 * go into this tickless mode, then there will be no ilb owner (as there is
2967 * no need for one) and all the cpus will sleep till the next wakeup event
2968 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002969 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002970 * For the ilb owner, tick is not stopped. And this tick will be used
2971 * for idle load balancing. ilb owner will still be part of
2972 * nohz.cpu_mask..
2973 *
2974 * While stopping the tick, this cpu will become the ilb owner if there
2975 * is no other owner. And will be the owner till that cpu becomes busy
2976 * or if all cpus in the system stop their ticks at which point
2977 * there is no need for ilb owner.
2978 *
2979 * When the ilb owner becomes busy, it nominates another owner, during the
2980 * next busy scheduler_tick()
2981 */
2982int select_nohz_load_balancer(int stop_tick)
2983{
2984 int cpu = smp_processor_id();
2985
2986 if (stop_tick) {
2987 cpu_set(cpu, nohz.cpu_mask);
2988 cpu_rq(cpu)->in_nohz_recently = 1;
2989
2990 /*
2991 * If we are going offline and still the leader, give up!
2992 */
2993 if (cpu_is_offline(cpu) &&
2994 atomic_read(&nohz.load_balancer) == cpu) {
2995 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2996 BUG();
2997 return 0;
2998 }
2999
3000 /* time for ilb owner also to sleep */
3001 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3002 if (atomic_read(&nohz.load_balancer) == cpu)
3003 atomic_set(&nohz.load_balancer, -1);
3004 return 0;
3005 }
3006
3007 if (atomic_read(&nohz.load_balancer) == -1) {
3008 /* make me the ilb owner */
3009 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3010 return 1;
3011 } else if (atomic_read(&nohz.load_balancer) == cpu)
3012 return 1;
3013 } else {
3014 if (!cpu_isset(cpu, nohz.cpu_mask))
3015 return 0;
3016
3017 cpu_clear(cpu, nohz.cpu_mask);
3018
3019 if (atomic_read(&nohz.load_balancer) == cpu)
3020 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3021 BUG();
3022 }
3023 return 0;
3024}
3025#endif
3026
3027static DEFINE_SPINLOCK(balancing);
3028
3029/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003030 * It checks each scheduling domain to see if it is due to be balanced,
3031 * and initiates a balancing operation if so.
3032 *
3033 * Balancing parameters are set up in arch_init_sched_domains.
3034 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003035static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003036{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003037 int balance = 1;
3038 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003039 unsigned long interval;
3040 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003041 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003042 unsigned long next_balance = jiffies + 60*HZ;
Suresh Siddhaf549da82007-08-23 15:18:02 +02003043 int update_next_balance = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003044
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003045 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003046 if (!(sd->flags & SD_LOAD_BALANCE))
3047 continue;
3048
3049 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003050 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003051 interval *= sd->busy_factor;
3052
3053 /* scale ms to jiffies */
3054 interval = msecs_to_jiffies(interval);
3055 if (unlikely(!interval))
3056 interval = 1;
Ingo Molnardd41f592007-07-09 18:51:59 +02003057 if (interval > HZ*NR_CPUS/10)
3058 interval = HZ*NR_CPUS/10;
3059
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060
Christoph Lameter08c183f2006-12-10 02:20:29 -08003061 if (sd->flags & SD_SERIALIZE) {
3062 if (!spin_trylock(&balancing))
3063 goto out;
3064 }
3065
Christoph Lameterc9819f42006-12-10 02:20:25 -08003066 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003067 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003068 /*
3069 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003070 * longer idle, or one of our SMT siblings is
3071 * not idle.
3072 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003073 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003074 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003075 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003077 if (sd->flags & SD_SERIALIZE)
3078 spin_unlock(&balancing);
3079out:
Suresh Siddhaf549da82007-08-23 15:18:02 +02003080 if (time_after(next_balance, sd->last_balance + interval)) {
Christoph Lameterc9819f42006-12-10 02:20:25 -08003081 next_balance = sd->last_balance + interval;
Suresh Siddhaf549da82007-08-23 15:18:02 +02003082 update_next_balance = 1;
3083 }
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003084
3085 /*
3086 * Stop the load balance at this level. There is another
3087 * CPU in our sched group which is doing load balancing more
3088 * actively.
3089 */
3090 if (!balance)
3091 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003092 }
Suresh Siddhaf549da82007-08-23 15:18:02 +02003093
3094 /*
3095 * next_balance will be updated only when there is a need.
3096 * When the cpu is attached to null domain for ex, it will not be
3097 * updated.
3098 */
3099 if (likely(update_next_balance))
3100 rq->next_balance = next_balance;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003101}
3102
3103/*
3104 * run_rebalance_domains is triggered when needed from the scheduler tick.
3105 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3106 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3107 */
3108static void run_rebalance_domains(struct softirq_action *h)
3109{
Ingo Molnardd41f592007-07-09 18:51:59 +02003110 int this_cpu = smp_processor_id();
3111 struct rq *this_rq = cpu_rq(this_cpu);
3112 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3113 CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003114
Ingo Molnardd41f592007-07-09 18:51:59 +02003115 rebalance_domains(this_cpu, idle);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003116
3117#ifdef CONFIG_NO_HZ
3118 /*
3119 * If this cpu is the owner for idle load balancing, then do the
3120 * balancing on behalf of the other idle cpus whose ticks are
3121 * stopped.
3122 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003123 if (this_rq->idle_at_tick &&
3124 atomic_read(&nohz.load_balancer) == this_cpu) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003125 cpumask_t cpus = nohz.cpu_mask;
3126 struct rq *rq;
3127 int balance_cpu;
3128
Ingo Molnardd41f592007-07-09 18:51:59 +02003129 cpu_clear(this_cpu, cpus);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003130 for_each_cpu_mask(balance_cpu, cpus) {
3131 /*
3132 * If this cpu gets work to do, stop the load balancing
3133 * work being done for other cpus. Next load
3134 * balancing owner will pick it up.
3135 */
3136 if (need_resched())
3137 break;
3138
Oleg Nesterovde0cf892007-08-12 18:08:19 +02003139 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003140
3141 rq = cpu_rq(balance_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003142 if (time_after(this_rq->next_balance, rq->next_balance))
3143 this_rq->next_balance = rq->next_balance;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003144 }
3145 }
3146#endif
3147}
3148
3149/*
3150 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3151 *
3152 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3153 * idle load balancing owner or decide to stop the periodic load balancing,
3154 * if the whole system is idle.
3155 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003156static inline void trigger_load_balance(struct rq *rq, int cpu)
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003157{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003158#ifdef CONFIG_NO_HZ
3159 /*
3160 * If we were in the nohz mode recently and busy at the current
3161 * scheduler tick, then check if we need to nominate new idle
3162 * load balancer.
3163 */
3164 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3165 rq->in_nohz_recently = 0;
3166
3167 if (atomic_read(&nohz.load_balancer) == cpu) {
3168 cpu_clear(cpu, nohz.cpu_mask);
3169 atomic_set(&nohz.load_balancer, -1);
3170 }
3171
3172 if (atomic_read(&nohz.load_balancer) == -1) {
3173 /*
3174 * simple selection for now: Nominate the
3175 * first cpu in the nohz list to be the next
3176 * ilb owner.
3177 *
3178 * TBD: Traverse the sched domains and nominate
3179 * the nearest cpu in the nohz.cpu_mask.
3180 */
3181 int ilb = first_cpu(nohz.cpu_mask);
3182
3183 if (ilb != NR_CPUS)
3184 resched_cpu(ilb);
3185 }
3186 }
3187
3188 /*
3189 * If this cpu is idle and doing idle load balancing for all the
3190 * cpus with ticks stopped, is it time for that to stop?
3191 */
3192 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3193 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3194 resched_cpu(cpu);
3195 return;
3196 }
3197
3198 /*
3199 * If this cpu is idle and the idle load balancing is done by
3200 * someone else, then no need raise the SCHED_SOFTIRQ
3201 */
3202 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3203 cpu_isset(cpu, nohz.cpu_mask))
3204 return;
3205#endif
3206 if (time_after_eq(jiffies, rq->next_balance))
3207 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208}
Ingo Molnardd41f592007-07-09 18:51:59 +02003209
3210#else /* CONFIG_SMP */
3211
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212/*
3213 * on UP we do not need to balance between CPUs:
3214 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003215static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003216{
3217}
Ingo Molnardd41f592007-07-09 18:51:59 +02003218
3219/* Avoid "used but not defined" warning on UP */
3220static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3221 unsigned long max_nr_move, unsigned long max_load_move,
3222 struct sched_domain *sd, enum cpu_idle_type idle,
3223 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02003224 int *this_best_prio, struct rq_iterator *iterator)
Ingo Molnardd41f592007-07-09 18:51:59 +02003225{
3226 *load_moved = 0;
3227
3228 return 0;
3229}
3230
Linus Torvalds1da177e2005-04-16 15:20:36 -07003231#endif
3232
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233DEFINE_PER_CPU(struct kernel_stat, kstat);
3234
3235EXPORT_PER_CPU_SYMBOL(kstat);
3236
3237/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003238 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3239 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003241unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003242{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003243 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003244 u64 ns, delta_exec;
3245 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003246
Ingo Molnar41b86e92007-07-09 18:51:58 +02003247 rq = task_rq_lock(p, &flags);
3248 ns = p->se.sum_exec_runtime;
3249 if (rq->curr == p) {
Ingo Molnara8e504d2007-08-09 11:16:47 +02003250 update_rq_clock(rq);
3251 delta_exec = rq->clock - p->se.exec_start;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003252 if ((s64)delta_exec > 0)
3253 ns += delta_exec;
3254 }
3255 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003256
Linus Torvalds1da177e2005-04-16 15:20:36 -07003257 return ns;
3258}
3259
3260/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003261 * Account user cpu time to a process.
3262 * @p: the process that the cpu time gets accounted to
3263 * @hardirq_offset: the offset to subtract from hardirq_count()
3264 * @cputime: the cpu time spent in user space since the last update
3265 */
3266void account_user_time(struct task_struct *p, cputime_t cputime)
3267{
3268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3269 cputime64_t tmp;
3270
3271 p->utime = cputime_add(p->utime, cputime);
3272
3273 /* Add user time to cpustat. */
3274 tmp = cputime_to_cputime64(cputime);
3275 if (TASK_NICE(p) > 0)
3276 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3277 else
3278 cpustat->user = cputime64_add(cpustat->user, tmp);
3279}
3280
3281/*
3282 * Account system cpu time to a process.
3283 * @p: the process that the cpu time gets accounted to
3284 * @hardirq_offset: the offset to subtract from hardirq_count()
3285 * @cputime: the cpu time spent in kernel space since the last update
3286 */
3287void account_system_time(struct task_struct *p, int hardirq_offset,
3288 cputime_t cputime)
3289{
3290 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003291 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292 cputime64_t tmp;
3293
3294 p->stime = cputime_add(p->stime, cputime);
3295
3296 /* Add system time to cpustat. */
3297 tmp = cputime_to_cputime64(cputime);
3298 if (hardirq_count() - hardirq_offset)
3299 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3300 else if (softirq_count())
3301 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3302 else if (p != rq->idle)
3303 cpustat->system = cputime64_add(cpustat->system, tmp);
3304 else if (atomic_read(&rq->nr_iowait) > 0)
3305 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3306 else
3307 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3308 /* Account for system time used */
3309 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003310}
3311
3312/*
3313 * Account for involuntary wait time.
3314 * @p: the process from which the cpu time has been stolen
3315 * @steal: the cpu time spent in involuntary wait
3316 */
3317void account_steal_time(struct task_struct *p, cputime_t steal)
3318{
3319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3320 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003321 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322
3323 if (p == rq->idle) {
3324 p->stime = cputime_add(p->stime, steal);
3325 if (atomic_read(&rq->nr_iowait) > 0)
3326 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3327 else
3328 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3329 } else
3330 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3331}
3332
Christoph Lameter7835b982006-12-10 02:20:22 -08003333/*
3334 * This function gets called by the timer code, with HZ frequency.
3335 * We call it with interrupts disabled.
3336 *
3337 * It also gets called by the fork code, when changing the parent's
3338 * timeslices.
3339 */
3340void scheduler_tick(void)
3341{
Christoph Lameter7835b982006-12-10 02:20:22 -08003342 int cpu = smp_processor_id();
3343 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003344 struct task_struct *curr = rq->curr;
Ingo Molnar529c7722007-08-10 23:05:11 +02003345 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
Christoph Lameter7835b982006-12-10 02:20:22 -08003346
Ingo Molnardd41f592007-07-09 18:51:59 +02003347 spin_lock(&rq->lock);
Ingo Molnar546fe3c2007-08-09 11:16:51 +02003348 __update_rq_clock(rq);
Ingo Molnar529c7722007-08-10 23:05:11 +02003349 /*
3350 * Let rq->clock advance by at least TICK_NSEC:
3351 */
3352 if (unlikely(rq->clock < next_tick))
3353 rq->clock = next_tick;
3354 rq->tick_timestamp = rq->clock;
Ingo Molnarf1a438d2007-08-09 11:16:45 +02003355 update_cpu_load(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003356 if (curr != rq->idle) /* FIXME: needed? */
3357 curr->sched_class->task_tick(rq, curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003358 spin_unlock(&rq->lock);
3359
Christoph Lametere418e1c2006-12-10 02:20:23 -08003360#ifdef CONFIG_SMP
Ingo Molnardd41f592007-07-09 18:51:59 +02003361 rq->idle_at_tick = idle_cpu(cpu);
3362 trigger_load_balance(rq, cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003363#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003364}
3365
Linus Torvalds1da177e2005-04-16 15:20:36 -07003366#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3367
3368void fastcall add_preempt_count(int val)
3369{
3370 /*
3371 * Underflow?
3372 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003373 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3374 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375 preempt_count() += val;
3376 /*
3377 * Spinlock count overflowing soon?
3378 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003379 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3380 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003381}
3382EXPORT_SYMBOL(add_preempt_count);
3383
3384void fastcall sub_preempt_count(int val)
3385{
3386 /*
3387 * Underflow?
3388 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003389 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3390 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003391 /*
3392 * Is the spinlock portion underflowing?
