blob: 1afcc78dc3b1d9a3da6439497d2d69e65bc05913 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080032#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include <linux/errno.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
37#include <linux/module.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
Ingo Molnarf20bf612007-10-16 16:09:20 +020060 time_t i = get_seconds();
Linus Torvalds1da177e2005-04-16 15:20:36 -070061
62 if (tloc) {
Linus Torvalds20082202007-07-20 13:28:54 -070063 if (put_user(i,tloc))
Linus Torvalds1da177e2005-04-16 15:20:36 -070064 i = -EFAULT;
65 }
66 return i;
67}
68
69/*
70 * sys_stime() can be implemented in user-level using
71 * sys_settimeofday(). Is this for backwards compatibility? If so,
72 * why not move it into the appropriate arch directory (for those
73 * architectures that need it).
74 */
75
76asmlinkage long sys_stime(time_t __user *tptr)
77{
78 struct timespec tv;
79 int err;
80
81 if (get_user(tv.tv_sec, tptr))
82 return -EFAULT;
83
84 tv.tv_nsec = 0;
85
86 err = security_settime(&tv, NULL);
87 if (err)
88 return err;
89
90 do_settimeofday(&tv);
91 return 0;
92}
93
94#endif /* __ARCH_WANT_SYS_TIME */
95
96asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
97{
98 if (likely(tv != NULL)) {
99 struct timeval ktv;
100 do_gettimeofday(&ktv);
101 if (copy_to_user(tv, &ktv, sizeof(ktv)))
102 return -EFAULT;
103 }
104 if (unlikely(tz != NULL)) {
105 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
106 return -EFAULT;
107 }
108 return 0;
109}
110
111/*
112 * Adjust the time obtained from the CMOS to be UTC time instead of
113 * local time.
114 *
115 * This is ugly, but preferable to the alternatives. Otherwise we
116 * would either need to write a program to do it in /etc/rc (and risk
117 * confusion if the program gets run more than once; it would also be
118 * hard to make the program warp the clock precisely n hours) or
119 * compile in the timezone information into the kernel. Bad, bad....
120 *
121 * - TYT, 1992-01-01
122 *
123 * The best thing to do is to keep the CMOS clock in universal time (UTC)
124 * as real UNIX machines always do it. This avoids all headaches about
125 * daylight saving times and warping kernel clocks.
126 */
Jesper Juhl77933d72005-07-27 11:46:09 -0700127static inline void warp_clock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128{
129 write_seqlock_irq(&xtime_lock);
130 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
131 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132 write_sequnlock_irq(&xtime_lock);
133 clock_was_set();
134}
135
136/*
137 * In case for some reason the CMOS clock has not already been running
138 * in UTC, but in some local time: The first time we set the timezone,
139 * we will warp the clock so that it is ticking UTC time instead of
140 * local time. Presumably, if someone is setting the timezone then we
141 * are running in an environment where the programs understand about
142 * timezones. This should be done at boot time in the /etc/rc script,
143 * as soon as possible, so that the clock can be set right. Otherwise,
144 * various programs will get confused when the clock gets warped.
145 */
146
147int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
148{
149 static int firsttime = 1;
150 int error = 0;
151
Linus Torvalds951069e2006-01-31 10:16:55 -0800152 if (tv && !timespec_valid(tv))
Thomas Gleixner718bcce2006-01-09 20:52:29 -0800153 return -EINVAL;
154
Linus Torvalds1da177e2005-04-16 15:20:36 -0700155 error = security_settime(tv, tz);
156 if (error)
157 return error;
158
159 if (tz) {
160 /* SMP safe, global irq locking makes it work. */
161 sys_tz = *tz;
162 if (firsttime) {
163 firsttime = 0;
164 if (!tv)
165 warp_clock();
166 }
167 }
168 if (tv)
169 {
170 /* SMP safe, again the code in arch/foo/time.c should
171 * globally block out interrupts when it runs.
172 */
173 return do_settimeofday(tv);
174 }
175 return 0;
176}
177
178asmlinkage long sys_settimeofday(struct timeval __user *tv,
179 struct timezone __user *tz)
180{
181 struct timeval user_tv;
182 struct timespec new_ts;
183 struct timezone new_tz;
184
185 if (tv) {
186 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
187 return -EFAULT;
188 new_ts.tv_sec = user_tv.tv_sec;
189 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
190 }
191 if (tz) {
192 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
193 return -EFAULT;
194 }
195
196 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
197}
198
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199asmlinkage long sys_adjtimex(struct timex __user *txc_p)
200{
201 struct timex txc; /* Local copy of parameter */
202 int ret;
203
204 /* Copy the user data space into the kernel copy
205 * structure. But bear in mind that the structures
206 * may change
207 */
208 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
209 return -EFAULT;
210 ret = do_adjtimex(&txc);
211 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
212}
213
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214/**
215 * current_fs_time - Return FS time
216 * @sb: Superblock.
217 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200218 * Return the current time truncated to the time granularity supported by
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219 * the fs.
220 */
221struct timespec current_fs_time(struct super_block *sb)
222{
223 struct timespec now = current_kernel_time();
224 return timespec_trunc(now, sb->s_time_gran);
225}
226EXPORT_SYMBOL(current_fs_time);
227
Eric Dumazet753e9c52007-05-08 00:25:32 -0700228/*
229 * Convert jiffies to milliseconds and back.
230 *
231 * Avoid unnecessary multiplications/divisions in the
232 * two most common HZ cases:
233 */
234unsigned int inline jiffies_to_msecs(const unsigned long j)
235{
236#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
237 return (MSEC_PER_SEC / HZ) * j;
238#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
239 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
240#else
241 return (j * MSEC_PER_SEC) / HZ;
242#endif
243}
244EXPORT_SYMBOL(jiffies_to_msecs);
245
246unsigned int inline jiffies_to_usecs(const unsigned long j)
247{
248#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
249 return (USEC_PER_SEC / HZ) * j;
250#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
251 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
252#else
253 return (j * USEC_PER_SEC) / HZ;
254#endif
255}
256EXPORT_SYMBOL(jiffies_to_usecs);
257
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258/**
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200259 * timespec_trunc - Truncate timespec to a granularity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 * @t: Timespec
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200261 * @gran: Granularity in ns.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200263 * Truncate a timespec to a granularity. gran must be smaller than a second.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700264 * Always rounds down.
265 *
266 * This function should be only used for timestamps returned by
267 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
268 * it doesn't handle the better resolution of the later.
269 */
270struct timespec timespec_trunc(struct timespec t, unsigned gran)
271{
272 /*
273 * Division is pretty slow so avoid it for common cases.
274 * Currently current_kernel_time() never returns better than
275 * jiffies resolution. Exploit that.
276 */
277 if (gran <= jiffies_to_usecs(1) * 1000) {
278 /* nothing */
279 } else if (gran == 1000000000) {
280 t.tv_nsec = 0;
281 } else {
282 t.tv_nsec -= t.tv_nsec % gran;
283 }
284 return t;
285}
286EXPORT_SYMBOL(timespec_trunc);
287
john stultzcf3c7692006-06-26 00:25:08 -0700288#ifndef CONFIG_GENERIC_TIME
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289/*
290 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
291 * and therefore only yields usec accuracy
292 */
293void getnstimeofday(struct timespec *tv)
294{
295 struct timeval x;
296
297 do_gettimeofday(&x);
298 tv->tv_sec = x.tv_sec;
299 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
300}
Takashi Iwaic6ecf7e2005-10-14 15:59:03 -0700301EXPORT_SYMBOL_GPL(getnstimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302#endif
303
Thomas Gleixner753be622006-01-09 20:52:22 -0800304/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
305 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
306 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
307 *
308 * [For the Julian calendar (which was used in Russia before 1917,
309 * Britain & colonies before 1752, anywhere else before 1582,
310 * and is still in use by some communities) leave out the
311 * -year/100+year/400 terms, and add 10.]
312 *
313 * This algorithm was first published by Gauss (I think).
314 *
315 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
316 * machines were long is 32-bit! (However, as time_t is signed, we
317 * will already get problems at other places on 2038-01-19 03:14:08)
318 */
319unsigned long
Ingo Molnarf4818902006-01-09 20:52:23 -0800320mktime(const unsigned int year0, const unsigned int mon0,
321 const unsigned int day, const unsigned int hour,
322 const unsigned int min, const unsigned int sec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800323{
Ingo Molnarf4818902006-01-09 20:52:23 -0800324 unsigned int mon = mon0, year = year0;
325
326 /* 1..12 -> 11,12,1..10 */
327 if (0 >= (int) (mon -= 2)) {
328 mon += 12; /* Puts Feb last since it has leap day */
Thomas Gleixner753be622006-01-09 20:52:22 -0800329 year -= 1;
330 }
331
332 return ((((unsigned long)
333 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
334 year*365 - 719499
335 )*24 + hour /* now have hours */
336 )*60 + min /* now have minutes */
337 )*60 + sec; /* finally seconds */
338}
339
Andrew Morton199e7052006-01-09 20:52:24 -0800340EXPORT_SYMBOL(mktime);
341
Thomas Gleixner753be622006-01-09 20:52:22 -0800342/**
343 * set_normalized_timespec - set timespec sec and nsec parts and normalize
344 *
345 * @ts: pointer to timespec variable to be set
346 * @sec: seconds to set
347 * @nsec: nanoseconds to set
348 *
349 * Set seconds and nanoseconds field of a timespec variable and
350 * normalize to the timespec storage format
351 *
352 * Note: The tv_nsec part is always in the range of
353 * 0 <= tv_nsec < NSEC_PER_SEC
354 * For negative values only the tv_sec field is negative !