3393 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003394 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3395 !(preempt_count() & PREEMPT_MASK)))
3396 return;
3397
Linus Torvalds1da177e2005-04-16 15:20:36 -07003398 preempt_count() -= val;
3399}
3400EXPORT_SYMBOL(sub_preempt_count);
3401
3402#endif
3403
3404/*
Ingo Molnardd41f592007-07-09 18:51:59 +02003405 * Print scheduling while atomic bug:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003406 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003407static noinline void __schedule_bug(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003408{
Ingo Molnardd41f592007-07-09 18:51:59 +02003409 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3410 prev->comm, preempt_count(), prev->pid);
3411 debug_show_held_locks(prev);
3412 if (irqs_disabled())
3413 print_irqtrace_events(prev);
3414 dump_stack();
3415}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416
Ingo Molnardd41f592007-07-09 18:51:59 +02003417/*
3418 * Various schedule()-time debugging checks and statistics:
3419 */
3420static inline void schedule_debug(struct task_struct *prev)
3421{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003422 /*
3423 * Test if we are atomic. Since do_exit() needs to call into
3424 * schedule() atomically, we ignore that path for now.
3425 * Otherwise, whine if we are scheduling when we should not be.
3426 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003427 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3428 __schedule_bug(prev);
3429
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3431
Ingo Molnardd41f592007-07-09 18:51:59 +02003432 schedstat_inc(this_rq(), sched_cnt);
3433}
3434
3435/*
3436 * Pick up the highest-prio task:
3437 */
3438static inline struct task_struct *
Ingo Molnarff95f3d2007-08-09 11:16:49 +02003439pick_next_task(struct rq *rq, struct task_struct *prev)
Ingo Molnardd41f592007-07-09 18:51:59 +02003440{
3441 struct sched_class *class;
3442 struct task_struct *p;
3443
3444 /*
3445 * Optimization: we know that if all tasks are in
3446 * the fair class we can call that function directly:
3447 */
3448 if (likely(rq->nr_running == rq->cfs.nr_running)) {
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003449 p = fair_sched_class.pick_next_task(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003450 if (likely(p))
3451 return p;
3452 }
3453
3454 class = sched_class_highest;
3455 for ( ; ; ) {
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003456 p = class->pick_next_task(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003457 if (p)
3458 return p;
3459 /*
3460 * Will never be NULL as the idle class always
3461 * returns a non-NULL p:
3462 */
3463 class = class->next;
3464 }
3465}
3466
3467/*
3468 * schedule() is the main scheduler function.
3469 */
3470asmlinkage void __sched schedule(void)
3471{
3472 struct task_struct *prev, *next;
3473 long *switch_count;
3474 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003475 int cpu;
3476
Linus Torvalds1da177e2005-04-16 15:20:36 -07003477need_resched:
3478 preempt_disable();
Ingo Molnardd41f592007-07-09 18:51:59 +02003479 cpu = smp_processor_id();
3480 rq = cpu_rq(cpu);
3481 rcu_qsctr_inc(cpu);
3482 prev = rq->curr;
3483 switch_count = &prev->nivcsw;
3484
Linus Torvalds1da177e2005-04-16 15:20:36 -07003485 release_kernel_lock(prev);
3486need_resched_nonpreemptible:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003487
Ingo Molnardd41f592007-07-09 18:51:59 +02003488 schedule_debug(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003489
3490 spin_lock_irq(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003491 clear_tsk_need_resched(prev);
Ingo Molnarc1b3da32007-08-09 11:16:47 +02003492 __update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493
Ingo Molnardd41f592007-07-09 18:51:59 +02003494 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3495 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3496 unlikely(signal_pending(prev)))) {
3497 prev->state = TASK_RUNNING;
3498 } else {
Ingo Molnar2e1cb742007-08-09 11:16:49 +02003499 deactivate_task(rq, prev, 1);
Ingo Molnardd41f592007-07-09 18:51:59 +02003500 }
3501 switch_count = &prev->nvcsw;
3502 }
3503
3504 if (unlikely(!rq->nr_running))
3505 idle_balance(cpu, rq);
3506
Ingo Molnar31ee5292007-08-09 11:16:49 +02003507 prev->sched_class->put_prev_task(rq, prev);
Ingo Molnarff95f3d2007-08-09 11:16:49 +02003508 next = pick_next_task(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003509
3510 sched_info_switch(prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02003511
Linus Torvalds1da177e2005-04-16 15:20:36 -07003512 if (likely(prev != next)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513 rq->nr_switches++;
3514 rq->curr = next;
3515 ++*switch_count;
3516
Ingo Molnardd41f592007-07-09 18:51:59 +02003517 context_switch(rq, prev, next); /* unlocks the rq */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518 } else
3519 spin_unlock_irq(&rq->lock);
3520
Ingo Molnardd41f592007-07-09 18:51:59 +02003521 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3522 cpu = smp_processor_id();
3523 rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524 goto need_resched_nonpreemptible;
Ingo Molnardd41f592007-07-09 18:51:59 +02003525 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 preempt_enable_no_resched();
3527 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3528 goto need_resched;
3529}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530EXPORT_SYMBOL(schedule);
3531
3532#ifdef CONFIG_PREEMPT
3533/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003534 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 * off of preempt_enable. Kernel preemptions off return from interrupt
3536 * occur there and call schedule directly.
3537 */
3538asmlinkage void __sched preempt_schedule(void)
3539{
3540 struct thread_info *ti = current_thread_info();
3541#ifdef CONFIG_PREEMPT_BKL
3542 struct task_struct *task = current;
3543 int saved_lock_depth;
3544#endif
3545 /*
3546 * If there is a non-zero preempt_count or interrupts are disabled,
3547 * we do not want to preempt the current task. Just return..
3548 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003549 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550 return;
3551
3552need_resched:
3553 add_preempt_count(PREEMPT_ACTIVE);
3554 /*
3555 * We keep the big kernel semaphore locked, but we
3556 * clear ->lock_depth so that schedule() doesnt
3557 * auto-release the semaphore:
3558 */
3559#ifdef CONFIG_PREEMPT_BKL
3560 saved_lock_depth = task->lock_depth;
3561 task->lock_depth = -1;
3562#endif
3563 schedule();
3564#ifdef CONFIG_PREEMPT_BKL
3565 task->lock_depth = saved_lock_depth;
3566#endif
3567 sub_preempt_count(PREEMPT_ACTIVE);
3568
3569 /* we could miss a preemption opportunity between schedule and now */
3570 barrier();
3571 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3572 goto need_resched;
3573}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574EXPORT_SYMBOL(preempt_schedule);
3575
3576/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003577 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003578 * off of irq context.
3579 * Note, that this is called and return with irqs disabled. This will
3580 * protect us against recursive calling from irq.
3581 */
3582asmlinkage void __sched preempt_schedule_irq(void)
3583{
3584 struct thread_info *ti = current_thread_info();
3585#ifdef CONFIG_PREEMPT_BKL
3586 struct task_struct *task = current;
3587 int saved_lock_depth;
3588#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003589 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003590 BUG_ON(ti->preempt_count || !irqs_disabled());
3591
3592need_resched:
3593 add_preempt_count(PREEMPT_ACTIVE);
3594 /*
3595 * We keep the big kernel semaphore locked, but we
3596 * clear ->lock_depth so that schedule() doesnt
3597 * auto-release the semaphore:
3598 */
3599#ifdef CONFIG_PREEMPT_BKL
3600 saved_lock_depth = task->lock_depth;
3601 task->lock_depth = -1;
3602#endif
3603 local_irq_enable();
3604 schedule();
3605 local_irq_disable();
3606#ifdef CONFIG_PREEMPT_BKL
3607 task->lock_depth = saved_lock_depth;
3608#endif
3609 sub_preempt_count(PREEMPT_ACTIVE);
3610
3611 /* we could miss a preemption opportunity between schedule and now */
3612 barrier();
3613 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3614 goto need_resched;
3615}
3616
3617#endif /* CONFIG_PREEMPT */
3618
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003619int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3620 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003621{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003622 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003623}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003624EXPORT_SYMBOL(default_wake_function);
3625
3626/*
3627 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3628 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3629 * number) then we wake all the non-exclusive tasks and one exclusive task.
3630 *
3631 * There are circumstances in which we can try to wake a task which has already
3632 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3633 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3634 */
3635static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3636 int nr_exclusive, int sync, void *key)
3637{
Matthias Kaehlcke2e458742007-10-15 17:00:02 +02003638 wait_queue_t *curr, *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003639
Matthias Kaehlcke2e458742007-10-15 17:00:02 +02003640 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003641 unsigned flags = curr->flags;
3642
Linus Torvalds1da177e2005-04-16 15:20:36 -07003643 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003644 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003645 break;
3646 }
3647}
3648
3649/**
3650 * __wake_up - wake up threads blocked on a waitqueue.
3651 * @q: the waitqueue
3652 * @mode: which threads
3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003654 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003655 */
3656void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003657 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003658{
3659 unsigned long flags;
3660
3661 spin_lock_irqsave(&q->lock, flags);
3662 __wake_up_common(q, mode, nr_exclusive, 0, key);
3663 spin_unlock_irqrestore(&q->lock, flags);
3664}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003665EXPORT_SYMBOL(__wake_up);
3666
3667/*
3668 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3669 */
3670void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3671{
3672 __wake_up_common(q, mode, 1, 0, NULL);
3673}
3674
3675/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003676 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003677 * @q: the waitqueue
3678 * @mode: which threads
3679 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3680 *
3681 * The sync wakeup differs that the waker knows that it will schedule
3682 * away soon, so while the target thread will be woken up, it will not
3683 * be migrated to another CPU - ie. the two threads are 'synchronized'
3684 * with each other. This can prevent needless bouncing between CPUs.
3685 *
3686 * On UP it can prevent extra preemption.
3687 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003688void fastcall
3689__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003690{
3691 unsigned long flags;
3692 int sync = 1;
3693
3694 if (unlikely(!q))
3695 return;
3696
3697 if (unlikely(!nr_exclusive))
3698 sync = 0;
3699
3700 spin_lock_irqsave(&q->lock, flags);
3701 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3702 spin_unlock_irqrestore(&q->lock, flags);
3703}
3704EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3705
3706void fastcall complete(struct completion *x)
3707{
3708 unsigned long flags;
3709
3710 spin_lock_irqsave(&x->wait.lock, flags);
3711 x->done++;
3712 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3713 1, 0, NULL);
3714 spin_unlock_irqrestore(&x->wait.lock, flags);
3715}
3716EXPORT_SYMBOL(complete);
3717
3718void fastcall complete_all(struct completion *x)
3719{
3720 unsigned long flags;
3721
3722 spin_lock_irqsave(&x->wait.lock, flags);
3723 x->done += UINT_MAX/2;
3724 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3725 0, 0, NULL);
3726 spin_unlock_irqrestore(&x->wait.lock, flags);
3727}
3728EXPORT_SYMBOL(complete_all);
3729
3730void fastcall __sched wait_for_completion(struct completion *x)
3731{
3732 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003733
Linus Torvalds1da177e2005-04-16 15:20:36 -07003734 spin_lock_irq(&x->wait.lock);
3735 if (!x->done) {
3736 DECLARE_WAITQUEUE(wait, current);
3737
3738 wait.flags |= WQ_FLAG_EXCLUSIVE;
3739 __add_wait_queue_tail(&x->wait, &wait);
3740 do {
3741 __set_current_state(TASK_UNINTERRUPTIBLE);
3742 spin_unlock_irq(&x->wait.lock);
3743 schedule();
3744 spin_lock_irq(&x->wait.lock);
3745 } while (!x->done);
3746 __remove_wait_queue(&x->wait, &wait);
3747 }
3748 x->done--;
3749 spin_unlock_irq(&x->wait.lock);
3750}
3751EXPORT_SYMBOL(wait_for_completion);
3752
3753unsigned long fastcall __sched
3754wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3755{
3756 might_sleep();
3757
3758 spin_lock_irq(&x->wait.lock);
3759 if (!x->done) {
3760 DECLARE_WAITQUEUE(wait, current);
3761
3762 wait.flags |= WQ_FLAG_EXCLUSIVE;
3763 __add_wait_queue_tail(&x->wait, &wait);
3764 do {
3765 __set_current_state(TASK_UNINTERRUPTIBLE);
3766 spin_unlock_irq(&x->wait.lock);
3767 timeout = schedule_timeout(timeout);
3768 spin_lock_irq(&x->wait.lock);
3769 if (!timeout) {
3770 __remove_wait_queue(&x->wait, &wait);
3771 goto out;
3772 }
3773 } while (!x->done);
3774 __remove_wait_queue(&x->wait, &wait);
3775 }
3776 x->done--;
3777out:
3778 spin_unlock_irq(&x->wait.lock);
3779 return timeout;
3780}
3781EXPORT_SYMBOL(wait_for_completion_timeout);
3782
3783int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3784{
3785 int ret = 0;
3786
3787 might_sleep();
3788
3789 spin_lock_irq(&x->wait.lock);
3790 if (!x->done) {
3791 DECLARE_WAITQUEUE(wait, current);
3792
3793 wait.flags |= WQ_FLAG_EXCLUSIVE;
3794 __add_wait_queue_tail(&x->wait, &wait);
3795 do {
3796 if (signal_pending(current)) {
3797 ret = -ERESTARTSYS;
3798 __remove_wait_queue(&x->wait, &wait);
3799 goto out;
3800 }
3801 __set_current_state(TASK_INTERRUPTIBLE);
3802 spin_unlock_irq(&x->wait.lock);
3803 schedule();
3804 spin_lock_irq(&x->wait.lock);
3805 } while (!x->done);
3806 __remove_wait_queue(&x->wait, &wait);
3807 }
3808 x->done--;
3809out:
3810 spin_unlock_irq(&x->wait.lock);
3811
3812 return ret;
3813}
3814EXPORT_SYMBOL(wait_for_completion_interruptible);
3815
3816unsigned long fastcall __sched
3817wait_for_completion_interruptible_timeout(struct completion *x,
3818 unsigned long timeout)
3819{
3820 might_sleep();
3821
3822 spin_lock_irq(&x->wait.lock);
3823 if (!x->done) {
3824 DECLARE_WAITQUEUE(wait, current);
3825
3826 wait.flags |= WQ_FLAG_EXCLUSIVE;
3827 __add_wait_queue_tail(&x->wait, &wait);
3828 do {
3829 if (signal_pending(current)) {
3830 timeout = -ERESTARTSYS;
3831 __remove_wait_queue(&x->wait, &wait);
3832 goto out;
3833 }
3834 __set_current_state(TASK_INTERRUPTIBLE);
3835 spin_unlock_irq(&x->wait.lock);
3836 timeout = schedule_timeout(timeout);
3837 spin_lock_irq(&x->wait.lock);
3838 if (!timeout) {
3839 __remove_wait_queue(&x->wait, &wait);
3840 goto out;
3841 }
3842 } while (!x->done);
3843 __remove_wait_queue(&x->wait, &wait);
3844 }
3845 x->done--;
3846out:
3847 spin_unlock_irq(&x->wait.lock);
3848 return timeout;
3849}
3850EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3851
Ingo Molnar0fec1712007-07-09 18:52:01 +02003852static inline void
3853sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003855 spin_lock_irqsave(&q->lock, *flags);
3856 __add_wait_queue(q, wait);
3857 spin_unlock(&q->lock);
3858}
3859
3860static inline void
3861sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3862{
3863 spin_lock_irq(&q->lock);
3864 __remove_wait_queue(q, wait);
3865 spin_unlock_irqrestore(&q->lock, *flags);
3866}
3867
3868void __sched interruptible_sleep_on(wait_queue_head_t *q)
3869{
3870 unsigned long flags;
3871 wait_queue_t wait;
3872
3873 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003874
3875 current->state = TASK_INTERRUPTIBLE;
3876
Ingo Molnar0fec1712007-07-09 18:52:01 +02003877 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003878 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003879 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003880}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003881EXPORT_SYMBOL(interruptible_sleep_on);
3882
Ingo Molnar0fec1712007-07-09 18:52:01 +02003883long __sched
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003884interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003885{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003886 unsigned long flags;
3887 wait_queue_t wait;
3888
3889 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003890
3891 current->state = TASK_INTERRUPTIBLE;
3892
Ingo Molnar0fec1712007-07-09 18:52:01 +02003893 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003894 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003895 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003896
3897 return timeout;
3898}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003899EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3900
Ingo Molnar0fec1712007-07-09 18:52:01 +02003901void __sched sleep_on(wait_queue_head_t *q)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003902{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003903 unsigned long flags;
3904 wait_queue_t wait;
3905
3906 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003907
3908 current->state = TASK_UNINTERRUPTIBLE;
3909
Ingo Molnar0fec1712007-07-09 18:52:01 +02003910 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003911 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003912 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003913}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003914EXPORT_SYMBOL(sleep_on);
3915
Ingo Molnar0fec1712007-07-09 18:52:01 +02003916long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003917{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003918 unsigned long flags;
3919 wait_queue_t wait;
3920
3921 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003922
3923 current->state = TASK_UNINTERRUPTIBLE;
3924
Ingo Molnar0fec1712007-07-09 18:52:01 +02003925 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003926 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003927 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003928
3929 return timeout;
3930}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931EXPORT_SYMBOL(sleep_on_timeout);
3932
Ingo Molnarb29739f2006-06-27 02:54:51 -07003933#ifdef CONFIG_RT_MUTEXES
3934
3935/*
3936 * rt_mutex_setprio - set the current priority of a task
3937 * @p: task
3938 * @prio: prio value (kernel-internal form)
3939 *
3940 * This function changes the 'effective' priority of a task. It does
3941 * not touch ->normal_prio like __setscheduler().