355 */
Ingo Molnarf4818902006-01-09 20:52:23 -0800356void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800357{
358 while (nsec >= NSEC_PER_SEC) {
359 nsec -= NSEC_PER_SEC;
360 ++sec;
361 }
362 while (nsec < 0) {
363 nsec += NSEC_PER_SEC;
364 --sec;
365 }
366 ts->tv_sec = sec;
367 ts->tv_nsec = nsec;
368}
369
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800370/**
371 * ns_to_timespec - Convert nanoseconds to timespec
372 * @nsec: the nanoseconds value to be converted
373 *
374 * Returns the timespec representation of the nsec parameter.
375 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800376struct timespec ns_to_timespec(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800377{
378 struct timespec ts;
379
George Anzinger88fc3892006-02-03 03:04:20 -0800380 if (!nsec)
381 return (struct timespec) {0, 0};
382
383 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
384 if (unlikely(nsec < 0))
385 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800386
387 return ts;
388}
Stephen Hemminger85795d62007-03-24 21:35:33 -0700389EXPORT_SYMBOL(ns_to_timespec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800390
391/**
392 * ns_to_timeval - Convert nanoseconds to timeval
393 * @nsec: the nanoseconds value to be converted
394 *
395 * Returns the timeval representation of the nsec parameter.
396 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800397struct timeval ns_to_timeval(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800398{
399 struct timespec ts = ns_to_timespec(nsec);
400 struct timeval tv;
401
402 tv.tv_sec = ts.tv_sec;
403 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
404
405 return tv;
406}
Eric Dumazetb7aa0bf2007-04-19 16:16:32 -0700407EXPORT_SYMBOL(ns_to_timeval);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800408
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800409/*
Ingo Molnar41cf5442007-02-16 01:27:28 -0800410 * When we convert to jiffies then we interpret incoming values
411 * the following way:
412 *
413 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
414 *
415 * - 'too large' values [that would result in larger than
416 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
417 *
418 * - all other values are converted to jiffies by either multiplying
419 * the input value by a factor or dividing it with a factor
420 *
421 * We must also be careful about 32-bit overflows.
422 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800423unsigned long msecs_to_jiffies(const unsigned int m)
424{
Ingo Molnar41cf5442007-02-16 01:27:28 -0800425 /*
426 * Negative value, means infinite timeout:
427 */
428 if ((int)m < 0)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800429 return MAX_JIFFY_OFFSET;
Ingo Molnar41cf5442007-02-16 01:27:28 -0800430
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800431#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800432 /*
433 * HZ is equal to or smaller than 1000, and 1000 is a nice
434 * round multiple of HZ, divide with the factor between them,
435 * but round upwards:
436 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800437 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
438#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800439 /*
440 * HZ is larger than 1000, and HZ is a nice round multiple of
441 * 1000 - simply multiply with the factor between them.
442 *
443 * But first make sure the multiplication result cannot
444 * overflow:
445 */
446 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
447 return MAX_JIFFY_OFFSET;
448
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800449 return m * (HZ / MSEC_PER_SEC);
450#else
Ingo Molnar41cf5442007-02-16 01:27:28 -0800451 /*
452 * Generic case - multiply, round and divide. But first
453 * check that if we are doing a net multiplication, that
454 * we wouldnt overflow:
455 */
456 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
457 return MAX_JIFFY_OFFSET;
458
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800459 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
460#endif
461}
462EXPORT_SYMBOL(msecs_to_jiffies);
463
464unsigned long usecs_to_jiffies(const unsigned int u)
465{
466 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
467 return MAX_JIFFY_OFFSET;
468#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
469 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
470#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
471 return u * (HZ / USEC_PER_SEC);
472#else
473 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
474#endif
475}
476EXPORT_SYMBOL(usecs_to_jiffies);
477
478/*
479 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
480 * that a remainder subtract here would not do the right thing as the
481 * resolution values don't fall on second boundries. I.e. the line:
482 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
483 *
484 * Rather, we just shift the bits off the right.
485 *
486 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
487 * value to a scaled second value.