3942 *
3943 * Used by the rt_mutex code to implement priority inheritance logic.
3944 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003945void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003946{
3947 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02003948 int oldprio, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003949 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003950
3951 BUG_ON(prio < 0 || prio > MAX_PRIO);
3952
3953 rq = task_rq_lock(p, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02003954 update_rq_clock(rq);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003955
Andrew Mortond5f9f942007-05-08 20:27:06 -07003956 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02003957 on_rq = p->se.on_rq;
3958 if (on_rq)
Ingo Molnar69be72c2007-08-09 11:16:49 +02003959 dequeue_task(rq, p, 0);
Ingo Molnardd41f592007-07-09 18:51:59 +02003960
3961 if (rt_prio(prio))
3962 p->sched_class = &rt_sched_class;
3963 else
3964 p->sched_class = &fair_sched_class;
3965
Ingo Molnarb29739f2006-06-27 02:54:51 -07003966 p->prio = prio;
3967
Ingo Molnardd41f592007-07-09 18:51:59 +02003968 if (on_rq) {
Ingo Molnar8159f872007-08-09 11:16:49 +02003969 enqueue_task(rq, p, 0);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003970 /*
3971 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07003972 * our priority decreased, or if we are not currently running on
3973 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07003974 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003975 if (task_running(rq, p)) {
3976 if (p->prio > oldprio)
3977 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003978 } else {
3979 check_preempt_curr(rq, p);
3980 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07003981 }
3982 task_rq_unlock(rq, &flags);
3983}
3984
3985#endif
3986
Ingo Molnar36c8b582006-07-03 00:25:41 -07003987void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003988{
Ingo Molnardd41f592007-07-09 18:51:59 +02003989 int old_prio, delta, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003990 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003991 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003992
3993 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3994 return;
3995 /*
3996 * We have to be careful, if called from sys_setpriority(),
3997 * the task might be in the middle of scheduling on another CPU.
3998 */
3999 rq = task_rq_lock(p, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02004000 update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004001 /*
4002 * The RT priorities are set via sched_setscheduler(), but we still
4003 * allow the 'normal' nice value to be set - but as expected
4004 * it wont have any effect on scheduling until the task is
Ingo Molnardd41f592007-07-09 18:51:59 +02004005 * SCHED_FIFO/SCHED_RR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006 */
Ingo Molnare05606d2007-07-09 18:51:59 +02004007 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004008 p->static_prio = NICE_TO_PRIO(nice);
4009 goto out_unlock;
4010 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004011 on_rq = p->se.on_rq;
4012 if (on_rq) {
Ingo Molnar69be72c2007-08-09 11:16:49 +02004013 dequeue_task(rq, p, 0);
Ingo Molnar79b5ddd2007-08-09 11:16:49 +02004014 dec_load(rq, p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004015 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004016
Linus Torvalds1da177e2005-04-16 15:20:36 -07004017 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004018 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004019 old_prio = p->prio;
4020 p->prio = effective_prio(p);
4021 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004022
Ingo Molnardd41f592007-07-09 18:51:59 +02004023 if (on_rq) {
Ingo Molnar8159f872007-08-09 11:16:49 +02004024 enqueue_task(rq, p, 0);
Ingo Molnar29b4b622007-08-09 11:16:49 +02004025 inc_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004027 * If the task increased its priority or is running and
4028 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004029 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004030 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004031 resched_task(rq->curr);
4032 }
4033out_unlock:
4034 task_rq_unlock(rq, &flags);
4035}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036EXPORT_SYMBOL(set_user_nice);
4037
Matt Mackalle43379f2005-05-01 08:59:00 -07004038/*
4039 * can_nice - check if a task can reduce its nice value
4040 * @p: task
4041 * @nice: nice value
4042 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004043int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004044{
Matt Mackall024f4742005-08-18 11:24:19 -07004045 /* convert nice value [19,-20] to rlimit style value [1,40] */
4046 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004047
Matt Mackalle43379f2005-05-01 08:59:00 -07004048 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4049 capable(CAP_SYS_NICE));
4050}
4051
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052#ifdef __ARCH_WANT_SYS_NICE
4053
4054/*
4055 * sys_nice - change the priority of the current process.
4056 * @increment: priority increment
4057 *
4058 * sys_setpriority is a more generic, but much slower function that
4059 * does similar things.
4060 */
4061asmlinkage long sys_nice(int increment)
4062{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004063 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004064
4065 /*
4066 * Setpriority might change our priority at the same moment.
4067 * We don't have to worry. Conceptually one call occurs first
4068 * and we have a single winner.
4069 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004070 if (increment < -40)
4071 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004072 if (increment > 40)
4073 increment = 40;
4074
4075 nice = PRIO_TO_NICE(current->static_prio) + increment;
4076 if (nice < -20)
4077 nice = -20;
4078 if (nice > 19)
4079 nice = 19;
4080
Matt Mackalle43379f2005-05-01 08:59:00 -07004081 if (increment < 0 && !can_nice(current, nice))
4082 return -EPERM;
4083
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084 retval = security_task_setnice(current, nice);
4085 if (retval)
4086 return retval;
4087
4088 set_user_nice(current, nice);
4089 return 0;
4090}
4091
4092#endif
4093
4094/**
4095 * task_prio - return the priority value of a given task.
4096 * @p: the task in question.
4097 *
4098 * This is the priority value as seen by users in /proc.
4099 * RT tasks are offset by -200. Normal tasks are centered
4100 * around 0, value goes from -16 to +15.
4101 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004102int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004103{
4104 return p->prio - MAX_RT_PRIO;
4105}
4106
4107/**
4108 * task_nice - return the nice value of a given task.
4109 * @p: the task in question.
4110 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004111int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004112{
4113 return TASK_NICE(p);
4114}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004115EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116
4117/**
4118 * idle_cpu - is a given cpu idle currently?
4119 * @cpu: the processor in question.
4120 */
4121int idle_cpu(int cpu)
4122{
4123 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4124}
4125
Linus Torvalds1da177e2005-04-16 15:20:36 -07004126/**
4127 * idle_task - return the idle task for a given cpu.
4128 * @cpu: the processor in question.
4129 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004130struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004131{
4132 return cpu_rq(cpu)->idle;
4133}
4134
4135/**
4136 * find_process_by_pid - find a process with a matching PID value.
4137 * @pid: the pid in question.
4138 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004139static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004140{
4141 return pid ? find_task_by_pid(pid) : current;
4142}
4143
4144/* Actually do priority change: must hold rq lock. */
Ingo Molnardd41f592007-07-09 18:51:59 +02004145static void
4146__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004147{
Ingo Molnardd41f592007-07-09 18:51:59 +02004148 BUG_ON(p->se.on_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004149
Linus Torvalds1da177e2005-04-16 15:20:36 -07004150 p->policy = policy;
Ingo Molnardd41f592007-07-09 18:51:59 +02004151 switch (p->policy) {
4152 case SCHED_NORMAL:
4153 case SCHED_BATCH:
4154 case SCHED_IDLE:
4155 p->sched_class = &fair_sched_class;
4156 break;
4157 case SCHED_FIFO:
4158 case SCHED_RR:
4159 p->sched_class = &rt_sched_class;
4160 break;
4161 }
4162
Linus Torvalds1da177e2005-04-16 15:20:36 -07004163 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004164 p->normal_prio = normal_prio(p);
4165 /* we are holding p->pi_lock already */
4166 p->prio = rt_mutex_getprio(p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004167 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004168}
4169
4170/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004171 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004172 * @p: the task in question.
4173 * @policy: new policy.
4174 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004175 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004176 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004177 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004178int sched_setscheduler(struct task_struct *p, int policy,
4179 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004180{
Ingo Molnardd41f592007-07-09 18:51:59 +02004181 int retval, oldprio, oldpolicy = -1, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004182 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004183 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184
Steven Rostedt66e53932006-06-27 02:54:44 -07004185 /* may grab non-irq protected spin_locks */
4186 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004187recheck:
4188 /* double check policy once rq lock held */
4189 if (policy < 0)
4190 policy = oldpolicy = p->policy;
4191 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnardd41f592007-07-09 18:51:59 +02004192 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4193 policy != SCHED_IDLE)
Ingo Molnarb0a94992006-01-14 13:20:41 -08004194 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004195 /*
4196 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnardd41f592007-07-09 18:51:59 +02004197 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4198 * SCHED_BATCH and SCHED_IDLE is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004199 */
4200 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004201 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004202 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004203 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004204 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205 return -EINVAL;
4206
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004207 /*
4208 * Allow unprivileged RT tasks to decrease priority:
4209 */
4210 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004211 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004212 unsigned long rlim_rtprio;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004213
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004214 if (!lock_task_sighand(p, &flags))
4215 return -ESRCH;
4216 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4217 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004218
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004219 /* can't set/change the rt policy */
4220 if (policy != p->policy && !rlim_rtprio)
4221 return -EPERM;
4222
4223 /* can't increase priority */
4224 if (param->sched_priority > p->rt_priority &&
4225 param->sched_priority > rlim_rtprio)
4226 return -EPERM;
4227 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004228 /*
4229 * Like positive nice levels, dont allow tasks to
4230 * move out of SCHED_IDLE either:
4231 */
4232 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4233 return -EPERM;
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004234
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004235 /* can't change other user's priorities */
4236 if ((current->euid != p->euid) &&
4237 (current->euid != p->uid))
4238 return -EPERM;
4239 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004240
4241 retval = security_task_setscheduler(p, policy, param);
4242 if (retval)
4243 return retval;
4244 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004245 * make sure no PI-waiters arrive (or leave) while we are
4246 * changing the priority of the task:
4247 */
4248 spin_lock_irqsave(&p->pi_lock, flags);
4249 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004250 * To be able to change p->policy safely, the apropriate
4251 * runqueue lock must be held.
4252 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004253 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004254 /* recheck policy now with rq lock held */
4255 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4256 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004257 __task_rq_unlock(rq);
4258 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004259 goto recheck;
4260 }
Ingo Molnar2daa3572007-08-09 11:16:51 +02004261 update_rq_clock(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02004262 on_rq = p->se.on_rq;
Ingo Molnar2daa3572007-08-09 11:16:51 +02004263 if (on_rq)
Ingo Molnar2e1cb742007-08-09 11:16:49 +02004264 deactivate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004265 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02004266 __setscheduler(rq, p, policy, param->sched_priority);
4267 if (on_rq) {
4268 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269 /*
4270 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004271 * our priority decreased, or if we are not currently running on
4272 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004273 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004274 if (task_running(rq, p)) {
4275 if (p->prio > oldprio)
4276 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02004277 } else {
4278 check_preempt_curr(rq, p);
4279 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004280 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004281 __task_rq_unlock(rq);
4282 spin_unlock_irqrestore(&p->pi_lock, flags);
4283
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004284 rt_mutex_adjust_pi(p);
4285
Linus Torvalds1da177e2005-04-16 15:20:36 -07004286 return 0;
4287}
4288EXPORT_SYMBOL_GPL(sched_setscheduler);
4289
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004290static int
4291do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004293 struct sched_param lparam;
4294 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004295 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004296
4297 if (!param || pid < 0)
4298 return -EINVAL;
4299 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4300 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004301
4302 rcu_read_lock();
4303 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004304 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004305 if (p != NULL)
4306 retval = sched_setscheduler(p, policy, &lparam);
4307 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004308
Linus Torvalds1da177e2005-04-16 15:20:36 -07004309 return retval;
4310}
4311
4312/**
4313 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4314 * @pid: the pid in question.
4315 * @policy: new policy.
4316 * @param: structure containing the new RT priority.
4317 */
4318asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4319 struct sched_param __user *param)
4320{
Jason Baronc21761f2006-01-18 17:43:03 -08004321 /* negative values for policy are not valid */
4322 if (policy < 0)
4323 return -EINVAL;
4324
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325 return do_sched_setscheduler(pid, policy, param);
4326}
4327
4328/**
4329 * sys_sched_setparam - set/change the RT priority of a thread
4330 * @pid: the pid in question.
4331 * @param: structure containing the new RT priority.
4332 */
4333asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4334{
4335 return do_sched_setscheduler(pid, -1, param);
4336}
4337
4338/**
4339 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4340 * @pid: the pid in question.
4341 */
4342asmlinkage long sys_sched_getscheduler(pid_t pid)
4343{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004344 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004345 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004346
4347 if (pid < 0)
4348 goto out_nounlock;
4349
4350 retval = -ESRCH;
4351 read_lock(&tasklist_lock);
4352 p = find_process_by_pid(pid);
4353 if (p) {
4354 retval = security_task_getscheduler(p);
4355 if (!retval)
4356 retval = p->policy;
4357 }
4358 read_unlock(&tasklist_lock);
4359
4360out_nounlock:
4361 return retval;
4362}
4363
4364/**
4365 * sys_sched_getscheduler - get the RT priority of a thread
4366 * @pid: the pid in question.
4367 * @param: structure containing the RT priority.
4368 */
4369asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4370{
4371 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004372 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004373 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004374
4375 if (!param || pid < 0)
4376 goto out_nounlock;
4377
4378 read_lock(&tasklist_lock);
4379 p = find_process_by_pid(pid);
4380 retval = -ESRCH;
4381 if (!p)
4382 goto out_unlock;
4383
4384 retval = security_task_getscheduler(p);
4385 if (retval)
4386 goto out_unlock;
4387
4388 lp.sched_priority = p->rt_priority;
4389 read_unlock(&tasklist_lock);
4390
4391 /*
4392 * This one might sleep, we cannot do it with a spinlock held ...
4393 */
4394 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4395
4396out_nounlock:
4397 return retval;
4398
4399out_unlock:
4400 read_unlock(&tasklist_lock);
4401 return retval;
4402}
4403
4404long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4405{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004406 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004407 struct task_struct *p;
4408 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004409
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004410 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004411 read_lock(&tasklist_lock);
4412
4413 p = find_process_by_pid(pid);
4414 if (!p) {
4415 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004416 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004417 return -ESRCH;
4418 }
4419
4420 /*
4421 * It is not safe to call set_cpus_allowed with the
4422 * tasklist_lock held. We will bump the task_struct's
4423 * usage count and then drop tasklist_lock.
4424 */
4425 get_task_struct(p);
4426 read_unlock(&tasklist_lock);
4427
4428 retval = -EPERM;
4429 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4430 !capable(CAP_SYS_NICE))
4431 goto out_unlock;
4432
David Quigleye7834f82006-06-23 02:03:59 -07004433 retval = security_task_setscheduler(p, 0, NULL);
4434 if (retval)
4435 goto out_unlock;
4436
Linus Torvalds1da177e2005-04-16 15:20:36 -07004437 cpus_allowed = cpuset_cpus_allowed(p);
4438 cpus_and(new_mask, new_mask, cpus_allowed);
4439 retval = set_cpus_allowed(p, new_mask);
4440
4441out_unlock:
4442 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004443 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004444 return retval;
4445}
4446
4447static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4448 cpumask_t *new_mask)
4449{
4450 if (len < sizeof(cpumask_t)) {
4451 memset(new_mask, 0, sizeof(cpumask_t));
4452 } else if (len > sizeof(cpumask_t)) {
4453 len = sizeof(cpumask_t);
4454 }
4455 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4456}
4457
4458/**
4459 * sys_sched_setaffinity - set the cpu affinity of a process
4460 * @pid: pid of the process
4461 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4462 * @user_mask_ptr: user-space pointer to the new cpu mask
4463 */
4464asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4465 unsigned long __user *user_mask_ptr)
4466{
4467 cpumask_t new_mask;
4468 int retval;
4469
4470 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4471 if (retval)
4472 return retval;
4473
4474 return sched_setaffinity(pid, new_mask);
4475}
4476
4477/*
4478 * Represents all cpu's present in the system
4479 * In systems capable of hotplug, this map could dynamically grow
4480 * as new cpu's are detected in the system via any platform specific
4481 * method, such as ACPI for e.g.
4482 */
4483
Andi Kleen4cef0c62006-01-11 22:44:57 +01004484cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004485EXPORT_SYMBOL(cpu_present_map);
4486
4487#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004488cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004489EXPORT_SYMBOL(cpu_online_map);
4490
Andi Kleen4cef0c62006-01-11 22:44:57 +01004491cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004492EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004493#endif
4494
4495long sched_getaffinity(pid_t pid, cpumask_t *mask)
4496{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004497 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004498 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004499
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004500 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004501 read_lock(&tasklist_lock);
4502
4503 retval = -ESRCH;
4504 p = find_process_by_pid(pid);
4505 if (!p)
4506 goto out_unlock;
4507
David Quigleye7834f82006-06-23 02:03:59 -07004508 retval = security_task_getscheduler(p);
4509 if (retval)
4510 goto out_unlock;
4511
Jack Steiner2f7016d2006-02-01 03:05:18 -08004512 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004513
4514out_unlock:
4515 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004516 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004517
Ulrich Drepper9531b622007-08-09 11:16:46 +02004518 return retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004519}
4520
4521/**
4522 * sys_sched_getaffinity - get the cpu affinity of a process
4523 * @pid: pid of the process
4524 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4525 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4526 */
4527asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4528 unsigned long __user *user_mask_ptr)
4529{
4530 int ret;
4531 cpumask_t mask;
4532
4533 if (len < sizeof(cpumask_t))
4534 return -EINVAL;
4535
4536 ret = sched_getaffinity(pid, &mask);
4537 if (ret < 0)
4538 return ret;
4539
4540 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4541 return -EFAULT;
4542
4543 return sizeof(cpumask_t);
4544}
4545
4546/**
4547 * sys_sched_yield - yield the current processor to other threads.
4548 *
Ingo Molnardd41f592007-07-09 18:51:59 +02004549 * This function yields the current CPU to other tasks. If there are no
4550 * other threads running on this CPU then this function will return.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004551 */
4552asmlinkage long sys_sched_yield(void)
4553{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004554 struct rq *rq = this_rq_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004555
4556 schedstat_inc(rq, yld_cnt);
Ingo Molnar1799e352007-09-19 23:34:46 +02004557 current->sched_class->yield_task(rq, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004558
4559 /*
4560 * Since we are going to call schedule() anyway, there's
4561 * no need to preempt or enable interrupts:
4562 */
4563 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004564 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004565 _raw_spin_unlock(&rq->lock);
4566 preempt_enable_no_resched();
4567
4568 schedule();
4569
4570 return 0;
4571}
4572
Andrew Mortone7b38402006-06-30 01:56:00 -07004573static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004574{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004575#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4576 __might_sleep(__FILE__, __LINE__);
4577#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004578 /*
4579 * The BKS might be reacquired before we have dropped
4580 * PREEMPT_ACTIVE, which could trigger a second
4581 * cond_resched() call.
4582 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004583 do {
4584 add_preempt_count(PREEMPT_ACTIVE);
4585 schedule();
4586 sub_preempt_count(PREEMPT_ACTIVE);
4587 } while (need_resched());
4588}
4589
4590int __sched cond_resched(void)
4591{
Ingo Molnar94142322006-12-29 16:48:13 -08004592 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4593 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004594 __cond_resched();
4595 return 1;
4596 }
4597 return 0;
4598}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004599EXPORT_SYMBOL(cond_resched);
4600
4601/*
4602 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4603 * call schedule, and on return reacquire the lock.
4604 *
4605 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4606 * operations here to prevent schedule() from being called twice (once via
4607 * spin_unlock(), once by hand).
4608 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004609int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004610{
Jan Kara6df3cec2005-06-13 15:52:32 -07004611 int ret = 0;
4612
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613 if (need_lockbreak(lock)) {
4614 spin_unlock(lock);
4615 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004616 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004617 spin_lock(lock);
4618 }
Ingo Molnar94142322006-12-29 16:48:13 -08004619 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004620 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004621 _raw_spin_unlock(lock);
4622 preempt_enable_no_resched();
4623 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004624 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004625 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004626 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004627 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004628}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004629EXPORT_SYMBOL(cond_resched_lock);
4630
4631int __sched cond_resched_softirq(void)
4632{
4633 BUG_ON(!in_softirq());
4634
Ingo Molnar94142322006-12-29 16:48:13 -08004635 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004636 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004637 __cond_resched();
4638 local_bh_disable();
4639 return 1;
4640 }
4641 return 0;
4642}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643EXPORT_SYMBOL(cond_resched_softirq);
4644
Linus Torvalds1da177e2005-04-16 15:20:36 -07004645/**
4646 * yield - yield the current processor to other threads.
4647 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004648 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004649 * thread runnable and calls sys_sched_yield().
4650 */
4651void __sched yield(void)
4652{
4653 set_current_state(TASK_RUNNING);
4654 sys_sched_yield();
4655}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004656EXPORT_SYMBOL(yield);
4657
4658/*
4659 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4660 * that process accounting knows that this is a task in IO wait state.
4661 *
4662 * But don't do that if it is a deliberate, throttling IO wait (this task
4663 * has set its backing_dev_info: the queue against which it should throttle)
4664 */
4665void __sched io_schedule(void)
4666{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004667 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004668
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004669 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004670 atomic_inc(&rq->nr_iowait);
4671 schedule();
4672 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004673 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004674}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004675EXPORT_SYMBOL(io_schedule);
4676
4677long __sched io_schedule_timeout(long timeout)
4678{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004679 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004680 long ret;
4681
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004682 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004683 atomic_inc(&rq->nr_iowait);
4684 ret = schedule_timeout(timeout);
4685 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004686 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004687 return ret;
4688}
4689
4690/**
4691 * sys_sched_get_priority_max - return maximum RT priority.
4692 * @policy: scheduling class.
4693 *
4694 * this syscall returns the maximum rt_priority that can be used
4695 * by a given scheduling class.
4696 */
4697asmlinkage long sys_sched_get_priority_max(int policy)
4698{
4699 int ret = -EINVAL;
4700
4701 switch (policy) {
4702 case SCHED_FIFO:
4703 case SCHED_RR:
4704 ret = MAX_USER_RT_PRIO-1;
4705 break;
4706 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004707 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004708 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709 ret = 0;
4710 break;
4711 }
4712 return ret;
4713}
4714
4715/**
4716 * sys_sched_get_priority_min - return minimum RT priority.
4717 * @policy: scheduling class.
4718 *
4719 * this syscall returns the minimum rt_priority that can be used
4720 * by a given scheduling class.
4721 */
4722asmlinkage long sys_sched_get_priority_min(int policy)
4723{
4724 int ret = -EINVAL;
4725
4726 switch (policy) {
4727 case SCHED_FIFO:
4728 case SCHED_RR:
4729 ret = 1;
4730 break;
4731 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004732 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004733 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004734 ret = 0;
4735 }
4736 return ret;
4737}
4738
4739/**
4740 * sys_sched_rr_get_interval - return the default timeslice of a process.
4741 * @pid: pid of the process.
4742 * @interval: userspace pointer to the timeslice value.
4743 *
4744 * this syscall writes the default timeslice value of a given process
4745 * into the user-space timespec buffer. A value of '0' means infinity.
4746 */
4747asmlinkage
4748long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4749{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004750 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004751 int retval = -EINVAL;
4752 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004753
4754 if (pid < 0)
4755 goto out_nounlock;
4756
4757 retval = -ESRCH;
4758 read_lock(&tasklist_lock);
4759 p = find_process_by_pid(pid);
4760 if (!p)
4761 goto out_unlock;
4762
4763 retval = security_task_getscheduler(p);
4764 if (retval)
4765 goto out_unlock;
4766
Peter Williamsb78709c2006-06-26 16:58:00 +10004767 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Ingo Molnardd41f592007-07-09 18:51:59 +02004768 0 : static_prio_timeslice(p->static_prio), &t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004769 read_unlock(&tasklist_lock);
4770 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4771out_nounlock:
4772 return retval;
4773out_unlock:
4774 read_unlock(&tasklist_lock);
4775 return retval;
4776}
4777
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004778static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004779
4780static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004781{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004782 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004783 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004784
Linus Torvalds1da177e2005-04-16 15:20:36 -07004785 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004786 printk("%-13.13s %c", p->comm,
4787 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Ingo Molnar4bd77322007-07-11 21:21:47 +02004788#if BITS_PER_LONG == 32
Linus Torvalds1da177e2005-04-16 15:20:36 -07004789 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004790 printk(" running ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004791 else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004792 printk(" %08lx ", thread_saved_pc(p));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004793#else
4794 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004795 printk(" running task ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004796 else
4797 printk(" %016lx ", thread_saved_pc(p));
4798#endif
4799#ifdef CONFIG_DEBUG_STACK_USAGE
4800 {
Al Viro10ebffd2005-11-13 16:06:56 -08004801 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802 while (!*n)
4803 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004804 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004805 }
4806#endif
Ingo Molnar4bd77322007-07-11 21:21:47 +02004807 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004808
4809 if (state != TASK_RUNNING)
4810 show_stack(p, NULL);
4811}
4812
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004813void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004814{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004815 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004816
Ingo Molnar4bd77322007-07-11 21:21:47 +02004817#if BITS_PER_LONG == 32
4818 printk(KERN_INFO
4819 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820#else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004821 printk(KERN_INFO
4822 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004823#endif
4824 read_lock(&tasklist_lock);
4825 do_each_thread(g, p) {
4826 /*
4827 * reset the NMI-timeout, listing all files on a slow
4828 * console might take alot of time:
4829 */
4830 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004831 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004832 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004833 } while_each_thread(g, p);
4834
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004835 touch_all_softlockup_watchdogs();
4836
Ingo Molnardd41f592007-07-09 18:51:59 +02004837#ifdef CONFIG_SCHED_DEBUG
4838 sysrq_sched_debug_show();
4839#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004840 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004841 /*
4842 * Only show locks if all tasks are dumped:
4843 */
4844 if (state_filter == -1)
4845 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846}
4847
Ingo Molnar1df21052007-07-09 18:51:58 +02004848void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4849{
Ingo Molnardd41f592007-07-09 18:51:59 +02004850 idle->sched_class = &idle_sched_class;
Ingo Molnar1df21052007-07-09 18:51:58 +02004851}
4852
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004853/**
4854 * init_idle - set up an idle thread for a given CPU
4855 * @idle: task in question
4856 * @cpu: cpu the idle task belongs to
4857 *
4858 * NOTE: this function does not set the idle thread's NEED_RESCHED
4859 * flag, to make booting more robust.