488 */
489unsigned long
490timespec_to_jiffies(const struct timespec *value)
491{
492 unsigned long sec = value->tv_sec;
493 long nsec = value->tv_nsec + TICK_NSEC - 1;
494
495 if (sec >= MAX_SEC_IN_JIFFIES){
496 sec = MAX_SEC_IN_JIFFIES;
497 nsec = 0;
498 }
499 return (((u64)sec * SEC_CONVERSION) +
500 (((u64)nsec * NSEC_CONVERSION) >>
501 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
502
503}
504EXPORT_SYMBOL(timespec_to_jiffies);
505
506void
507jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
508{
509 /*
510 * Convert jiffies to nanoseconds and separate with
511 * one divide.
512 */
513 u64 nsec = (u64)jiffies * TICK_NSEC;
514 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
515}
516EXPORT_SYMBOL(jiffies_to_timespec);
517
518/* Same for "timeval"
519 *
520 * Well, almost. The problem here is that the real system resolution is
521 * in nanoseconds and the value being converted is in micro seconds.
522 * Also for some machines (those that use HZ = 1024, in-particular),
523 * there is a LARGE error in the tick size in microseconds.
524
525 * The solution we use is to do the rounding AFTER we convert the
526 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
527 * Instruction wise, this should cost only an additional add with carry
528 * instruction above the way it was done above.
529 */
530unsigned long
531timeval_to_jiffies(const struct timeval *value)
532{
533 unsigned long sec = value->tv_sec;
534 long usec = value->tv_usec;
535
536 if (sec >= MAX_SEC_IN_JIFFIES){
537 sec = MAX_SEC_IN_JIFFIES;
538 usec = 0;
539 }
540 return (((u64)sec * SEC_CONVERSION) +
541 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
542 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
543}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200544EXPORT_SYMBOL(timeval_to_jiffies);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800545
546void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
547{
548 /*
549 * Convert jiffies to nanoseconds and separate with
550 * one divide.
551 */
552 u64 nsec = (u64)jiffies * TICK_NSEC;
553 long tv_usec;
554
555 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
556 tv_usec /= NSEC_PER_USEC;
557 value->tv_usec = tv_usec;
558}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200559EXPORT_SYMBOL(jiffies_to_timeval);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800560
561/*
562 * Convert jiffies/jiffies_64 to clock_t and back.
563 */
564clock_t jiffies_to_clock_t(long x)
565{
566#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
567 return x / (HZ / USER_HZ);
568#else
569 u64 tmp = (u64)x * TICK_NSEC;
570 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
571 return (long)tmp;
572#endif
573}
574EXPORT_SYMBOL(jiffies_to_clock_t);
575
576unsigned long clock_t_to_jiffies(unsigned long x)
577{
578#if (HZ % USER_HZ)==0
579 if (x >= ~0UL / (HZ / USER_HZ))
580 return ~0UL;
581 return x * (HZ / USER_HZ);
582#else
583 u64 jif;
584
585 /* Don't worry about loss of precision here .. */
586 if (x >= ~0UL / HZ * USER_HZ)
587 return ~0UL;
588
589 /* .. but do try to contain it here */
590 jif = x * (u64) HZ;
591 do_div(jif, USER_HZ);
592 return jif;
593#endif
594}
595EXPORT_SYMBOL(clock_t_to_jiffies);
596
597u64 jiffies_64_to_clock_t(u64 x)
598{
599#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
600 do_div(x, HZ / USER_HZ);
601#else
602 /*
603 * There are better ways that don't overflow early,
604 * but even this doesn't overflow in hundreds of years
605 * in 64 bits, so..
606 */
607 x *= TICK_NSEC;
608 do_div(x, (NSEC_PER_SEC / USER_HZ));
609#endif
610 return x;
611}
612
613EXPORT_SYMBOL(jiffies_64_to_clock_t);
614
615u64 nsec_to_clock_t(u64 x)
616{
617#if (NSEC_PER_SEC % USER_HZ) == 0
618 do_div(x, (NSEC_PER_SEC / USER_HZ));
619#elif (USER_HZ % 512) == 0
620 x *= USER_HZ/512;
621 do_div(x, (NSEC_PER_SEC / 512));
622#else
623 /*
624 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
625 * overflow after 64.99 years.
626 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
627 */
628 x *= 9;
629 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
630 USER_HZ));
631#endif
632 return x;
633}
634
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635#if (BITS_PER_LONG < 64)
636u64 get_jiffies_64(void)
637{
638 unsigned long seq;
639 u64 ret;
640
641 do {
642 seq = read_seqbegin(&xtime_lock);
643 ret = jiffies_64;
644 } while (read_seqretry(&xtime_lock, seq));
645 return ret;
646}
647
648EXPORT_SYMBOL(get_jiffies_64);
649#endif
650
651EXPORT_SYMBOL(jiffies);