4860 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004861void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004862{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004863 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004864 unsigned long flags;
4865
Ingo Molnardd41f592007-07-09 18:51:59 +02004866 __sched_fork(idle);
4867 idle->se.exec_start = sched_clock();
4868
Ingo Molnarb29739f2006-06-27 02:54:51 -07004869 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004870 idle->cpus_allowed = cpumask_of_cpu(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004871 __set_task_cpu(idle, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004872
4873 spin_lock_irqsave(&rq->lock, flags);
4874 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004875#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4876 idle->oncpu = 1;
4877#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004878 spin_unlock_irqrestore(&rq->lock, flags);
4879
4880 /* Set the preempt count _outside_ the spinlocks! */
4881#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004882 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004883#else
Al Viroa1261f52005-11-13 16:06:55 -08004884 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004885#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02004886 /*
4887 * The idle tasks have their own, simple scheduling class:
4888 */
4889 idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004890}
4891
4892/*
4893 * In a system that switches off the HZ timer nohz_cpu_mask
4894 * indicates which cpus entered this state. This is used
4895 * in the rcu update to wait only for active cpus. For system
4896 * which do not switch off the HZ timer nohz_cpu_mask should
4897 * always be CPU_MASK_NONE.
4898 */
4899cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4900
Ingo Molnardd41f592007-07-09 18:51:59 +02004901/*
4902 * Increase the granularity value when there are more CPUs,
4903 * because with more CPUs the 'effective latency' as visible
4904 * to users decreases. But the relationship is not linear,
4905 * so pick a second-best guess by going with the log2 of the
4906 * number of CPUs.
4907 *
4908 * This idea comes from the SD scheduler of Con Kolivas:
4909 */
4910static inline void sched_init_granularity(void)
4911{
4912 unsigned int factor = 1 + ilog2(num_online_cpus());
Peter Zijlstra21805082007-08-25 18:41:53 +02004913 const unsigned long limit = 100000000;
Ingo Molnardd41f592007-07-09 18:51:59 +02004914
Ingo Molnar172ac3d2007-08-25 18:41:53 +02004915 sysctl_sched_min_granularity *= factor;
4916 if (sysctl_sched_min_granularity > limit)
4917 sysctl_sched_min_granularity = limit;
Ingo Molnardd41f592007-07-09 18:51:59 +02004918
Peter Zijlstra21805082007-08-25 18:41:53 +02004919 sysctl_sched_latency *= factor;
4920 if (sysctl_sched_latency > limit)
4921 sysctl_sched_latency = limit;
4922
Ingo Molnar50c46632007-08-25 22:17:19 +02004923 sysctl_sched_runtime_limit = sysctl_sched_latency;
4924 sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
Ingo Molnardd41f592007-07-09 18:51:59 +02004925}
4926
Linus Torvalds1da177e2005-04-16 15:20:36 -07004927#ifdef CONFIG_SMP
4928/*
4929 * This is how migration works:
4930 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004931 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004932 * runqueue and wake up that CPU's migration thread.
4933 * 2) we down() the locked semaphore => thread blocks.
4934 * 3) migration thread wakes up (implicitly it forces the migrated
4935 * thread off the CPU)
4936 * 4) it gets the migration request and checks whether the migrated
4937 * task is still in the wrong runqueue.
4938 * 5) if it's in the wrong runqueue then the migration thread removes
4939 * it and puts it into the right queue.
4940 * 6) migration thread up()s the semaphore.
4941 * 7) we wake up and the migration is done.
4942 */
4943
4944/*
4945 * Change a given task's CPU affinity. Migrate the thread to a
4946 * proper CPU and schedule it away if the CPU it's executing on
4947 * is removed from the allowed bitmask.
4948 *
4949 * NOTE: the caller must have a valid reference to the task, the
4950 * task must not exit() & deallocate itself prematurely. The
4951 * call is not atomic; no spinlocks may be held.
4952 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004953int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004954{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004955 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004956 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004957 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004958 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004959
4960 rq = task_rq_lock(p, &flags);
4961 if (!cpus_intersects(new_mask, cpu_online_map)) {
4962 ret = -EINVAL;
4963 goto out;
4964 }
4965
4966 p->cpus_allowed = new_mask;
4967 /* Can the task run on the task's current CPU? If so, we're done */
4968 if (cpu_isset(task_cpu(p), new_mask))
4969 goto out;
4970
4971 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4972 /* Need help from migration thread: drop lock and wait. */
4973 task_rq_unlock(rq, &flags);
4974 wake_up_process(rq->migration_thread);
4975 wait_for_completion(&req.done);
4976 tlb_migrate_finish(p->mm);
4977 return 0;
4978 }
4979out:
4980 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004981
Linus Torvalds1da177e2005-04-16 15:20:36 -07004982 return ret;
4983}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004984EXPORT_SYMBOL_GPL(set_cpus_allowed);
4985
4986/*
4987 * Move (not current) task off this cpu, onto dest cpu. We're doing
4988 * this because either it can't run here any more (set_cpus_allowed()
4989 * away from this CPU, or CPU going down), or because we're
4990 * attempting to rebalance this task on exec (sched_exec).
4991 *
4992 * So we race with normal scheduler movements, but that's OK, as long
4993 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004994 *
4995 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004996 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004997static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004998{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004999 struct rq *rq_dest, *rq_src;
Ingo Molnardd41f592007-07-09 18:51:59 +02005000 int ret = 0, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005001
5002 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005003 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005004
5005 rq_src = cpu_rq(src_cpu);
5006 rq_dest = cpu_rq(dest_cpu);
5007
5008 double_rq_lock(rq_src, rq_dest);
5009 /* Already moved. */
5010 if (task_cpu(p) != src_cpu)
5011 goto out;
5012 /* Affinity changed (again). */
5013 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5014 goto out;
5015
Ingo Molnardd41f592007-07-09 18:51:59 +02005016 on_rq = p->se.on_rq;
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02005017 if (on_rq)
Ingo Molnar2e1cb742007-08-09 11:16:49 +02005018 deactivate_task(rq_src, p, 0);
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02005019
Linus Torvalds1da177e2005-04-16 15:20:36 -07005020 set_task_cpu(p, dest_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005021 if (on_rq) {
5022 activate_task(rq_dest, p, 0);
5023 check_preempt_curr(rq_dest, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005024 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005025 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005026out:
5027 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005028 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005029}
5030
5031/*
5032 * migration_thread - this is a highprio system thread that performs
5033 * thread migration by bumping thread off CPU then 'pushing' onto
5034 * another runqueue.
5035 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005036static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005037{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005038 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005039 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005040
5041 rq = cpu_rq(cpu);
5042 BUG_ON(rq->migration_thread != current);
5043
5044 set_current_state(TASK_INTERRUPTIBLE);
5045 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005046 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005047 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005048
Linus Torvalds1da177e2005-04-16 15:20:36 -07005049 spin_lock_irq(&rq->lock);
5050
5051 if (cpu_is_offline(cpu)) {
5052 spin_unlock_irq(&rq->lock);
5053 goto wait_to_die;
5054 }
5055
5056 if (rq->active_balance) {
5057 active_load_balance(rq, cpu);
5058 rq->active_balance = 0;
5059 }
5060
5061 head = &rq->migration_queue;
5062
5063 if (list_empty(head)) {
5064 spin_unlock_irq(&rq->lock);
5065 schedule();
5066 set_current_state(TASK_INTERRUPTIBLE);
5067 continue;
5068 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005069 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005070 list_del_init(head->next);
5071
Nick Piggin674311d2005-06-25 14:57:27 -07005072 spin_unlock(&rq->lock);
5073 __migrate_task(req->task, cpu, req->dest_cpu);
5074 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005075
5076 complete(&req->done);
5077 }
5078 __set_current_state(TASK_RUNNING);
5079 return 0;
5080
5081wait_to_die:
5082 /* Wait for kthread_stop */
5083 set_current_state(TASK_INTERRUPTIBLE);
5084 while (!kthread_should_stop()) {
5085 schedule();
5086 set_current_state(TASK_INTERRUPTIBLE);
5087 }
5088 __set_current_state(TASK_RUNNING);
5089 return 0;
5090}
5091
5092#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005093/*
5094 * Figure out where task on dead CPU should go, use force if neccessary.
5095 * NOTE: interrupts should be disabled by the caller
5096 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005097static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005098{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005099 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005100 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005101 struct rq *rq;
5102 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005103
Kirill Korotaevefc30812006-06-27 02:54:32 -07005104restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005105 /* On same node? */
5106 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005107 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005108 dest_cpu = any_online_cpu(mask);
5109
5110 /* On any allowed CPU? */
5111 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005112 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005113
5114 /* No more Mr. Nice Guy. */
5115 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005116 rq = task_rq_lock(p, &flags);
5117 cpus_setall(p->cpus_allowed);
5118 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005119 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005120
5121 /*
5122 * Don't tell them about moving exiting tasks or
5123 * kernel threads (both mm NULL), since they never
5124 * leave kernel.
5125 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005126 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005127 printk(KERN_INFO "process %d (%s) no "
5128 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005129 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005130 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005131 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005132 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005133}
5134
5135/*
5136 * While a dead CPU has no uninterruptible tasks queued at this point,
5137 * it might still have a nonzero ->nr_uninterruptible counter, because
5138 * for performance reasons the counter is not stricly tracking tasks to
5139 * their home CPUs. So we just add the counter to another CPU's counter,
5140 * to keep the global sum constant after CPU-down:
5141 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005142static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005143{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005144 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005145 unsigned long flags;
5146
5147 local_irq_save(flags);
5148 double_rq_lock(rq_src, rq_dest);
5149 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5150 rq_src->nr_uninterruptible = 0;
5151 double_rq_unlock(rq_src, rq_dest);
5152 local_irq_restore(flags);
5153}
5154
5155/* Run through task list and migrate tasks from the dead cpu. */
5156static void migrate_live_tasks(int src_cpu)
5157{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005158 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005159
5160 write_lock_irq(&tasklist_lock);
5161
Ingo Molnar48f24c42006-07-03 00:25:40 -07005162 do_each_thread(t, p) {
5163 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005164 continue;
5165
Ingo Molnar48f24c42006-07-03 00:25:40 -07005166 if (task_cpu(p) == src_cpu)
5167 move_task_off_dead_cpu(src_cpu, p);
5168 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005169
5170 write_unlock_irq(&tasklist_lock);
5171}
5172
Ingo Molnardd41f592007-07-09 18:51:59 +02005173/*
5174 * Schedules idle task to be the next runnable task on current CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005175 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005176 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005177 */
5178void sched_idle_next(void)
5179{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005180 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005181 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005182 struct task_struct *p = rq->idle;
5183 unsigned long flags;
5184
5185 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005186 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187
Ingo Molnar48f24c42006-07-03 00:25:40 -07005188 /*
5189 * Strictly not necessary since rest of the CPUs are stopped by now
5190 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191 */
5192 spin_lock_irqsave(&rq->lock, flags);
5193
Ingo Molnardd41f592007-07-09 18:51:59 +02005194 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005195
5196 /* Add idle task to the _front_ of its priority queue: */
Ingo Molnardd41f592007-07-09 18:51:59 +02005197 activate_idle_task(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005198
5199 spin_unlock_irqrestore(&rq->lock, flags);
5200}
5201
Ingo Molnar48f24c42006-07-03 00:25:40 -07005202/*
5203 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005204 * offline.
5205 */
5206void idle_task_exit(void)
5207{
5208 struct mm_struct *mm = current->active_mm;
5209
5210 BUG_ON(cpu_online(smp_processor_id()));
5211
5212 if (mm != &init_mm)
5213 switch_mm(mm, &init_mm, current);
5214 mmdrop(mm);
5215}
5216
Kirill Korotaev054b9102006-12-10 02:20:11 -08005217/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005218static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005219{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005220 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005221
5222 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005223 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224
5225 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005226 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005227
Ingo Molnar48f24c42006-07-03 00:25:40 -07005228 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005229
5230 /*
5231 * Drop lock around migration; if someone else moves it,
5232 * that's OK. No task can be added to this CPU, so iteration is
5233 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005234 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005235 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005236 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005237 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005238 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005239
Ingo Molnar48f24c42006-07-03 00:25:40 -07005240 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005241}
5242
5243/* release_task() removes task from tasklist, so we won't find dead tasks. */
5244static void migrate_dead_tasks(unsigned int dead_cpu)
5245{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005246 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005247 struct task_struct *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248
Ingo Molnardd41f592007-07-09 18:51:59 +02005249 for ( ; ; ) {
5250 if (!rq->nr_running)
5251 break;
Ingo Molnara8e504d2007-08-09 11:16:47 +02005252 update_rq_clock(rq);
Ingo Molnarff95f3d2007-08-09 11:16:49 +02005253 next = pick_next_task(rq, rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02005254 if (!next)
5255 break;
5256 migrate_dead(dead_cpu, next);
Nick Piggine692ab52007-07-26 13:40:43 +02005257
Linus Torvalds1da177e2005-04-16 15:20:36 -07005258 }
5259}
5260#endif /* CONFIG_HOTPLUG_CPU */
5261
Nick Piggine692ab52007-07-26 13:40:43 +02005262#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5263
5264static struct ctl_table sd_ctl_dir[] = {
Alexey Dobriyane0361852007-08-09 11:16:46 +02005265 {
5266 .procname = "sched_domain",
Eric W. Biedermanc57baf12007-08-23 15:18:02 +02005267 .mode = 0555,
Alexey Dobriyane0361852007-08-09 11:16:46 +02005268 },
Nick Piggine692ab52007-07-26 13:40:43 +02005269 {0,},
5270};
5271
5272static struct ctl_table sd_ctl_root[] = {
Alexey Dobriyane0361852007-08-09 11:16:46 +02005273 {
Eric W. Biedermanc57baf12007-08-23 15:18:02 +02005274 .ctl_name = CTL_KERN,
Alexey Dobriyane0361852007-08-09 11:16:46 +02005275 .procname = "kernel",
Eric W. Biedermanc57baf12007-08-23 15:18:02 +02005276 .mode = 0555,
Alexey Dobriyane0361852007-08-09 11:16:46 +02005277 .child = sd_ctl_dir,
5278 },
Nick Piggine692ab52007-07-26 13:40:43 +02005279 {0,},
5280};
5281
5282static struct ctl_table *sd_alloc_ctl_entry(int n)
5283{
5284 struct ctl_table *entry =
5285 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5286
5287 BUG_ON(!entry);
5288 memset(entry, 0, n * sizeof(struct ctl_table));
5289
5290 return entry;
5291}
5292
5293static void
Alexey Dobriyane0361852007-08-09 11:16:46 +02005294set_table_entry(struct ctl_table *entry,
Nick Piggine692ab52007-07-26 13:40:43 +02005295 const char *procname, void *data, int maxlen,
5296 mode_t mode, proc_handler *proc_handler)
5297{
Nick Piggine692ab52007-07-26 13:40:43 +02005298 entry->procname = procname;
5299 entry->data = data;
5300 entry->maxlen = maxlen;
5301 entry->mode = mode;
5302 entry->proc_handler = proc_handler;
5303}
5304
5305static struct ctl_table *
5306sd_alloc_ctl_domain_table(struct sched_domain *sd)
5307{
5308 struct ctl_table *table = sd_alloc_ctl_entry(14);
5309
Alexey Dobriyane0361852007-08-09 11:16:46 +02005310 set_table_entry(&table[0], "min_interval", &sd->min_interval,
Nick Piggine692ab52007-07-26 13:40:43 +02005311 sizeof(long), 0644, proc_doulongvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005312 set_table_entry(&table[1], "max_interval", &sd->max_interval,
Nick Piggine692ab52007-07-26 13:40:43 +02005313 sizeof(long), 0644, proc_doulongvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005314 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005315 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005316 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005317 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005318 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005319 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005320 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005321 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005322 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005323 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005324 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
Nick Piggine692ab52007-07-26 13:40:43 +02005325 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005326 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
Nick Piggine692ab52007-07-26 13:40:43 +02005327 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005328 set_table_entry(&table[10], "cache_nice_tries",
Nick Piggine692ab52007-07-26 13:40:43 +02005329 &sd->cache_nice_tries,
5330 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005331 set_table_entry(&table[12], "flags", &sd->flags,
Nick Piggine692ab52007-07-26 13:40:43 +02005332 sizeof(int), 0644, proc_dointvec_minmax);
5333
5334 return table;
5335}
5336
5337static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5338{
5339 struct ctl_table *entry, *table;
5340 struct sched_domain *sd;
5341 int domain_num = 0, i;
5342 char buf[32];
5343
5344 for_each_domain(cpu, sd)
5345 domain_num++;
5346 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5347
5348 i = 0;
5349 for_each_domain(cpu, sd) {
5350 snprintf(buf, 32, "domain%d", i);
Nick Piggine692ab52007-07-26 13:40:43 +02005351 entry->procname = kstrdup(buf, GFP_KERNEL);
Eric W. Biedermanc57baf12007-08-23 15:18:02 +02005352 entry->mode = 0555;
Nick Piggine692ab52007-07-26 13:40:43 +02005353 entry->child = sd_alloc_ctl_domain_table(sd);
5354 entry++;
5355 i++;
5356 }
5357 return table;
5358}
5359
5360static struct ctl_table_header *sd_sysctl_header;
5361static void init_sched_domain_sysctl(void)
5362{
5363 int i, cpu_num = num_online_cpus();
5364 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5365 char buf[32];
5366
5367 sd_ctl_dir[0].child = entry;
5368
5369 for (i = 0; i < cpu_num; i++, entry++) {
5370 snprintf(buf, 32, "cpu%d", i);
Nick Piggine692ab52007-07-26 13:40:43 +02005371 entry->procname = kstrdup(buf, GFP_KERNEL);
Eric W. Biedermanc57baf12007-08-23 15:18:02 +02005372 entry->mode = 0555;
Nick Piggine692ab52007-07-26 13:40:43 +02005373 entry->child = sd_alloc_ctl_cpu_table(i);
5374 }
5375 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5376}
5377#else
5378static void init_sched_domain_sysctl(void)
5379{
5380}
5381#endif
5382
Linus Torvalds1da177e2005-04-16 15:20:36 -07005383/*
5384 * migration_call - callback that gets triggered when a CPU is added.
5385 * Here we can start up the necessary migration thread for the new CPU.
5386 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005387static int __cpuinit
5388migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005389{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005390 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005391 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005392 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005393 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005394
5395 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005396 case CPU_LOCK_ACQUIRE:
5397 mutex_lock(&sched_hotcpu_mutex);
5398 break;
5399
Linus Torvalds1da177e2005-04-16 15:20:36 -07005400 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005401 case CPU_UP_PREPARE_FROZEN:
Ingo Molnardd41f592007-07-09 18:51:59 +02005402 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005403 if (IS_ERR(p))
5404 return NOTIFY_BAD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005405 kthread_bind(p, cpu);
5406 /* Must be high prio: stop_machine expects to yield to it. */
5407 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005408 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409 task_rq_unlock(rq, &flags);
5410 cpu_rq(cpu)->migration_thread = p;
5411 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005412
Linus Torvalds1da177e2005-04-16 15:20:36 -07005413 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005414 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005415 /* Strictly unneccessary, as first user will wake it. */
5416 wake_up_process(cpu_rq(cpu)->migration_thread);
5417 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005418
Linus Torvalds1da177e2005-04-16 15:20:36 -07005419#ifdef CONFIG_HOTPLUG_CPU
5420 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005421 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005422 if (!cpu_rq(cpu)->migration_thread)
5423 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005424 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005425 kthread_bind(cpu_rq(cpu)->migration_thread,
5426 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005427 kthread_stop(cpu_rq(cpu)->migration_thread);
5428 cpu_rq(cpu)->migration_thread = NULL;
5429 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005430
Linus Torvalds1da177e2005-04-16 15:20:36 -07005431 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005432 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433 migrate_live_tasks(cpu);
5434 rq = cpu_rq(cpu);
5435 kthread_stop(rq->migration_thread);
5436 rq->migration_thread = NULL;
5437 /* Idle task back to normal (off runqueue, low prio) */
5438 rq = task_rq_lock(rq->idle, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02005439 update_rq_clock(rq);
Ingo Molnar2e1cb742007-08-09 11:16:49 +02005440 deactivate_task(rq, rq->idle, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005441 rq->idle->static_prio = MAX_PRIO;
Ingo Molnardd41f592007-07-09 18:51:59 +02005442 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5443 rq->idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005444 migrate_dead_tasks(cpu);
5445 task_rq_unlock(rq, &flags);
5446 migrate_nr_uninterruptible(rq);
5447 BUG_ON(rq->nr_running != 0);
5448
5449 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005450 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005451 * the requestors. */
5452 spin_lock_irq(&rq->lock);
5453 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005454 struct migration_req *req;
5455
Linus Torvalds1da177e2005-04-16 15:20:36 -07005456 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005457 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005458 list_del_init(&req->list);
5459 complete(&req->done);
5460 }
5461 spin_unlock_irq(&rq->lock);
5462 break;
5463#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005464 case CPU_LOCK_RELEASE:
5465 mutex_unlock(&sched_hotcpu_mutex);
5466 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005467 }
5468 return NOTIFY_OK;
5469}
5470
5471/* Register at highest priority so that task migration (migrate_all_tasks)
5472 * happens before everything else.
5473 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005474static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005475 .notifier_call = migration_call,
5476 .priority = 10
5477};
5478
5479int __init migration_init(void)
5480{
5481 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005482 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005483
5484 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5486 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005487 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5488 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005489
Linus Torvalds1da177e2005-04-16 15:20:36 -07005490 return 0;
5491}
5492#endif
5493
5494#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005495
5496/* Number of possible processor ids */
5497int nr_cpu_ids __read_mostly = NR_CPUS;
5498EXPORT_SYMBOL(nr_cpu_ids);
5499
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005500#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005501#ifdef SCHED_DOMAIN_DEBUG
5502static void sched_domain_debug(struct sched_domain *sd, int cpu)
5503{
5504 int level = 0;
5505
Nick Piggin41c7ce92005-06-25 14:57:24 -07005506 if (!sd) {
5507 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5508 return;
5509 }
5510
Linus Torvalds1da177e2005-04-16 15:20:36 -07005511 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5512
5513 do {
5514 int i;
5515 char str[NR_CPUS];
5516 struct sched_group *group = sd->groups;
5517 cpumask_t groupmask;
5518
5519 cpumask_scnprintf(str, NR_CPUS, sd->span);
5520 cpus_clear(groupmask);
5521
5522 printk(KERN_DEBUG);
5523 for (i = 0; i < level + 1; i++)
5524 printk(" ");
5525 printk("domain %d: ", level);
5526
5527 if (!(sd->flags & SD_LOAD_BALANCE)) {
5528 printk("does not load-balance\n");
5529 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005530 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5531 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005532 break;
5533 }
5534
5535 printk("span %s\n", str);
5536
5537 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005538 printk(KERN_ERR "ERROR: domain->span does not contain "
5539 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005540 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005541 printk(KERN_ERR "ERROR: domain->groups does not contain"
5542 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005543
5544 printk(KERN_DEBUG);
5545 for (i = 0; i < level + 2; i++)
5546 printk(" ");
5547 printk("groups:");
5548 do {
5549 if (!group) {
5550 printk("\n");
5551 printk(KERN_ERR "ERROR: group is NULL\n");
5552 break;
5553 }
5554
Eric Dumazet5517d862007-05-08 00:32:57 -07005555 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005556 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005557 printk(KERN_ERR "ERROR: domain->cpu_power not "
5558 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005559 }
5560
5561 if (!cpus_weight(group->cpumask)) {
5562 printk("\n");
5563 printk(KERN_ERR "ERROR: empty group\n");
5564 }
5565
5566 if (cpus_intersects(groupmask, group->cpumask)) {
5567 printk("\n");
5568 printk(KERN_ERR "ERROR: repeated CPUs\n");
5569 }
5570
5571 cpus_or(groupmask, groupmask, group->cpumask);
5572
5573 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5574 printk(" %s", str);
5575
5576 group = group->next;
5577 } while (group != sd->groups);
5578 printk("\n");
5579
5580 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005581 printk(KERN_ERR "ERROR: groups don't span "
5582 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005583
5584 level++;
5585 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005586 if (!sd)
5587 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005588
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005589 if (!cpus_subset(groupmask, sd->span))
5590 printk(KERN_ERR "ERROR: parent span is not a superset "
5591 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005592
5593 } while (sd);
5594}
5595#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005596# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005597#endif
5598
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005599static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005600{
5601 if (cpus_weight(sd->span) == 1)
5602 return 1;
5603
5604 /* Following flags need at least 2 groups */
5605 if (sd->flags & (SD_LOAD_BALANCE |
5606 SD_BALANCE_NEWIDLE |
5607 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005608 SD_BALANCE_EXEC |
5609 SD_SHARE_CPUPOWER |
5610 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005611 if (sd->groups != sd->groups->next)
5612 return 0;
5613 }
5614
5615 /* Following flags don't use groups */
5616 if (sd->flags & (SD_WAKE_IDLE |
5617 SD_WAKE_AFFINE |
5618 SD_WAKE_BALANCE))
5619 return 0;
5620
5621 return 1;
5622}
5623
Ingo Molnar48f24c42006-07-03 00:25:40 -07005624static int
5625sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005626{
5627 unsigned long cflags = sd->flags, pflags = parent->flags;
5628
5629 if (sd_degenerate(parent))
5630 return 1;
5631
5632 if (!cpus_equal(sd->span, parent->span))
5633 return 0;
5634
5635 /* Does parent contain flags not in child? */
5636 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5637 if (cflags & SD_WAKE_AFFINE)
5638 pflags &= ~SD_WAKE_BALANCE;
5639 /* Flags needing groups don't count if only 1 group in parent */
5640 if (parent->groups == parent->groups->next) {
5641 pflags &= ~(SD_LOAD_BALANCE |
5642 SD_BALANCE_NEWIDLE |
5643 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005644 SD_BALANCE_EXEC |
5645 SD_SHARE_CPUPOWER |
5646 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005647 }
5648 if (~cflags & pflags)
5649 return 0;
5650
5651 return 1;
5652}
5653
Linus Torvalds1da177e2005-04-16 15:20:36 -07005654/*
5655 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5656 * hold the hotplug lock.
5657 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005658static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005659{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005660 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005661 struct sched_domain *tmp;
5662
5663 /* Remove the sched domains which do not contribute to scheduling. */
5664 for (tmp = sd; tmp; tmp = tmp->parent) {
5665 struct sched_domain *parent = tmp->parent;
5666 if (!parent)
5667 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005668 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005669 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005670 if (parent->parent)
5671 parent->parent->child = tmp;
5672 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005673 }
5674
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005675 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005676 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005677 if (sd)
5678 sd->child = NULL;
5679 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005680
5681 sched_domain_debug(sd, cpu);
5682
Nick Piggin674311d2005-06-25 14:57:27 -07005683 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005684}
5685
5686/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005687static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005688
5689/* Setup the mask of cpus configured for isolated domains */
5690static int __init isolated_cpu_setup(char *str)
5691{
5692 int ints[NR_CPUS], i;
5693
5694 str = get_options(str, ARRAY_SIZE(ints), ints);
5695 cpus_clear(cpu_isolated_map);
5696 for (i = 1; i <= ints[0]; i++)
5697 if (ints[i] < NR_CPUS)
5698 cpu_set(ints[i], cpu_isolated_map);
5699 return 1;
5700}
5701
5702__setup ("isolcpus=", isolated_cpu_setup);
5703
5704/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005705 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5706 * to a function which identifies what group(along with sched group) a CPU
5707 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5708 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005709 *
5710 * init_sched_build_groups will build a circular linked list of the groups
5711 * covered by the given span, and will set each group's ->cpumask correctly,
5712 * and ->cpu_power to 0.
5713 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005714static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005715init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5716 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5717 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005718{
5719 struct sched_group *first = NULL, *last = NULL;
5720 cpumask_t covered = CPU_MASK_NONE;
5721 int i;
5722
5723 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005724 struct sched_group *sg;
5725 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005726 int j;
5727
5728 if (cpu_isset(i, covered))
5729 continue;
5730
5731 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005732 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005733
5734 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005735 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005736 continue;
5737
5738 cpu_set(j, covered);
5739 cpu_set(j, sg->cpumask);
5740 }
5741 if (!first)
5742 first = sg;
5743 if (last)
5744 last->next = sg;
5745 last = sg;
5746 }
5747 last->next = first;
5748}
5749
John Hawkes9c1cfda2005-09-06 15:18:14 -07005750#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005751
John Hawkes9c1cfda2005-09-06 15:18:14 -07005752#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005753
John Hawkes9c1cfda2005-09-06 15:18:14 -07005754/**
5755 * find_next_best_node - find the next node to include in a sched_domain
5756 * @node: node whose sched_domain we're building
5757 * @used_nodes: nodes already in the sched_domain
5758 *
5759 * Find the next node to include in a given scheduling domain. Simply
5760 * finds the closest node not already in the @used_nodes map.
5761 *
5762 * Should use nodemask_t.
5763 */
5764static int find_next_best_node(int node, unsigned long *used_nodes)
5765{
5766 int i, n, val, min_val, best_node = 0;
5767
5768 min_val = INT_MAX;
5769
5770 for (i = 0; i < MAX_NUMNODES; i++) {
5771 /* Start at @node */
5772 n = (node + i) % MAX_NUMNODES;
5773
5774 if (!nr_cpus_node(n))
5775 continue;
5776
5777 /* Skip already used nodes */
5778 if (test_bit(n, used_nodes))
5779 continue;
5780
5781 /* Simple min distance search */
5782 val = node_distance(node, n);
5783
5784 if (val < min_val) {
5785 min_val = val;
5786 best_node = n;
5787 }
5788 }
5789
5790 set_bit(best_node, used_nodes);
5791 return best_node;
5792}
5793
5794/**
5795 * sched_domain_node_span - get a cpumask for a node's sched_domain
5796 * @node: node whose cpumask we're constructing
5797 * @size: number of nodes to include in this span
5798 *
5799 * Given a node, construct a good cpumask for its sched_domain to span. It
5800 * should be one that prevents unnecessary balancing, but also spreads tasks
5801 * out optimally.
5802 */
5803static cpumask_t sched_domain_node_span(int node)
5804{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005805 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005806 cpumask_t span, nodemask;
5807 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005808
5809 cpus_clear(span);
5810 bitmap_zero(used_nodes, MAX_NUMNODES);
5811
5812 nodemask = node_to_cpumask(node);
5813 cpus_or(span, span, nodemask);
5814 set_bit(node, used_nodes);
5815
5816 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5817 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005818
John Hawkes9c1cfda2005-09-06 15:18:14 -07005819 nodemask = node_to_cpumask(next_node);
5820 cpus_or(span, span, nodemask);
5821 }
5822
5823 return span;
5824}
5825#endif
5826
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005827int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005828
John Hawkes9c1cfda2005-09-06 15:18:14 -07005829/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005830 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005831 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005832#ifdef CONFIG_SCHED_SMT
5833static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005834static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005835
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005836static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5837 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005838{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005839 if (sg)
5840 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005841 return cpu;
5842}
5843#endif
5844
Ingo Molnar48f24c42006-07-03 00:25:40 -07005845/*
5846 * multi-core sched-domains:
5847 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005848#ifdef CONFIG_SCHED_MC
5849static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005850static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005851#endif
5852
5853#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005854static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5855 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005856{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005857 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005858 cpumask_t mask = cpu_sibling_map[cpu];
5859 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005860 group = first_cpu(mask);
5861 if (sg)
5862 *sg = &per_cpu(sched_group_core, group);
5863 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005864}
5865#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005866static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5867 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005868{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005869 if (sg)
5870 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005871 return cpu;
5872}
5873#endif
5874
Linus Torvalds1da177e2005-04-16 15:20:36 -07005875static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005876static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005877
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005878static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5879 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005880{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005881 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005882#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005883 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005884 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005885 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005886#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005887 cpumask_t mask = cpu_sibling_map[cpu];
5888 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005889 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005890#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005891 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005892#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005893 if (sg)
5894 *sg = &per_cpu(sched_group_phys, group);
5895 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005896}
5897
5898#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005899/*
5900 * The init_sched_build_groups can't handle what we want to do with node
5901 * groups, so roll our own. Now each node has its own list of groups which
5902 * gets dynamically allocated.
5903 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005904static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005905static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005906
5907static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005908static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005909
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005910static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5911 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005912{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005913 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5914 int group;
5915
5916 cpus_and(nodemask, nodemask, *cpu_map);
5917 group = first_cpu(nodemask);
5918
5919 if (sg)
5920 *sg = &per_cpu(sched_group_allnodes, group);
5921 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005922}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005923
Siddha, Suresh B08069032006-03-27 01:15:23 -08005924static void init_numa_sched_groups_power(struct sched_group *group_head)
5925{
5926 struct sched_group *sg = group_head;
5927 int j;
5928
5929 if (!sg)
5930 return;
5931next_sg:
5932 for_each_cpu_mask(j, sg->cpumask) {
5933 struct sched_domain *sd;
5934
5935 sd = &per_cpu(phys_domains, j);
5936 if (j != first_cpu(sd->groups->cpumask)) {
5937 /*
5938 * Only add "power" once for each
5939 * physical package.
5940 */
5941 continue;
5942 }
5943
Eric Dumazet5517d862007-05-08 00:32:57 -07005944 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005945 }
5946 sg = sg->next;
5947 if (sg != group_head)
5948 goto next_sg;
5949}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005950#endif
5951
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005952#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005953/* Free memory allocated for various sched_group structures */
5954static void free_sched_groups(const cpumask_t *cpu_map)
5955{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005956 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005957
5958 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005959 struct sched_group **sched_group_nodes
5960 = sched_group_nodes_bycpu[cpu];
5961
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005962 if (!sched_group_nodes)
5963 continue;
5964
5965 for (i = 0; i < MAX_NUMNODES; i++) {
5966 cpumask_t nodemask = node_to_cpumask(i);
5967 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5968
5969 cpus_and(nodemask, nodemask, *cpu_map);
5970 if (cpus_empty(nodemask))
5971 continue;
5972
5973 if (sg == NULL)
5974 continue;
5975 sg = sg->next;
5976next_sg:
5977 oldsg = sg;
5978 sg = sg->next;
5979 kfree(oldsg);
5980 if (oldsg != sched_group_nodes[i])
5981 goto next_sg;
5982 }
5983 kfree(sched_group_nodes);
5984 sched_group_nodes_bycpu[cpu] = NULL;
5985 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005986}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005987#else
5988static void free_sched_groups(const cpumask_t *cpu_map)
5989{
5990}
5991#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005992
Linus Torvalds1da177e2005-04-16 15:20:36 -07005993/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005994 * Initialize sched groups cpu_power.
5995 *
5996 * cpu_power indicates the capacity of sched group, which is used while
5997 * distributing the load between different sched groups in a sched domain.
5998 * Typically cpu_power for all the groups in a sched domain will be same unless
5999 * there are asymmetries in the topology. If there are asymmetries, group
6000 * having more cpu_power will pickup more load compared to the group having
6001 * less cpu_power.
6002 *
6003 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6004 * the maximum number of tasks a group can handle in the presence of other idle
6005 * or lightly loaded groups in the same sched domain.
6006 */
6007static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6008{
6009 struct sched_domain *child;
6010 struct sched_group *group;
6011
6012 WARN_ON(!sd || !sd->groups);
6013
6014 if (cpu != first_cpu(sd->groups->cpumask))
6015 return;
6016
6017 child = sd->child;
6018
Eric Dumazet5517d862007-05-08 00:32:57 -07006019 sd->groups->__cpu_power = 0;
6020
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006021 /*
6022 * For perf policy, if the groups in child domain share resources
6023 * (for example cores sharing some portions of the cache hierarchy
6024 * or SMT), then set this domain groups cpu_power such that each group
6025 * can handle only one task, when there are other idle groups in the
6026 * same sched domain.
6027 */
6028 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6029 (child->flags &
6030 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07006031 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006032 return;
6033 }
6034
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006035 /*
6036 * add cpu_power of each child group to this groups cpu_power
6037 */
6038 group = child->groups;
6039 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07006040 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006041 group = group->next;
6042 } while (group != child->groups);
6043}
6044
6045/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006046 * Build sched domains for a given set of cpus and attach the sched domains
6047 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006048 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006049static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006050{
6051 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07006052#ifdef CONFIG_NUMA
6053 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006054 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006055
6056 /*
6057 * Allocate the per-node list of sched groups
6058 */
Ingo Molnardd41f592007-07-09 18:51:59 +02006059 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006060 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006061 if (!sched_group_nodes) {
6062 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006063 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006064 }
6065 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6066#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006067
6068 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006069 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006070 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006071 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006072 struct sched_domain *sd = NULL, *p;
6073 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6074
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006075 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006076
6077#ifdef CONFIG_NUMA
Ingo Molnardd41f592007-07-09 18:51:59 +02006078 if (cpus_weight(*cpu_map) >
6079 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkes9c1cfda2005-09-06 15:18:14 -07006080 sd = &per_cpu(allnodes_domains, i);
6081 *sd = SD_ALLNODES_INIT;
6082 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006083 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006084 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006085 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006086 } else
6087 p = NULL;
6088
Linus Torvalds1da177e2005-04-16 15:20:36 -07006089 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006090 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006091 sd->span = sched_domain_node_span(cpu_to_node(i));
6092 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006093 if (p)
6094 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006095 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006096#endif
6097
6098 p = sd;
6099 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006100 *sd = SD_CPU_INIT;
6101 sd->span = nodemask;
6102 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006103 if (p)
6104 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006105 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006106
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006107#ifdef CONFIG_SCHED_MC
6108 p = sd;
6109 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006110 *sd = SD_MC_INIT;
6111 sd->span = cpu_coregroup_map(i);
6112 cpus_and(sd->span, sd->span, *cpu_map);
6113 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006114 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006115 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006116#endif
6117
Linus Torvalds1da177e2005-04-16 15:20:36 -07006118#ifdef CONFIG_SCHED_SMT
6119 p = sd;
6120 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006121 *sd = SD_SIBLING_INIT;
6122 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006123 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006124 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006125 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006126 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006127#endif
6128 }
6129
6130#ifdef CONFIG_SCHED_SMT
6131 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006132 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006133 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006134 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006135 if (i != first_cpu(this_sibling_map))
6136 continue;
6137
Ingo Molnardd41f592007-07-09 18:51:59 +02006138 init_sched_build_groups(this_sibling_map, cpu_map,
6139 &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006140 }
6141#endif
6142
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006143#ifdef CONFIG_SCHED_MC
6144 /* Set up multi-core groups */
6145 for_each_cpu_mask(i, *cpu_map) {
6146 cpumask_t this_core_map = cpu_coregroup_map(i);
6147 cpus_and(this_core_map, this_core_map, *cpu_map);
6148 if (i != first_cpu(this_core_map))
6149 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006150 init_sched_build_groups(this_core_map, cpu_map,
6151 &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006152 }
6153#endif
6154
Linus Torvalds1da177e2005-04-16 15:20:36 -07006155 /* Set up physical groups */
6156 for (i = 0; i < MAX_NUMNODES; i++) {
6157 cpumask_t nodemask = node_to_cpumask(i);
6158
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006159 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006160 if (cpus_empty(nodemask))
6161 continue;
6162
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006163 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006164 }
6165
6166#ifdef CONFIG_NUMA
6167 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006168 if (sd_allnodes)
Ingo Molnardd41f592007-07-09 18:51:59 +02006169 init_sched_build_groups(*cpu_map, cpu_map,
6170 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006171
6172 for (i = 0; i < MAX_NUMNODES; i++) {
6173 /* Set up node groups */
6174 struct sched_group *sg, *prev;
6175 cpumask_t nodemask = node_to_cpumask(i);
6176 cpumask_t domainspan;
6177 cpumask_t covered = CPU_MASK_NONE;
6178 int j;
6179
6180 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006181 if (cpus_empty(nodemask)) {
6182 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006183 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006184 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006185
6186 domainspan = sched_domain_node_span(i);
6187 cpus_and(domainspan, domainspan, *cpu_map);
6188
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006189 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006190 if (!sg) {
6191 printk(KERN_WARNING "Can not alloc domain group for "
6192 "node %d\n", i);
6193 goto error;
6194 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006195 sched_group_nodes[i] = sg;
6196 for_each_cpu_mask(j, nodemask) {
6197 struct sched_domain *sd;
Ingo Molnar9761eea2007-07-09 18:52:00 +02006198
John Hawkes9c1cfda2005-09-06 15:18:14 -07006199 sd = &per_cpu(node_domains, j);
6200 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006201 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006202 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006203 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006204 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006205 cpus_or(covered, covered, nodemask);
6206 prev = sg;
6207
6208 for (j = 0; j < MAX_NUMNODES; j++) {
6209 cpumask_t tmp, notcovered;
6210 int n = (i + j) % MAX_NUMNODES;
6211
6212 cpus_complement(notcovered, covered);
6213 cpus_and(tmp, notcovered, *cpu_map);
6214 cpus_and(tmp, tmp, domainspan);
6215 if (cpus_empty(tmp))
6216 break;
6217
6218 nodemask = node_to_cpumask(n);
6219 cpus_and(tmp, tmp, nodemask);
6220 if (cpus_empty(tmp))
6221 continue;
6222
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006223 sg = kmalloc_node(sizeof(struct sched_group),
6224 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006225 if (!sg) {
6226 printk(KERN_WARNING
6227 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006228 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006229 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006230 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006231 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006232 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006233 cpus_or(covered, covered, tmp);
6234 prev->next = sg;
6235 prev = sg;
6236 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006237 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006238#endif
6239
6240 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006241#ifdef CONFIG_SCHED_SMT
6242 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006243 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6244
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006245 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006246 }
6247#endif
6248#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006249 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006250 struct sched_domain *sd = &per_cpu(core_domains, i);
6251
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006252 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006253 }
6254#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006255
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006256 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006257 struct sched_domain *sd = &per_cpu(phys_domains, i);
6258
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006259 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006260 }
6261
John Hawkes9c1cfda2005-09-06 15:18:14 -07006262#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006263 for (i = 0; i < MAX_NUMNODES; i++)
6264 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006265
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006266 if (sd_allnodes) {
6267 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006268
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006269 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006270 init_numa_sched_groups_power(sg);
6271 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006272#endif
6273
Linus Torvalds1da177e2005-04-16 15:20:36 -07006274 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006275 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006276 struct sched_domain *sd;
6277#ifdef CONFIG_SCHED_SMT
6278 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006279#elif defined(CONFIG_SCHED_MC)
6280 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006281#else
6282 sd = &per_cpu(phys_domains, i);
6283#endif
6284 cpu_attach_domain(sd, i);
6285 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006286
6287 return 0;
6288
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006289#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006290error:
6291 free_sched_groups(cpu_map);
6292 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006293#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006294}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006295/*
6296 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6297 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006298static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006299{
6300 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006301 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006302
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006303 /*
6304 * Setup mask for cpus without special case scheduling requirements.
6305 * For now this just excludes isolated cpus, but could be used to
6306 * exclude other special cases in the future.
6307 */
6308 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6309
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006310 err = build_sched_domains(&cpu_default_map);
6311
6312 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006313}
6314
6315static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006316{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006317 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006318}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006319
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006320/*
6321 * Detach sched domains from a group of cpus specified in cpu_map
6322 * These cpus will now be attached to the NULL domain
6323 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006324static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006325{
6326 int i;
6327
6328 for_each_cpu_mask(i, *cpu_map)
6329 cpu_attach_domain(NULL, i);
6330 synchronize_sched();
6331 arch_destroy_sched_domains(cpu_map);
6332}
6333
6334/*
6335 * Partition sched domains as specified by the cpumasks below.
6336 * This attaches all cpus from the cpumasks to the NULL domain,
6337 * waits for a RCU quiescent period, recalculates sched
6338 * domain information and then attaches them back to the
6339 * correct sched domains
6340 * Call with hotplug lock held
6341 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006342int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006343{
6344 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006345 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006346
6347 cpus_and(*partition1, *partition1, cpu_online_map);
6348 cpus_and(*partition2, *partition2, cpu_online_map);
6349 cpus_or(change_map, *partition1, *partition2);
6350
6351 /* Detach sched domains from all of the affected cpus */
6352 detach_destroy_domains(&change_map);
6353 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006354 err = build_sched_domains(partition1);
6355 if (!err && !cpus_empty(*partition2))
6356 err = build_sched_domains(partition2);
6357
6358 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006359}
6360
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006361#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Adrian Bunk6707de002007-08-12 18:08:19 +02006362static int arch_reinit_sched_domains(void)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006363{
6364 int err;
6365
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006366 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006367 detach_destroy_domains(&cpu_online_map);
6368 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006369 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006370
6371 return err;
6372}
6373
6374static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6375{
6376 int ret;
6377
6378 if (buf[0] != '0' && buf[0] != '1')
6379 return -EINVAL;
6380
6381 if (smt)
6382 sched_smt_power_savings = (buf[0] == '1');
6383 else
6384 sched_mc_power_savings = (buf[0] == '1');
6385
6386 ret = arch_reinit_sched_domains();
6387
6388 return ret ? ret : count;
6389}
6390
Adrian Bunk6707de002007-08-12 18:08:19 +02006391#ifdef CONFIG_SCHED_MC
6392static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6393{
6394 return sprintf(page, "%u\n", sched_mc_power_savings);
6395}
6396static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6397 const char *buf, size_t count)
6398{
6399 return sched_power_savings_store(buf, count, 0);
6400}
6401static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6402 sched_mc_power_savings_store);
6403#endif
6404
6405#ifdef CONFIG_SCHED_SMT
6406static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6407{
6408 return sprintf(page, "%u\n", sched_smt_power_savings);
6409}
6410static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6411 const char *buf, size_t count)
6412{
6413 return sched_power_savings_store(buf, count, 1);
6414}
6415static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6416 sched_smt_power_savings_store);
6417#endif
6418
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006419int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6420{
6421 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006422
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006423#ifdef CONFIG_SCHED_SMT
6424 if (smt_capable())
6425 err = sysfs_create_file(&cls->kset.kobj,
6426 &attr_sched_smt_power_savings.attr);
6427#endif
6428#ifdef CONFIG_SCHED_MC
6429 if (!err && mc_capable())
6430 err = sysfs_create_file(&cls->kset.kobj,
6431 &attr_sched_mc_power_savings.attr);
6432#endif
6433 return err;
6434}
6435#endif
6436
Linus Torvalds1da177e2005-04-16 15:20:36 -07006437/*
6438 * Force a reinitialization of the sched domains hierarchy. The domains
6439 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006440 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006441 * which will prevent rebalancing while the sched domains are recalculated.
6442 */
6443static int update_sched_domains(struct notifier_block *nfb,
6444 unsigned long action, void *hcpu)
6445{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006446 switch (action) {
6447 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006448 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006449 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006450 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006451 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006452 return NOTIFY_OK;
6453
6454 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006455 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006456 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006457 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006458 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006459 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006460 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006461 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006462 /*
6463 * Fall through and re-initialise the domains.
6464 */
6465 break;
6466 default:
6467 return NOTIFY_DONE;
6468 }
6469
6470 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006471 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006472
6473 return NOTIFY_OK;
6474}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006475
6476void __init sched_init_smp(void)
6477{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006478 cpumask_t non_isolated_cpus;
6479
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006480 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006481 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006482 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006483 if (cpus_empty(non_isolated_cpus))
6484 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006485 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006486 /* XXX: Theoretical race here - CPU may be hotplugged now */
6487 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006488
Nick Piggine692ab52007-07-26 13:40:43 +02006489 init_sched_domain_sysctl();
6490
Nick Piggin5c1e1762006-10-03 01:14:04 -07006491 /* Move init over to a non-isolated CPU */
6492 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6493 BUG();
Ingo Molnardd41f592007-07-09 18:51:59 +02006494 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006495}
6496#else
6497void __init sched_init_smp(void)
6498{
Ingo Molnardd41f592007-07-09 18:51:59 +02006499 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006500}
6501#endif /* CONFIG_SMP */
6502
6503int in_sched_functions(unsigned long addr)
6504{
6505 /* Linker adds these: start and end of __sched functions */
6506 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006507
Linus Torvalds1da177e2005-04-16 15:20:36 -07006508 return in_lock_functions(addr) ||
6509 (addr >= (unsigned long)__sched_text_start
6510 && addr < (unsigned long)__sched_text_end);
6511}
6512
Ingo Molnardd41f592007-07-09 18:51:59 +02006513static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6514{
6515 cfs_rq->tasks_timeline = RB_ROOT;
6516 cfs_rq->fair_clock = 1;
6517#ifdef CONFIG_FAIR_GROUP_SCHED
6518 cfs_rq->rq = rq;
6519#endif
6520}
6521
Linus Torvalds1da177e2005-04-16 15:20:36 -07006522void __init sched_init(void)
6523{
Ingo Molnardd41f592007-07-09 18:51:59 +02006524 u64 now = sched_clock();
Christoph Lameter476f3532007-05-06 14:48:58 -07006525 int highest_cpu = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006526 int i, j;
6527
6528 /*
6529 * Link up the scheduling class hierarchy:
6530 */
6531 rt_sched_class.next = &fair_sched_class;
6532 fair_sched_class.next = &idle_sched_class;
6533 idle_sched_class.next = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006534
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006535 for_each_possible_cpu(i) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006536 struct rt_prio_array *array;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006537 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006538
6539 rq = cpu_rq(i);
6540 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006541 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006542 rq->nr_running = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006543 rq->clock = 1;
6544 init_cfs_rq(&rq->cfs, rq);
6545#ifdef CONFIG_FAIR_GROUP_SCHED
6546 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6547 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6548#endif
6549 rq->ls.load_update_last = now;
6550 rq->ls.load_update_start = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006551
Ingo Molnardd41f592007-07-09 18:51:59 +02006552 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6553 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006554#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006555 rq->sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006556 rq->active_balance = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006557 rq->next_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006558 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006559 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 rq->migration_thread = NULL;
6561 INIT_LIST_HEAD(&rq->migration_queue);
6562#endif
6563 atomic_set(&rq->nr_iowait, 0);
6564
Ingo Molnardd41f592007-07-09 18:51:59 +02006565 array = &rq->rt.active;
6566 for (j = 0; j < MAX_RT_PRIO; j++) {
6567 INIT_LIST_HEAD(array->queue + j);
6568 __clear_bit(j, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006569 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006570 highest_cpu = i;
Ingo Molnardd41f592007-07-09 18:51:59 +02006571 /* delimiter for bitsearch: */
6572 __set_bit(MAX_RT_PRIO, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006573 }
6574
Peter Williams2dd73a42006-06-27 02:54:34 -07006575 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006576
Avi Kivitye107be32007-07-26 13:40:43 +02006577#ifdef CONFIG_PREEMPT_NOTIFIERS
6578 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6579#endif
6580
Christoph Lameterc9819f42006-12-10 02:20:25 -08006581#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006582 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006583 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6584#endif
6585
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006586#ifdef CONFIG_RT_MUTEXES
6587 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6588#endif
6589
Linus Torvalds1da177e2005-04-16 15:20:36 -07006590 /*
6591 * The boot idle thread does lazy MMU switching as well:
6592 */
6593 atomic_inc(&init_mm.mm_count);
6594 enter_lazy_tlb(&init_mm, current);
6595
6596 /*
6597 * Make us the idle thread. Technically, schedule() should not be
6598 * called from this thread, however somewhere below it might be,
6599 * but because we are the idle thread, we just pick up running again
6600 * when this runqueue becomes "idle".
6601 */
6602 init_idle(current, smp_processor_id());
Ingo Molnardd41f592007-07-09 18:51:59 +02006603 /*
6604 * During early bootup we pretend to be a normal task:
6605 */
6606 current->sched_class = &fair_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006607}
6608
6609#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6610void __might_sleep(char *file, int line)
6611{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006612#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006613 static unsigned long prev_jiffy; /* ratelimiting */
6614
6615 if ((in_atomic() || irqs_disabled()) &&
6616 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6617 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6618 return;
6619 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006620 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006621 " context at %s:%d\n", file, line);
6622 printk("in_atomic():%d, irqs_disabled():%d\n",
6623 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006624 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006625 if (irqs_disabled())
6626 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006627 dump_stack();
6628 }
6629#endif
6630}
6631EXPORT_SYMBOL(__might_sleep);
6632#endif
6633
6634#ifdef CONFIG_MAGIC_SYSRQ
6635void normalize_rt_tasks(void)
6636{
Ingo Molnara0f98a12007-06-17 18:37:45 +02006637 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006638 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006639 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02006640 int on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006641
6642 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006643 do_each_thread(g, p) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006644 p->se.fair_key = 0;
6645 p->se.wait_runtime = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006646 p->se.exec_start = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006647 p->se.wait_start_fair = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006648 p->se.sleep_start_fair = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006649#ifdef CONFIG_SCHEDSTATS
6650 p->se.wait_start = 0;
6651 p->se.sleep_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006652 p->se.block_start = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006653#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02006654 task_rq(p)->cfs.fair_clock = 0;
6655 task_rq(p)->clock = 0;
6656
6657 if (!rt_task(p)) {
6658 /*
6659 * Renice negative nice level userspace
6660 * tasks back to 0:
6661 */
6662 if (TASK_NICE(p) < 0 && p->mm)
6663 set_user_nice(p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006664 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006665 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006666
Ingo Molnarb29739f2006-06-27 02:54:51 -07006667 spin_lock_irqsave(&p->pi_lock, flags);
6668 rq = __task_rq_lock(p);
Ingo Molnardd41f592007-07-09 18:51:59 +02006669#ifdef CONFIG_SMP
6670 /*
6671 * Do not touch the migration thread:
6672 */
6673 if (p == rq->migration_thread)
6674 goto out_unlock;
6675#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006676
Ingo Molnar2daa3572007-08-09 11:16:51 +02006677 update_rq_clock(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02006678 on_rq = p->se.on_rq;
Ingo Molnar2daa3572007-08-09 11:16:51 +02006679 if (on_rq)
6680 deactivate_task(rq, p, 0);
Ingo Molnardd41f592007-07-09 18:51:59 +02006681 __setscheduler(rq, p, SCHED_NORMAL, 0);
6682 if (on_rq) {
Ingo Molnar2daa3572007-08-09 11:16:51 +02006683 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006684 resched_task(rq->curr);
6685 }
Ingo Molnardd41f592007-07-09 18:51:59 +02006686#ifdef CONFIG_SMP
6687 out_unlock:
6688#endif
Ingo Molnarb29739f2006-06-27 02:54:51 -07006689 __task_rq_unlock(rq);
6690 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006691 } while_each_thread(g, p);
6692
Linus Torvalds1da177e2005-04-16 15:20:36 -07006693 read_unlock_irq(&tasklist_lock);
6694}
6695
6696#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006697
6698#ifdef CONFIG_IA64
6699/*
6700 * These functions are only useful for the IA64 MCA handling.
6701 *
6702 * They can only be called when the whole system has been
6703 * stopped - every CPU needs to be quiescent, and no scheduling
6704 * activity can take place. Using them for anything else would
6705 * be a serious bug, and as a result, they aren't even visible
6706 * under any other configuration.
6707 */
6708
6709/**
6710 * curr_task - return the current task for a given cpu.
6711 * @cpu: the processor in question.
6712 *
6713 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6714 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006715struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006716{
6717 return cpu_curr(cpu);
6718}
6719
6720/**
6721 * set_curr_task - set the current task for a given cpu.
6722 * @cpu: the processor in question.
6723 * @p: the task pointer to set.
6724 *
6725 * Description: This function must only be used when non-maskable interrupts
6726 * are serviced on a separate stack. It allows the architecture to switch the
6727 * notion of the current task on a cpu in a non-blocking manner. This function
6728 * must be called with all CPU's synchronized, and interrupts disabled, the
6729 * and caller must save the original value of the current task (see
6730 * curr_task() above) and restore that value before reenabling interrupts and
6731 * re-starting the system.
6732 *
6733 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6734 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006735void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006736{
6737 cpu_curr(cpu) = p;
6738}
6739
6740#endif